JP3666583B2 - Internal combustion engine with a supercharger - Google Patents

Internal combustion engine with a supercharger Download PDF

Info

Publication number
JP3666583B2
JP3666583B2 JP2001108645A JP2001108645A JP3666583B2 JP 3666583 B2 JP3666583 B2 JP 3666583B2 JP 2001108645 A JP2001108645 A JP 2001108645A JP 2001108645 A JP2001108645 A JP 2001108645A JP 3666583 B2 JP3666583 B2 JP 3666583B2
Authority
JP
Japan
Prior art keywords
excess air
air ratio
valve
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001108645A
Other languages
Japanese (ja)
Other versions
JP2002303146A (en
Inventor
光範 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2001108645A priority Critical patent/JP3666583B2/en
Publication of JP2002303146A publication Critical patent/JP2002303146A/en
Application granted granted Critical
Publication of JP3666583B2 publication Critical patent/JP3666583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0468Water separation or drainage means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、過給機付内燃機関に係り、詳しくは、インタークーラ内で凝結する水分の排出技術に関する。
【0002】
【関連する背景技術】
バス、トラック等に搭載されるディーゼルエンジンでは、出力を向上させることを目的として、吸入空気を過給機で圧縮するとともにインタークーラで冷却して燃焼室内の体積効率を高めることが一般に行われている。
また、主として排気中のNOxを低減することを目的として、排ガスの一部を吸気系に還流させて新気とともに再燃焼させる排気再循環(EGR)も一般に行われている。
【0003】
ところで、吸入される新気中や還流されるEGRガス中には水分が水蒸気として多く含まれており、かかる新気やEGRガスをインタークーラで冷却すると、結露が生じ、当該結露水が燃焼室内に進入して部材の腐食等の不具合が生じるという問題がある。
そこで、インタークーラと排気通路とを排水管で連結し、インタークーラ内の結露水を排気通路に排出させる装置が特開平11−270341号公報等に開示されている。これにより、排気通路に排出された結露水が排気熱によって気化され、水蒸気として大気中に放出される。
【0004】
【発明が解決しようとする課題】
しかしながら、バス、トラック等においては排気通路が長いために排気圧力が高く、インタークーラ内の結露水を排気通路に排出させようとしても、インタークーラ内の圧力が低いようなときには排ガスが排水管を逆流する等して結露水が十分に排出されないという問題が起こり得る。
【0005】
また、高出力を得ようとした場合には、過給機で吸入空気の圧力を十分に高める必要があるが、排水管により結露水を排出しようとすると、同時に結露水以外の吸入空気も排出されることになり(ブースト抜け)、吸入空気の圧力が低下して十分な出力が得られず、性能悪化を招くおそれもある。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、内燃機関の性能悪化なく且つ排ガスの逆流なくインタークーラ内の結露水を確実に排出可能な過給機付内燃機関を提供することにある。
【0006】
【課題を解決するための手段】
上記した目的を達成するために、請求項1の発明では、過給機と、吸気通路の前記過給機よりも下流に介装され、吸入空気を冷却するインタークーラと、排気通路と前記吸気通路の前記インタークーラよりも上流の部分とを接続するEGR通路と、前記インタークーラの下部と前記排気通路とを接続する凝結水排水通路と、前記凝結水排水通路に介装された開閉弁と、内燃機関の運転状態を検出する運転状態検出手段と、該運転状態検出手段の検出情報に基づき、前記インタークーラ内の圧力が前記排気通路内の圧力よりも低い極低出力域の運転状態にあるとき、及び、高出力域の運転状態にあるとき、前記開閉弁を閉作動させる開閉弁制御手段とを備えたことを特徴としている。
【0007】
従って、インタークーラ内の圧力が排気通路内の圧力よりも低い極低出力域の運転状態にあるときには開閉弁が閉弁させられることになり、排ガスが凝結水排水通路を介して吸気系に逆流することが防止される。
また、高出力域の運転状態にあるときにも開閉弁が閉弁させられるので、吸入空気の排出が防止されて高出力が必要なときには吸気圧が確保され、内燃機関の出力低下が防止される。
【0008】
即ち、開閉弁は極低出力域でも高出力域でもない中低出力域においてのみ開弁することになり、インタークーラ内の結露水は、内燃機関の性能悪化なく且つ排ガスの逆流なく良好に排気通路に排出され、排気熱により蒸発する。
また、請求項2の発明では、前記開閉弁制御手段は、前記運転状態検出手段からの情報に基づき現運転状態での空気過剰率を算出する空気過剰率算出手段を有し、前記開閉弁制御手段は、前記空気過剰率算出手段により算出される空気過剰率が前記極低出力域の運転状態の閾値としての第1の空気過剰率よりも大きいとき、及び、前記高出力域の運転状態の閾値としての第2の空気過剰率よりも小さいとき、前記開閉弁を閉作動させることを特徴としている。
【0009】
従って、内燃機関の出力と空気過剰率とは相関関係があり、内燃機関が低出力域の運転状態では空気過剰率は大きく、高出力域の運転状態では空気過剰率は小さいことから、空気過剰率が極低出力域の運転状態の閾値としての第1の空気過剰率よりも大きいときに開閉弁を閉弁することにより、排ガスの吸気系への逆流が確実に防止される。
【0010】
また、空気過剰率が高出力域の運転状態の閾値としての第2の空気過剰率よりも小さいときに開閉弁を閉弁することにより、高出力が必要なときの内燃機関の出力低下が好適に防止される。
即ち、開閉弁は空気過剰率が第1の空気過剰率と第2の空気過剰率との間にあるとき、つまり中低出力域においてのみ開弁することになり、インタークーラ内の結露水は、確実に内燃機関の性能悪化なく且つ排ガスの逆流なく排気通路に排出される。
【0011】
また、請求項3の発明では、前記開閉弁制御手段は、前記空気過剰率算出手段により算出される空気過剰率が前記第1の空気過剰率よりも小さく且つ前記第2の空気過剰率よりも大きいとき、前記開閉弁を所定期間に亘り開作動させることを特徴としている。
従って、開閉弁は空気過剰率が第1の空気過剰率と第2の空気過剰率との間にあるとき、つまり中低出力域において所定期間だけ開弁することになり、インタークーラ内の結露水が内燃機関の性能悪化なく且つ排ガスの逆流なく十分に排気通路に排出可能であるとともに、中低出力域においても吸入空気が必要以上に排出されてしまうことが防止される。
【0012】
【発明の実施の形態】
以下、図面を参照して、本発明に係る過給機付内燃機関の一実施例を説明する。
図1を参照すると、本発明に係る過給機付内燃機関の概略構成図が示されており、以下同図に基づき説明する。
【0013】
エンジン1としては、ここでは直列4気筒ディーゼルエンジン(以下、単にエンジンと記す)が採用される。
エンジン1の図示しない吸気ポートには、吸気マニホールド2を介して吸気管4が接続されており、一方、図示しない排気ポートには、排気マニホールド6を介して排気管8が接続されている。
【0014】
そして、これら吸気管4と排気管8には、吸気管4側にコンプレッサ12を有し、排気管8側にタービン14を有するようにしてターボチャージャ(過給機)10が介装されている。ターボチャージャ10は、吸入空気を圧縮することによってエンジン1の燃焼室内の体積効率を高めるものである。
吸気管4のターボチャージャ10と吸気マニホールド2との間には、インタークーラ16が介装されている。インタークーラ16は、ターボチャージャ10により圧送される吸入空気を冷却し、エンジン1の燃焼室内の体積効率をさらに高める機能を果たす。
【0015】
排気管8には、排気ブレーキ20が介装されるとともに、後処理装置22及びマフラ24が介装されている。
排気ブレーキ20は、閉弁することにより排気管内の排気圧力を上げてエンジン1に制動をかける仕組みの制動装置であり、例えばアクチュエータ(図示せず)により開閉される電磁式のバタフライバルブが採用されている。
【0016】
後処理装置22は、排ガスに含まれる有害成分(HC、CO、NOx等)やPM(パティキュレート・マター)を浄化処理するための触媒コンバータやディーゼル・パティキュレート・フィルタ(DPF)からなる排気浄化装置であり、マフラ24は消音装置である。
排気管8の後処理装置22よりも下流の部分からは、分岐して排ガスの一部(EGRガス)を吸気系に還流させるためのEGR通路30が延びており、当該EGR通路30の先端は吸気管4のターボチャージャ10よりも上流の部分に接続されている。
【0017】
そして、EGR通路30には、EGR通路30の開閉制御を行う電磁式のEGR弁32が介装されており、さらに、体積効率を高めるべくEGRガスを冷却するためのEGRクーラ34が介装されている。
これにより、アクチュエータ(図示せず)の作動によりEGR弁32が開弁し、排気管8からEGR通路30を通ってEGRガスが吸気系に還流されると、当該EGRガスが新気とともに燃焼室内に導入されて燃焼することになり、燃焼が緩慢となってNOxの発生が抑制される。
【0018】
ところで、インタークーラ16においては、吸入空気やEGRガスに含まれる水分が冷却により凝結し凝結水となる。そこで、インタークーラ16内には、かかる凝結水を集めるための溜部17が設けられており、当該溜部17からは凝結水排水通路40が延びている。凝結水排水通路40の先端は排気管8のうちEGR通路30との分岐よりも下流の部分に接続されている。
