JPH0750987B2 - Resonance type DC-DC converter control method - Google Patents

Resonance type DC-DC converter control method

Info

Publication number
JPH0750987B2
JPH0750987B2 JP16241489A JP16241489A JPH0750987B2 JP H0750987 B2 JPH0750987 B2 JP H0750987B2 JP 16241489 A JP16241489 A JP 16241489A JP 16241489 A JP16241489 A JP 16241489A JP H0750987 B2 JPH0750987 B2 JP H0750987B2
Authority
JP
Japan
Prior art keywords
resonance
switching semiconductor
voltage
semiconductor element
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16241489A
Other languages
Japanese (ja)
Other versions
JPH0327768A (en
Inventor
亮治 斉藤
一宏 妹尾
幹雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP16241489A priority Critical patent/JPH0750987B2/en
Publication of JPH0327768A publication Critical patent/JPH0327768A/en
Publication of JPH0750987B2 publication Critical patent/JPH0750987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,共振形DC−DCコンバータの効率を改善し得る
その制御方法に関する。
The present invention relates to a control method of a resonance type DC-DC converter that can improve the efficiency thereof.

〔従来の技術〕[Conventional technology]

DC−DCコンバータの効率を向上し小型化する目的で,ス
イッチング半導体素子のスイッチング損失を低減するた
め,インダクタンス(L)とキャパシタンス(C)との
振動現象を利用して,スイッチング半導体素子のスイッ
チング時にそれに電流と電圧とが同時にかからないよう
にし,これによりスイッチング損失の低減を図った共振
形コンバータが提案されている。
In order to reduce the switching loss of the switching semiconductor element for the purpose of improving the efficiency and downsizing of the DC-DC converter, the vibration phenomenon of the inductance (L) and the capacitance (C) is used to switch the switching semiconductor element. A resonant converter has been proposed in which current and voltage are not applied at the same time to reduce switching loss.

これら共振形コンバータは,そのスイッチング動作点の
近傍でスイッチング半導体素子を流れる電流とそれに印
加される電圧の状態から3種類に大別される。その第1
は,スイッチング半導体素子のターンオン直後とターン
オフ直前の電流がほぼゼロであるゼロ電流スイッチング
型,第2はターンオン直前とターンオフ直後の電圧がほ
ぼゼロのゼロ電圧スイッチング型,第3は電流・電圧が
スイッチング動作点前後において共にほぼゼロのゼロ電
流・ゼロ電圧スイッチング型である。
These resonant converters are roughly classified into three types according to the state of the current flowing through the switching semiconductor element and the voltage applied thereto in the vicinity of the switching operation point. The first
Is a zero current switching type in which the current is almost zero immediately after turn-on and immediately before turn-off of the switching semiconductor device, the second is a zero voltage switching type in which the voltage is almost zero immediately before turn-on and immediately after turn-off, and the third is current / voltage switching. It is a zero-current / zero-voltage switching type that has almost zero before and after the operating point.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

高周波コンバータのスイッチング半導体素子の電力損失
の主要要因として,そのスイッチング半導体素子の主端
子間容量Cosとスイッチング特性の関係,オン電圧,コ
ンバータの動作力率がある。
The main causes of power loss in the switching semiconductor element of a high-frequency converter are the relationship between the main terminal capacitance C os of the switching semiconductor element and the switching characteristics, the on-voltage, and the converter operating power factor.

従来のゼロ電流スイッチング型は,共振用コンデンサの
電圧をダイオードでクランプするなどして動作力率の良
い回路を実現できるが,ゼロ電圧スイッチングでないた
め,容量Cosに伴う電力損失があり,周波数が高くなる
につれてこの電力損失の問題が大きくなる。
The conventional zero-current switching type can realize a circuit with a good operating power factor by clamping the voltage of the resonance capacitor with a diode, but since it is not zero-voltage switching, there is power loss due to the capacitance Cos and the frequency is The higher this is, the greater the problem of this power loss.

また,ゼロ電圧スイッチング型は容量Cosに伴う電力損
失はないが,広い電力制御範囲で動作を行うとスイッチ
ング半導体素子のターンオフ時の電流と入力電源に回生
される電流が増大して動作力率が低下し,高い効率で動
作させることは難しい。また従来のゼロ電流・ゼロ電圧
スイッチング型は,電力制御を行うとゼロ電流・ゼロ電
圧スイッチングのモードから外れ,ゼロ電流スイッチン
グ型又はゼロ電圧スイッチング型の動作を行うので,動
作力率の低下やスイッチング損失が増大する。従って,
この方式は大電力を比較的広い範囲で制御するDC−DCコ
ンバータには適さない。
In addition, the zero-voltage switching type has no power loss due to the capacitance C os , but when operating in a wide power control range, the current at turn-off of the switching semiconductor element and the current regenerated in the input power supply increase and the operating power factor increases. It is difficult to operate with high efficiency. In addition, the conventional zero-current / zero-voltage switching type deviates from the zero-current / zero-voltage switching mode when power control is performed, and the zero-current switching type or zero-voltage switching type operation is performed. Loss increases. Therefore,
This method is not suitable for DC-DC converters that control large power over a relatively wide range.

そのため従来,大電力容量の場合にはIGBTなどを用いて
これらを比較的低い周波数で動作させるゼロ電流スイッ
チング型コンバータが使用され,また小電力容量ではMO
SFETを用いて高周波で動作させるゼロ電圧スイッチング
型コンバータが使用されていた。従って,大電力容量の
DC−DCコンバータを高周波化すると同時に小型化し,且
つ高い効率で動作させることは極めて困難であった。
Therefore, in the past, for large power capacity, a zero-current switching converter that uses an IGBT or the like to operate them at a relatively low frequency has been used.
A zero-voltage switching converter that operates at high frequency using SFET was used. Therefore, the large power capacity
It was extremely difficult to reduce the size of the DC-DC converter at the same time as making it higher in frequency and operating it with high efficiency.

ここではゼロ電圧スイッチング型でない,或いはゼロ電
圧スイッチング型動作モードから外れて動作する共振型
コンバータの電力損失について説明する。
Here, the power loss of the resonant converter that is not the zero-voltage switching type or operates outside the zero-voltage switching type operation mode will be described.

表1は,スイッチング半導体素子としてMOSFET,IGBTを
用い,これらのスイッチング時にかかる電圧に対するそ
れらの主端子間容量の充放電電荷量を示す。なお,MOSFE
Tは2個並列接続した場合であり,MOSFETもIGBTも1アー
ム分の電荷量である。
Table 1 shows the amount of charge and discharge of the capacitance between the main terminals of MOSFETs and IGBTs used as switching semiconductor devices and the voltage applied during switching. In addition, MOSFE
T is the case where two pieces are connected in parallel, and both the MOSFET and the IGBT have the charge amount for one arm.

次にスイッチング半導体素子のこのような主端子間容量
の充放電に伴う電力損失は,最悪の動作モードでは入力
電圧と電荷量と周波数の積となり,第7図(A),
(B)に動作周波数と電力損失との関係をそれぞれ示
す。この図から,スイッチング半導体素子の動作周波数
及び主端子間電圧の増大に伴い,主端子間容量の充放電
による電力損失が増大することが明らかである。
Next, the power loss due to the charging / discharging of the capacitance between the main terminals of the switching semiconductor element becomes the product of the input voltage, the charge amount, and the frequency in the worst operation mode.
(B) shows the relationship between the operating frequency and the power loss. From this figure, it is clear that as the operating frequency of the switching semiconductor device and the voltage between the main terminals increase, the power loss due to charging and discharging of the capacity between the main terminals increases.

〔問題点を解決するための手段及び作用〕[Means and Actions for Solving Problems]

本発明では上述のような従来の欠点を除去するため,ス
イッチング半導体素子の交互の開閉に伴い生ずる共振用
コンデンサと共振用インダクタとの直列共振を利用して
出力を発生するDC−DCコンバータにおいて,スイッチン
グ半導体素子の一方のターンオフ後,その導通期間中に
インダクタンスに蓄えられた磁気エネルギにより,スイ
ッチング半導体素子の一方の寄生容量にエネルギを蓄え
ると共に,スイッチング半導体素子の他方の寄生容量に
蓄えられたエネルギを放電し,そしてスイッチング半導
体素子の他方の両端の電圧が十分低い設定電圧以下に低
下した時点でスイッチング半導体素子の他方をターンオ
ン駆動することを特徴としている。従って,この発明に
よるコンバータではスイッチング半導体素子の主端子間
寄生容量に伴う電力損失は実用上無視できる程小さい。
In the present invention, in order to eliminate the above-mentioned conventional drawbacks, in a DC-DC converter that generates an output by utilizing series resonance of a resonance capacitor and a resonance inductor caused by alternating opening and closing of a switching semiconductor element, After the turning off of one of the switching semiconductor elements, the magnetic energy stored in the inductance during the conduction period stores energy in one parasitic capacitance of the switching semiconductor element and the energy stored in the other parasitic capacitance of the switching semiconductor element. Is discharged, and when the voltage across the other side of the switching semiconductor element drops below a sufficiently low set voltage, the other side of the switching semiconductor element is turned on. Therefore, in the converter according to the present invention, the power loss due to the parasitic capacitance between the main terminals of the switching semiconductor element is practically negligible.

〔実施例〕〔Example〕

本発明は,共振型コンバータを広い電力制御範囲にわた
って実質的にゼロ電流・ゼロ電圧スイッチング動作させ
得る制御方法を提供するものである。
The present invention provides a control method capable of operating a resonant converter in a substantially zero current / zero voltage switching operation over a wide power control range.

以下図面により本発明の実施例について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は,本発明の制御方法を実現するための共振型DC
−DCコンバータの概略回路構成を示す。この図におい
て,1と2は直流入力電源,3と4はMOSFET,IGBTのような
スイッチング半導体素子を示すスイッチ,5と6は主スイ
ッチの主端子間寄生容量,7と8はダイオード,9と10は共
振用コンデンサ,11と12はクランプ用ダイオード,13は共
振用インダクタ,14は1次巻線N1と2次巻線N2とを有す
る変圧器,15,16は主スイッチ3,4の両端の電圧をそれぞ
れ監視する電圧監視回路,17,18はそれぞれ主スイッチ3,
4の駆動回路,19はコントローラ,20は変圧器14の2次巻
線N2に接続された整流回路,21は負荷,22は電圧検出回
路,23は平滑用コンデンサである。なお,ダイオード7
と8は,主スイッチ3,4がMOSFETのときはその寄生ダイ
オードであり,IGBTの場合には別途並列接続したダイオ
ードである。また,主スイッチがIGBTなどのようにスイ
ッチング速度の遅い素子に場合には,必要に応じて適当
な容量のコンデンサを素子に並列接続することが望まし
い。更にまた,共振用インダクタ13を除去し,そのイン
ダクタンスの代わりに変圧器14の漏洩インダクタンスを
用いることもできる。
FIG. 1 shows a resonance type DC for realizing the control method of the present invention.
-A schematic circuit configuration of a DC converter is shown. In this figure, 1 and 2 are DC input power supplies, 3 and 4 are MOSFETs, switches indicating switching semiconductor elements such as IGBTs, 5 and 6 are parasitic capacitances between main terminals of the main switch, 7 and 8 are diodes, and 9 and Reference numeral 10 is a resonance capacitor, 11 and 12 are clamping diodes, 13 is a resonance inductor, 14 is a transformer having a primary winding N 1 and a secondary winding N 2, and 15 and 16 are main switches 3 and 4. Voltage monitoring circuit that monitors the voltage across both ends of the
4 is a drive circuit, 19 is a controller, 20 is a rectifier circuit connected to the secondary winding N 2 of the transformer 14, 21 is a load, 22 is a voltage detection circuit, and 23 is a smoothing capacitor. The diode 7
And 8 are parasitic diodes of the main switches 3 and 4 when they are MOSFETs, and diodes connected in parallel when they are IGBTs. If the main switch is an element with a slow switching speed such as an IGBT, it is desirable to connect a capacitor of appropriate capacity in parallel with the element as necessary. Furthermore, the resonance inductor 13 may be removed and the leakage inductance of the transformer 14 may be used instead of the inductance.

次にこのような構成の回路の動作説明を行う。Next, the operation of the circuit having such a configuration will be described.

先ず第3図に主スイッチ3,4の電流,電圧をそれぞれI3,
I4,V3,V4で示し,変圧器14の1次巻線電圧をVN1で示
す。主スイッチ4がオン状態で変圧器14への電流供給を
終わり,変圧器14の励磁電流がその1次巻線N1,共振用
インダクタ13,主スイッチ4,ダイオード12を介して循環
しているものとする。この励磁電流は主スイッチ4の電
流I4のレベルの低いフラットな部分に相当する。この状
態で次に主スイッチ4をターンオフすると,変圧器14の
1次巻線N1の励磁電流が寄生容量5の充電電荷の放電と
寄生容量6の充電を開始する。この充放電と共に変圧器
14の2次巻線のN2の電圧が上昇して行く。2次巻線のN2
の電圧が出力電圧,つまり平滑用コンデンサ23の電圧に
達すると,整流回路20が導通し,変圧器14の励磁電流は
2次巻線のN2にも流れ始め,1次巻線N1の励磁電流は減少
して行くが,共振用インダクタ13の蓄積エネルギがある
ので,寄生容量5,6は更に放電,充電を続け,主スイッ
チ3の両端の電圧はゼロになる。このスイッチング動作
区間の時間軸を拡大した各部の波形図を第4図に示す。
電圧監視回路15は主スイッチ3の両端の電圧を監視して
おり,主スイッチ3の両端の電圧がゼロになると,駆動
回路17に検出信号を送って,駆動回路17に主スイッチ3
のターンオン信号を発生させ,主スイッチ3をゼロ電圧
でターンオンさせる。この間における寄生容量の充放電
は,変圧器14の励磁電流と共振用インダクタ13の電流で
行われるので,主スイッチの寄生容量による回路損失は
極めて小さく,実質的に主スイッチ3はゼロ電圧でスイ
ッチング損失を生ずることなくターンオンする。
First current of the third figure main switches 3 and 4, respectively voltage I 3,
I 4 , V 3 , V 4 and the primary winding voltage of the transformer 14 is V N1 . When the main switch 4 is on, the current supply to the transformer 14 is terminated, and the exciting current of the transformer 14 circulates through the primary winding N 1 , the resonance inductor 13, the main switch 4, and the diode 12. I shall. This exciting current corresponds to a flat portion where the level of the current I 4 of the main switch 4 is low. When the main switch 4 is turned off next in this state, the exciting current of the primary winding N 1 of the transformer 14 starts discharging the charge stored in the parasitic capacitance 5 and charging the parasitic capacitance 6. Along with this charge and discharge
The voltage of N 2 in the secondary winding of 14 rises. Secondary winding N 2
Voltage is the output voltage of, i.e. reaches the voltage of the smoothing capacitor 23, the rectifying circuit 20 becomes conductive, the exciting current of the transformer 14 starts to flow in the secondary winding of N 2, the primary winding N 1 Although the exciting current decreases, the parasitic capacitors 5 and 6 continue to be discharged and charged because there is energy stored in the resonance inductor 13, and the voltage across the main switch 3 becomes zero. FIG. 4 shows a waveform diagram of each part in which the time axis of this switching operation section is enlarged.
The voltage monitoring circuit 15 monitors the voltage across the main switch 3, and when the voltage across the main switch 3 becomes zero, it sends a detection signal to the drive circuit 17 to send it to the drive circuit 17.
To turn on the main switch 3 at zero voltage. Since the charging and discharging of the parasitic capacitance during this period is performed by the exciting current of the transformer 14 and the current of the resonance inductor 13, the circuit loss due to the parasitic capacitance of the main switch is extremely small, and the main switch 3 is virtually switched at zero voltage. Turn on without loss.

主スイッチ3がターンオンすると,直流入力電源による
共振用コンデンサ10の充電と共振用コンデンサ9の放電
は,共振用インダクタ13の作用で直列共振を形成し,変
圧器14,整流回路20などを介して直列共振電流を直流出
力に送出する。この直列共振電流は,始めは共振用コン
デンサ9,10と共振用インダクタ13の作用により正弦波状
になる。そして共振用コンデンサ9の電圧がゼロになる
と,クリンプ用ダイオード11が導通し,共振用コンデン
サ9はゼロ電圧,共振用コンデンサ10は直流入力電源電
圧にそれぞれクランプされ,LCの共振モードを終了して
共振用インダクタ13の電流が直線的に減少するモードに
移る。この出力電流供給期間では変圧器14の励磁電流は
小さな値であるが,2次巻線N2の巻数と出力電圧で決まる
関係で増加してゆく。共振用インダクタ13の第4図に示
す電流I13が変圧器14の励磁電流の1次換算値と等しく
なると,整流回路20は非導通となり,出力への電流供給
の半サイクルが終了して電流供給の休止区間に入る。な
お,この時点までに,変圧器14に蓄積された励磁エネル
ギは共振用インダクタ13,クランプ用ダイオード11,主ス
イッチ3を介して流れ,変圧器14の1次巻線N1の電圧は
ほぼゼロとなるため,変圧器14の励磁電流は主スイッチ
3の導通状態の間,ほぼ一定に保たれる。
When the main switch 3 is turned on, charging of the resonance capacitor 10 and discharge of the resonance capacitor 9 by the DC input power supply form series resonance by the action of the resonance inductor 13 and pass through the transformer 14, the rectifier circuit 20, etc. Send the series resonant current to the DC output. Initially, the series resonance current becomes a sine wave due to the actions of the resonance capacitors 9 and 10 and the resonance inductor 13. Then, when the voltage of the resonance capacitor 9 becomes zero, the crimping diode 11 becomes conductive, the resonance capacitor 9 is clamped to zero voltage, and the resonance capacitor 10 is clamped to the DC input power supply voltage, thereby ending the LC resonance mode. The mode in which the current of the resonance inductor 13 linearly decreases is entered. In this output current supply period, the exciting current of the transformer 14 has a small value, but increases due to the relationship determined by the number of turns of the secondary winding N 2 and the output voltage. When the current I 13 shown in FIG. 4 of the resonance inductor 13 becomes equal to the primary conversion value of the exciting current of the transformer 14, the rectifier circuit 20 becomes non-conducting and the half cycle of current supply to the output ends and the current Enter the supply suspension period. Up to this point, the excitation energy accumulated in the transformer 14 flows through the resonance inductor 13, the clamping diode 11, and the main switch 3, and the voltage of the primary winding N 1 of the transformer 14 is almost zero. Therefore, the exciting current of the transformer 14 is kept substantially constant while the main switch 3 is in the conducting state.

次に主スイッチ3のターンオン時と同様に,主スイッチ
4の両端の電圧がゼロになった時点(電圧監視回路16が
検出)で主スイッチ4をターンオンすることにより,前
述と同様な次の半サイクルが開始する。そしてこの様な
動作を繰り返すことにより,ゼロ電圧スイッチング,つ
まり主スイッチ3,4を電圧がかかっていない状態でター
ンオンさせることができる。
Next, as in the case of turning on the main switch 3, the main switch 4 is turned on at the time when the voltage across the main switch 4 becomes zero (detected by the voltage monitoring circuit 16). The cycle begins. By repeating such an operation, zero voltage switching, that is, the main switches 3 and 4 can be turned on in the state where no voltage is applied.

次にこのターンオフの制御について説明する。主スイッ
チ3,4のターンオフは,コントローラ19の誤差増幅器で
基準信号と出力電圧検出回路22からの検出電圧信号とを
比較して得た誤差信号に基づいて制御される。この誤差
信号は従来のように主スイッチのターンオン時刻を制御
せずに,主スイッチ3,4のターンオフ時刻を制御する。
前記誤差信号に対応して主スイッチ3,4のターンオフを
制御することにより出力電圧を制御している。従って,
出力電力を制御しながら主スイッチ3,4のゼロ電圧ター
ンオン動作を常時維持できる。
Next, the turn-off control will be described. The turn-off of the main switches 3 and 4 is controlled based on the error signal obtained by comparing the reference signal with the detection voltage signal from the output voltage detection circuit 22 by the error amplifier of the controller 19. This error signal controls the turn-off times of the main switches 3 and 4 without controlling the turn-on time of the main switches as in the conventional case.
The output voltage is controlled by controlling the turn-off of the main switches 3 and 4 in accordance with the error signal. Therefore,
The zero voltage turn-on operation of the main switches 3 and 4 can always be maintained while controlling the output power.

ここで主スイッチのターンオフ時は,前述のとおり次に
ターンオンさせる一方の主スイッチの両端の電圧をゼロ
にするために必要な励磁電流が他方の主スイッチを流れ
ているので,厳密な意味でのゼロ電流ターンオフではな
いが,共振用コンデンサ9,10に比べて主スイッチ3,4の
寄生容量は十分小さいので,励磁電流は主共振電流に比
べてはるかに小さい。また,主スイッチのターンオフ時
ではそれらの寄生容量の充電電荷がゼロであり,この回
路では寄生容量の充電前に主スイッチが完全にオフする
ように回路定数を設定してあるので,主スイッチはその
ターンオフ直後の電圧がゼロ,つまりゼロ電圧ターンオ
フが行われる。従って,実質上ゼロ電流・ゼロ電圧で主
スイッチのターンオフを行え,極めて低損失のターンオ
フを実現できる。
Here, when the main switch is turned off, the exciting current necessary to make the voltage across the one main switch to be turned on next zero is flowing through the other main switch, as described above. Although it is not a zero current turn-off, the exciting current is much smaller than the main resonance current because the parasitic capacitances of the main switches 3 and 4 are sufficiently smaller than the resonance capacitors 9 and 10. Also, when the main switch is turned off, the charging charge of those parasitic capacitances is zero. In this circuit, the circuit constants are set so that the main switch is completely turned off before charging the parasitic capacitance. The voltage immediately after the turn-off is zero, that is, the zero-voltage turn-off is performed. Therefore, the main switch can be turned off with virtually zero current and zero voltage, and extremely low loss turn-off can be realized.

次に第2図により,直流入力電源1,2同士の接続点と共
振用コンデンサ9,10同士の接続点間に共振電圧制御用イ
ンダクタ25を備えた場合について説明する。なお,単一
の直流入力電源の電圧を分割する一対の直列接続したコ
ンデンサを設け,それらの接続点と共振用コンデンサ同
士の接続点との間に共振電圧制御用インダクタ25を備え
た構成のものでもよい。また,共振用コンデンサ同士の
接続点からコンデンサを介して直流入力電源の負端子に
共振電圧制御用インダクタを接続する構成のものでもよ
い。
Next, referring to FIG. 2, a case will be described in which the resonance voltage control inductor 25 is provided between the connection points of the DC input power supplies 1 and 2 and the connection points of the resonance capacitors 9 and 10. A configuration in which a pair of capacitors connected in series for dividing the voltage of a single DC input power supply is provided and a resonance voltage control inductor 25 is provided between the connection point and the connection point between the resonance capacitors. But it's okay. Further, the resonance voltage control inductor may be connected to the negative terminal of the DC input power source through the capacitor from the connection point between the resonance capacitors.

この共振電圧制御用インダクタ25は低電流出力時に共振
電流を低減するためのものであり,軽負荷時の出力制御
を改善する目的で挿入されている。共振電圧制御用イン
ダクタ25は,共振用インダクタ13と共振用コンデンサ9,
10のよる各半サイクルの主共振が終了した後,共振用コ
ンデンサ9,10と第2の共振を行い,共振用コンデンサ9,
10の電圧を変動させる。そして次の主スイッチのターン
オンを共振用コンデンサの電圧が低い位相で行うことに
より,主共振電流を小さくできる。これによって軽負荷
に十分対応できる。この第2の共振の周波数は主共振の
周波数よりも低い値に選定され,これらの比が出力電力
を無負荷から定格負荷まで制御するのに必要な制御周波
数の概略幅となる。軽負荷に対応して主共振電流を減少
させると,第5図のI0で示すように出力電流供給期間が
短くなり,変圧器14に蓄積される励磁エネルギも当然に
小さくなるので,励磁電流も減少する。このため主スイ
ッチ3,4の寄生容量5,6を励磁電流の作用で充放電して,
主スイッチ3,4をゼロ電圧でターンオンさせるには励磁
電流が不十分になるが,共振電圧制御用インダクタ25が
変圧器14に電圧を再印加して励磁電流を増加させるよう
作用するので,主スイッチ3,4をゼロ電圧でターンオン
させるに十分な励磁電流を確保できる。従って,軽負荷
時でも主スイッチをゼロ電圧でターンオンできる。
This resonance voltage control inductor 25 is for reducing the resonance current at the time of low current output, and is inserted for the purpose of improving the output control at light load. The resonance voltage control inductor 25 includes a resonance inductor 13, a resonance capacitor 9,
After the main resonance of each half cycle of 10 is completed, the second resonance is performed with the resonance capacitors 9 and 10, and the resonance capacitor 9 and 10
Vary the voltage of 10. Then, the main resonance current can be reduced by turning on the next main switch in a phase in which the voltage of the resonance capacitor is low. This makes it possible to cope with light loads. The frequency of the second resonance is selected to be lower than the frequency of the main resonance, and the ratio of these is the approximate range of the control frequency required to control the output power from no load to the rated load. When the main resonance current is reduced in response to a light load, the output current supply period is shortened as shown by I 0 in Fig. 5, and the excitation energy accumulated in the transformer 14 is naturally reduced. Also decreases. Therefore, the parasitic capacitances 5 and 6 of the main switches 3 and 4 are charged and discharged by the action of the exciting current,
Although the exciting current is insufficient to turn on the main switches 3 and 4 at zero voltage, the resonance voltage controlling inductor 25 acts to increase the exciting current by reapplying the voltage to the transformer 14. Energizing current sufficient to turn on the switches 3 and 4 at zero voltage can be secured. Therefore, the main switch can be turned on at zero voltage even under light load.

また主スイッチのターンオフ時については,定常の場合
と同様に,励磁電流のみが流れている状態で主スイッチ
をゼロ電圧ターンオフさせるので,極めて低損失のター
ンオフを実現できる。
In addition, when the main switch is turned off, as in the steady state, the main switch is turned off at zero voltage in the state where only the exciting current is flowing, so an extremely low loss turn-off can be realized.

第4図に従来方法と本発明方法による電力損失の産出結
果を示した。同図から周波数が大きくなるに伴い従来方
法では電力損失が急増するが,本発明方法では電力損失
がほとんど変わらないのが分かる。
FIG. 4 shows the results of power loss production by the conventional method and the method of the present invention. It can be seen from the figure that the power loss increases sharply in the conventional method as the frequency increases, but the power loss hardly changes in the method of the present invention.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば, (1)主スイッチとして用いられるスイッチング半導体
素子の寄生容量の充放電をインダクタンスの蓄積磁気エ
ネルギで行っているので,スイッチング半導体素子の寄
生容量の充放電による電力損失は実質的に生じない。
As described above, according to the present invention, (1) the parasitic capacitance of the switching semiconductor element used as the main switch is charged and discharged by the stored magnetic energy of the inductance. There is virtually no power loss.

(2)スイッチング半導体素子の寄生容量の放電の進行
に伴いスイッチング半導体素子の両端の電圧がゼロにな
った時点で,そのスイッチング半導体素子をターンオン
させているので,ゼロ電流・ゼロ電圧ターンオンが実現
でき,ターンオン損失が生じない。
(2) Since the switching semiconductor element is turned on when the voltage across the switching semiconductor element becomes zero as the parasitic capacitance of the switching semiconductor element is discharged, zero current / zero voltage turn-on can be realized. , No turn-on loss occurs.

(3)主共振電流に比べてはるかに小さい変圧器の励磁
電流が流れている状態で主スイッチをターンオフ制御
し,主スイッチの寄生容量を利用してゼロ電圧ターンオ
フを実現しているので,ターンオフ損失を無視できる程
小さくできる。
(3) The main switch is controlled to turn off in the state that the exciting current of the transformer, which is much smaller than the main resonance current, is flowing, and the parasitic capacitance of the main switch is used to realize the zero voltage turn-off. The loss can be made so small that it can be ignored.

(4)出力電圧に依存する誤差信号に対応して主スイッ
チのターンオフ時点を制御して出力電流休止期間中,小
さな励磁電流を一定に保持できるので,その休止期間を
大幅に制御して出力制御を広範囲にわたって行ってもゼ
ロ電流・ゼロ電圧スイッチングを維持出来る。
(4) In response to the error signal depending on the output voltage, the turn-off time of the main switch can be controlled to keep a small exciting current constant during the output current quiescent period, so that the quiescent period can be greatly controlled to control the output. It is possible to maintain zero current and zero voltage switching even if the operation is performed over a wide range.

などの効果を有する共振型コンバータの制御方法を提供
できる。
It is possible to provide a control method for a resonant converter having the effects described above.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図はそれぞれ本発明に係る制御方法を実
施するための別々の共振型D−DCコンバータの概略回路
構成を示す図,第3図は本発明を説明するのに用いられ
る各部の動作波形図,第4図は本発明の特にスイッチン
グ時点での各部の動作波形の詳細を示す図,第5図は軽
負荷時における本発明を説明するのに用いられる各部の
動作波形図,第6図は本発明方法と従来方法のよる電力
損失を比較するための図,第7図は従来方法のよるスイ
ッチング半導体素子の主端子間容量の充放電に伴う電力
損失を示す図である。 1,2……直流入力電源,3,4……主スイッチ, 5,6……主スイッチの主端子間容量, 9,10……共振用コンデンサ, 11,12……電圧クランプ用ダイオード, 13……共振用インダクタ,14……変圧器, 15,16……電圧監視回路,17,18……駆動回路, 19……コントローラ, 25……共振電圧制御用インダクタ,
1 and 2 are diagrams showing schematic circuit configurations of different resonance type D-DC converters for carrying out the control method according to the present invention, and FIG. 3 is each part used for explaining the present invention. FIG. 4 is a diagram showing details of the operation waveforms of the respective parts of the present invention, especially at the time of switching, and FIG. 5 is an operation waveform diagram of the respective parts used for explaining the present invention at light load, FIG. 6 is a diagram for comparing the power loss between the method of the present invention and the conventional method, and FIG. 7 is a diagram showing the power loss associated with charging and discharging of the capacitance between main terminals of the switching semiconductor element according to the conventional method. 1,2 ...... DC input power supply, 3,4 ...... Main switch, 5,6 ...... Main switch capacitance between main terminals, 9,10 ...... Resonance capacitor, 11,12 ...... Voltage clamp diode, 13 …… Resonance inductor, 14 …… Transformer, 15,16 …… Voltage monitoring circuit, 17,18 …… Drive circuit, 19 …… Controller, 25 …… Resonance voltage control inductor,

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】直列接続された一対の共振用コンデンサ及
び一対のスイッチング半導体素子を直流入力電源にそれ
ぞれ並列接続すると共に,前記共振用コンデンサに並列
にダイオードを接続し,前記スイッチング半導体素子同
士の接続点と前記共振用コンデンサ同士の接続点間に変
圧器の1次巻線と直列に共振用インダクタを接続し,該
変圧器の2次巻線に接続された整流回路,平滑回路を介
して直流出力を得るように構成し,前記スイッチング半
導体素子の交互の開閉に伴い生ずる前記共振用コンデン
サと前記共振用インダクタとの直列共振を利用して出力
を発生する共振形DC−DCコンバータの制御方法におい
て, 前記スイッチング半導体素子の一方のターンオフ後,そ
の導通期間に前記変圧器と前記共振インダクタに蓄えら
れた磁気エネルギにより,前記スイッチング半導体素子
の一方の寄生容量にエネルギを蓄えると共に,前記スイ
ッチング半導体素子の他方の寄生容量に蓄えられたエネ
ルギを放電し,そして前記スイッチング半導体素子の他
方の両端の電圧が十分低い設定電圧値以下に低下した時
点で前記スイッチング半導体素子の他方をターンオン駆
動することを特徴とする共振形DC−DCコンバータの制御
方法。
1. A pair of resonance capacitors and a pair of switching semiconductor elements connected in series are connected in parallel to a DC input power source, and a diode is connected in parallel to the resonance capacitor to connect the switching semiconductor elements to each other. A resonance inductor is connected in series with the primary winding of the transformer between the point and the connection point between the resonance capacitors, and a direct current is supplied via a rectifying circuit and a smoothing circuit connected to the secondary winding of the transformer. In a control method of a resonance type DC-DC converter configured to obtain an output, the output is generated by utilizing series resonance of the resonance capacitor and the resonance inductor caused by alternating opening and closing of the switching semiconductor element. , A magnetic energy stored in the transformer and the resonant inductor during a conduction period after one of the switching semiconductor elements is turned off. Energy is stored in one of the parasitic capacitances of the switching semiconductor element, the energy stored in the other parasitic capacitance of the switching semiconductor element is discharged, and the voltage across the other end of the switching semiconductor element is set sufficiently low. A method for controlling a resonance type DC-DC converter, characterized in that the other of the switching semiconductor elements is turned on when the voltage drops below a voltage value.
【請求項2】直列接続された一対の共振用コンデンサ及
び一対のスイッチング半導体素子を直流入力電源にそれ
ぞれ並列接続すると共に,前記共振用コンデンサに並列
にダイオードを接続し,また前記直流入力電源側と前記
共振用コンデンサ同士の接続点との間に共振電圧制御用
インダクタを接続し,前記スイッチング半導体素子同士
の接続点と前記共振用コンデンサ同士の接続点間に変圧
器の1次巻線と直列に共振用インダクタを接続し,該変
圧器の2次巻線に接続された整流回路、平滑回路を介し
て直流出力を得るように構成し,前記スイッチング半導
体素子の交互の開閉に伴い生ずる前記共振用コンデンサ
と前記共振用インダクタとの直列共振及び前記共振用コ
ンダクタと前記共振電圧制御用インダクタとの直列共振
とを利用して出力を発生・制御する共振形DC−DCコンバ
ータの制御方法において, 前記スイッチング半導体素子の一方のターンオフ後,そ
の導通期間に前記変圧器と前記共振インダクタに蓄えら
れた磁気エネルギにより,前記スイッチング半導体素子
の一方の寄生容量にエネルギを蓄えると共に,前記スイ
ッチング半導体素子の他方の寄生容量に蓄えられたエネ
ルギを放電し,そして前記スイッチング半導体素子の他
方の両端の電圧が十分低い設定電圧値以下に低下した時
点で前記スイッチング半導体素子の他方をターンオン駆
動することを特徴とする共振形DC−DCコンバータの制御
方法。
2. A pair of resonance capacitors and a pair of switching semiconductor elements connected in series are respectively connected in parallel to a DC input power source, and a diode is connected in parallel to the resonance capacitor, and the DC input power source side and A resonance voltage control inductor is connected between the resonance capacitors, and the primary winding of the transformer is connected in series between the switching semiconductor elements and the resonance capacitors. A resonance inductor is connected, and a DC output is obtained through a rectifying circuit and a smoothing circuit connected to the secondary winding of the transformer, and the resonance occurs when the switching semiconductor element is alternately opened and closed. Output using series resonance between a capacitor and the resonance inductor and series resonance between the resonance conductor and the resonance voltage control inductor A method of controlling a resonant DC-DC converter for generating and controlling, wherein one of the switching semiconductor elements is turned on by one of the switching semiconductor elements by magnetic energy stored in the transformer and the resonant inductor after the one of the switching semiconductor elements is turned off. Energy is stored in the parasitic capacitance of the switching semiconductor element, the energy stored in the other parasitic capacitance of the switching semiconductor element is discharged, and when the voltage across the other end of the switching semiconductor element drops below a sufficiently low set voltage value. A method of controlling a resonance type DC-DC converter, characterized in that the other one of the switching semiconductor elements is driven to be turned on.
【請求項3】前記共振用インダクタのインダクタンスに
代えて前記変圧器の漏洩インダクタンスを使用する請求
項(1)又は(2)に記載の共振形DC−DCコンバータの
制御方法において, 前記スイッチング半導体素子の一方のターンオフ後,そ
の導通期間に前記変圧器の漏洩インダクタンスに蓄えら
れた磁気エネルギにより,前記スイッチング半導体素子
の一方の寄生容量にエネルギを蓄えると共に,前記スイ
ッチング半導体素子の他方の寄生容量に蓄えられたエネ
ルギを放電し,そして前記スイッチング半導体素子の他
方の両端の電圧が十分低い設定電圧値以下に低下した時
点で前記スイッチング半導体素子の他方をターンオン駆
動することを特徴とする共振形DC−DCコンバータの制御
方法。
3. The method of controlling a resonance type DC-DC converter according to claim 1, wherein the leakage inductance of the transformer is used instead of the inductance of the resonance inductor. After turning off one of the two, the magnetic energy stored in the leakage inductance of the transformer during its conduction period stores energy in one parasitic capacitance of the switching semiconductor element and in the other parasitic capacitance of the switching semiconductor element. The resonance type DC-DC, characterized in that the stored energy is discharged and the other end of the switching semiconductor device is turned on when the voltage across the other end of the switching semiconductor device drops below a sufficiently low set voltage value. Converter control method.
JP16241489A 1989-06-23 1989-06-23 Resonance type DC-DC converter control method Expired - Fee Related JPH0750987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16241489A JPH0750987B2 (en) 1989-06-23 1989-06-23 Resonance type DC-DC converter control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16241489A JPH0750987B2 (en) 1989-06-23 1989-06-23 Resonance type DC-DC converter control method

Publications (2)

Publication Number Publication Date
JPH0327768A JPH0327768A (en) 1991-02-06
JPH0750987B2 true JPH0750987B2 (en) 1995-05-31

Family

ID=15754148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16241489A Expired - Fee Related JPH0750987B2 (en) 1989-06-23 1989-06-23 Resonance type DC-DC converter control method

Country Status (1)

Country Link
JP (1) JPH0750987B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2722869B2 (en) * 1991-06-11 1998-03-09 ヤマハ株式会社 Power circuit
JP2513381B2 (en) * 1991-09-24 1996-07-03 ヤマハ株式会社 Power supply circuit
KR20000054033A (en) * 2000-05-18 2000-09-05 경원석 Shading cap constant remembrance picture box
JPWO2004062868A1 (en) 2003-01-10 2006-05-18 三星ダイヤモンド工業株式会社 Scribing device, scribing method and automatic cutting line for brittle material substrate
CN107528477A (en) * 2017-08-08 2017-12-29 西南交通大学 A kind of quasi-resonance soft switch double-transistor flyback DC/DC converters
CN108189694A (en) * 2018-01-09 2018-06-22 苏州舜唐新能源电控设备有限公司 A kind of control device and control method for Vehicular charger

Also Published As

Publication number Publication date
JPH0327768A (en) 1991-02-06

Similar Documents

Publication Publication Date Title
US4823249A (en) High-frequency resonant power converter
JP2559033Y2 (en) Ballast for gas discharge lamp
US4709316A (en) Single-ended DC-to-DC converter with lossless switching
JP4534007B2 (en) Soft switching power converter
US20080043506A1 (en) Dc-ac converter
US6366480B2 (en) Switching power supply apparatus
EP0343855A2 (en) Zero voltage switching half bridge resonant converter
US20080037290A1 (en) Ac-dc converter and method for driving for ac-dc converter
Fujiwara et al. A novel lossless passive snubber for soft-switching boost-type converters
JP2008507946A (en) Automatic frequency control for series resonant switch mode power supply
JPH04230988A (en) Driving circuit for inverter microwave oven
CN100413194C (en) Method for controlling DC-DC converter
JP4683364B2 (en) Composite resonant switching power supply
JP2513381B2 (en) Power supply circuit
JPH0750987B2 (en) Resonance type DC-DC converter control method
JPH08130871A (en) Dc-dc converter
CN113676049A (en) Control method of direct current converter and direct current converter
US20080037299A1 (en) Method for driving dc-ac converter
US20220014105A1 (en) Isolated DC/DC Converter with Secondary-Side Full Bridge Diode Rectifier and Asymmetrical Auxiliary Capacitor
JPH0746903B2 (en) Resonant switching power supply circuit
JP2768813B2 (en) Inverter microwave oven drive circuit
JP4752159B2 (en) High frequency power supply
KR100428422B1 (en) Zero Voltage Switching Fullbridge Converter
JP4304751B2 (en) Ringing choke converter with improved turn-on loss
KR19980086336A (en) Switching circuit for soft switching and high power factor of step-down converter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20090531

LAPS Cancellation because of no payment of annual fees