JP2001178124A - Switching power supply - Google Patents

Switching power supply

Info

Publication number
JP2001178124A
JP2001178124A JP35465499A JP35465499A JP2001178124A JP 2001178124 A JP2001178124 A JP 2001178124A JP 35465499 A JP35465499 A JP 35465499A JP 35465499 A JP35465499 A JP 35465499A JP 2001178124 A JP2001178124 A JP 2001178124A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
power supply
oscillation
switch element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35465499A
Other languages
Japanese (ja)
Other versions
JP3664012B2 (en
Inventor
Hironobu Shiroyama
博伸 城山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP35465499A priority Critical patent/JP3664012B2/en
Publication of JP2001178124A publication Critical patent/JP2001178124A/en
Application granted granted Critical
Publication of JP3664012B2 publication Critical patent/JP3664012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/02Adaptations of transformers or inductances for specific applications or functions for non-linear operation
    • H01F38/023Adaptations of transformers or inductances for specific applications or functions for non-linear operation of inductances
    • H01F2038/026Adaptations of transformers or inductances for specific applications or functions for non-linear operation of inductances non-linear inductive arrangements for converters, e.g. with additional windings

Abstract

PROBLEM TO BE SOLVED: To enhance the efficiency of a switching power supply by reducing the switching loss, when a switch element 8 is closed by discharging a snubber capacitor 9 for protecting the element 8 against a surge voltage in the power supply for generating a constant voltage DC power at the secondary side of a transformer 12 and supplying the power to an external load 15 by turning on/off the element 8 under a PWM control, so that the time point reaching the lowest voltage is set to the on-time point in advance with the charging/ discharging of an oscillation capacitor 2 repeating charging/discharging between prescribed highest voltage and lowest voltage. SOLUTION: An auxiliary winding 16 is provided in a transformer 12, a voltage generated in the winding 16 when the switch element 8 is turned off is applied to the oscillation capacitor 2 via a diode 17 for charging the capacitor 2 to the highest voltage. When this charging is finished, LC resonance of the transformer 12 and the snubber capacitor 19 and the voltage drop of the capacitor 2 due to the discharging power are started. Thus, when the voltage of the capacitor 2 arrives at the lowest voltage, the vibration voltage of the capacitor 9 is set to a minimum.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、少なくともエネル
ギ源となる入力直流電源間にトランスまたはリアクトル
からなる誘導性手段を介し接続された半導体スイッチ素
子を、PWM制御された駆動パルスによって繰り返し開
閉し、安定化された直流電源を生成して外部に供給する
電源装置としての、いわゆるスイッチング電源装置であ
って、特に半導体スイッチ素子をそのオフ時に発生する
サージ電圧から保護するスナバコンデンサが、半導体ス
イッチ素子のオン時点に放電することによる半導体スイ
ッチ素子のスイッチング損失を最小限に抑えて半導体ス
イッチ素子の発熱を防ぎ、装置の効率を改善するように
したスイッチング電源装置に関する。なお、以下各図に
おいて同一の符号は同一もしくは相当部分を示す。
[0001] The present invention relates to a semiconductor switch element connected at least between an input DC power supply as an energy source via an inductive means such as a transformer or a reactor, and is repeatedly opened and closed by a PWM-controlled drive pulse. A so-called switching power supply device as a power supply device that generates a stabilized DC power supply and supplies the DC power to the outside, in particular, a snubber capacitor that protects the semiconductor switch element from a surge voltage generated when the semiconductor switch element is turned off is a semiconductor switch element. The present invention relates to a switching power supply device that minimizes switching loss of a semiconductor switching element due to discharge at an ON point, prevents heat generation of the semiconductor switching element, and improves device efficiency. In the drawings, the same reference numerals indicate the same or corresponding parts.

【0002】[0002]

【従来の技術】図6はフライバック方式のトランス12
を用いた従来のスイッチング電源装置の回路構成の一例
を示す。同図において、8はNチャネルMOSFETか
らなる半導体スイッチ素子(単にスイッチ素子とも略
す)、5はこのスイッチング電源装置が外部の負荷15
に供給する直流電圧を検出しつつ、この供給直流電圧を
一定とするようにスイッチ素子8をPWM(パルス幅変
調)制御された駆動パルスとしてのPWM出力7によっ
てオン/オフ駆動する制御回路としての電源制御回路で
ある。
2. Description of the Related Art FIG.
1 shows an example of a circuit configuration of a conventional switching power supply device using the same. In the figure, reference numeral 8 denotes a semiconductor switch element made up of an N-channel MOSFET (also simply referred to as a switch element).
And a control circuit for driving the switch element 8 on / off by a PWM output 7 as a drive pulse subjected to PWM (pulse width modulation) control so that the supplied DC voltage is constant while detecting the DC voltage supplied to the switch. It is a power supply control circuit.

【0003】また、電源制御回路5内において、3は発
振コンデンサ2を用いて後述の発振波(この場合、三角
波状)を発振出力する発振器、4はこの発振器3の発振
出力と、このスイッチング電源装置が外部の負荷15に
供給する直流電圧の検出値としての出力電圧検出入力6
とを入力とし、スイッチ素子8をオン/オフ駆動するP
WM出力7を生成するPWM制御部である。
In the power supply control circuit 5, reference numeral 3 denotes an oscillator which oscillates and outputs an oscillating wave (in this case, a triangular wave) using the oscillating capacitor 2, and 4 denotes an oscillating output of the oscillator 3 and the switching power supply. An output voltage detection input 6 as a detection value of a DC voltage supplied to the external load 15 by the device.
Is input to drive the switch element 8 on / off.
It is a PWM control unit that generates the WM output 7.

【0004】この構成により、スイッチ素子8は、入力
直流電源1を発振器3の周波数で、且つフライバックト
ランス12の2次巻線11側の直流出力電圧、従って出
力電圧検出入力6が一定となるようなデューテイ、即ち
ON比率=ON期間/(ON期間+OFF期間)により
断続してトランス12の1次巻線10に印加する。トラ
ンス12の2次巻線11には、スイッチ素子8のオフ時
に、それまで1次巻線10を流れていた電流を維持する
方向に対応する極性の電圧が発生することから、ダイオ
ード13が導通し、この電圧はコンデンサ14により平
滑化され、スイッチング電源装置の出力電圧として外部
の負荷15に供給される。
[0004] With this configuration, the switch element 8 uses the input DC power supply 1 at the frequency of the oscillator 3 and the DC output voltage on the secondary winding 11 side of the flyback transformer 12, that is, the output voltage detection input 6 becomes constant. Such a duty, that is, ON ratio = ON period / (ON period + OFF period) is intermittently applied to the primary winding 10 of the transformer 12. When the switching element 8 is turned off, a voltage having a polarity corresponding to the direction in which the current flowing through the primary winding 10 is maintained is generated in the secondary winding 11 of the transformer 12, so that the diode 13 is turned on. This voltage is smoothed by the capacitor 14 and supplied to the external load 15 as the output voltage of the switching power supply.

【0005】ところで、スイッチ素子8に並列に接続さ
れたコンデンサ9は、スナバコンデンサと呼ばれ、スイ
ッチ素子8がオフする際に発生するサージ電圧とこれに
伴うノイズを抑制している。図7は図6の各部の動作波
形の例を示す。ここで、図7,a)は電源制御回路5内
の発振器3の出力波形としての発振コンデンサ2の電圧
波形を示し、図7,b)は電源制御回路5がスイッチ素
子8に与えるゲート駆動パルスであるPWM出力7(こ
の信号7は同時に、スイッチ素子8のオン,オフの状態
を示す信号でもある)を示し、図7,c)はスナバコン
デンサ9の両端電圧としてのスナバ電圧を示す。
The capacitor 9 connected in parallel with the switch element 8 is called a snubber capacitor, and suppresses a surge voltage generated when the switch element 8 is turned off and noise accompanying the surge voltage. FIG. 7 shows an example of an operation waveform of each unit in FIG. 7A shows a voltage waveform of the oscillation capacitor 2 as an output waveform of the oscillator 3 in the power supply control circuit 5, and FIG. 7B shows a gate drive pulse given to the switch element 8 by the power supply control circuit 5. (FIG. 7C) shows a snubber voltage as a voltage between both ends of the snubber capacitor 9. The PWM output 7 is a signal indicating the ON / OFF state of the switch element 8 at the same time.

【0006】この電源制御回路5では、スイッチ素子8
がオン/オフを繰り返す周波数を、発振コンデンサ2の
充放電を利用した発振器3で決定している。図8は発振
器3の原理的な回路構成の1例を示す。同図において、
36は定電圧の内部電源、27は発振コンデンサ2の充
電用の定電流源(なお、この定電流源27の代わりに抵
抗28を用いてもよい)、29はコンデンサ2の放電用
の定電流源(なお、この定電流源29の代わりに抵抗3
0を用いてもよい)、34はヒステリシスを持つコンパ
レータ、35は上限値VUと下限値VLとに切り替えら
れる基準電圧、33はコンパレータ34の出力を反転し
てスイッチ31に与えるインバータ素子、31と32は
トランジスタからなりコンパレータ34の出力によって
交互に開閉されるスイッチである。
The power supply control circuit 5 includes a switch element 8
Is determined by the oscillator 3 using the charging and discharging of the oscillation capacitor 2. FIG. 8 shows an example of a basic circuit configuration of the oscillator 3. In the figure,
36 is a constant voltage internal power supply, 27 is a constant current source for charging the oscillation capacitor 2 (a resistor 28 may be used instead of the constant current source 27), and 29 is a constant current for discharging the capacitor 2 Source (note that instead of this constant current source 29, a resistor 3
0 may be used), 34 is a comparator having hysteresis, 35 is a reference voltage that can be switched between an upper limit value VU and a lower limit value VL, 33 is an inverter element that inverts the output of the comparator 34 and gives it to a switch 31, Reference numeral 32 denotes a switch composed of a transistor and opened and closed alternately by the output of the comparator 34.

【0007】次に図7,a)を参照しつつ、図8の動作
を説明する。いまコンパレータ34の出力によりスイッ
チ31が閉、32が開の状態であるものとする。このと
きコンパレータ34に入力される基準電圧35は上限値
VUになっている。そして発振コンデンサ2は定電流源
27を介して(または内部電源36から抵抗28を介し
て)充電され、コンデンサ2の電圧が上昇する。
Next, the operation of FIG. 8 will be described with reference to FIGS. Now, it is assumed that the switch 31 is closed and the switch 32 is opened by the output of the comparator 34. At this time, the reference voltage 35 input to the comparator 34 is at the upper limit value VU. Then, the oscillation capacitor 2 is charged via the constant current source 27 (or from the internal power supply 36 via the resistor 28), and the voltage of the capacitor 2 increases.

【0008】やがてコンデンサ2の電圧が上限値VUに
達すると、コンパレータ34の出力は反転し、スイッチ
31が開、32が閉となり、また基準電圧35は下限値
VLに切り替わる。これによりコンデンサ2は定電流源
29を介して(またはグランド電位へ抵抗30を介し
て)放電され、コンデンサ2の電圧が下降する。この後
コンデンサ2の電圧が下限値VLに達すると、コンパレ
ータ34の出力は再び反転し、スイッチ31が閉、32
が開となり、基準電圧35は上限値VUに切り替わる。
When the voltage of the capacitor 2 reaches the upper limit value VU, the output of the comparator 34 is inverted, the switch 31 is opened, the switch 32 is closed, and the reference voltage 35 is switched to the lower limit value VL. Thereby, the capacitor 2 is discharged via the constant current source 29 (or via the resistor 30 to the ground potential), and the voltage of the capacitor 2 decreases. Thereafter, when the voltage of the capacitor 2 reaches the lower limit value VL, the output of the comparator 34 is again inverted, and the switch 31 is closed,
Is opened, and the reference voltage 35 is switched to the upper limit value VU.

【0009】このような充放電の動作が繰り返されるこ
とで、図7,a)に示す三角波の発振波形が生成され、
この発振波、つまり発振コンデンサ2の両端電圧が発振
器3の出力として、PWM制御部4へ送られる。そして
充電期間Tc と放電期間Tdcとからなる発振周期Tosc
に同期してスイッチ素子8がオン/オフを繰り返す。P
WM制御部4内では、出力電圧検出入力6と、この検出
入力6に対応するスイッチング電源装置出力電圧の基準
値との偏差の電圧を0とするように、図7,b)に示す
ような可変のオン期間Tonのパルス幅をもつPWM出力
7を生成出力する。
By repeating such charging / discharging operations, a triangular wave oscillation waveform shown in FIG.
This oscillation wave, that is, the voltage between both ends of the oscillation capacitor 2 is sent to the PWM control unit 4 as the output of the oscillator 3. An oscillation period Tosc comprising a charge period Tc and a discharge period Tdc
, The switch element 8 repeats on / off. P
In the WM control unit 4, as shown in FIGS. 7 and b), the voltage of the deviation between the output voltage detection input 6 and the reference value of the output voltage of the switching power supply corresponding to the detection input 6 is set to 0. A PWM output 7 having a pulse width of a variable ON period Ton is generated and output.

【0010】この場合、オン期間Tonの始端は前記の充
電期間Tc の開始時点(換言すれば放電期間Tdcの終了
時点)に設定されている。また、オン期間Tonの終端は
スイッチング電源装置出力電圧の制御によって変動する
が、本装置では異常時の保護などを目的として、前記の
放電期間Tdcをスイッチ素子8が必ずオフする期間(デ
ッドタイム)としているので、最大のオン期間Ton max
は充電期間Tc に等しくなるように設定されている。
In this case, the beginning of the ON period Ton is set at the start of the charge period Tc (in other words, at the end of the discharge period Tdc). The termination of the on-period Ton fluctuates due to the control of the output voltage of the switching power supply. In this device, the discharge period Tdc is always turned off by the switch element 8 (dead time) for the purpose of protection in the event of an abnormality. , The maximum ON period Ton max
Is set to be equal to the charging period Tc.

【0011】従って、常時のオン期間Tonは最大オン期
間Ton max内において、このスイッチング電源装置の出
力電圧が基準値に対比して下がり過ぎようとするとオン
期間Tonが増加するように、他方、スイッチング電源の
出力電圧が基準値に対比して上がり過ぎようとするとオ
ン期間Tonが減少するように制御される。
Therefore, the normal on-period Ton is such that the on-period Ton increases within the maximum on-period Ton max if the output voltage of the switching power supply tries to drop too much compared with the reference value, while If the output voltage of the power supply is going to rise too high compared to the reference value, the on-period Ton is controlled so as to decrease.

【0012】[0012]

【発明が解決しようとする課題】前記したように図7,
c)は図6のスイッチング電源装置における、スナバコ
ンデンサ9の両端電圧の例を示す。即ち、スイッチ素子
8がオフした後、トランス12が2次側ヘエネルギを放
出し終わると、トランス12のインダクタンスとスナバ
コンデンサ9等によってLC共振を生じ、電圧が振動す
る。
As described above, FIG.
c) shows an example of the voltage across snubber capacitor 9 in the switching power supply device of FIG. That is, when the transformer 12 finishes releasing energy to the secondary side after the switch element 8 is turned off, LC resonance occurs due to the inductance of the transformer 12 and the snubber capacitor 9 and the voltage oscillates.

【0013】この振動中にスイッチ素子8がオン(ター
ンオン)する。この時、スナバコンデンサ9はその両端
電圧に応じた蓄積エネルギをすべてスイッチ素子8のス
イッチング損失として放出する。またこのターンオンの
タイミングは、電源制御回路5の発振器3で決定され電
圧振動とは無関係である。このため、スナバコンデンサ
9の電圧が大きい時にターンオンすることも多く、この
場合、スイッチ素子8の損失が非常に大きくなり、スナ
バコンデンサ9の存在がサージ電圧およぴノイズの抑制
には効果があるものの、他方ではスイッチ素子8の発熱
を増加し、スイッチング電源装置の効率を低下させると
いう問題があった。
During this vibration, the switch element 8 is turned on (turned on). At this time, the snubber capacitor 9 releases all the stored energy according to the voltage between both ends as the switching loss of the switch element 8. The turn-on timing is determined by the oscillator 3 of the power supply control circuit 5 and is independent of the voltage oscillation. For this reason, it often turns on when the voltage of the snubber capacitor 9 is large. In this case, the loss of the switch element 8 becomes very large, and the presence of the snubber capacitor 9 is effective in suppressing the surge voltage and the noise. However, on the other hand, there is a problem that the heat generation of the switching element 8 is increased and the efficiency of the switching power supply device is reduced.

【0014】そこで本発明は、上記したスナバコンデン
サ9の電圧の振動中、常に電圧が最も小さくなった時点
にスイッチ素子8をターンオンさせることで、スナバコ
ンデンサ9によるスイッチ素子8の損失を最小限に抑え
ることができるスイッチング電源装置を提供することを
目的とする。
Therefore, the present invention minimizes the loss of the switch element 8 due to the snubber capacitor 9 by turning on the switch element 8 when the voltage always becomes the minimum during the voltage oscillation of the snubber capacitor 9 described above. It is an object of the present invention to provide a switching power supply device that can suppress the switching power supply.

【0015】[0015]

【課題を解決するための手段】前記の課題を解決するた
めに、請求項1のスイッチング電源装置では、所定の最
高電圧(最高値VM )に充電されたのち、所定の最低電
圧(下限値VL )に放電されることを繰り返す発振コン
デンサ(2)と、入力直流電源(入力電圧1)間にトラ
ンス(12)又はリアクトル(18)からなる誘導性手
段と直列、且つスナバコンデンサ(9)と並列に接続さ
れ、前記発振コンデンサの充放電の各期間ごとに、該発
振コンデンサの電圧が前記最低電圧に到達した時点をオ
ン時点とするようにオン/オフされる半導体スイッチ素
子(8)とを備え、該半導体スイッチ素子のオフ時に前
記誘導性手段から放出されるエネルギを用いて外部の負
荷に供給すべき所定電圧の直流電源が(平滑用コンデン
サ14の両端に)生成されるように、前記半導体スイッ
チ素子のオン期間とオフ期間との割合が(PWM制御部
4によって)制御されるスイッチング電源装置におい
て、前記誘導性手段に補助巻線(16)を設け、前記半
導体スイッチ素子のオフ期間に該補助巻線に発生する電
圧をダイオード(17)を介し前記発振コンデンサに印
加して該発振コンデンサを前記最高電圧に充電し、少な
くともこの充電の期間内に前記発振コンデンサに定電流
源(29)又は所定の抵抗(30)を直列に持つ定電圧
源(グランド電位)からなる放電電源を接続し、前記発
振コンデンサの電圧が該放電電源を介し前記最高電圧か
ら最低電圧に下降するまでの時間(電圧下降時間TF )
を前記誘導性手段とスナバコンデンサとによって生ずる
電圧振動の周期の1/2となるようにする。
According to a first aspect of the present invention, there is provided a switching power supply device which is charged to a predetermined maximum voltage (maximum value VM) and then charged to a predetermined minimum voltage (lower limit value VL). ) And an inductive means consisting of a transformer (12) or a reactor (18) between the input DC power supply (input voltage 1) and the oscillation capacitor (2) which is repeatedly discharged, and in parallel with the snubber capacitor (9). And a semiconductor switch element (8) that is turned on / off such that a point in time when the voltage of the oscillation capacitor reaches the minimum voltage is set as an on point in each period of charging and discharging of the oscillation capacitor. A DC power supply of a predetermined voltage to be supplied to an external load (both ends of the smoothing capacitor 14) is generated by using energy released from the inductive means when the semiconductor switch element is turned off. As described above, in a switching power supply device in which a ratio between an ON period and an OFF period of the semiconductor switch element is controlled (by a PWM control unit 4), an auxiliary winding (16) is provided in the inductive means, A voltage generated in the auxiliary winding during an off period of the semiconductor switch element is applied to the oscillation capacitor via a diode (17) to charge the oscillation capacitor to the maximum voltage, and the oscillation capacitor is charged at least during the charging period. Is connected to a discharge power source consisting of a constant current source (29) or a constant voltage source (ground potential) having a predetermined resistor (30) in series, and the voltage of the oscillation capacitor is changed from the highest voltage to the lowest voltage via the discharge power source. Time until voltage falls (voltage fall time TF)
Is set to の of the period of the voltage oscillation generated by the inductive means and the snubber capacitor.

【0016】また請求項2のスイッチング電源装置で
は、請求項1に記載のスイッチング電源装置において、
前記補助巻線が当該のスイッチング電源装置内の電源
(制御回路用電源22など)を生成するために兼用され
てなるようにする。本発明の作用は以下の如くである。
即ち、スイッチ素子8によって電流が断続されるトラン
ス12またはリアクトル等の誘導性手段に補助巻線を設
け、スイッチ素子8のオフ時に発生する電圧によって発
振コンデンサをプルアップ充電する。
According to a second aspect of the present invention, in the switching power supply of the first aspect,
The auxiliary winding is also used to generate a power supply (such as the control circuit power supply 22) in the switching power supply device. The operation of the present invention is as follows.
That is, an auxiliary winding is provided in an inductive means such as a transformer 12 or a reactor in which current is interrupted by the switch element 8, and the oscillation capacitor is pulled up by a voltage generated when the switch element 8 is turned off.

【0017】そして発振コンデンサの電圧が、放電電源
によってプルアップ充電後の最高値から下限値まで下降
する時間を、誘導性手段とスナバコンデンサ9とによっ
て生ずる電圧振動(LC共振)の周期の1/2となるよ
うすることで、スイッチ素子8をオン(ターンオン)す
る時点としての、発振コンデンサの電圧が下限値に達し
た時点にはスナバコンデンサ9の振動電圧も最小となっ
ているようにする。
The time during which the voltage of the oscillation capacitor falls from the maximum value after the pull-up charge to the lower limit value by the discharge power supply is set to 1 / cycle of the voltage oscillation (LC resonance) generated by the inductive means and the snubber capacitor 9. By setting the value to 2, the oscillation voltage of the snubber capacitor 9 is also minimized when the voltage of the oscillation capacitor reaches the lower limit value when the switch element 8 is turned on (turned on).

【0018】これにより、スイッチ素子8のターンオン
時におけるスナバコンデンサ9の放電によるスイッチン
グ損失や発熱を低減し、スイッチング電源装置の効率を
改善する。
As a result, switching loss and heat generation due to the discharge of the snubber capacitor 9 when the switching element 8 is turned on are reduced, and the efficiency of the switching power supply is improved.

【0019】[0019]

【発明の実施の形態】図1は本発明の第1の実施例とし
てのスイッチング電源装置の要部の回路構成を示し、こ
の図1は図6に対応している。また、図3は図1の発振
器3の部分の原理的な回路図で、この図3は図8に対応
している。図1においては図6に対し、トランス12に
補助巻線16が付加され、この補助巻線16の電圧が、
図3にも示すようにダイオード17を介して発振コンデ
ンサ2に加えられている。なお、図3における発振器3
の内部の構成は図8と同じである。
FIG. 1 shows a circuit configuration of a main part of a switching power supply according to a first embodiment of the present invention. FIG. 1 corresponds to FIG. FIG. 3 is a principle circuit diagram of the oscillator 3 shown in FIG. 1, and FIG. 3 corresponds to FIG. In FIG. 1, an auxiliary winding 16 is added to the transformer 12 as compared with FIG. 6, and the voltage of the auxiliary winding 16 is
As shown in FIG. 3, it is added to the oscillation capacitor 2 via a diode 17. Note that the oscillator 3 in FIG.
Is the same as that of FIG.

【0020】図2は図1の各部の動作波形を示す。次に
図2を参照しつつ、図1,図3の要部の動作を説明す
る。補助巻線16は、スイッチ素子8がオフすると発振
コンデンサ2を充電する極性に、換言すれば図2,b)
に示す電圧の正極性部分がコンデンサ2に印加されるよ
うに接続されている。この補助巻線16の電圧を発振コ
ンデンサ2に加えることで、スイッチ素子8がオフする
と、発振器3の出力電圧としての発振コンデンサ2の電
圧は、定電流源27からの(または抵抗28を介する内
部電源36からの)充電による従来の上昇カーブを補助
巻線16の電圧が上回る時点t1から、補助巻線16の
電圧によって図2,c)に示すプルアップ期間Tpuの
間、さらにプルアップされる。
FIG. 2 shows operation waveforms of each part in FIG. Next, the operation of the main parts of FIGS. 1 and 3 will be described with reference to FIG. The auxiliary winding 16 has a polarity that charges the oscillation capacitor 2 when the switch element 8 is turned off, in other words, FIG.
Are connected so that the positive polarity portion of the voltage shown in FIG. When the switch element 8 is turned off by applying the voltage of the auxiliary winding 16 to the oscillation capacitor 2, the voltage of the oscillation capacitor 2 as the output voltage of the oscillator 3 is supplied from the constant current source 27 (or the internal voltage via the resistor 28). From time t1, when the voltage on the auxiliary winding 16 exceeds the conventional rising curve due to charging (from the power supply 36), the voltage on the auxiliary winding 16 is further pulled up during the pull-up period Tpu shown in FIG. .

【0021】発振コンデンサ2の電圧が、その上昇中に
時点t2において、図3のコンパレータ34に入力され
ている基準電圧35の上限値VU に達するとコンパレー
タ34の出力は反転し、図3のスイッチ31は開、32
は閉となり、コンデンサ2には放電用の電源として定電
流源29(または抵抗30を介してグランド電位)が接
続される。
When the voltage of the oscillation capacitor 2 reaches the upper limit value VU of the reference voltage 35 input to the comparator 34 of FIG. 3 at time t2 during the rise, the output of the comparator 34 is inverted, and the switch of FIG. 31 is open, 32
Is closed, and a constant current source 29 (or a ground potential via a resistor 30) is connected to the capacitor 2 as a power source for discharging.

【0022】しかしその後も、図2,c)に示すように
時点t3に至るまでの、トランス12が2次側ヘエネル
ギを放出している期間内では補助巻線16のプルアップ
によりコンデンサ2の電圧は下がらない。なお、発振コ
ンデンサ2の電圧の最高値VM (平坦部分)は、この
時、導通状態にある2次巻線11の電圧、つまり2次平
滑コンデンサ14の電圧、従って本スイッチング電源装
置から外部の負荷15へ供給される定電圧制御された出
力直流電圧に比例しており、実際上、一定である。
However, thereafter, as shown in FIG. 2 (c), the voltage of the capacitor 2 is pulled up by the auxiliary winding 16 during the period in which the transformer 12 is discharging energy to the secondary side until time t3. Does not fall. At this time, the maximum value VM (flat portion) of the voltage of the oscillation capacitor 2 is the voltage of the secondary winding 11 in a conductive state, that is, the voltage of the secondary smoothing capacitor 14, and therefore the external load from the switching power supply. It is proportional to the constant-voltage controlled output DC voltage supplied to 15 and is practically constant.

【0023】時点t3においてトランス12が2次側ヘ
エネルギを放出し終わると、スナバコンデンサ9の電圧
の振動が始まる。すると補助巻線16の電圧も振動によ
り低下する。そのため補助巻線16はダイオード17に
よって、発振コンデンサ2から切り離され、コンデンサ
2の電圧は前記した放電用電源によって低下を始める。
When the transformer 12 has finished emitting energy to the secondary side at time t3, the voltage of the snubber capacitor 9 starts oscillating. Then, the voltage of the auxiliary winding 16 also decreases due to vibration. Therefore, the auxiliary winding 16 is separated from the oscillation capacitor 2 by the diode 17, and the voltage of the capacitor 2 starts to decrease by the above-described discharge power supply.

【0024】このようにして、時点t4において発振コ
ンデンサ2の電圧が、コンパレータ34に入力されてい
る基準電圧35の下限値VL に達するとコンパレータ3
4の出力は再び反転し、発振コンデンサ2には前述した
充電のための電源が接続され、同時にスイッチ素子8が
オンされる。本発明では、発振コンデンサ2の容量等の
調整により、補助巻線16のプルアップが外れた時点t
3から、スイッチ素子8がオンする時点t4まで(換言
すれば、放電用電源によって発振コンデンサ2の電圧が
最高値VM から下限値VL に下降するまで)の電圧下降
時間TF が、スナバコンデンサ9のLC共振による電圧
振動の1/2周期と一致するようにする。
As described above, when the voltage of the oscillation capacitor 2 reaches the lower limit value VL of the reference voltage 35 input to the comparator 34 at time t4, the comparator 3
The output of 4 is inverted again, and the power supply for charging described above is connected to the oscillation capacitor 2, and at the same time, the switch element 8 is turned on. In the present invention, the time t when the pull-up of the auxiliary winding 16 is released by adjusting the capacity of the oscillation capacitor 2 or the like.
3 to the time point t4 when the switching element 8 is turned on (in other words, the voltage falling time TF from when the voltage of the oscillation capacitor 2 falls from the maximum value VM to the lower limit value VL by the discharging power source) is equal to the voltage falling time TF of the snubber capacitor 9. It is set to coincide with a half cycle of the voltage oscillation due to the LC resonance.

【0025】すると、時点t4ではスナバコンデンサ9
の振動電圧も最小となり、この時点でスイッチ素子8が
オンするため、スナバコンデンサ9の放電によるスイッ
チ素子8のターンオン損失(スイッチング損失)を最小
限に抑えることが可能になる。またこの電圧振動の周期
は、トランス12やスナバコンデンサ9などの回路のイ
ンダクタンスLとキャパシタンスCで決まり、入力電圧
や負荷に依存しないため、入力や負荷が変化してもこの
効果は変化しない。
Then, at time t4, the snubber capacitor 9
Is also minimized, and the switch element 8 is turned on at this point, so that the turn-on loss (switching loss) of the switch element 8 due to the discharge of the snubber capacitor 9 can be minimized. Further, the period of the voltage oscillation is determined by the inductance L and the capacitance C of the circuit such as the transformer 12 and the snubber capacitor 9 and does not depend on the input voltage or the load. Therefore, even if the input or the load changes, this effect does not change.

【0026】図4は本発明の第2の実施例としての要部
の回路構成を示す。同図においては、図1のトランス1
2の代わりにリアクトル18を用い、スイッチング電源
装置が昇圧チョッパ方式に構成されている。そして、補
助巻線16がリアクトル18に巻かれている。このよう
に本発明はトランスを用いない方式のスイッチング電源
装置にも実施可能である。
FIG. 4 shows a circuit configuration of a main part according to a second embodiment of the present invention. In the figure, the transformer 1 of FIG.
A switching power supply device is configured in a step-up chopper system using a reactor 18 instead of 2. The auxiliary winding 16 is wound around the reactor 18. As described above, the present invention can be applied to a switching power supply device that does not use a transformer.

【0027】図5は本発明の第3の実施例としての要部
の回路構成を示す。本例では商用電源19をダイオード
ブリッジ回路20を介して整流し、コンデンサ21を介
し平滑化してスイッチング電源装置の入力直流電圧とし
ている。図5の場合のように、一般にスイッチング電源
装置の入力直流電圧が高いような場合、電源制御回路5
の電源22はトランス12の補助巻線を使用して生成す
る。そこで本実施例では、電源22を生成する補助巻線
を本発明で使用する補助巻線16と兼用している。
FIG. 5 shows a circuit configuration of a main part according to a third embodiment of the present invention. In this example, the commercial power supply 19 is rectified through a diode bridge circuit 20 and smoothed through a capacitor 21 to obtain an input DC voltage of a switching power supply. In general, when the input DC voltage of the switching power supply is high as in the case of FIG.
Is generated using the auxiliary winding of the transformer 12. Therefore, in this embodiment, the auxiliary winding for generating the power supply 22 is also used as the auxiliary winding 16 used in the present invention.

【0028】即ち、電源制御回路5の電源22は、補助
巻線16の電圧をダイオード23を介し整流し、コンデ
ンサ24を介し平滑化して作られる。他方、本発明の実
施のため、補助巻線16の電圧はダイオード17と抵抗
25を介して発振コンデンサ2に加えられる。なお、発
振コンデンサ2に並列にツェナーダイオード26が挿入
されている。
That is, the power supply 22 of the power supply control circuit 5 is made by rectifying the voltage of the auxiliary winding 16 via the diode 23 and smoothing it via the capacitor 24. On the other hand, the voltage of the auxiliary winding 16 is applied to the oscillation capacitor 2 via the diode 17 and the resistor 25 for implementing the present invention. Note that a zener diode 26 is inserted in parallel with the oscillation capacitor 2.

【0029】この抵抗25とツェナーダイオード26
は、本来この動作のためには必要ないが、電源制御回路
5の電源の生成用と本発明のために補助巻線16を兼用
するため、補助巻線16から発振コンデンサ2に加わる
電圧が発振器3の定格電圧を超えないよう保護のために
使用されている。
The resistor 25 and the Zener diode 26
Is not necessary for this operation, but because the auxiliary winding 16 is also used for generating the power of the power supply control circuit 5 and for the present invention, the voltage applied to the oscillation capacitor 2 from the auxiliary winding 16 is 3 is used for protection so as not to exceed the rated voltage.

【0030】[0030]

【発明の効果】所定の最高電圧と最低電圧との間で充放
電が繰り返される発振コンデンサの充放電に同期し、こ
の発振コンデンサの電圧が前記最低電圧に到達した時点
をオン時点とするように、入力直流電源間にトランス又
はリアクトルからなる誘導性手段と直列、且つスナバコ
ンデンサと並列に接続された半導体スイッチ素子をPW
M制御によってオン/オフし、この半導体スイッチ素子
のオフ時に誘導性手段から放出されるエネルギを用いて
外部の負荷に所定電圧の直流電源を供給するスイッチン
グ電源装置において、誘導性手段に補助巻線を設け、半
導体スイッチ素子のオフ期間にこの補助巻線に発生する
電圧をダイオードを介し発振コンデンサに印加して発振
コンデンサを前記最高電圧に充電し、少なくともこの充
電の期間内に発振コンデンサに定電流源又は所定の抵抗
を直列に持つ定電圧源からなる放電電源を接続し、発振
コンデンサの電圧がこの放電電源を介し前記最高電圧か
ら最低電圧に下降するまでの時間を前記誘導性手段とス
ナバコンデンサとによって生ずる電圧振動の周期の1/
2となるようにしたので、半導体スイッチ素子がターン
オンする際のスナバコンデンサの電圧が最小となり、ス
ナバコンデンサの放電による半導体スイッチ素子のスイ
ッチング損失を最小限に抑え、半導体スイッチ素子の発
熱を減らし、スイッチング電源装置の効率を改善するこ
とができる。
According to the present invention, the point in time when the voltage of the oscillation capacitor reaches the minimum voltage is defined as the ON point in synchronization with the charging and discharging of the oscillation capacitor in which charging and discharging are repeated between a predetermined maximum voltage and a minimum voltage. A semiconductor switch element connected in series with an inductive means consisting of a transformer or a reactor and connected in parallel with a snubber capacitor between input DC power
In a switching power supply device which is turned on / off by M control and supplies a DC power of a predetermined voltage to an external load using energy released from the inductive means when the semiconductor switch element is turned off, an auxiliary winding is connected to the inductive means. The voltage generated in the auxiliary winding is applied to the oscillation capacitor via a diode during the off-period of the semiconductor switching element to charge the oscillation capacitor to the maximum voltage, and at least the constant current is supplied to the oscillation capacitor during the charging period. Source or a constant voltage source having a predetermined resistance connected in series, and the inductive means and the snubber capacitor determine the time until the voltage of the oscillation capacitor falls from the highest voltage to the lowest voltage via the discharge power source. 1 / of the period of the voltage oscillation caused by
2, the voltage of the snubber capacitor when the semiconductor switch element is turned on is minimized, the switching loss of the semiconductor switch element due to the discharge of the snubber capacitor is minimized, the heat generation of the semiconductor switch element is reduced, and the switching is performed. The efficiency of the power supply can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例としての要部の構成を示
す回路図
FIG. 1 is a circuit diagram showing a configuration of a main part according to a first embodiment of the present invention.

【図2】図1の各部の動作波形図FIG. 2 is an operation waveform diagram of each part in FIG. 1;

【図3】図1の発振器部分の原理的な構成を示す回路図FIG. 3 is a circuit diagram showing a principle configuration of an oscillator part of FIG. 1;

【図4】本発明の第2の実施例としての要部の構成を示
す回路図
FIG. 4 is a circuit diagram showing a configuration of a main part according to a second embodiment of the present invention.

【図5】本発明の第3の実施例としての要部の構成を示
す回路図
FIG. 5 is a circuit diagram showing a configuration of a main part according to a third embodiment of the present invention.

【図6】図1に対応する従来の回路図FIG. 6 is a conventional circuit diagram corresponding to FIG.

【図7】図6の各部の動作波形図FIG. 7 is an operation waveform diagram of each unit in FIG. 6;

【図8】図6の発振器部分の原理的な構成を示す回路図FIG. 8 is a circuit diagram showing a basic configuration of an oscillator part of FIG. 6;

【符号の説明】[Explanation of symbols]

1 入力電圧 2 発振コンデンサ 3 発振器 4 PWM制御部 5 電源制御回路 6 出力電圧検出入力 7 PWM出力 8 半導体スイッチ素子(スイッチ
素子) 9 スナバコンデンサ 10 1次巻線 11 2次巻線 12 トランス 13 ダイオード 14 平滑用コンデンサ 15 負荷 16 補助巻線 17 ダイオード 18 リアクトル 19 商用電源 20 ダイオードブリッジ回路 21 平滑用コンデンサ 22 制御回路電源 23 ダイオード 24 平滑用コンデンサ 25 抵抗 26 ツェナーダイオード 27 定電流源 28 抵抗 29 定電流源 30 抵抗 31,32 スイッチ 33 インバータ 34 コンパレータ 35 基準電圧 36 内部電源 VU 基準電圧の上限値 VL 基準電圧の下限値 VM 発振コンデンサの電圧の最高
値 TF 発振コンデンサの電圧下降時
DESCRIPTION OF SYMBOLS 1 Input voltage 2 Oscillation capacitor 3 Oscillator 4 PWM control part 5 Power supply control circuit 6 Output voltage detection input 7 PWM output 8 Semiconductor switch element (Switch element) 9 Snubber capacitor 10 Primary winding 11 Secondary winding 12 Transformer 13 Diode 14 Smoothing capacitor 15 Load 16 Auxiliary winding 17 Diode 18 Reactor 19 Commercial power supply 20 Diode bridge circuit 21 Smoothing capacitor 22 Control circuit power supply 23 Diode 24 Smoothing capacitor 25 Resistance 26 Zener diode 27 Constant current source 28 Resistance 29 Constant current source 30 Resistance 31, 32 Switch 33 Inverter 34 Comparator 35 Reference voltage 36 Internal power supply VU Upper limit value of reference voltage VL Lower limit value of reference voltage VM Maximum value of oscillation capacitor voltage TF Falling time of oscillation capacitor voltage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】所定の最高電圧に充電されたのち、所定の
最低電圧に放電されることを繰り返す発振コンデンサ
と、 入力直流電源間にトランス又はリアクトルからなる誘導
性手段と直列、且つスナバコンデンサと並列に接続さ
れ、前記発振コンデンサの充放電の各期間ごとに、該発
振コンデンサの電圧が前記最低電圧に到達した時点をオ
ン時点とするようにオン/オフされる半導体スイッチ素
子とを備え、 該半導体スイッチ素子のオフ時に前記誘導性手段から放
出されるエネルギを用いて外部の負荷に供給すべき所定
電圧の直流電源が生成されるように、前記半導体スイッ
チ素子のオン期間とオフ期間との割合が制御されるスイ
ッチング電源装置において、 前記誘導性手段に補助巻線を設け、前記半導体スイッチ
素子のオフ期間に該補助巻線に発生する電圧をダイオー
ドを介し前記発振コンデンサに印加して該発振コンデン
サを前記最高電圧に充電し、 少なくともこの充電の期間内に前記発振コンデンサに定
電流源又は所定の抵抗を直列に持つ定電圧源からなる放
電電源を接続し、 前記発振コンデンサの電圧が該放電電源を介し前記最高
電圧から最低電圧に下降するまでの時間を前記誘導性手
段とスナバコンデンサとによって生ずる電圧振動の周期
の1/2となるようにしたことを特徴とするスイッチン
グ電源装置。
1. An oscillation capacitor which is repeatedly charged to a predetermined maximum voltage and then discharged to a predetermined minimum voltage, and a snubber capacitor in series with an inductive means comprising a transformer or a reactor between input DC power supplies. A semiconductor switch element that is connected in parallel, and is turned on / off such that a point in time when the voltage of the oscillation capacitor reaches the minimum voltage is set to an on point in each period of charging and discharging of the oscillation capacitor; The ratio between the on-period and the off-period of the semiconductor switch element so that a DC power of a predetermined voltage to be supplied to an external load is generated by using energy released from the inductive means when the semiconductor switch element is turned off. In the switching power supply device, an auxiliary winding is provided in the inductive means, and the auxiliary winding is provided during an off period of the semiconductor switch element. A voltage generated is applied to the oscillation capacitor via a diode to charge the oscillation capacitor to the maximum voltage, and at least during this charging period, a constant current source or a constant voltage source having a predetermined resistance in series with the oscillation capacitor. And the time required for the voltage of the oscillation capacitor to fall from the highest voltage to the lowest voltage via the discharge power source is set to の of the period of the voltage oscillation generated by the inductive means and the snubber capacitor. A switching power supply device characterized in that:
【請求項2】請求項1に記載のスイッチング電源装置に
おいて、前記補助巻線が当該のスイッチング電源装置内
の電源を生成するために兼用されてなることを特徴とす
るスイッチング電源装置。
2. The switching power supply according to claim 1, wherein said auxiliary winding is also used to generate a power supply in said switching power supply.
JP35465499A 1999-12-14 1999-12-14 Switching power supply Expired - Fee Related JP3664012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35465499A JP3664012B2 (en) 1999-12-14 1999-12-14 Switching power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35465499A JP3664012B2 (en) 1999-12-14 1999-12-14 Switching power supply

Publications (2)

Publication Number Publication Date
JP2001178124A true JP2001178124A (en) 2001-06-29
JP3664012B2 JP3664012B2 (en) 2005-06-22

Family

ID=18439015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35465499A Expired - Fee Related JP3664012B2 (en) 1999-12-14 1999-12-14 Switching power supply

Country Status (1)

Country Link
JP (1) JP3664012B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004112227A1 (en) * 2003-06-18 2004-12-23 System General Corp. Primary-side regulated pulse width modulation controller with improved load regulation
WO2004112226A1 (en) * 2003-06-18 2004-12-23 System General Corp. Flyback power converter having a constant voltage and a constant current output under primary-side pwm control
JP2007143336A (en) * 2005-11-21 2007-06-07 Fuji Electric Device Technology Co Ltd Semiconductor device
CN100337382C (en) * 2003-04-04 2007-09-12 京东方科技集团股份有限公司 Assembled battery whose voltage can be constantly controlled
JP2010016938A (en) * 2008-07-02 2010-01-21 Koito Mfg Co Ltd Flyback converter
CN101800476A (en) * 2010-04-01 2010-08-11 华为技术有限公司 Voltage transformation device and method, as well as power supply system
JP2017017851A (en) * 2015-06-30 2017-01-19 ダイハツ工業株式会社 Power supply unit for plasma reactor
CN112564486A (en) * 2019-09-26 2021-03-26 海信视像科技股份有限公司 Display device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100337382C (en) * 2003-04-04 2007-09-12 京东方科技集团股份有限公司 Assembled battery whose voltage can be constantly controlled
WO2004112227A1 (en) * 2003-06-18 2004-12-23 System General Corp. Primary-side regulated pulse width modulation controller with improved load regulation
WO2004112226A1 (en) * 2003-06-18 2004-12-23 System General Corp. Flyback power converter having a constant voltage and a constant current output under primary-side pwm control
CN100421340C (en) * 2003-06-18 2008-09-24 崇贸科技股份有限公司 Flyback power converter having a constant voltage and a constant current output under primary-side PWM control
JP2007143336A (en) * 2005-11-21 2007-06-07 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2010016938A (en) * 2008-07-02 2010-01-21 Koito Mfg Co Ltd Flyback converter
CN101800476A (en) * 2010-04-01 2010-08-11 华为技术有限公司 Voltage transformation device and method, as well as power supply system
JP2017017851A (en) * 2015-06-30 2017-01-19 ダイハツ工業株式会社 Power supply unit for plasma reactor
CN112564486A (en) * 2019-09-26 2021-03-26 海信视像科技股份有限公司 Display device
CN112564486B (en) * 2019-09-26 2022-04-22 海信视像科技股份有限公司 Display device

Also Published As

Publication number Publication date
JP3664012B2 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
US9276483B2 (en) Control circuit for active-clamp flyback power converter with programmable switching period
JP5397024B2 (en) Switching power supply device, switching power supply control circuit, and switching power supply device control method
JP4371042B2 (en) Switching power supply
US9287792B2 (en) Control method to reduce switching loss on MOSFET
JP6665573B2 (en) Switching power supply
CN111740611B (en) Power converter for switching power supply and operation mode thereof
US6442047B1 (en) Power conversion apparatus and methods with reduced current and voltage switching
KR101248080B1 (en) Dc voltage converter with several isolated regulated outputs
US20140133195A1 (en) Control method and device for switching power supplies having more than one control mode
JP2017229209A (en) Switching power supply device
JP2001197740A (en) Switching power supply
JP2016027775A (en) Switching power supply device
JP2002112544A (en) Switching power supply apparatus
JP5278224B2 (en) Switching power supply device and switching power supply control circuit
JP2014212642A (en) Switching power-supply device
JP2003224973A (en) Switching power supply
JP2011087394A (en) Switching element driving control circuit and switching power supply device
JP3664012B2 (en) Switching power supply
JP3822787B2 (en) Flyback switching power supply
JP2004153948A (en) Switching power supplying arrangement
US7729136B2 (en) Isolated DC-DC converter
JP6461043B2 (en) Double-end insulated switching power supply device and control method thereof
JP7400188B2 (en) Control device
JP4780547B2 (en) Partially resonant separately excited switching power supply
JP3761558B2 (en) Switching power supply circuit and control method used for the switching power supply circuit

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees