JP3664012B2 - Switching power supply - Google Patents

Switching power supply Download PDF

Info

Publication number
JP3664012B2
JP3664012B2 JP35465499A JP35465499A JP3664012B2 JP 3664012 B2 JP3664012 B2 JP 3664012B2 JP 35465499 A JP35465499 A JP 35465499A JP 35465499 A JP35465499 A JP 35465499A JP 3664012 B2 JP3664012 B2 JP 3664012B2
Authority
JP
Japan
Prior art keywords
voltage
capacitor
power supply
period
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35465499A
Other languages
Japanese (ja)
Other versions
JP2001178124A (en
Inventor
博伸 城山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP35465499A priority Critical patent/JP3664012B2/en
Publication of JP2001178124A publication Critical patent/JP2001178124A/en
Application granted granted Critical
Publication of JP3664012B2 publication Critical patent/JP3664012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/02Adaptations of transformers or inductances for specific applications or functions for non-linear operation
    • H01F38/023Adaptations of transformers or inductances for specific applications or functions for non-linear operation of inductances
    • H01F2038/026Adaptations of transformers or inductances for specific applications or functions for non-linear operation of inductances non-linear inductive arrangements for converters, e.g. with additional windings

Landscapes

  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、少なくともエネルギ源となる入力直流電源間にトランスまたはリアクトルからなる誘導性手段を介し接続された半導体スイッチ素子を、PWM制御された駆動パルスによって繰り返し開閉し、安定化された直流電源を生成して外部に供給する電源装置としての、いわゆるスイッチング電源装置であって、
特に半導体スイッチ素子をそのオフ時に発生するサージ電圧から保護するスナバコンデンサが、半導体スイッチ素子のオン時点に放電することによる半導体スイッチ素子のスイッチング損失を最小限に抑えて半導体スイッチ素子の発熱を防ぎ、装置の効率を改善するようにしたスイッチング電源装置に関する。
なお、以下各図において同一の符号は同一もしくは相当部分を示す。
【0002】
【従来の技術】
図6はフライバック方式のトランス12を用いた従来のスイッチング電源装置の回路構成の一例を示す。同図において、8はNチャネルMOSFETからなる半導体スイッチ素子(単にスイッチ素子とも略す)、5はこのスイッチング電源装置が外部の負荷15に供給する直流電圧を検出しつつ、この供給直流電圧を一定とするようにスイッチ素子8をPWM(パルス幅変調)制御された駆動パルスとしてのPWM出力7によってオン/オフ駆動する制御回路としての電源制御回路である。
【0003】
また、電源制御回路5内において、3は発振コンデンサ2を用いて後述の発振波(この場合、三角波状)を発振出力する発振器、4はこの発振器3の発振出力と、このスイッチング電源装置が外部の負荷15に供給する直流電圧の検出値としての出力電圧検出入力6とを入力とし、スイッチ素子8をオン/オフ駆動するPWM出力7を生成するPWM制御部である。
【0004】
この構成により、スイッチ素子8は、入力直流電源1を発振器3の周波数で、且つフライバックトランス12の2次巻線11側の直流出力電圧、従って出力電圧検出入力6が一定となるようなデューテイ、即ちON比率=ON期間/(ON期間+OFF期間)により断続してトランス12の1次巻線10に印加する。
トランス12の2次巻線11には、スイッチ素子8のオフ時に、それまで1次巻線10を流れていた電流を維持する方向に対応する極性の電圧が発生することから、ダイオード13が導通し、この電圧はコンデンサ14により平滑化され、スイッチング電源装置の出力電圧として外部の負荷15に供給される。
【0005】
ところで、スイッチ素子8に並列に接続されたコンデンサ9は、スナバコンデンサと呼ばれ、スイッチ素子8がオフする際に発生するサージ電圧とこれに伴うノイズを抑制している。
図7は図6の各部の動作波形の例を示す。ここで、図7,a)は電源制御回路5内の発振器3の出力波形としての発振コンデンサ2の電圧波形を示し、図7,b)は電源制御回路5がスイッチ素子8に与えるゲート駆動パルスであるPWM出力7(この信号7は同時に、スイッチ素子8のオン,オフの状態を示す信号でもある)を示し、図7,c)はスナバコンデンサ9の両端電圧としてのスナバ電圧を示す。
【0006】
この電源制御回路5では、スイッチ素子8がオン/オフを繰り返す周波数を、発振コンデンサ2の充放電を利用した発振器3で決定している。
図8は発振器3の原理的な回路構成の1例を示す。同図において、36は定電圧の内部電源、27は発振コンデンサ2の充電用の定電流源(なお、この定電流源27の代わりに抵抗28を用いてもよい)、29はコンデンサ2の放電用の定電流源(なお、この定電流源29の代わりに抵抗30を用いてもよい)、34はヒステリシスを持つコンパレータ、35は上限値VUと下限値VLとに切り替えられる基準電圧、33はコンパレータ34の出力を反転してスイッチ31に与えるインバータ素子、31と32はトランジスタからなりコンパレータ34の出力によって交互に開閉されるスイッチである。
【0007】
次に図7,a)を参照しつつ、図8の動作を説明する。いまコンパレータ34の出力によりスイッチ31が閉、32が開の状態であるものとする。このときコンパレータ34に入力される基準電圧35は上限値VUになっている。そして発振コンデンサ2は定電流源27を介して(または内部電源36から抵抗28を介して)充電され、コンデンサ2の電圧が上昇する。
【0008】
やがてコンデンサ2の電圧が上限値VUに達すると、コンパレータ34の出力は反転し、スイッチ31が開、32が閉となり、また基準電圧35は下限値VLに切り替わる。これによりコンデンサ2は定電流源29を介して(またはグランド電位へ抵抗30を介して)放電され、コンデンサ2の電圧が下降する。
この後コンデンサ2の電圧が下限値VLに達すると、コンパレータ34の出力は再び反転し、スイッチ31が閉、32が開となり、基準電圧35は上限値VUに切り替わる。
【0009】
このような充放電の動作が繰り返されることで、図7,a)に示す三角波の発振波形が生成され、この発振波、つまり発振コンデンサ2の両端電圧が発振器3の出力として、PWM制御部4へ送られる。そして充電期間Tc と放電期間Tdcとからなる発振周期Tosc に同期してスイッチ素子8がオン/オフを繰り返す。
PWM制御部4内では、出力電圧検出入力6と、この検出入力6に対応するスイッチング電源装置出力電圧の基準値との偏差の電圧を0とするように、図7,b)に示すような可変のオン期間Tonのパルス幅をもつPWM出力7を生成出力する。
【0010】
この場合、オン期間Tonの始端は前記の充電期間Tc の開始時点(換言すれば放電期間Tdcの終了時点)に設定されている。また、オン期間Tonの終端はスイッチング電源装置出力電圧の制御によって変動するが、本装置では異常時の保護などを目的として、前記の放電期間Tdcをスイッチ素子8が必ずオフする期間(デッドタイム)としているので、最大のオン期間Ton maxは充電期間Tc に等しくなるように設定されている。
【0011】
従って、常時のオン期間Tonは最大オン期間Ton max内において、このスイッチング電源装置の出力電圧が基準値に対比して下がり過ぎようとするとオン期間Tonが増加するように、他方、スイッチング電源の出力電圧が基準値に対比して上がり過ぎようとするとオン期間Tonが減少するように制御される。
【0012】
【発明が解決しようとする課題】
前記したように図7,c)は図6のスイッチング電源装置における、スナバコンデンサ9の両端電圧の例を示す。即ち、スイッチ素子8がオフした後、トランス12が2次側ヘエネルギを放出し終わると、トランス12のインダクタンスとスナバコンデンサ9等によってLC共振を生じ、電圧が振動する。
【0013】
この振動中にスイッチ素子8がオン(ターンオン)する。この時、スナバコンデンサ9はその両端電圧に応じた蓄積エネルギをすべてスイッチ素子8のスイッチング損失として放出する。
またこのターンオンのタイミングは、電源制御回路5の発振器3で決定され電圧振動とは無関係である。このため、スナバコンデンサ9の電圧が大きい時にターンオンすることも多く、この場合、スイッチ素子8の損失が非常に大きくなり、スナバコンデンサ9の存在がサージ電圧およぴノイズの抑制には効果があるものの、他方ではスイッチ素子8の発熱を増加し、スイッチング電源装置の効率を低下させるという問題があった。
【0014】
そこで本発明は、上記したスナバコンデンサ9の電圧の振動中、常に電圧が最も小さくなった時点にスイッチ素子8をターンオンさせることで、スナバコンデンサ9によるスイッチ素子8の損失を最小限に抑えることができるスイッチング電源装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
前記の課題を解決するために、請求項1のスイッチング電源装置では、
所定の最高電圧(最高値VM )に充電されたのち、所定の最低電圧(下限値VL )に放電されることを繰り返す発振コンデンサ(2)と、
入力直流電源(入力電圧1)間にトランス(12)又はリアクトル(18)からなる誘導性手段と直列、且つスナバコンデンサ(9)と並列に接続され、前記発振コンデンサの充放電の各期間ごとに、該発振コンデンサの電圧が前記最低電圧に到達した時点をオン時点とするようにオン/オフされる半導体スイッチ素子(8)とを備え、
該半導体スイッチ素子のオフ時に前記誘導性手段から放出されるエネルギを用いて外部の負荷に供給すべき所定電圧の直流電源が(平滑用コンデンサ14の両端に)生成されるように、前記半導体スイッチ素子のオン期間とオフ期間との割合が(PWM制御部4によって)制御されるスイッチング電源装置において、
前記誘導性手段に補助巻線(16)を設け、前記半導体スイッチ素子のオフ期間に該補助巻線に発生する電圧をダイオード(17)を介し前記発振コンデンサに印加して該発振コンデンサを前記誘導性手段とスナバコンデンサによる共振動作が開始するまでの期間前記最高電圧に充電し、
少なくともこの充電の期間内に前記発振コンデンサに定電流源(29)又は所定の抵抗(30)を直列に持つ定電圧源(グランド電位)からなる放電電源を接続し、
前記発振コンデンサの電圧が前記充電の期間終了後に前記放電電源を介し前記最高電圧から最低電圧に下降するまでの時間(電圧下降時間TF )を前記誘導性手段とスナバコンデンサの共振動作による電圧振動の周期の1/2となるようにする。
【0016】
また請求項2のスイッチング電源装置では、請求項1に記載のスイッチング電源装置において、前記補助巻線が当該のスイッチング電源装置内の電源(制御回路用電源22など)を生成するために兼用されてなるようにする。
本発明の作用は以下の如くである。即ち、スイッチ素子8によって電流が断続されるトランス12またはリアクトル等の誘導性手段に補助巻線を設け、スイッチ素子8のオフ時に発生する電圧によって発振コンデンサをプルアップ充電する。
【0017】
そして発振コンデンサの電圧が、放電電源によってプルアップ充電後の最高値から下限値まで下降する時間を、誘導性手段とスナバコンデンサ9とによって生ずる電圧振動(LC共振)の周期の1/2となるようすることで、スイッチ素子8をオン(ターンオン)する時点としての、発振コンデンサの電圧が下限値に達した時点にはスナバコンデンサ9の振動電圧も最小となっているようにする。
【0018】
これにより、スイッチ素子8のターンオン時におけるスナバコンデンサ9の放電によるスイッチング損失や発熱を低減し、スイッチング電源装置の効率を改善する。
【0019】
【発明の実施の形態】
図1は本発明の第1の実施例としてのスイッチング電源装置の要部の回路構成を示し、この図1は図6に対応している。また、図3は図1の発振器3の部分の原理的な回路図で、この図3は図8に対応している。
図1においては図6に対し、トランス12に補助巻線16が付加され、この補助巻線16の電圧が、図3にも示すようにダイオード17を介して発振コンデンサ2に加えられている。なお、図3における発振器3の内部の構成は図8と同じである。
【0020】
図2は図1の各部の動作波形を示す。次に図2を参照しつつ、図1,図3の要部の動作を説明する。補助巻線16は、スイッチ素子8がオフすると発振コンデンサ2を充電する極性に、換言すれば図2,b)に示す電圧の正極性部分がコンデンサ2に印加されるように接続されている。
この補助巻線16の電圧を発振コンデンサ2に加えることで、スイッチ素子8がオフすると、発振器3の出力電圧としての発振コンデンサ2の電圧は、定電流源27からの(または抵抗28を介する内部電源36からの)充電による従来の上昇カーブを補助巻線16の電圧が上回る時点t1から、補助巻線16の電圧によって図2,c)に示すプルアップ期間Tpuの間、さらにプルアップされる。
【0021】
発振コンデンサ2の電圧が、その上昇中に時点t2において、図3のコンパレータ34に入力されている基準電圧35の上限値VU に達するとコンパレータ34の出力は反転し、図3のスイッチ31は開、32は閉となり、コンデンサ2には放電用の電源として定電流源29(または抵抗30を介してグランド電位)が接続される。
【0022】
しかしその後も、図2,c)に示すように時点t3に至るまでの、トランス12が2次側ヘエネルギを放出している期間内では補助巻線16のプルアップによりコンデンサ2の電圧は下がらない。なお、発振コンデンサ2の電圧の最高値VM (平坦部分)は、この時、導通状態にある2次巻線11の電圧、つまり2次平滑コンデンサ14の電圧、従って本スイッチング電源装置から外部の負荷15へ供給される定電圧制御された出力直流電圧に比例しており、実際上、一定である。
【0023】
時点t3においてトランス12が2次側ヘエネルギを放出し終わると、スナバコンデンサ9の電圧の振動が始まる。すると補助巻線16の電圧も振動により低下する。そのため補助巻線16はダイオード17によって、発振コンデンサ2から切り離され、コンデンサ2の電圧は前記した放電用電源によって低下を始める。
【0024】
このようにして、時点t4において発振コンデンサ2の電圧が、コンパレータ34に入力されている基準電圧35の下限値VL に達するとコンパレータ34の出力は再び反転し、発振コンデンサ2には前述した充電のための電源が接続され、同時にスイッチ素子8がオンされる。
本発明では、発振コンデンサ2の容量等の調整により、補助巻線16のプルアップが外れた時点t3から、スイッチ素子8がオンする時点t4まで(換言すれば、放電用電源によって発振コンデンサ2の電圧が最高値VM から下限値VL に下降するまで)の電圧下降時間TF が、スナバコンデンサ9のLC共振による電圧振動の1/2周期と一致するようにする。
【0025】
すると、時点t4ではスナバコンデンサ9の振動電圧も最小となり、この時点でスイッチ素子8がオンするため、スナバコンデンサ9の放電によるスイッチ素子8のターンオン損失(スイッチング損失)を最小限に抑えることが可能になる。
またこの電圧振動の周期は、トランス12やスナバコンデンサ9などの回路のインダクタンスLとキャパシタンスCで決まり、入力電圧や負荷に依存しないため、入力や負荷が変化してもこの効果は変化しない。
【0026】
図4は本発明の第2の実施例としての要部の回路構成を示す。同図においては、図1のトランス12の代わりにリアクトル18を用い、スイッチング電源装置が昇圧チョッパ方式に構成されている。そして、補助巻線16がリアクトル18に巻かれている。このように本発明はトランスを用いない方式のスイッチング電源装置にも実施可能である。
【0027】
図5は本発明の第3の実施例としての要部の回路構成を示す。本例では商用電源19をダイオードブリッジ回路20を介して整流し、コンデンサ21を介し平滑化してスイッチング電源装置の入力直流電圧としている。
図5の場合のように、一般にスイッチング電源装置の入力直流電圧が高いような場合、電源制御回路5の電源22はトランス12の補助巻線を使用して生成する。そこで本実施例では、電源22を生成する補助巻線を本発明で使用する補助巻線16と兼用している。
【0028】
即ち、電源制御回路5の電源22は、補助巻線16の電圧をダイオード23を介し整流し、コンデンサ24を介し平滑化して作られる。他方、本発明の実施のため、補助巻線16の電圧はダイオード17と抵抗25を介して発振コンデンサ2に加えられる。なお、発振コンデンサ2に並列にツェナーダイオード26が挿入されている。
【0029】
この抵抗25とツェナーダイオード26は、本来この動作のためには必要ないが、電源制御回路5の電源の生成用と本発明のために補助巻線16を兼用するため、補助巻線16から発振コンデンサ2に加わる電圧が発振器3の定格電圧を超えないよう保護のために使用されている。
【0030】
【発明の効果】
所定の最高電圧と最低電圧との間で充放電が繰り返される発振コンデンサの充放電に同期し、この発振コンデンサの電圧が前記最低電圧に到達した時点をオン時点とするように、
入力直流電源間にトランス又はリアクトルからなる誘導性手段と直列、且つスナバコンデンサと並列に接続された半導体スイッチ素子をPWM制御によってオン/オフし、
この半導体スイッチ素子のオフ時に誘導性手段から放出されるエネルギを用いて外部の負荷に所定電圧の直流電源を供給するスイッチング電源装置において、
誘導性手段に補助巻線を設け、半導体スイッチ素子のオフ期間にこの補助巻線に発生する電圧をダイオードを介し発振コンデンサに印加して発振コンデンサを前記最高電圧に充電し、
少なくともこの充電の期間内に発振コンデンサに定電流源又は所定の抵抗を直列に持つ定電圧源からなる放電電源を接続し、
発振コンデンサの電圧がこの放電電源を介し前記最高電圧から最低電圧に下降するまでの時間を前記誘導性手段とスナバコンデンサとによって生ずる電圧振動の周期の1/2となるようにしたので、
半導体スイッチ素子がターンオンする際のスナバコンデンサの電圧が最小となり、スナバコンデンサの放電による半導体スイッチ素子のスイッチング損失を最小限に抑え、半導体スイッチ素子の発熱を減らし、スイッチング電源装置の効率を改善することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例としての要部の構成を示す回路図
【図2】図1の各部の動作波形図
【図3】図1の発振器部分の原理的な構成を示す回路図
【図4】本発明の第2の実施例としての要部の構成を示す回路図
【図5】本発明の第3の実施例としての要部の構成を示す回路図
【図6】図1に対応する従来の回路図
【図7】図6の各部の動作波形図
【図8】図6の発振器部分の原理的な構成を示す回路図
【符号の説明】
1 入力電圧
2 発振コンデンサ
3 発振器
4 PWM制御部
5 電源制御回路
6 出力電圧検出入力
7 PWM出力
8 半導体スイッチ素子(スイッチ素子)
9 スナバコンデンサ
10 1次巻線
11 2次巻線
12 トランス
13 ダイオード
14 平滑用コンデンサ
15 負荷
16 補助巻線
17 ダイオード
18 リアクトル
19 商用電源
20 ダイオードブリッジ回路
21 平滑用コンデンサ
22 制御回路電源
23 ダイオード
24 平滑用コンデンサ
25 抵抗
26 ツェナーダイオード
27 定電流源
28 抵抗
29 定電流源
30 抵抗
31,32 スイッチ
33 インバータ
34 コンパレータ
35 基準電圧
36 内部電源
VU 基準電圧の上限値
VL 基準電圧の下限値
VM 発振コンデンサの電圧の最高値
TF 発振コンデンサの電圧下降時間
[0001]
BACKGROUND OF THE INVENTION
The present invention repetitively opens and closes a semiconductor switch element connected via at least inductive means such as a transformer or a reactor between input DC power sources serving as energy sources by a PWM-controlled drive pulse, thereby providing a stabilized DC power source. A so-called switching power supply as a power supply that is generated and supplied to the outside,
In particular, the snubber capacitor that protects the semiconductor switch element from the surge voltage generated when the semiconductor switch element is turned off minimizes the switching loss of the semiconductor switch element caused by discharging the semiconductor switch element when it is turned on. The present invention relates to a switching power supply device that improves the efficiency of the device.
In the following drawings, the same reference numerals denote the same or corresponding parts.
[0002]
[Prior art]
FIG. 6 shows an example of a circuit configuration of a conventional switching power supply apparatus using a flyback transformer 12. In the figure, 8 is a semiconductor switch element (simply abbreviated as a switch element) made of an N-channel MOSFET, and 5 is a constant DC supply voltage while detecting the DC voltage supplied to the external load 15 by the switching power supply device. The power supply control circuit is a control circuit for driving the switch element 8 on / off with a PWM output 7 as a drive pulse controlled by PWM (pulse width modulation).
[0003]
In the power supply control circuit 5, 3 is an oscillator that oscillates and outputs an oscillation wave (in this case, a triangular wave) to be described later using the oscillation capacitor 2, 4 is an oscillation output of the oscillator 3, and this switching power supply device This is a PWM control unit that receives the output voltage detection input 6 as a detected value of the DC voltage supplied to the load 15 and generates a PWM output 7 for driving the switch element 8 on / off.
[0004]
With this configuration, the switch element 8 has a duty ratio in which the input DC power source 1 is set to the frequency of the oscillator 3 and the DC output voltage on the secondary winding 11 side of the flyback transformer 12, and hence the output voltage detection input 6 is constant. That is, it is intermittently applied by the ON ratio = ON period / (ON period + OFF period) and applied to the primary winding 10 of the transformer 12.
Since the secondary winding 11 of the transformer 12 has a polarity voltage corresponding to the direction of maintaining the current that has been flowing through the primary winding 10 until the switching element 8 is turned off, the diode 13 is turned on. This voltage is smoothed by the capacitor 14 and supplied to the external load 15 as the output voltage of the switching power supply device.
[0005]
By the way, the capacitor 9 connected in parallel to the switch element 8 is called a snubber capacitor, and suppresses a surge voltage generated when the switch element 8 is turned off and a noise associated therewith.
FIG. 7 shows an example of the operation waveform of each part of FIG. 7A shows a voltage waveform of the oscillation capacitor 2 as an output waveform of the oscillator 3 in the power supply control circuit 5, and FIG. 7B shows a gate drive pulse applied to the switch element 8 by the power supply control circuit 5. PWM output 7 (this signal 7 is also a signal indicating the ON / OFF state of the switch element 8 at the same time), and FIG. 7C shows the snubber voltage as the voltage across the snubber capacitor 9.
[0006]
In the power supply control circuit 5, the frequency at which the switching element 8 is repeatedly turned on / off is determined by the oscillator 3 using charging / discharging of the oscillation capacitor 2.
FIG. 8 shows an example of the basic circuit configuration of the oscillator 3. In the figure, 36 is a constant voltage internal power source, 27 is a constant current source for charging the oscillation capacitor 2 (a resistor 28 may be used in place of the constant current source 27), and 29 is a discharge of the capacitor 2. Constant current source (which may be replaced by the resistor 30), 34 is a comparator having hysteresis, 35 is a reference voltage switched between the upper limit value VU and the lower limit value VL, and 33 is Inverter elements 31 and 32 that invert the output of the comparator 34 and give it to the switch 31 are switches composed of transistors that are alternately opened and closed by the output of the comparator 34.
[0007]
Next, the operation of FIG. 8 will be described with reference to FIG. Assume that the switch 31 is closed and the 32 is open by the output of the comparator 34. At this time, the reference voltage 35 input to the comparator 34 is the upper limit value VU. The oscillation capacitor 2 is charged via the constant current source 27 (or from the internal power supply 36 via the resistor 28), and the voltage of the capacitor 2 rises.
[0008]
When the voltage of the capacitor 2 eventually reaches the upper limit value VU, the output of the comparator 34 is inverted, the switch 31 is opened, 32 is closed, and the reference voltage 35 is switched to the lower limit value VL. As a result, the capacitor 2 is discharged via the constant current source 29 (or to the ground potential via the resistor 30), and the voltage of the capacitor 2 drops.
Thereafter, when the voltage of the capacitor 2 reaches the lower limit value VL, the output of the comparator 34 is inverted again, the switch 31 is closed and 32 is opened, and the reference voltage 35 is switched to the upper limit value VU.
[0009]
By repeating such charging and discharging operations, a triangular wave oscillation waveform shown in FIG. 7A is generated, and this oscillation wave, that is, the voltage across the oscillation capacitor 2 is used as the output of the oscillator 3 as a PWM control unit 4. Sent to. Then, the switch element 8 is repeatedly turned on / off in synchronization with the oscillation period Tosc consisting of the charging period Tc and the discharging period Tdc.
In the PWM control unit 4, as shown in FIG. 7, b), the deviation voltage between the output voltage detection input 6 and the reference value of the switching power supply output voltage corresponding to the detection input 6 is set to zero. A PWM output 7 having a pulse width with a variable ON period Ton is generated and output.
[0010]