【0019】
そして、凝結水排水通路40には、アクチュエータ(図示せず)により作動し、凝結水排水通路40の連通と遮断とを行う電磁式の開閉弁42が介装されている。
電子コントローラ(ECU)50は、エンジン1を含めた本発明に係る過給機付内燃機関の総合的な制御を行うための制御装置である。
【0020】
ECU50の入力側には、エンジン1に設けられたエンジン回転速度等を検出する各種センサ類が接続されるとともに、アクセルペダル52の操作量を検出するアクセルセンサ54が接続されている。
一方、ECU50の出力側には、上記排気ブレーキ20、EGR弁32、開閉弁42の各アクチュエータが接続されている。
【0021】
これにより、ECU50から排気ブレーキ20のアクチュエータに作動信号が供給されると排気ブレーキ20としてのバタフライバルブが開閉弁し、EGR弁32のアクチュエータに開度信号が供給されるとEGR弁32の開度が調整され、開閉弁42のアクチュエータに作動信号が供給されると開閉弁42が開閉弁する。
【0022】
以下、上記のように構成された本発明に係る過給機付内燃機関の作用、即ち凝結水排水制御について説明する。
上述したように、インタークーラ16には吸入空気やEGRガスに含まれる水分が冷却により凝結して凝結水として溜まることになるが、かかる凝結水を凝結水排水通路40を介して排気管8に排出しようとする場合、常に凝結水が抜けるようにしておくと、例えばアイドル運転時のように排気管8内の排気圧力の方がインタークーラ16内の吸気圧力よりも高いような場合、凝結水が凝結水排水通路40に抜けるどころか排ガスが逆流してしまうという問題があり、一方、高出力を得たいような場合であっても、ブースト抜けにより吸気圧が上がらず、即ち燃焼室内の体積効率を十分に高められず、所望の出力を得られないという問題がある。
【0023】
そこで、本発明では、凝結水の排水を行う時期を必要最小限に制限するようにしている。
図2を参照すると、インタークーラ16内圧力(実線)及び排気管8内圧力(破線)と空気過剰率λとの関係が示されているが、本発明では、空気過剰率λに応じて開閉弁42を開閉制御するようにしており(開閉弁制御手段)、以下同図に基づき説明する。
【0024】
ここに、空気過剰率λを開閉弁42の開閉制御のためのパラメータとするのは、エンジン1の出力と空気過剰率λとの相関が高いためである。
空気過剰率λは、燃料噴射量Q、エンジン回転速度Ne、EGR量等に基づいて決定され、具体的には、アクセルセンサ54からのアクセル開度情報、エンジン1からのエンジン回転速度情報Ne、EGR弁32の開度指令値等から演算により求められる。実際には、これらは予めマップ化されており、空気過剰率λは当該マップから読みとられる(運転状態検出手段、空気過剰率算出手段)。
【0025】
ここでは、例えば極低出力域の運転状態の閾値として値λ1(第1の空気過剰率)が設定されており、高出力域の運転状態の閾値として値λ2(第2の空気過剰率)が設定されている。
そして、空気過剰率λが値λ1よりも大きいようなとき(A領域)には、開閉弁42を閉作動させる。つまり、アイドル運転時のように、エンジン1が極低出力域にあり排気管8内圧力の方がインタークーラ16内圧力よりも高くなるようなときには、開閉弁42を閉状態とする。これにより、排ガスが吸気系側に逆流することが確実に防止される。
【0026】
また、空気過剰率λが値λ2よりも小さいようなとき(C領域)にも、開閉弁42を閉作動させる。つまり、エンジン1が高出力域にあるときには、開閉弁42を閉状態とする。これにより、ブースト抜けが防止され、エンジン1の出力の低下が好適に防止される。
一方、空気過剰率λが値λ1と値λ2の間(B領域)にあるときには、開閉弁42を開作動させる。つまり、エンジン1が中低出力域にあるときにのみ開閉弁42を開作動させ、凝結水の排出を行うようにする。
【0027】
好ましくは、空気過剰率λが値λ1と値λ2の間にあるときに、所定時間(数秒)だけ開閉弁42を開作動させるようにする。これにより、凝結水の排出を十分に行いながら、吸入空気が必要以上に排出されてしまうことが防止される。
従って、本発明の過給機付内燃機関では、インタークーラ16内の結露水をエンジン1の性能悪化なく且つ排ガスの吸気系への逆流なく良好に排気管8に排出させるようにでき、かかる結露水を排気熱によって良好に蒸発させることができる。これにより、エンジン1の主としてピストンやシリンダ壁及びインタークーラ等における腐食の発生を未然に防止できる。
【0028】
なお、EGRガスは通常の新気よりも多くの水分を含むため、中低出力域(B領域)であってもできるだけEGRを実施しているときに定期的に開閉弁42を開弁するのがよい。具体的には、EGRについては低出力域(B領域のうちA領域寄りの範囲)で実施する傾向にあるので、空気過剰率λがかかる領域にあるときに開閉弁42を開弁するのがよい。
【0029】
【発明の効果】
以上詳細に説明したように、本発明の請求項1の過給機付内燃機関によれば、インタークーラ内の圧力が排気通路内の圧力よりも低い極低出力域の運転状態にあるときに開閉弁を閉弁するので、排ガスが凝結水排水通路を介して吸気系に逆流することを防止でき、また、高出力域の運転状態にあるときにも開閉弁を閉弁するので、高出力が必要な場合に吸入空気の排出を防止して吸気圧を確保でき、内燃機関の出力低下を防止することができる。
【0030】
従って、極低出力域でも高出力域でもない中低出力域においてのみ開閉弁を開弁するようにでき、インタークーラ内の結露水を内燃機関の性能悪化なく且つ排ガスの逆流なく良好に排気通路に排出させ、排気熱によって蒸発させることができる。
また、請求項2の過給機付内燃機関によれば、内燃機関の出力と空気過剰率とは相関関係があり、内燃機関が低出力域の運転状態では空気過剰率は大きく、高出力域の運転状態では空気過剰率は小さいことから、空気過剰率が極低出力域の運転状態の閾値としての第1の空気過剰率よりも大きいときに開閉弁を閉弁することで、排ガスの吸気系への逆流を確実に防止でき、また、空気過剰率が高出力域の運転状態の閾値としての第2の空気過剰率よりも小さいときに開閉弁を閉弁することで、高出力が必要なときの内燃機関の出力低下を好適に防止できる。
【0031】
従って、空気過剰率が第1の空気過剰率と第2の空気過剰率との間にあるとき、つまり中低出力域においてのみ開閉弁を開弁するようにでき、インタークーラ内の結露水を確実に内燃機関の性能悪化なく且つ排ガスの逆流なく排気通路に排出させることができる。
また、請求項3の過給機付内燃機関によれば、空気過剰率が第1の空気過剰率と第2の空気過剰率との間にあるとき、つまり中低出力域において所定期間だけ開閉弁を開弁するので、インタークーラ内の結露水を内燃機関の性能悪化なく且つ排ガスの逆流なく十分に排気通路に排出できるとともに、中低出力域においても吸入空気が必要以上に排出されてしまうことを防止することができる。
【図面の簡単な説明】
【図1】本発明に係る過給機付内燃機関の概略構成図である。
【図2】インタークーラ内圧力及び排気管内圧力と空気過剰率λとの関係を示す図であって、開閉弁の開閉制御について説明する図である。
【符号の説明】
1 ディーゼルエンジン
4 吸気管
8 排気管
10 ターボチャージャ(過給機)
16 インタークーラ
30 EGR通路
32 EGR弁
40 凝結水排水通路
42 開閉弁
50 電子コントローラ(ECU)
54 アクセルセンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internal combustion engine with a supercharger, and more particularly to a technique for discharging moisture that condenses in an intercooler.
[0002]
[Related background]
In diesel engines mounted on buses, trucks, etc., in order to improve output, it is common practice to compress the intake air with a supercharger and cool it with an intercooler to increase the volumetric efficiency in the combustion chamber. Yes.
Also, exhaust gas recirculation (EGR) is generally performed in which a part of exhaust gas is recirculated to the intake system and recombusted with fresh air mainly for the purpose of reducing NOx in the exhaust gas.
[0003]
By the way, a large amount of water is contained as water vapor in the sucked fresh air and the refluxed EGR gas. When the fresh air and the EGR gas are cooled by an intercooler, condensation occurs, and the condensed water is contained in the combustion chamber. There is a problem that a problem such as corrosion of the member occurs due to entering.
Therefore, an apparatus for connecting the intercooler and the exhaust passage with a drain pipe and discharging condensed water in the intercooler to the exhaust passage is disclosed in Japanese Patent Application Laid-Open No. 11-270341. Thereby, the dew condensation water discharged to the exhaust passage is vaporized by the exhaust heat, and is released into the atmosphere as water vapor.
[0004]
[Problems to be solved by the invention]
However, because the exhaust passage is long in buses, trucks, etc., the exhaust pressure is high, and even if it is attempted to discharge condensed water in the intercooler to the exhaust passage, the exhaust gas will drain the drain pipe when the pressure in the intercooler is low. There may be a problem that the condensed water is not sufficiently discharged due to reverse flow.
[0005]
In addition, when trying to obtain a high output, it is necessary to sufficiently increase the pressure of the intake air with a turbocharger. However, if the condensed water is discharged through the drain pipe, the intake air other than the condensed water is discharged at the same time. (Boost missing), the pressure of the intake air is lowered and a sufficient output cannot be obtained, which may cause a deterioration in performance.
The present invention has been made to solve such problems, and the object of the present invention is to provide a supercharger capable of reliably discharging condensed water in the intercooler without deteriorating the performance of the internal combustion engine and without backflow of exhaust gas. It is to provide an internal combustion engine with a machine.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a supercharger, an intercooler that is interposed downstream of the supercharger in an intake passage and cools intake air, an exhaust passage, and the intake air are provided. An EGR passage that connects a portion of the passage upstream of the intercooler, a condensed water drainage passage that connects a lower portion of the intercooler and the exhaust passage, and an on-off valve interposed in the condensed water drainage passage; An operating state detecting means for detecting the operating state of the internal combustion engine, and an operating state in an extremely low output region where the pressure in the intercooler is lower than the pressure in the exhaust passage based on the detection information of the operating state detecting means. On-off valve control means for closing the on-off valve at a certain time and when operating in a high output range is provided.
[0007]
Therefore, when the pressure in the intercooler is in an extremely low output range operation state where the pressure in the exhaust passage is lower than the pressure in the exhaust passage, the on-off valve is closed, and the exhaust gas flows back to the intake system via the condensed water drainage passage. Is prevented.
Also, since the on-off valve is closed even when the engine is in the high output range, intake air is prevented from being discharged and intake pressure is secured when high output is required, preventing a decrease in the output of the internal combustion engine. The
[0008]
In other words, the on-off valve opens only in the medium and low output ranges that are neither the extremely low output range nor the high output range, and the dew condensation water in the intercooler is exhausted well without deteriorating the performance of the internal combustion engine and without backflow of exhaust gas. It is discharged into the passage and evaporates due to exhaust heat.
According to a second aspect of the present invention, the on-off valve control means has an excess air ratio calculating means for calculating an excess air ratio in a current operating state based on information from the operating state detecting means, and the on-off valve control When the excess air ratio calculated by the excess air ratio calculating means is larger than a first excess air ratio as a threshold value of the operating state in the extremely low output range, and when the operating state in the high output range is When the second excess air ratio is smaller than the threshold value, the on-off valve is closed.
[0009]
Therefore, there is a correlation between the output of the internal combustion engine and the excess air ratio, and the excess air ratio is large when the internal combustion engine is operating in the low output range, and the excess air ratio is small when the internal combustion engine is operating in the high output range. By closing the on-off valve when the rate is greater than the first excess air rate as the threshold value of the operating state in the extremely low output range, the backflow of exhaust gas to the intake system is reliably prevented.
[0010]
Further, by closing the on-off valve when the excess air ratio is smaller than the second excess air ratio as a threshold value for the operating state in the high output range, it is preferable to reduce the output of the internal combustion engine when high output is required. To be prevented.
That is, the on-off valve is opened only when the excess air ratio is between the first excess air ratio and the second excess air ratio, that is, in the middle and low output ranges, and the dew condensation water in the intercooler is Thus, the exhaust gas is reliably discharged into the exhaust passage without deteriorating the performance of the internal combustion engine and without backflow of exhaust gas.
[0011]
In the invention of claim 3, the on-off valve control means is configured such that the excess air ratio calculated by the excess air ratio calculating means is smaller than the first excess air ratio and less than the second excess air ratio. When it is larger, the on-off valve is opened for a predetermined period.
Therefore, the on-off valve opens for a predetermined period when the excess air ratio is between the first excess air ratio and the second excess air ratio, that is, in the middle and low output range, and the dew condensation in the intercooler occurs. Water can be sufficiently discharged into the exhaust passage without deteriorating the performance of the internal combustion engine and without backflow of exhaust gas, and intake air is prevented from being discharged more than necessary even in the middle and low output ranges.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of an internal combustion engine with a supercharger according to the present invention will be described with reference to the drawings.
Referring to FIG. 1, there is shown a schematic configuration diagram of an internal combustion engine with a supercharger according to the present invention, which will be described below with reference to FIG.
[0013]
Here, an in-line four-cylinder diesel engine (hereinafter simply referred to as an engine) is employed as the engine 1.
An intake pipe 4 is connected to an intake port (not shown) of the engine 1 via an intake manifold 2, while an exhaust pipe 8 is connected to an exhaust port (not shown) via an exhaust manifold 6.
[0014]
The intake pipe 4 and the exhaust pipe 8 are provided with a turbocharger (supercharger) 10 having a compressor 12 on the intake pipe 4 side and a turbine 14 on the exhaust pipe 8 side. . The turbocharger 10 enhances volumetric efficiency in the combustion chamber of the engine 1 by compressing intake air.
An intercooler 16 is interposed between the turbocharger 10 of the intake pipe 4 and the intake manifold 2. The intercooler 16 serves to cool the intake air pumped by the turbocharger 10 and further increase the volumetric efficiency in the combustion chamber of the engine 1.
[0015]
An exhaust brake 20 is interposed in the exhaust pipe 8, and an aftertreatment device 22 and a muffler 24 are interposed.
The exhaust brake 20 is a braking device that applies a brake to the engine 1 by closing the valve to increase the exhaust pressure in the exhaust pipe. For example, an electromagnetic butterfly valve that is opened and closed by an actuator (not shown) is employed. ing.
[0016]
The aftertreatment device 22 is an exhaust gas purification comprising a catalytic converter and a diesel particulate filter (DPF) for purifying harmful components (HC, CO, NOx, etc.) and PM (particulate matter) contained in the exhaust gas. The muffler 24 is a silencer.
An EGR passage 30 is branched from a portion downstream of the aftertreatment device 22 of the exhaust pipe 8 to recirculate a part of the exhaust gas (EGR gas) to the intake system, and the tip of the EGR passage 30 is The intake pipe 4 is connected to a portion upstream of the turbocharger 10.
[0017]
The EGR passage 30 is provided with an electromagnetic EGR valve 32 that controls the opening and closing of the EGR passage 30, and further, an EGR cooler 34 for cooling EGR gas to increase volumetric efficiency. ing.
As a result, the EGR valve 32 is opened by the operation of an actuator (not shown), and when the EGR gas is recirculated from the exhaust pipe 8 through the EGR passage 30 to the intake system, the EGR gas is combined with fresh air in the combustion chamber. It is introduced into the gas and combusts, so that the combustion becomes slow and the generation of NOx is suppressed.
[0018]
By the way, in the intercooler 16, the water | moisture content contained in intake air or EGR gas condenses by cooling, and becomes condensed water. Therefore, a reservoir 17 for collecting the condensed water is provided in the intercooler 16, and a condensed water drainage passage 40 extends from the reservoir 17. The tip of the condensed water drainage passage 40 is connected to a portion of the exhaust pipe 8 downstream of the branch with the EGR passage 30.
[0019]
The condensed water drainage passage 40 is provided with an electromagnetic on-off valve 42 that is actuated by an actuator (not shown) to communicate and block the condensed water drainage passage 40.
The electronic controller (ECU) 50 is a control device for performing overall control of the supercharged internal combustion engine including the engine 1 according to the present invention.
[0020]
To the input side of the ECU 50, various sensors for detecting the engine speed and the like provided in the engine 1 are connected, and an accelerator sensor 54 for detecting the operation amount of the accelerator pedal 52 is connected.
On the other hand, the exhaust brake 20, the EGR valve 32, and the opening / closing valve 42 are connected to the output side of the ECU 50.
[0021]
Thus, when an actuation signal is supplied from the ECU 50 to the actuator of the exhaust brake 20, the butterfly valve as the exhaust brake 20 opens and closes, and when the opening signal is supplied to the actuator of the EGR valve 32, the opening of the EGR valve 32 Is adjusted, and the operation signal is supplied to the actuator of the on-off valve 42, the on-off valve 42 opens and closes.
[0022]
The operation of the supercharged internal combustion engine according to the present invention configured as described above, that is, the condensed water drainage control will be described below.
As described above, in the intercooler 16, moisture contained in the intake air or EGR gas condenses by cooling and accumulates as condensed water. The condensed water is supplied to the exhaust pipe 8 through the condensed water drainage passage 40. When draining, when condensed water is always discharged, the condensed water in the case where the exhaust pressure in the exhaust pipe 8 is higher than the intake pressure in the intercooler 16 as in idle operation, for example. However, even if it is desired to obtain a high output, the intake pressure does not increase due to the boost loss, that is, the volumetric efficiency in the combustion chamber is reduced. There is a problem that the desired output cannot be obtained due to insufficient increase.
[0023]
Therefore, in the present invention, the timing for draining condensed water is limited to the minimum necessary.
Referring to FIG. 2, the relationship between the pressure in the intercooler 16 (solid line) and the pressure in the exhaust pipe 8 (broken line) and the excess air ratio λ is shown. The valve 42 is controlled to open and close (open / close valve control means), which will be described below with reference to FIG.
[0024]
Here, the reason why the excess air ratio λ is used as a parameter for the opening / closing control of the on-off valve 42 is that the correlation between the output of the engine 1 and the excess air ratio λ is high.
The excess air ratio λ is determined based on the fuel injection amount Q, the engine rotational speed Ne, the EGR amount, and the like. Specifically, the accelerator opening information from the accelerator sensor 54, the engine rotational speed information Ne from the engine 1, It is obtained by calculation from the opening degree command value of the EGR valve 32 or the like. Actually, these are mapped in advance, and the excess air ratio λ is read from the map (operating state detection means, excess air ratio calculation means).
[0025]
Here, for example, the value λ1 (first excess air ratio) is set as the threshold value for the operating state in the extremely low output range, and the value λ2 (second excess air ratio) is set as the threshold value for the operating state in the high output range. Is set.
When the excess air ratio λ is larger than the value λ1 (A range), the on-off valve 42 is closed. That is, the open / close valve 42 is closed when the engine 1 is in the extremely low output region and the pressure in the exhaust pipe 8 is higher than the pressure in the intercooler 16 as in idle operation. This reliably prevents the exhaust gas from flowing backward to the intake system side.
[0026]
Also, when the excess air ratio λ is smaller than the value λ2 (C region), the on-off valve 42 is closed. That is, when the engine 1 is in the high output range, the on-off valve 42 is closed. As a result, the loss of boost is prevented, and a decrease in the output of the engine 1 is preferably prevented.
On the other hand, when the excess air ratio λ is between the values λ1 and λ2 (B region), the on-off valve 42 is opened. That is, the on-off valve 42 is opened only when the engine 1 is in the middle / low output range, and condensed water is discharged.
[0027]
Preferably, when the excess air ratio λ is between the values λ1 and λ2, the on-off valve 42 is opened for a predetermined time (several seconds). This prevents the intake air from being discharged more than necessary while sufficiently discharging condensed water.
Therefore, in the internal combustion engine with a supercharger of the present invention, the dew condensation water in the intercooler 16 can be discharged to the exhaust pipe 8 well without deteriorating the performance of the engine 1 and backflow of the exhaust gas to the intake system. Water can be vaporized well by exhaust heat. Thereby, it is possible to prevent the occurrence of corrosion mainly in the piston, cylinder wall, intercooler and the like of the engine 1.
[0028]
Since the EGR gas contains more water than normal fresh air, the on-off valve 42 is periodically opened when EGR is performed as much as possible even in the middle and low output range (B region). Is good. Specifically, since EGR tends to be performed in a low output region (a region closer to the A region in the B region), the on-off valve 42 may be opened when the excess air ratio λ is in the region. Good.
[0029]
【The invention's effect】
As described above in detail, according to the supercharged internal combustion engine of claim 1 of the present invention, when the pressure in the intercooler is in the operating state in the extremely low output range lower than the pressure in the exhaust passage. Since the on-off valve is closed, the exhaust gas can be prevented from flowing back to the intake system via the condensed water drainage passage, and the on-off valve is closed even when operating in the high output range. When this is necessary, the intake air can be prevented from being discharged and the intake pressure can be secured, and the output of the internal combustion engine can be prevented from decreasing.
[0030]
Therefore, the on-off valve can be opened only in the medium to low output range that is neither the extremely low output range nor the high output range, and the dew condensation in the intercooler can be exhausted well without deteriorating the performance of the internal combustion engine and without backflow of exhaust gas. And can be evaporated by exhaust heat.
Further, according to the internal combustion engine with a supercharger according to claim 2, the output of the internal combustion engine and the excess air ratio are correlated, and the excess air ratio is large when the internal combustion engine is operating in a low output range. Since the excess air ratio is small in the operating state of FIG. 5, the on-off valve is closed when the excess air ratio is larger than the first excess air ratio as the threshold value of the operating state in the extremely low output region, thereby Backflow to the system can be reliably prevented, and high output is required by closing the open / close valve when the excess air ratio is smaller than the second excess air ratio as the threshold value of the operating state in the high power range It is possible to suitably prevent a decrease in the output of the internal combustion engine at that time.
[0031]
Therefore, when the excess air ratio is between the first excess air ratio and the second excess air ratio, that is, only in the middle and low output ranges, the on-off valve can be opened, and the dew condensation water in the intercooler is reduced. The exhaust gas can be reliably discharged into the exhaust passage without deteriorating the performance of the internal combustion engine and without backflow of exhaust gas.
Further, according to the internal combustion engine with a supercharger according to claim 3, when the excess air ratio is between the first excess air ratio and the second excess air ratio, that is, in the middle and low output range, it opens and closes for a predetermined period. Since the valve is opened, the dew condensation water in the intercooler can be sufficiently discharged to the exhaust passage without deteriorating the performance of the internal combustion engine and the backflow of the exhaust gas, and the intake air is discharged more than necessary even in the middle and low output ranges. This can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a supercharged internal combustion engine according to the present invention.
FIG. 2 is a diagram illustrating a relationship among an intercooler internal pressure, an exhaust pipe internal pressure, and an excess air ratio λ, and is a diagram for explaining open / close control of an open / close valve.
[Explanation of symbols]
1 Diesel engine 4 Intake pipe 8 Exhaust pipe 10 Turbocharger (supercharger)
16 Intercooler 30 EGR passage 32 EGR valve 40 Condensed water drain passage 42 On-off valve 50 Electronic controller (ECU)
54 Accelerator sensor

Claims (3)

過給機と、
吸気通路の前記過給機よりも下流に介装され、吸入空気を冷却するインタークーラと、
排気通路と前記吸気通路の前記インタークーラよりも上流の部分とを接続するEGR通路と、
前記インタークーラの下部と前記排気通路とを接続する凝結水排水通路と、
前記凝結水排水通路に介装された開閉弁と、
内燃機関の運転状態を検出する運転状態検出手段と、
該運転状態検出手段の検出情報に基づき、前記インタークーラ内の圧力が前記排気通路内の圧力よりも低い極低出力域の運転状態にあるとき、及び、高出力域の運転状態にあるとき、前記開閉弁を閉作動させる開閉弁制御手段と、
を備えたことを特徴とする過給機付内燃機関。
A turbocharger,
An intercooler that is interposed downstream of the supercharger in the intake passage and cools the intake air;
An EGR passage connecting an exhaust passage and a portion of the intake passage upstream of the intercooler;
A condensed water drainage passage connecting the lower portion of the intercooler and the exhaust passage;
An on-off valve interposed in the condensed water drainage passage;
An operating state detecting means for detecting an operating state of the internal combustion engine;
Based on the detection information of the operation state detection means, when the pressure in the intercooler is in an extremely low output region operation state lower than the pressure in the exhaust passage, and when in a high output region operation state, On-off valve control means for closing the on-off valve;
An internal combustion engine equipped with a supercharger.
前記開閉弁制御手段は、前記運転状態検出手段からの情報に基づき現運転状態での空気過剰率を算出する空気過剰率算出手段を有し、
前記開閉弁制御手段は、前記空気過剰率算出手段により算出される空気過剰率が前記極低出力域の運転状態の閾値としての第1の空気過剰率よりも大きいとき、及び、前記高出力域の運転状態の閾値としての第2の空気過剰率よりも小さいとき、前記開閉弁を閉作動させることを特徴とする、請求項1記載の過給機付内燃機関。
The on-off valve control means has an excess air ratio calculation means for calculating an excess air ratio in the current operation state based on information from the operation state detection means,
The on-off valve control means is configured such that when the excess air ratio calculated by the excess air ratio calculating means is larger than a first excess air ratio as a threshold value of the operating state in the extremely low output range, and the high output range. 2. The supercharged internal combustion engine according to claim 1, wherein the on-off valve is closed when the air excess ratio is smaller than a second excess air ratio as a threshold value of the operating state.
前記開閉弁制御手段は、前記空気過剰率算出手段により算出される空気過剰率が前記第1の空気過剰率よりも小さく且つ前記第2の空気過剰率よりも大きいとき、前記開閉弁を所定期間に亘り開作動させることを特徴とする、請求項2記載の過給機付内燃機関。The opening / closing valve control means sets the opening / closing valve for a predetermined period when the excess air ratio calculated by the excess air ratio calculating means is smaller than the first excess air ratio and greater than the second excess air ratio. The internal combustion engine with a supercharger according to claim 2, wherein the internal combustion engine is opened over a wide range.
JP2001108645A 2001-04-06 2001-04-06 Internal combustion engine with a supercharger Expired - Fee Related JP3666583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001108645A JP3666583B2 (en) 2001-04-06 2001-04-06 Internal combustion engine with a supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001108645A JP3666583B2 (en) 2001-04-06 2001-04-06 Internal combustion engine with a supercharger

Publications (2)

Publication Number Publication Date
JP2002303146A JP2002303146A (en) 2002-10-18
JP3666583B2 true JP3666583B2 (en) 2005-06-29

Family

ID=18960742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001108645A Expired - Fee Related JP3666583B2 (en) 2001-04-06 2001-04-06 Internal combustion engine with a supercharger

Country Status (1)

Country Link
JP (1) JP3666583B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180757A (en) * 2011-02-28 2012-09-20 Mitsubishi Motors Corp Condensed water discharge device
JP2015004295A (en) * 2013-06-20 2015-01-08 三菱自動車工業株式会社 Condensed water treatment mechanism

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4713437B2 (en) * 2006-10-18 2011-06-29 日立オートモティブシステムズ株式会社 Exhaust gas recirculation device for internal combustion engine
JP4910977B2 (en) * 2007-10-16 2012-04-04 マツダ株式会社 Engine supercharger
US20130180508A1 (en) * 2010-05-27 2013-07-18 International Engine Intellectual Property Company Llc System and method of controlling an amount of condensation in an engine air intake system
JP5626017B2 (en) * 2011-02-28 2014-11-19 三菱自動車工業株式会社 Condensate drain device
JP5804376B2 (en) * 2011-12-13 2015-11-04 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine
JP5962233B2 (en) * 2012-06-07 2016-08-03 三菱自動車工業株式会社 Condensate discharge control mechanism
JP5846382B2 (en) * 2012-06-25 2016-01-20 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine
JP6007436B2 (en) * 2012-10-04 2016-10-12 三菱自動車工業株式会社 Engine condensate drain
JP6019479B2 (en) * 2012-10-04 2016-11-02 三菱自動車工業株式会社 Engine condensate drain
JP6237158B2 (en) * 2013-11-25 2017-11-29 三菱自動車工業株式会社 Drainage control device for internal combustion engine
EP3093465B1 (en) * 2013-11-25 2019-06-19 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device for internal combustion engine
JP6201737B2 (en) * 2013-12-24 2017-09-27 三菱自動車工業株式会社 Drainage device for internal combustion engine
US10100788B2 (en) 2015-12-11 2018-10-16 Hyundai Motor Company Engine system for exhausting condensate water and method of using the engine system
JP6840202B1 (en) * 2019-09-06 2021-03-10 株式会社ジャパンエンジンコーポレーション Exhaust gas treatment equipment and water supply method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180757A (en) * 2011-02-28 2012-09-20 Mitsubishi Motors Corp Condensed water discharge device
JP2015004295A (en) * 2013-06-20 2015-01-08 三菱自動車工業株式会社 Condensed water treatment mechanism

Also Published As

Publication number Publication date
JP2002303146A (en) 2002-10-18

Similar Documents

Publication Publication Date Title
JP3666583B2 (en) Internal combustion engine with a supercharger
US7540146B2 (en) Fuel supply system and fuel supply method for exhaust purifying catalyst device in internal combustion engine
WO2007004471A1 (en) Control device for diesel engine
JP4057549B2 (en) Exhaust gas purification device in internal combustion engine
WO2007066833A1 (en) Exhaust gas purification system for internal combustion engine
JP2009275673A (en) Egr system and controlling method of egr system
JP2008163794A (en) Exhaust gas recirculation device for internal combustion engine
JP4613812B2 (en) diesel engine
WO2005003536A1 (en) Diesel engine exhaust gas purifier and control means
JPH09256915A (en) Egr device for diesel engine with intercooler
JP2011001893A (en) Exhaust gas purification system
JP2010163924A (en) Control device of internal combustion engine
JP2009235944A (en) Supercharging apparatus for engine
JP3979099B2 (en) Exhaust gas purification device for internal combustion engine
JP3911406B2 (en) Exhaust gas purification device for internal combustion engine
JP2015101972A (en) Engine exhaust gas recirculation device
JP3743232B2 (en) White smoke emission suppression device for internal combustion engine
JP6073644B2 (en) Control device for exhaust pressure adjustment valve
JP5915856B2 (en) Exhaust gas purification device for internal combustion engine
JP2005002975A (en) Exhaust purification device for engine
JP5930288B2 (en) Internal combustion engine
JP3911408B2 (en) Exhaust gas purification device for internal combustion engine
JP2015178786A (en) Egr gas scavenging device for engine
JP3899945B2 (en) Exhaust gas purification device for internal combustion engine
JP2010133327A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees