JP3665102B2 - Microbial culture system - Google Patents

Microbial culture system Download PDF

Info

Publication number
JP3665102B2
JP3665102B2 JP4760295A JP4760295A JP3665102B2 JP 3665102 B2 JP3665102 B2 JP 3665102B2 JP 4760295 A JP4760295 A JP 4760295A JP 4760295 A JP4760295 A JP 4760295A JP 3665102 B2 JP3665102 B2 JP 3665102B2
Authority
JP
Japan
Prior art keywords
culture
tank
pipe
supply
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4760295A
Other languages
Japanese (ja)
Other versions
JPH08242842A (en
Inventor
滝太郎 尾坂
章 室越
篤稔 増田
裕久 畠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP4760295A priority Critical patent/JP3665102B2/en
Publication of JPH08242842A publication Critical patent/JPH08242842A/en
Application granted granted Critical
Publication of JP3665102B2 publication Critical patent/JP3665102B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/38Caps; Covers; Plugs; Pouring means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature

Description

【0001】
【産業上の利用分野】
本発明は、他の生物の飼料となる微生物、例えば、貝類や甲殻類の飼料となる植物性プランクトンを培養するためのシステムに関する。
【0002】
【従来の技術】
貝類や甲殻類を飼育槽にて養殖するに当たっては、その飼料となる植物プランクトン(珪藻類)を他の培養装置にて培養し、これを飼育槽に給餌している。
そして、従来、飼料となる植物プランクトンの培養については、栄養、空気、光熱の面で、その調整が難しいことから、熟練者による手作業に頼っていた。
また、水棲生物飼育用の水槽として、特開平1−309630号で知られた生物飼育環境を維持するものがある。
【0003】
【発明が解決しようとする課題】
労力のかかる飼料培養については、自動制御にて省力化することが望ましい。
しかし、自動制御は、その一方、高コスト化に繋がるという問題がある。
また、従来より、雑菌混入等の異常により培養不良が起き、なかなか安定生産が難しいという問題がある。
また、自動制御化においては、このような異常事態に目が届かず、更に培養不良の増加を招くという危険性がある。上記公知の水槽も雑菌混入等による培養不良を解決できなかったのである。
【0004】
【課題を解決するための手段】
本発明は、以上のような問題を解決するために、次のような手段を用いるものである。 微生物培養システムの一工程の培養液CLの流れを、バルブの開閉制御と定量ポンプの自動制御にて切替えるシステムであって、微生物と栄養液を調整混入して培養液CLとする培養液調整槽7を設け、該培養液調整槽7において調整混入した培養液CLを、供給排出管9を介して培養槽10内へ導入し、該培養槽10内で、光熱、空気を供給して微生物を培養し、培養終了後の該培養槽10内の培養液CLを、前記供給排出管9を排出用として兼用して取出し、飼料槽13を介して、他の生物の飼育槽16内に餌として付与する構成とし、前記培養槽10から飼料槽13への供給排出管9に植え継ぎ管17を連結し、該植え継ぎ管17の他端を培養液調整槽7に配管し、該培養槽10の培養液の一部を培養液 調整槽7内への培養液CLの混入用として採出し、前記培養槽10内の培養液内へ供給する空気も、空気管12より供給排出管9に導入すべく構成し、該空気管12から供給排出管9への空気導入部位は、培養槽10の底部に繋がる供給排出管9に介設した、開閉制御バルブV2の直上部としたものである。
【0005】
【作用】
微生物培養システムにおいて、培養槽に対する培養液の供給管と、培養槽内の培養液の排出管とを同一として、液の流れを弁の開閉制御にて、変更することで同一管にて供給排出可能としているのである。
【0006】
これにより、配管コストが低減され、自動制御化に伴うコスト高を相殺する。
更に、微生物培養システムを自動制御化することで、従来の手作業が省かれ、省力化される。
【0007】
【実施例】
本発明の実施例を、添付の図面を基に説明する。
図1は本発明の微生物培養システムのシステムブロック図、
図2は同じくシステム配管図、
図3は培養槽の側面図である。
【0008】
本発明の微生物培養システムの全体の流れについて、図1及び図2により説明する。
この実施例においては、飼育槽内の海水にて飼育する浅蜊等の貝類等の飼料としての植物プランクトン(珪藻M)、例えば、キートセロス・グラシリスやパブロバ等を培養する。
まず、図2に図示の培養液調整槽7にて培養液を調整混合する行程(図1図示の<5>培養液調整)について説明する。
【0009】
培養液の主液となる海水SWは、図1の海水供給管1を通してフィルター2で濾過し(<1>海水精密濾過)、紫外線3にて殺菌して(<2>海水UV(紫外線)殺菌)、培養液調整槽7内に供給する。
また、培養に必要な栄養塩VLの原液を注入ビン5内に入れ、調整して保冷室4内(例えば5℃)にて貯蔵しており(図1図示の<3>栄養塩調整)、必要分の栄養塩VLを、栄養塩供給管6を介して培養液調整槽7内に供給する。
そして、培養すべき珪藻Mは、後の図1図示の<7>の培養行程、或いは<8>の収穫行程において、一部採出したものであり(図1図示の<4>植え継ぎ)、これを培養液調整槽7内に供給する。こうして殺菌海水SW、栄養塩VL、珪藻Mを培養液調整槽7内にて混合し、pHコントローラー8にてpH調整をしながら培養液を調整する。
【0010】
培養液調整槽7内にて調整した培養液CLは、供給排出管9にて、保冷室内(例えば10℃〜20℃)の培養槽10・10・・・の底面10dに開口した供給排出管9の管端開口9c(図3図示)を介して供給される(図1図示の<6>培養槽調整)。
培養槽10・10・・・には、蛍光灯11より珪藻Mの光合成に必要な光と熱を供給し、また、図3の如く空気管12を供給排出管9内に導入して培養槽10・10・・・内の培養液内に攪拌混入させ、珪藻M培養のための空気Aの供給を底面10dに開口した供給排出管9の管端開口9cから浮上させるようにして行っている(図1図示の<7>培養)。
【0011】
こうして珪藻Mが培養されて(例えば、6日間)、該培養槽10内の培養液CLが、飼料として供給可能な状態となると、該培養液CLは、飼料Fとして、供給排出管9を介して、飼料槽13内に供給されて一定量貯蔵され(図1図示の<8>収穫)、給餌管15を介して、貝類を飼育する飼育槽16・16・・・に供給される(図1図示の<9>給餌)。
【0012】
なお前記の如く、図1図示の<8>収穫(図1図示の<7>培養)行程中において、供給排出管9を介して培養液調整槽7内に供給した珪藻Mの一部を、図1図示の<4>植え継ぎとするが、そのため、飼料槽13より培養液調整槽7に植え継ぎ管17が配管されている。
該培養液調整槽7及び該飼料槽13に対しては、各々、空気管18・19により空気Aの供給が行われるものであり、該培養液調整槽7へは該供給排出管9に、該飼料槽13へはドレン管14に各々空気導入して供給している。
【0013】
培養液調整槽7、培養槽10、飼料槽13、及び供給排出管9には、洗浄原液タンク20及び受水槽21より合流する洗浄液管22により、洗浄液WLを供給して、内部洗浄可能となっている(図1図示の<10>水槽洗浄)。
該洗浄原液タンク20内には、洗浄原液の次亜塩素酸ナトリウム溶液を、受水槽21内には水道水Wが供給されて、水道水Wを貯蔵するようになっており、これらを洗浄液管22内に導入し、洗浄液WLとして各部に供給するのであるが、培養液調整槽7、培養槽10、及び飼料槽13に対しては、洗浄液管22の管端にノズル23が付設されていて、上部より洗浄液WLが噴射される構成となっている。供給排出管9内は、洗浄液WLを通過させることで洗浄するものである。
【0014】
以上のように珪藻Mを培養、給餌し、また、水槽、配管洗浄される微生物培養システムにおいて、各配管には電磁バルブや調圧バルブ等の各種バルブが介設されており、これらのバルブを、各種センサーやコントローラーを基に自動開閉制御して、海水SW、栄養塩VL、培養液CL、飼料F、空気A、洗浄液WLの供給、排出量を自動調節可能となっている。
【0015】
また、海水供給管1、栄養塩供給管6、給餌管15、植え継ぎ管17、及び洗浄原液タンク20出口、受水槽21出口には定量ポンプP(ダイヤフラムポンプ等)が介設されていて、定量の海水SW、栄養塩VL、飼料F(植え継ぎ用のものを含む。)、洗浄原液、水道水Wを通過可能となっている。
なお、図1に示す如く、栄養塩の調整作業は手作業であり、また、植え継ぎは、図2に図示するように、定量ポンプPにより自動制御できるものとしている。
【0016】
以上のような構成及び流れの微生物培養システムにおいて、各部の構成について説明する。
まず、供給排出管9について説明する。
図2の如く、培養液調整槽7、各培養槽10、及び飼料槽13の相互間においては、培養液CL、飼料Fの供給、排出を同一の供給排出管9にて行うようにしている。
また、配設高さを、図2の如く、培養液調整槽7を最上位に、培養槽10を上下中間位に、飼料槽13を最下位としている。
【0017】
従って、供給排出管9において、バルブV1、バルブV2・V2・・・を開弁し、バルブV3を閉弁すれば、培養液調整槽7より各培養槽10に培養液CLを供給できる。この時、各培養槽10への分岐管9aにおいては、培養液CLが、図2中の矢印の方向に流れる。
そして、バルブV1を閉弁し、バルブV2・V2・・及びバルブV3を開弁すれば、各培養槽10より飼料槽13への飼料Fの供給が行われる。この時、該分岐管9aにおいては、飼料Fが矢印の方向に流れる。
なお、バルブV4は、通常時において閉弁しており、このバルブを開弁して、他のバルブを閉弁すれば、管内の培養液CL又は飼料Fをドレンできる。このように、バルブの開閉操作によって、供給と排出を同一の管にて行うことができ、配管コストの節約や操作の容易化が実現できる。
【0018】
次に、培養槽10の構成について、図3より説明する。
まず、培養液CL内への空気供給構成について説明すると、前記の如く、各培養槽10内の培養液CL内への空気Aの供給は、空気管12より供給排出管9に導入するものとなっており、該空気管12からの導入部位は、各培養槽10の底部に繋がる分配管9b・9b・・・に介設するバルブV2・V2・・・の直上部、即ち、該培養槽10の底部の直下部となっている。
【0019】
この部位に空気Aを導入した理由について説明する。
従来は、培養槽10内には、上部より空気管(ガラス管、或いは、エアストンを付設したもの)を導入し、その管端を培養液CL内に浸していたのであり、即ち、該空気管より直接的に培養槽10内の培養液CL内に空気導入する構成していたのである。
しかし、この場合には、培養槽10内の洗浄時において、培養液CL内に浸漬される空気管の裏側が洗浄されにくく、洗浄不足を引き起こす。洗浄不足は、雑菌発生の原因となり、培養に悪影響を及ぼす。
供給排出管9内に空気導入する構成にすれば、培養槽10内の培養液CL内に空気管が浸漬することがなくなるので、空気管の裏側の洗浄不足の事態を解消する。
【0020】
そして、前記の如く、培養槽10底部の下方における分配管9bのバルブV2上部に導入したのは、もし、この部位に空気導入しなければ、培養中においてこの部位に淀みが生じる。そこから、雑菌、硫化水素等の有害物質が発生し、培養液CL内において、酸欠状態を引き起こして、培養に悪影響を与える。
そこでこの部位に空気導入することで、この部位における培養液CLは攪拌されて、淀みが生じなくなるのである。従って、空気導入箇所も、空気は分配管9b内に導入された後、上方に移動するので、最下部のバルブV2の直上部にすれば、淀みを生じる箇所が皆無となる。この構成は、培養液調整槽7及び飼料槽13においても応用されている。
【0021】
次に、培養槽10の蓋10aの構成について説明する。
蓋10aは取外し容易に施蓋されるものであり、透明としておくことで、内部の培養液CLの様子が外部より観察容易となっている。そして、洗浄液管22より連接される洗浄ホース22aの管端を固設して、ノズル23を蓋10aの下部に垂設している。
可撓性のあるホースとすることで、蓋10aの取外しが自由となっている。該ノズル23は回転可能となっていて、回転して洗浄液を噴射することにより、培養槽10内の洗浄を良好に行うことができるようになっており、蓋をした状態のまま培養槽10内の洗浄が可能なのであり、また、一々洗浄の度に洗浄用のノズルを培養槽10内に配設する必要がなく、洗浄液管22内に洗浄液WLを供給すれば、自然にノズルより洗浄液が噴射されて槽内洗浄がなされるのである。
この構成は、該培養液調整槽7及び該飼料槽13にも応用されるものとする。更に、該蓋10aには、排気口10bが穿設されており、また、培養槽10と蓋10aとの間に隙間10cを生じさせる構成とすることも可能であり、前記の如く、分配管9bより導入された空気が培養槽10内の培養液CL内に混入された後、珪藻Mの呼吸や光合成等により、培養液CL上面より排気されるが、この排気を排気口10bより排気して、呼吸及び光合成を活性化することができるのである。
【0022】
その他、培養槽10内の培養液CL(飼料F)は、底部に繋がる分配管9bにて供給排出されるので、該培養槽10の底面10dをテーパー状として、液の流動を円滑化し、排出後には培養槽10内に液が残留しにくい構成としている。なお、蛍光灯11は側面より照射し、培養槽10内に広く光を届かせるようにし、更に蛍光灯11をタイマーにて明暗制御し、培養活性化を図っている。
【0023】
次に、空気管12においては、電磁バルブV5を介設しているが、平時の非通電時に開弁状態とし、通電時に閉弁状態としている。即ち、通常時は培養槽10や培養液調整槽7、及び飼料槽13に空気を送り込んで、培養液CL又は飼料Fへの空気供給をして、呼吸、更に攪拌による淀み解消に供しており、洗浄時等の限られた場合のみ空気供給を停止する構成として、コスト低下を実現できるのであり、もしも停電等で電磁バルブV5が非通電状態となった場合には、開弁状態で空気供給がなされるので、培養槽10等における培養槽CLや飼料Fの安全性が保持できるのである。
【0024】
また、空気管12内には、通常は呼吸用のO2 を供給するが、光合成用や、pH調整のために、CO2 を供給することも可能である。その他、空気管12及び空気管18・19に洗浄液WLを供給可能とし(図2には図示せず)、管内洗浄ができる構成としている。 また、フィルターを介設して、空気清浄化を図っている。
【0025】
【発明の効果】
本発明は、以上のように構成したので、次のような効果を奏する。
培養槽に対する培養液の供給管と、培養槽の培養液の排出管とを同一管としたので、配管コストが低減され、自動制御化によるコスト高分を相殺し、また、配管に関するメンテナンス作業が低減される。
また、前記培養槽10内の培養液CL内へ供給する空気も、空気管12より供給排出管9に導入すべく構成し、該空気管12から供給排出管9への空気導入部位は、各培養槽10の底部に繋がる供給排出管9に介設した、開閉制御バルブV2の直上部としたので、培養槽10内の培養液CL内に空気管が浸漬されることがなくなるので、空気管の裏側の洗浄不足の事態を解消することが出来るのである。
【0026】
また、培養槽10底部の下方における供給排出管9のバルブV2上部に導入したので、この部位における培養液CLは攪拌されて、淀みが生じなくなるのである。
従って、空気導入箇所も、空気は分配管9b内に導入された後、上方に移動するので、最下部の開閉制御バルブV2の直上部にすることにより、淀みを生じる箇所が皆無となるのである。
【0027】
また、前記培養槽10から飼料槽13への供給排出管9に植え継ぎ管17を連結し、該植え継ぎ管17の他端を培養液調整槽7に配管し、該培養槽10の培養液の一部を培養液調整槽7内への培養液CLの混入用として採出したので、培養液調整槽7への培養液CLの植え継ぎ作業が、自動的に行われるようになったのである。
また、一連の微生物培養システムの行程を自動制御化したので、省力化を実現できる。 また、飼料となる植物プランクトンの培養については、栄養、空気、光熱の面で、その調整が難しいことから、熟練者による手作業に頼っていた点を改善することが出来るのである。
【図面の簡単な説明】
【図1】 本発明の微生物培養システムのシステムブロック図である。
【図2】 同じくシステム配管図である。
【図3】 培養槽の側面図である。
【符号の説明】
M 珪藻
SW 海水
VL 栄養塩
CL 培養液
F 飼料
A 空気
W 水道水
WL 洗浄液
V1〜V5 バルブ(電磁バルブ)
P 定量ポンプ
7 培養液調整槽
9 供給排出管
9a 分岐管
9b 分配管
10 培養槽
10a 蓋
10b 排気口
11 蛍光灯
12 空気管
13 飼料槽
16 飼育槽
17 植え継ぎ管
20 洗浄原液タンク
21 受水槽
22 洗浄液管
22a 洗浄ホース
23 洗浄ノズル
[0001]
[Industrial application fields]
The present invention relates to a system for culturing microorganisms serving as feed for other organisms, for example, phytoplankton serving as feed for shellfish and crustaceans.
[0002]
[Prior art]
When culturing shellfish and crustaceans in a breeding tank, phytoplankton (diatoms), which are the feed, are cultured in another culture apparatus and fed to the breeding tank.
Conventionally, culturing of phytoplankton as feed is difficult to adjust in terms of nutrition, air, and light heat, and thus relies on manual work by skilled workers.
In addition, there is an aquarium for breeding aquatic organisms that maintains a biological breeding environment known from JP-A-1-309630.
[0003]
[Problems to be solved by the invention]
For laborious feed culture, it is desirable to save labor by automatic control.
However, automatic control, on the other hand, has a problem that leads to higher costs.
Further, conventionally, there is a problem that culture failure occurs due to abnormalities such as contamination with bacteria, and stable production is difficult.
In addition, in automatic control, there is a risk that such an abnormal situation will not be noticed and further an increase in culture defects will be caused. The above-mentioned known water tank could not solve the culture failure due to contamination with bacteria.
[0004]
[Means for Solving the Problems]
The present invention uses the following means in order to solve the above problems. This is a system for switching the flow of the culture liquid CL in one step of the microorganism culture system by valve opening / closing control and automatic control of the metering pump, and adjusting and mixing microorganisms and nutrient solution to make the culture liquid CL 7 is introduced into the culture tank 10 through the supply / discharge pipe 9 and the culture liquid CL adjusted and mixed in the culture liquid adjustment tank 7 is supplied to the culture tank 10 to supply light heat and air. After culturing, the culture liquid CL in the culture tank 10 after completion of the culture is taken out using the supply / discharge pipe 9 also for discharge, and is fed into the breeding tank 16 for other organisms through the feed tank 13. The planting pipe 17 is connected to the supply / discharge pipe 9 from the culture tank 10 to the feed tank 13, and the other end of the planting pipe 17 is piped to the culture solution adjusting tank 7. mixed culture liquid CL part of the culture solution to the culture medium adjusting tank 7 Out adopted as use, air is supplied into the culture tank in 10 culture in also configured to introduce the feed discharge tube 9 from the air tube 12, the air introduction part from the air pipe 12 to the supply and discharge pipe 9 In this case, it is formed directly above the opening / closing control valve V2 provided in the supply / discharge pipe 9 connected to the bottom of the culture tank 10.
[0005]
[Action]
In the microbial culture system, the culture fluid supply pipe to the culture tank is the same as the culture liquid discharge pipe in the culture tank, and the flow of the liquid is changed by valve opening / closing control to supply and discharge in the same pipe. It is possible.
[0006]
Thereby, piping cost is reduced and the high cost accompanying automatic control is offset.
Furthermore, by automatically controlling the microbial culture system, the conventional manual work is omitted, and labor is saved.
[0007]
【Example】
Embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a system block diagram of a microorganism culture system of the present invention,
Figure 2 shows the system piping diagram.
FIG. 3 is a side view of the culture tank.
[0008]
The overall flow of the microorganism culture system of the present invention will be described with reference to FIGS.
In this embodiment, phytoplankton (diatom M), for example, Keatoceros gracilis, Pavlova, etc., is cultivated as feed for shellfish such as shallow sea breams raised in seawater in a breeding tank.
First, the process of adjusting and mixing the culture solution in the culture solution adjusting tank 7 shown in FIG. 2 (<5> culture solution adjustment shown in FIG. 1) will be described.
[0009]
The seawater SW, which is the main liquid of the culture solution, is filtered by the filter 2 through the seawater supply pipe 1 in FIG. 1 (<1> seawater microfiltration) and sterilized by ultraviolet rays 3 (<2> seawater UV (ultraviolet rays) sterilization). ), And fed into the culture medium adjustment tank 7.
In addition, a stock solution of nutrient VL necessary for culture is placed in the injection bottle 5 and adjusted and stored in the cold storage chamber 4 (for example, 5 ° C.) (<3> nutrient adjustment shown in FIG. 1). A necessary amount of nutrient VL is supplied into the culture solution adjusting tank 7 through the nutrient supply pipe 6.
The diatom M to be cultured is partly extracted in the subsequent <7> culture process shown in FIG. 1 or <8> harvest process (<4> planting shown in FIG. 1). This is supplied into the culture solution adjusting tank 7. Thus, the sterilized seawater SW, the nutrient salt VL, and the diatom M are mixed in the culture solution adjustment tank 7, and the culture solution is adjusted while adjusting the pH by the pH controller 8.
[0010]
The culture liquid CL adjusted in the culture liquid adjustment tank 7 is supplied and discharged from the supply / discharge pipe 9 to the bottom surface 10d of the culture tanks 10 and 10 in the cold storage chamber (for example, 10 ° C. to 20 ° C.). 9 is supplied through the tube end opening 9c (shown in FIG. 3) (<6> culture tank adjustment shown in FIG. 1).
The culture tanks 10, 10... Are supplied with light and heat necessary for the photosynthesis of the diatom M from the fluorescent lamp 11, and the air pipe 12 is introduced into the supply / discharge pipe 9 as shown in FIG. 10 · 10... Stirred and mixed in the culture solution, and the supply of air A for diatom M culture is floated from the tube end opening 9c of the supply / discharge tube 9 opened to the bottom surface 10d. (<7> culture shown in FIG. 1).
[0011]
Thus, when the diatom M is cultured (for example, for 6 days) and the culture liquid CL in the culture tank 10 can be supplied as feed, the culture liquid CL is supplied as feed F through the supply / discharge pipe 9. Then, it is supplied to the feed tank 13 and stored in a certain amount (<8> harvest shown in FIG. 1), and is supplied to the breeding tanks 16, 16... 1 <9> feeding as shown).
[0012]
As described above, during the <8> harvesting (<7> culture shown in FIG. 1) process shown in FIG. 1, a part of the diatom M supplied into the culture medium adjustment tank 7 via the supply / discharge pipe 9 is obtained. In FIG. 1, the planting pipe 17 is piped from the feed tank 13 to the culture solution adjusting tank 7.
The culture medium adjustment tank 7 and the feed tank 13 are each supplied with air A by air pipes 18 and 19, and the culture medium adjustment tank 7 is supplied to the supply / discharge pipe 9, The feed tank 13 is supplied with air introduced into the drain pipe 14.
[0013]
The cleaning liquid WL is supplied to the culture liquid adjustment tank 7, the culture tank 10, the feed tank 13, and the supply / discharge pipe 9 from the cleaning stock solution tank 20 and the water receiving tank 21, thereby enabling internal cleaning. (<10> water tank cleaning shown in FIG. 1).
The cleaning stock solution tank 20 is supplied with the sodium hypochlorite solution of the cleaning stock solution, and the tap water W is supplied into the water receiving tank 21 to store the tap water W. 22 is supplied to each part as a cleaning liquid WL. For the culture liquid adjustment tank 7, the culture tank 10, and the feed tank 13, a nozzle 23 is attached to the end of the cleaning liquid pipe 22. The cleaning liquid WL is jetted from above. The inside of the supply / discharge pipe 9 is cleaned by passing the cleaning liquid WL.
[0014]
In the microorganism culture system in which diatom M is cultured and fed as described above, and in which water tanks and pipes are washed, each pipe is provided with various valves such as an electromagnetic valve and a pressure regulating valve. The automatic opening / closing control based on various sensors and controllers makes it possible to automatically adjust the supply and discharge amounts of seawater SW, nutrient VL, culture solution CL, feed F, air A, and cleaning solution WL.
[0015]
In addition, a metering pump P (diaphragm pump or the like) is interposed at the seawater supply pipe 1, the nutrient salt supply pipe 6, the feeding pipe 15, the planting pipe 17, and the washing stock solution tank 20 outlet and the water receiving tank 21 outlet, A predetermined amount of seawater SW, nutrient salt VL, feed F (including those for planting), cleaning stock solution, and tap water W can be passed.
In addition, as shown in FIG. 1, the adjustment work of a nutrient salt is a manual work, and the planting can be automatically controlled by a metering pump P as shown in FIG.
[0016]
In the microorganism culture system having the above configuration and flow, the configuration of each unit will be described.
First, the supply / discharge pipe 9 will be described.
As shown in FIG. 2, the culture solution CL and the feed F are supplied and discharged through the same supply / discharge pipe 9 between the culture solution adjustment tank 7, the culture tanks 10, and the feed tank 13. .
Further, as shown in FIG. 2, the arrangement height is such that the culture solution adjustment tank 7 is at the top, the culture tank 10 is at the upper and lower intermediate positions, and the feed tank 13 is at the bottom.
[0017]
Therefore, if the valve V1, valves V2, V2,... Are opened and the valve V3 is closed in the supply / discharge pipe 9, the culture medium CL can be supplied from the culture medium adjustment tank 7 to each culture tank 10. At this time, in the branch pipe 9a to each culture tank 10, the culture solution CL flows in the direction of the arrow in FIG.
Then, when the valve V1 is closed and the valves V2, V2,... And the valve V3 are opened, the feed F is supplied from each culture tank 10 to the feed tank 13. At this time, the feed F flows in the direction of the arrow in the branch pipe 9a.
The valve V4 is normally closed, and the culture liquid CL or the feed F in the pipe can be drained by opening this valve and closing the other valves. As described above, supply and discharge can be performed in the same pipe by opening and closing the valve, so that the piping cost can be saved and the operation can be facilitated.
[0018]
Next, the structure of the culture tank 10 is demonstrated from FIG.
First, the air supply configuration into the culture liquid CL will be described. As described above, the supply of air A into the culture liquid CL in each culture tank 10 is introduced from the air pipe 12 into the supply / discharge pipe 9. The introduction site from the air pipe 12 is directly above the valves V2, V2,... Provided in the distribution pipes 9b, 9b, etc. connected to the bottom of each culture tank 10, that is, the culture tank. 10 is located directly below the bottom.
[0019]
The reason for introducing the air A into this part will be described.
Conventionally, an air tube (glass tube or airstone attached) is introduced into the culture tank 10 from above, and the end of the tube is immersed in the culture solution CL. More directly, air is introduced into the culture solution CL in the culture tank 10.
However, in this case, when the culture tank 10 is cleaned, the back side of the air tube immersed in the culture solution CL is difficult to be cleaned, which causes insufficient cleaning. Insufficient washing causes the generation of germs and adversely affects the culture.
If air is introduced into the supply / discharge pipe 9, the air pipe is not immersed in the culture solution CL in the culture tank 10, thus eliminating the situation of insufficient cleaning of the back side of the air pipe.
[0020]
And as mentioned above, if it introduce | transduces into the upper part of valve | bulb V2 of the distribution pipe 9b below the bottom part of the culture tank 10, if air is not introduce | transduced into this site | part, a sag will arise in this site | part during culture | cultivation. From there, harmful substances such as various bacteria and hydrogen sulfide are generated, causing an oxygen deficient state in the culture solution CL and adversely affecting the culture.
Therefore, by introducing air into this part, the culture liquid CL in this part is agitated and no stagnation occurs. Accordingly, since the air is also introduced into the distribution pipe 9b and then moved upward, there is no place where stagnation occurs if the air is introduced directly above the lowermost valve V2. This configuration is also applied to the culture medium adjustment tank 7 and the feed tank 13.
[0021]
Next, the configuration of the lid 10a of the culture tank 10 will be described.
The lid 10a is easily removed, and is made transparent so that the state of the internal culture solution CL can be easily observed from the outside. And the pipe | tube end of the washing hose 22a connected from the washing | cleaning liquid pipe | tube 22 is fixed, and the nozzle 23 is suspended by the lower part of the lid | cover 10a.
By using a flexible hose, the lid 10a can be removed freely. The nozzle 23 is rotatable, and by rotating and spraying the washing liquid, the inside of the culture tank 10 can be cleaned well, and the inside of the culture tank 10 is kept in a state of being covered. In addition, it is not necessary to provide a cleaning nozzle in the culture tank 10 for each cleaning, and if the cleaning liquid WL is supplied into the cleaning liquid tube 22, the cleaning liquid is jetted naturally from the nozzle. Then, the tank is cleaned.
This configuration is also applied to the culture solution adjusting tank 7 and the feed tank 13. Further, the lid 10a is provided with an exhaust port 10b, and a gap 10c can be formed between the culture tank 10 and the lid 10a. After the air introduced from 9b is mixed in the culture liquid CL in the culture tank 10, it is exhausted from the upper surface of the culture liquid CL by respiration or photosynthesis of the diatom M. This exhaust is exhausted from the exhaust port 10b. Thus, respiration and photosynthesis can be activated.
[0022]
In addition, since the culture liquid CL (feed F) in the culture tank 10 is supplied and discharged through the distribution pipe 9b connected to the bottom, the bottom surface 10d of the culture tank 10 is tapered so that the flow of the liquid is smoothed and discharged. Later, the liquid is less likely to remain in the culture tank 10. The fluorescent lamp 11 is irradiated from the side surface so that light can reach the inside of the culture tank 10 widely, and the fluorescent lamp 11 is controlled by a timer to activate the culture.
[0023]
Next, although the electromagnetic valve V5 is interposed in the air pipe 12, the valve is opened when not energized during normal times and is closed when energized. That is, normally, air is sent to the culture tank 10, the culture solution adjusting tank 7, and the feed tank 13, and the air is supplied to the culture solution CL or the feed F to relieve stagnation by breathing and stirring. As a configuration in which air supply is stopped only when washing is limited, cost reduction can be realized. If the electromagnetic valve V5 is deenergized due to a power failure or the like, air supply is performed in the open state. Therefore, the safety of the culture tank CL and the feed F in the culture tank 10 and the like can be maintained.
[0024]
The air pipe 12 is usually supplied with O2 for respiration, but it is also possible to supply CO2 for photosynthesis or for pH adjustment. In addition, the cleaning liquid WL can be supplied to the air pipe 12 and the air pipes 18 and 19 (not shown in FIG. 2), and the inside of the pipe can be cleaned. In addition, an air filter is provided for air purification.
[0025]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
Since the culture medium supply pipe for the culture tank and the culture liquid discharge pipe for the culture tank are the same pipe, piping costs are reduced, offsetting the high costs due to automatic control, and maintenance work related to the pipes. Reduced.
In addition, the air supplied into the culture solution CL in the culture tank 10 is also configured to be introduced into the supply / discharge pipe 9 from the air pipe 12, and the air introduction site from the air pipe 12 to the supply / discharge pipe 9 includes The air pipe is not immersed in the culture solution CL in the culture tank 10 because it is directly above the opening / closing control valve V2 provided in the supply / discharge pipe 9 connected to the bottom of the culture tank 10. The situation of lack of cleaning on the back side of can be solved.
[0026]
Moreover, since it introduce | transduced into the valve | bulb V2 upper part of the supply / discharge pipe | tube 9 in the downward direction of the bottom part of the culture tank 10, the culture solution CL in this site | part will be stirred and it will not produce stagnation.
Therefore, since the air is introduced into the distribution pipe 9b and then moves upward, the air introduction location is located directly above the lowermost opening / closing control valve V2 so that no stagnation occurs. .
[0027]
In addition, a planting pipe 17 is connected to the supply / discharge pipe 9 from the culture tank 10 to the feed tank 13, and the other end of the planting pipe 17 is connected to the culture solution adjusting tank 7. Since a part of the sample was taken out for mixing the culture solution CL into the culture solution adjustment tank 7, the planting operation of the culture solution CL in the culture solution adjustment tank 7 was automatically performed. is there.
Moreover, since the process of a series of microorganism culture systems is automatically controlled, labor saving can be realized. In addition, culturing of phytoplankton as feed is difficult to adjust in terms of nutrition, air, and light heat, so it is possible to improve the point of relying on manual work by skilled workers.
[Brief description of the drawings]
FIG. 1 is a system block diagram of a microorganism culture system of the present invention.
FIG. 2 is also a system piping diagram.
FIG. 3 is a side view of a culture tank.
[Explanation of symbols]
M Diatom SW Seawater VL Nutrient CL Culture fluid F Feed A Air W Tap water WL Cleaning fluid V1-V5 Valve (Electromagnetic valve)
P Metering pump 7 Culture medium adjustment tank 9 Supply / discharge pipe 9a Branch pipe 9b Distribution pipe 10 Culture tank 10a Lid 10b Exhaust port 11 Fluorescent lamp 12 Air pipe 13 Feed tank 16 Breeding tank 17 Planting pipe 20 Washing stock tank 21 Receiving tank 22 Cleaning liquid tube 22a Cleaning hose 23 Cleaning nozzle

Claims (1)

微生物培養システムの一工程の培養液CLの流れを、バルブの開閉制御と定量ポンプの自動制御にて切替えるシステムであって、
微生物と栄養液を調整混入して培養液CLとする培養液調整槽7を設け、該培養液調整槽7において調整混入した培養液CLを、供給排出管9を介して培養槽10内へ導入し、該培養槽10内で、光熱、空気を供給して微生物を培養し、培養終了後の該培養槽10内の培養液CLを、前記供給排出管9を排出用として兼用して取出し、飼料槽13を介して、他の生物の飼育槽16内に餌として付与する構成とし、
前記培養槽10から飼料槽13への供給排出管9に植え継ぎ管17を連結し、該植え継ぎ管17の他端を培養液調整槽7に配管し、該培養槽10の培養液の一部を培養液調整槽7内への培養液CLの混入用として採出し、
前記培養槽10内の培養液内へ供給する空気も、空気管12より供給排出管9に導入すべく構成し、該空気管12から供給排出管9への空気導入部位は、培養槽10の底部に繋がる供給排出管9に介設した、開閉制御バルブV2の直上部としたことを特徴とする微生物培養システム。
A system for switching the flow of the culture liquid CL in one step of the microorganism culture system by valve opening / closing control and metering pump automatic control,
Cultures adjustment tank 7 mixed adjusted microorganism and nutrient solution and culture solution CL is provided, introduction of culture CL adjusted contaminated in the culture medium adjusting tank 7, via the supply and discharge pipe 9 into the culture tank 10 Then, in the culture tank 10, microorganisms are cultured by supplying light heat and air, and the culture liquid CL in the culture tank 10 after the completion of the culture is taken out using the supply / discharge pipe 9 as a discharge, Through the feed tank 13, it is configured to be given as food in the breeding tank 16 of other organisms,
A planting pipe 17 is connected to the supply / discharge pipe 9 from the culture tank 10 to the feed tank 13, and the other end of the planting pipe 17 is connected to the culture solution adjusting tank 7. A portion for mixing the culture fluid CL into the culture fluid conditioning tank 7,
The air supplied into the culture medium in the culture tank 10 is also configured to be introduced into the supply / discharge pipe 9 from the air pipe 12, and the air introduction site from the air pipe 12 to the supply / discharge pipe 9 is provided in the culture tank 10. A microorganism culture system characterized in that it is provided directly above an opening / closing control valve V2 interposed in a supply / discharge pipe 9 connected to the bottom.
JP4760295A 1995-03-07 1995-03-07 Microbial culture system Expired - Lifetime JP3665102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4760295A JP3665102B2 (en) 1995-03-07 1995-03-07 Microbial culture system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4760295A JP3665102B2 (en) 1995-03-07 1995-03-07 Microbial culture system

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2003334024A Division JP4245448B2 (en) 2003-09-25 2003-09-25 Microbial culture system
JP2003334023A Division JP2004000298A (en) 2003-09-25 2003-09-25 Microbial cultivation system

Publications (2)

Publication Number Publication Date
JPH08242842A JPH08242842A (en) 1996-09-24
JP3665102B2 true JP3665102B2 (en) 2005-06-29

Family

ID=12779795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4760295A Expired - Lifetime JP3665102B2 (en) 1995-03-07 1995-03-07 Microbial culture system

Country Status (1)

Country Link
JP (1) JP3665102B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3690771B2 (en) * 1997-10-13 2005-08-31 株式会社ノエビア Topical skin preparation
JP4953118B2 (en) * 2005-07-14 2012-06-13 エーケイブイエー グループ デンマーク エイ/エス Aquaculture system for producing aquaculture fish using seawater fish feeding sources including amphipods
JP4903447B2 (en) * 2006-01-30 2012-03-28 財団法人電力中央研究所 Aquatic animal breeding method and breeding kit
JP2010022331A (en) * 2008-07-24 2010-02-04 Takenaka Komuten Co Ltd System and method for regenerating carbon dioxide
CN104719192B (en) * 2015-02-04 2017-03-29 浙江省海洋水产研究所 A kind of shellfish releasing device of artificial breeding
JP7050140B1 (en) * 2020-12-21 2022-04-07 株式会社デンソーテン Mixing equipment and method
KR102603993B1 (en) * 2021-08-27 2023-11-20 군산대학교 산학협력단 Integrated production system enabling the co-culture of shellfish larvae and dinoflagellates controlling parasite ciliates
WO2023189007A1 (en) * 2022-03-30 2023-10-05 本田技研工業株式会社 Culture method and culture device

Also Published As

Publication number Publication date
JPH08242842A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
JP5756482B2 (en) System, apparatus, and method for cultivating microorganisms and reducing gas
CN204670146U (en) A kind of for cultivating small-sized hydrobiological circulating water culture system
CA2877599C (en) Photobioreactor for liquid cultures including sterilization mechanisms
JP3665102B2 (en) Microbial culture system
CN104221946B (en) A kind of closed aquaculture seed rearing system
AU2010359024A1 (en) Aerobic and anaerobic system for treating wastewater
CN206101330U (en) Intergrowth farming systems of aquaculture water circulating system and aquatic livestock and little algae
CN205473265U (en) Water degree of depth processing system is bred in circulation of mode fish
CN114391500B (en) Marine shellfish culture system
JP4245448B2 (en) Microbial culture system
CN109576133A (en) A kind of microbial bacterial agent culture apparatus and cultural method
KR100930330B1 (en) Microbial incubator for wastewater treatment
CN209185419U (en) A kind of constant temperature aquatic product cultivating pool
CN115433676A (en) Full-automatic floating algae primary culture device
JP2004000298A (en) Microbial cultivation system
CN108439700B (en) Membrane filter-containing water circulation purification device for cultivation
CN217757198U (en) Multifunctional temperature-controllable breeding system for indoor experiment
JPH0870845A (en) Recycling method for exhaust gas in culture system and apparatus for it
CN211595233U (en) Gravity-driven livestock drinking water purification system
CN214694174U (en) Film type aseptic bioreactor for heterotrophic and polyculture culture of microalgae
CN209685745U (en) A kind of microbial bacterial agent culture apparatus
CN212520470U (en) Indoor circulating water cultivation system for zooplankton
CN219896509U (en) Soilless culture nutrient solution ozone disinfection device
CN210406733U (en) Aquaculture circulating system
CN114262659A (en) Automatic bacteria culture system for marine domestic sewage treatment device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050209

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050331

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

EXPY Cancellation because of completion of term