In this case, the beginning of the on period Ton is set to the start point of the charging period Tc (in other words, the end point of the discharge period Tdc). The end of the on period Ton varies depending on the control of the output voltage of the switching power supply device. In the present apparatus, however, the discharge element Tdc is always turned off for the purpose of protection in the event of an abnormality (dead time). Therefore, the maximum on period Ton max is set to be equal to the charging period Tc.
[0011]
Therefore, the on-period Ton is always increased within the maximum on-period Ton max, so that the on-period Ton increases when the output voltage of the switching power supply device is too low compared to the reference value. When the voltage is going to rise too much compared to the reference value, the ON period Ton is controlled to decrease.
[0012]
[Problems to be solved by the invention]
As described above, FIG. 7C shows an example of the voltage across the snubber capacitor 9 in the switching power supply device of FIG. That is, after the switch element 8 is turned off, when the transformer 12 finishes releasing energy to the secondary side, LC resonance is generated by the inductance of the transformer 12 and the snubber capacitor 9 and the voltage oscillates.
[0013]
During this vibration, the switch element 8 is turned on (turned on). At this time, the snubber capacitor 9 discharges all the stored energy corresponding to the voltage between both ends as the switching loss of the switch element 8.
The turn-on timing is determined by the oscillator 3 of the power supply control circuit 5 and is independent of voltage oscillation. Therefore, it often turns on when the voltage of the snubber capacitor 9 is large. In this case, the loss of the switch element 8 becomes very large, and the presence of the snubber capacitor 9 is effective in suppressing the surge voltage and noise. However, on the other hand, there is a problem that the heat generation of the switch element 8 is increased and the efficiency of the switching power supply device is lowered.
[0014]
Therefore, the present invention can minimize the loss of the switch element 8 due to the snubber capacitor 9 by turning on the switch element 8 when the voltage is always the lowest during the oscillation of the voltage of the snubber capacitor 9 described above. An object of the present invention is to provide a switching power supply device that can be used.
[0015]
[Means for Solving the Problems]
In order to solve the above problem, in the switching power supply device according to claim 1,
An oscillation capacitor (2) that is repeatedly charged to a predetermined minimum voltage (lower limit value VL) after being charged to a predetermined maximum voltage (maximum value VM);
Connected in series with inductive means consisting of a transformer (12) or a reactor (18) between input DC power sources (input voltage 1) and in parallel with a snubber capacitor (9), and for each period of charging and discharging of the oscillation capacitor A semiconductor switching element (8) that is turned on / off so that the time when the voltage of the oscillation capacitor reaches the minimum voltage is set as an on time;
The semiconductor switch is configured so that a DC power source having a predetermined voltage to be supplied to an external load is generated (at both ends of the smoothing capacitor 14) using energy released from the inductive means when the semiconductor switch element is turned off. In the switching power supply apparatus in which the ratio between the on period and the off period of the element is controlled (by the PWM control unit 4),
An auxiliary winding (16) is provided in the inductive means, and a voltage generated in the auxiliary winding during the off period of the semiconductor switch element is applied to the oscillation capacitor via a diode (17) to induce the oscillation capacitor to the induction Charging to the highest voltage for a period until the resonance operation by the power means and the snubber capacitor starts ,
At least during this charging period, a discharge power source comprising a constant current source (29) or a constant voltage source (ground potential) having a predetermined resistance (30) in series is connected to the oscillation capacitor,
The time until the voltage of the oscillation capacitor drops from the highest voltage to the lowest voltage via the discharge power source after the end of the charging period (voltage fall time TF) is the voltage oscillation due to the resonant operation of the inductive means and the snubber capacitor. The period is set to ½.
[0016]
Further, in the switching power supply device according to claim 2, in the switching power supply device according to claim 1, the auxiliary winding is also used for generating a power supply (such as the control circuit power supply 22) in the switching power supply apparatus. To be.
The operation of the present invention is as follows. That is, an auxiliary winding is provided in an inductive means such as a transformer 12 or a reactor whose current is interrupted by the switch element 8, and the oscillation capacitor is pulled up by a voltage generated when the switch element 8 is turned off.
[0017]
The time for the voltage of the oscillation capacitor to fall from the maximum value after pull-up charging to the lower limit value by the discharge power supply is ½ of the period of voltage oscillation (LC resonance) caused by the inductive means and the snubber capacitor 9. By doing so, the oscillation voltage of the snubber capacitor 9 is also minimized when the voltage of the oscillation capacitor reaches the lower limit as the point of time when the switch element 8 is turned on (turned on).
[0018]
Thereby, switching loss and heat generation due to the discharge of the snubber capacitor 9 when the switch element 8 is turned on are reduced, and the efficiency of the switching power supply device is improved.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a circuit configuration of a main part of a switching power supply device as a first embodiment of the present invention. FIG. 1 corresponds to FIG. FIG. 3 is a circuit diagram showing the principle of the oscillator 3 shown in FIG. 1. FIG. 3 corresponds to FIG.
In FIG. 1, an auxiliary winding 16 is added to the transformer 12 with respect to FIG. 6, and the voltage of the auxiliary winding 16 is applied to the oscillation capacitor 2 via a diode 17 as shown in FIG. The internal configuration of the oscillator 3 in FIG. 3 is the same as that in FIG.
[0020]
FIG. 2 shows operation waveforms of respective parts in FIG. Next, the operation of the main part of FIGS. 1 and 3 will be described with reference to FIG. The auxiliary winding 16 is connected so that the polarity of the oscillation capacitor 2 is charged when the switch element 8 is turned off, in other words, the positive polarity portion of the voltage shown in FIG.
When the voltage of the auxiliary winding 16 is applied to the oscillation capacitor 2 and the switch element 8 is turned off, the voltage of the oscillation capacitor 2 as the output voltage of the oscillator 3 is supplied from the constant current source 27 (or through the resistor 28). From the time t1 when the voltage of the auxiliary winding 16 exceeds the conventional rising curve due to charging (from the power source 36), the voltage of the auxiliary winding 16 is further pulled up during the pull-up period Tpu shown in FIG. .
[0021]
When the voltage of the oscillation capacitor 2 reaches the upper limit value VU of the reference voltage 35 input to the comparator 34 in FIG. 3 at the time t2 during the rise, the output of the comparator 34 is inverted and the switch 31 in FIG. 3 is opened. , 32 are closed, and a constant current source 29 (or a ground potential via a resistor 30) is connected to the capacitor 2 as a power source for discharge.
[0022]
However, after that, as shown in FIG. 2, c), the voltage of the capacitor 2 does not drop due to the pull-up of the auxiliary winding 16 within the period in which the transformer 12 is releasing energy to the secondary side until the time point t3. . Note that the maximum value VM (flat portion) of the voltage of the oscillation capacitor 2 is the voltage of the secondary winding 11 in a conductive state at this time, that is, the voltage of the secondary smoothing capacitor 14, and accordingly, the external load from the switching power supply device. 15 is proportional to the constant-voltage controlled output DC voltage supplied to 15, and is practically constant.
[0023]
When the transformer 12 finishes releasing energy to the secondary side at the time t3, the oscillation of the voltage of the snubber capacitor 9 starts. Then, the voltage of the auxiliary winding 16 also decreases due to vibration. Therefore, the auxiliary winding 16 is separated from the oscillation capacitor 2 by the diode 17, and the voltage of the capacitor 2 starts to decrease due to the above-described discharge power supply.
[0024]
In this way, when the voltage of the oscillation capacitor 2 reaches the lower limit value VL of the reference voltage 35 input to the comparator 34 at time t4, the output of the comparator 34 is inverted again, and the oscillation capacitor 2 is charged with the above-described charging. Is connected to the power source, and the switch element 8 is turned on at the same time.
In the present invention, from the time t3 when the pull-up of the auxiliary winding 16 is removed by adjusting the capacity of the oscillation capacitor 2 or the like to the time t4 when the switch element 8 is turned on (in other words, the oscillation capacitor 2 is driven by the discharge power supply). The voltage fall time TF (until the voltage drops from the maximum value VM to the lower limit value VL) is made to coincide with a half cycle of voltage oscillation due to LC resonance of the snubber capacitor 9.
[0025]
Then, the oscillation voltage of the snubber capacitor 9 is also minimized at the time point t4, and the switch element 8 is turned on at this time point. Therefore, the turn-on loss (switching loss) of the switch element 8 due to the discharge of the snubber capacitor 9 can be minimized. become.
The period of this voltage oscillation is determined by the inductance L and capacitance C of the circuit such as the transformer 12 and the snubber capacitor 9 and does not depend on the input voltage or load. Therefore, even if the input or load changes, this effect does not change.
[0026]
FIG. 4 shows a circuit configuration of a main part as a second embodiment of the present invention. In the figure, a reactor 18 is used instead of the transformer 12 of FIG. 1, and the switching power supply device is configured in a boost chopper system. The auxiliary winding 16 is wound around the reactor 18. As described above, the present invention can also be implemented in a switching power supply apparatus that does not use a transformer.
[0027]
FIG. 5 shows a circuit configuration of a main part as a third embodiment of the present invention. In this example, the commercial power supply 19 is rectified via a diode bridge circuit 20 and smoothed via a capacitor 21 to obtain an input DC voltage of the switching power supply.
As in the case of FIG. 5, when the input DC voltage of the switching power supply device is generally high, the power supply 22 of the power supply control circuit 5 is generated using the auxiliary winding of the transformer 12. Therefore, in this embodiment, the auxiliary winding for generating the power source 22 is also used as the auxiliary winding 16 used in the present invention.
[0028]
That is, the power supply 22 of the power supply control circuit 5 is produced by rectifying the voltage of the auxiliary winding 16 through the diode 23 and smoothing it through the capacitor 24. On the other hand, the voltage of the auxiliary winding 16 is applied to the oscillation capacitor 2 through the diode 17 and the resistor 25 in order to implement the present invention. A Zener diode 26 is inserted in parallel with the oscillation capacitor 2.
[0029]
Although the resistor 25 and the Zener diode 26 are not originally necessary for this operation, the resistor 25 and the Zener diode 26 oscillate from the auxiliary winding 16 in order to use the power supply control circuit 5 for generating power and the auxiliary winding 16 for the present invention. It is used for protection so that the voltage applied to the capacitor 2 does not exceed the rated voltage of the oscillator 3.
[0030]
【The invention's effect】
In synchronization with charging / discharging of the oscillation capacitor in which charging / discharging is repeated between a predetermined maximum voltage and a minimum voltage, the time when the voltage of the oscillation capacitor reaches the minimum voltage is set as the ON time point.
The semiconductor switch element connected in series with the inductive means consisting of a transformer or a reactor between the input DC power supplies and in parallel with the snubber capacitor is turned on / off by PWM control,
In the switching power supply apparatus for supplying a DC power supply of a predetermined voltage to an external load using energy released from the inductive means when the semiconductor switch element is turned off,
An inductive means is provided with an auxiliary winding, and a voltage generated in the auxiliary winding during the off period of the semiconductor switch element is applied to the oscillation capacitor via a diode to charge the oscillation capacitor to the maximum voltage,
At least during this charging period, a discharge power source consisting of a constant current source or a constant voltage source having a predetermined resistance in series is connected to the oscillation capacitor,
Since the time until the voltage of the oscillation capacitor drops from the highest voltage to the lowest voltage via the discharge power source is set to ½ of the period of voltage oscillation caused by the inductive means and the snubber capacitor,
The voltage of the snubber capacitor when the semiconductor switch element is turned on is minimized, the switching loss of the semiconductor switch element due to the discharge of the snubber capacitor is minimized, the heat generation of the semiconductor switch element is reduced, and the efficiency of the switching power supply device is improved. Can do.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a configuration of a main part as a first embodiment of the present invention. FIG. 2 is an operation waveform diagram of each part of FIG. 1. FIG. FIG. 4 is a circuit diagram showing a configuration of a main part as a second embodiment of the present invention. FIG. 5 is a circuit diagram showing a configuration of a main part as a third embodiment of the present invention. 1 is a conventional circuit diagram corresponding to FIG. 1. FIG. 7 is an operation waveform diagram of each part of FIG. 6. FIG. 8 is a circuit diagram showing the fundamental configuration of the oscillator part of FIG.
DESCRIPTION OF SYMBOLS 1 Input voltage 2 Oscillation capacitor | condenser 3 Oscillator 4 PWM control part 5 Power supply control circuit 6 Output voltage detection input 7 PWM output 8 Semiconductor switch element (switch element)
9 Snubber capacitor 10 Primary winding 11 Secondary winding 12 Transformer 13 Diode 14 Smoothing capacitor 15 Load 16 Auxiliary winding 17 Diode 18 Reactor 19 Commercial power supply 20 Diode bridge circuit 21 Smoothing capacitor 22 Control circuit power supply 23 Diode 24 Smoothing Capacitor 25 Resistor 26 Zener diode 27 Constant current source 28 Resistor 29 Constant current source 30 Resistor 31 and 32 Switch 33 Inverter 34 Comparator 35 Reference voltage 36 Internal power supply VU Upper limit of reference voltage VL Lower limit of reference voltage VM Voltage of oscillation capacitor Maximum value TF Oscillation capacitor voltage fall time

Claims (1)

所定の最高電圧に充電されたのち、所定の最低電圧に放電されることを繰り返す発振コンデンサと、
入力直流電源間にトランス又はリアクトルからなる誘導性手段と直列、且つスナバコンデンサと並列に接続され、前記発振コンデンサの充放電の各期間ごとに、該発振コンデンサの電圧が前記最低電圧に到達した時点をオン時点とするようにオン/オフされる半導体スイッチ素子とを備え、
該半導体スイッチ素子のオフ時に前記誘導性手段から放出されるエネルギを用いて外部の負荷に供給すべき所定電圧の直流電源が生成されるように、前記半導体スイッチ素子のオン期間とオフ期間との割合が制御されるスイッチング電源装置において、
前記誘導性手段に補助巻線を設け、前記半導体スイッチ素子のオフ期間に該補助巻線に発生する電圧をダイオードを介し前記発振コンデンサに印加して該発振コンデンサを前記誘導性手段とスナバコンデンサによるLC共振が開始するまでの期間前記最高電圧に充電し、
少なくともこの充電の期間内に前記発振コンデンサに定電流源又は所定の抵抗を直列に持つ定電圧源からなる放電電源を接続し、
前記発振コンデンサの電圧が前記充電の期間終了後に前記放電電源を介し前記最高電圧から最低電圧に下降するまでの時間を前記誘導性手段とスナバコンデンサのLC共振による電圧振動の周期の1/2となるようにしたことを特徴とするスイッチング電源装置。
An oscillation capacitor that is repeatedly charged to a predetermined minimum voltage after being charged to a predetermined maximum voltage;
When inductive means consisting of a transformer or a reactor is connected in series between the input DC power supply and in parallel with the snubber capacitor, and the voltage of the oscillation capacitor reaches the minimum voltage every charge / discharge period of the oscillation capacitor A semiconductor switch element that is turned on / off so that
An on period and an off period of the semiconductor switch element are generated so that a DC power source having a predetermined voltage to be supplied to an external load is generated using energy released from the inductive means when the semiconductor switch element is turned off. In the switching power supply in which the ratio is controlled,
An auxiliary winding is provided in the inductive means, and a voltage generated in the auxiliary winding during an off period of the semiconductor switch element is applied to the oscillation capacitor via a diode, and the oscillation capacitor is formed by the inductive means and the snubber capacitor. Charge to the highest voltage for the period until LC resonance starts ,
At least during this charging period, a discharge power source consisting of a constant current source or a constant voltage source having a predetermined resistance in series is connected to the oscillation capacitor,
The time until the voltage of the oscillation capacitor drops from the highest voltage to the lowest voltage via the discharge power source after the end of the charging period is ½ of the period of voltage oscillation due to LC resonance of the inductive means and the snubber capacitor. A switching power supply device characterized by that.
JP35465499A 1999-12-14 1999-12-14 Switching power supply Expired - Fee Related JP3664012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35465499A JP3664012B2 (en) 1999-12-14 1999-12-14 Switching power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35465499A JP3664012B2 (en) 1999-12-14 1999-12-14 Switching power supply

Publications (2)

Publication Number Publication Date
JP2001178124A JP2001178124A (en) 2001-06-29
JP3664012B2 true JP3664012B2 (en) 2005-06-22

Family

ID=18439015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35465499A Expired - Fee Related JP3664012B2 (en) 1999-12-14 1999-12-14 Switching power supply

Country Status (1)

Country Link
JP (1) JP3664012B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100337382C (en) * 2003-04-04 2007-09-12 京东方科技集团股份有限公司 Assembled battery whose voltage can be constantly controlled
US6836415B1 (en) * 2003-06-18 2004-12-28 Systems General Corp. Primary-side regulated pulse width modulation controller with improved load regulation
US6862194B2 (en) * 2003-06-18 2005-03-01 System General Corp. Flyback power converter having a constant voltage and a constant current output under primary-side PWM control
JP5002948B2 (en) * 2005-11-21 2012-08-15 富士電機株式会社 Semiconductor device
JP5222046B2 (en) * 2008-07-02 2013-06-26 株式会社小糸製作所 Flyback converter
CN101800476A (en) * 2010-04-01 2010-08-11 华为技术有限公司 Voltage transformation device and method, as well as power supply system
JP6673651B2 (en) * 2015-06-30 2020-03-25 ダイハツ工業株式会社 Power supply for plasma reactor
CN112564486B (en) * 2019-09-26 2022-04-22 海信视像科技股份有限公司 Display device

Also Published As

Publication number Publication date
JP2001178124A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
US5438498A (en) Series resonant converter having a resonant snubber
JP5397024B2 (en) Switching power supply device, switching power supply control circuit, and switching power supply device control method
EP0474471B1 (en) Fixed frequency single ended forward converter switching at zero voltage
JP6665573B2 (en) Switching power supply
JP4371042B2 (en) Switching power supply
US6442047B1 (en) Power conversion apparatus and methods with reduced current and voltage switching
US6366480B2 (en) Switching power supply apparatus
KR100801773B1 (en) Ballast with peak detector
JP2003088117A (en) Switching power supply unit
JP2011109912A (en) Method and device for simplifying switch control
JP2002112544A (en) Switching power supply apparatus
JP3664012B2 (en) Switching power supply
JP3221185B2 (en) Switching power supply
JP3653075B2 (en) Switching power transmission device
JP4085613B2 (en) Power supply
JPH08130871A (en) Dc-dc converter
JP2001292571A (en) Synchronous rectifying circuit
JP2012143071A (en) Power supply and electronic apparatus
US6744220B2 (en) Free-running circuit arrangement
JP3272657B2 (en) Switching power supply
JP4780547B2 (en) Partially resonant separately excited switching power supply
JP3761558B2 (en) Switching power supply circuit and control method used for the switching power supply circuit
JPH0750987B2 (en) Resonance type DC-DC converter control method
JPH03222671A (en) Switching power supply
JP4304751B2 (en) Ringing choke converter with improved turn-on loss

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees