JP3662500B2 - Slope stabilization method and its reinforcement frame - Google Patents

Slope stabilization method and its reinforcement frame Download PDF

Info

Publication number
JP3662500B2
JP3662500B2 JP2001020926A JP2001020926A JP3662500B2 JP 3662500 B2 JP3662500 B2 JP 3662500B2 JP 2001020926 A JP2001020926 A JP 2001020926A JP 2001020926 A JP2001020926 A JP 2001020926A JP 3662500 B2 JP3662500 B2 JP 3662500B2
Authority
JP
Japan
Prior art keywords
slope
natural ground
flexible
natural
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001020926A
Other languages
Japanese (ja)
Other versions
JP2002227213A (en
Inventor
邦夫 内藤
重夫 高橋
正良 深井
七郎 晴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Metal Industry Co Ltd
Original Assignee
Suzuki Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Metal Industry Co Ltd filed Critical Suzuki Metal Industry Co Ltd
Priority to JP2001020926A priority Critical patent/JP3662500B2/en
Publication of JP2002227213A publication Critical patent/JP2002227213A/en
Application granted granted Critical
Publication of JP3662500B2 publication Critical patent/JP3662500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、地山等の斜面上で平面略格子状に構築した補強枠を地山等に対して固定的に連結、支持することにより、この地山等の斜面を補強し、その安定化をはかる斜面安定工法およびその補強枠に関する。
【0002】
【従来の技術】
地山に形成された自然形態の斜面や、切土、あるいは盛土等によって形成された斜面(法面)の補強、および安定化をはかる、いわゆる斜面安定工法として、たとえば、斜面崩壊の危惧される層を推測してこの推測された層(推測崩壊層)を予め切削すること、あるいはその切削後に盛土を行うこと等によって、崩壊の生じ難い適正勾配にその斜面(法面)を造成する抑制工、または、推測崩壊層を切削した後、法枠等と称される補強枠をその斜面上で略格子状に固定的に構築することによりその斜面を強制的に補強する抑止工等が、一般的に知られている。
【0003】
【発明が解決しようとする課題】
しかし、地山等の斜面に対する上述の抑制工、および抑止工は、いずれも、斜面、ひいては地山等を、斜面崩壊の生じない、いわゆる安定層まで切削することにより、その斜面の崩壊を抑制、抑止する工法であるため、地山等の斜面に対する大掛りな切削作業が要求される。そして、この斜面の切削により発生した土(切削土)の廃棄も容易でなく、また、その切削作業、および廃棄に掛かる費用も多大となりやすいことから、この種の公知の抑制工、および抑止工においてはその作業性の低下、およびその施工コストの増大化等が避けられない。
【0004】
また、公知の斜面安定工法は、切削や盛土等による整地後の斜面をその施工対象としている。そして、地山等の斜面を安定層まで切削することにより、その斜面に自然に生育する、樹木等の植物等は必然的に伐採、排除されることから、公知の斜面安定工法においては、斜面の崩壊が抑制、抑止できる反面、その地山等の自然環境、および自然景観の破壊等を伴うことは否定できない。
【0005】
なお、補強枠で斜面を補強する抑止工等においては、その補強の後、土壌の露出部分に外来種の植物等を人工的に植え付ける緑化工法も知られている。しかし、この種の緑化は人工的なものにすぎないため、地山等の全体で考えれば、その自然環境、あるいは自然景観等に違和感を与える虞れも多分に考えられる。
【0006】
ところで、鉄筋、および金網等の組み合わせによりなる型枠を斜面上で平面略格子状に配置し、この型枠にモルタル、あるいはコンクリート等を吹き付けることで略格子状の補強枠を固定的に構築する、いわゆる現場吹き付け法面工が、補強枠により斜面を補強する抑止工の一つとして広く知られている。
【0007】
一般に、この現場吹き付け法面工におけるモルタル、あるいはコンクリート等の吹き付け作業は、吹付機を担いだ作業者により行われる。しかし、斜面上での作業は困難であり、しかも、吹付機を担いでの作業となるため、作業者に多大な労力を強いることは避けられず、その作業性の低下も同時に伴われる。
【0008】
また、変形可能な鉄筋、および金網等により型枠を形成するとはいえ、これらの変形は比較的緩やかな凹凸に対応可能な程度であるため、現場吹き付け法面工等に用いられる公知の補強枠が、小さな凹凸や急激な凹凸等に対する適応性に劣ることは避けられない。つまり、公知の補強枠の構築対象は、切土、盛土等によりなる整地された法面に限定されやすく、その汎用性に劣ることは避けられない。
【0009】
この発明は、斜面の切削、および植物の伐採等を伴うことなく施工可能な斜面安定工法、および、この斜面安定工法の遂行を適切に可能とし、かつ斜面に対する適応性、および汎用性に優れたその補強枠の提供を目的としている。
【0010】
【課題を解決するための手段】
この目的を達成するために、この発明の斜面安定工法によれば、離間並置された複数本の可撓性線材回りを可撓性被覆材で被覆してなる折曲配置の自在な略中空の型枠を、地山等の斜面上で平面略格子状に配置し、この型枠内にグラウト材を充填することによって、略格子状の補強枠を、地山等の斜面上に構築する。そして、予め推測した斜面の推測崩壊層を越える打設長のもとで地山等に打設された主支持体を少なくとも含む、補強枠の縦横の交点に配された複数の支持体によって、この補強枠を地山等に対して固定的に連結、支持するものとして、この斜面安定工法は行われる。
【0011】
また、この発明の補強枠は、地山等の斜面上で縦横方向に配置される複数本の可撓性線材と、複数本の可撓性線材を保持することによってその離間並置をはかる型枠形成体と、離間並置された複数本の可撓性線材回りを被覆する可撓性被覆材とを少なくとも備えた折曲配置の自在な略中空の型枠内に、グラウト材を充填することにより構築されている。
【0012】
【発明の実施の形態】
以下、図面を参照しながらこの発明の実施の形態について詳細に説明する。
【0013】
この発明に係る斜面安定工法は、図1、図2に示すように、補強枠10を、地山等12の斜面14上で平面略格子状に構築し、地山等に打設、造成した支持体16(16-1,16-2)によりこの補強枠を固定的に連結、支持することによってその斜面の補強、および安定化をはかるものである。
【0014】
そして、図3に示すように、型枠形成体18により離間並置された複数本の可撓性線材20の回りを可撓性被覆材22で被覆してなる折曲配置の自在な略中空の型枠24内にグラウト材26を充填することにより、この発明に係る補強枠10は構築されている。
【0015】
以下、この補強枠10を利用したこの発明に係る斜面安定工法を、その工程に沿って概略説明する。なお、図1、図2を見るとわかるように、ここでは、樹木28等の植物の自然生育する自然形態の地山の斜面14を、その施工対象として、以下例示する。
【0016】
この斜面安定工法においては、まず、地山等12の、崩壊の危惧される層の深さを予め推測するとともに、略格子状となる補強枠10の縦横の交点位置を、その斜面14上に仮定する。そして、この仮定した交点位置で補強枠10を地山等12に対して固定的に連結、支持する支持体16(16-1,16-2)を、地山等に予め打設しておく。
【0017】
ここで、図1を見るとわかるように、この発明においては、支持体16(16-1,16-2)のうち、支持体16-1を、予め推測した崩壊層(推測崩壊層)30を越える打設長で地山等12に打設された主支持体としている。そして、図1に加えて図2を見るとわかるように、この主支持体16-1は、補強枠10の縦横の交点で、その打設長、つまり推測崩壊層30に対する貫通の有無を問わない補助支持体16-2との交互位置に配設されている。
【0018】
図1に示すように、この主支持体16-1としては、たとえば、緊張材32の先端側に規定された定着長部をグラウト34で地山等12に固結、定着させることにより造成された、いわゆるグラウンドアンカー等のアンカー体が例示できるが、このアンカー体自体は公知であり、その構成、およびその造成方法等はこの発明の趣旨でないため、これらに対するここでの詳細な説明は省略する。
【0019】
また、補助支持体16-2としては、いわゆるアンカーピンやロックボルト等の、公知の棒状支持体が例示できる。
【0020】
補強枠10の縦横の交点を予め仮定し、この仮定点に支持体16(16-1,16-2)を先行打設したこの実施の形態での手順においては、この支持体の位置に交点を配するように、補強枠10が配置、構築される。そして、図3を見るとわかるように、この斜面安定工法においては、まず、型枠形成体18により離間並置された複数本の可撓性線材、たとえば4本の可撓性線材20を一組として、この可撓性線材は斜面14の縦方向、横方向にそれぞれ交差配置される。
【0021】
可撓性線材20として、折曲自在な線材、たとえばPC鋼より線が利用できる。そして、たとえば、スパイラル鉄筋としてなる型枠形成体18をこの4本のPC鋼より線(可撓性線材)20の回りに配し、この型枠形成体にPC鋼より線を結束等のもとで連結、保持することにより、4本のPC鋼より線の離間配置された断面略円形状の型枠24の骨格が形成される。
【0022】
次に、このPC鋼より線20、およびスパイラル鉄筋(型枠形成体)18の回りを可撓性被覆材22で被覆することにより、断面略円形状で略中空の型枠24が形成される。
【0023】
可撓性被覆材22としては、たとえば、伸縮、および折曲の可能な蛇腹状の樹脂製管体が利用できる。
【0024】
そして、樹脂製管体(可撓性被覆材)22で覆われたこの型枠24内にグラウト材26、たとえばセメントミルク等を、たとえば圧送装置等により充填し、これをこの型枠内で固結させるとともに、各交点に配された支持体16、つまり主支持体16-1、および補助支持体16-2に対し、これをアンカーヘッド等の連結具(図示しない)で、たとえば固定的に連結することによって、平面略格子状の補強枠10は、斜面14上で、地山等12に対して固定的に形成、構築される(図1ないし図3参照)。
【0025】
なお、ここでの詳細な説明は省略するが、補強枠10の縦横の交点に、たとえば、専用の交点型枠を配設し、この交点型枠に連続させて、型枠24を形成することが好ましい。
【0026】
上記のように、この発明の斜面安定工法においては、折曲自在な可撓性線材である複数本(4本)のPC鋼より線20を、折曲自在な蛇腹状の樹脂製管体22で被覆することによって、折曲配置の自在な補強枠の型枠24が形成されている。つまり、この補強枠の型枠24によれば、PC鋼より線20、および樹脂製管体22の自在な折曲のもとで、斜面14の凹凸、つまり不陸形状に沿った型枠の配置、形成、ひいては補強枠10の構築が容易に可能となるため、補強枠の形成、構築対象が、ほぼ平坦に整地された法面に限定されず、たとえば、地山等12の自然形態の不陸斜面をも、その形成、構築の対象とすることが十分に可能となる(図1参照)。
【0027】
そして、支持体16(16-1,16-2)のうちの主支持体16-1が、予め推測した推測崩壊層30を越える打設長で地山等12に打設されているため、斜面14の崩壊力(すべり力)に抗した補強枠10の保持は、推測崩壊層を切削しなくとも十分に確保可能となる。
【0028】
つまり、図1、図2に示すように、この発明によれば、樹木28等の植物の自然生育した地山等12の自然形態の斜面14を、推測崩壊層30の切削を伴うことなく補強することができるため、その地山等の自然環境、あるいは自然景観の確保が十分にはかられる。
【0029】
そして、外来種の植物等を人工的に植え付ける公知の緑化工法と異なり、自然生育した樹木28等の植物を伐採せずに残すことが可能であるため、地山等12の全体的な自然環境、および自然景観に違和感等を与えることもない。
【0030】
更に、この補強枠10は、斜面14の凹凸(不陸)に沿った方向での折曲変形に限らず、その平面方向での折曲変形も容易、自在に行える。つまり、図2に示す、補強枠10のa1〜a4部分のように、斜面14に自然生育する樹木28、あるいは部分的に埋設された岩36等を避けての補強枠の配置、あるいはその他必要に応じた蛇行配置が容易に可能となるとともに、b1部分のように、変則的な位置に設けた支持体16(16-1,16-2)に合わせて、その交点位置を設定することが可能となるため、樹木等の伐採、あるいは岩等の取り除き等を要することなく、平面略格子状の補強枠を斜面上に形成、構築することができる。従って、この点からも斜面14の自然環境、あるいは自然景観の確保が十分にはかられる。
【0031】
また、地山等12を大きく切削しないため、地山等の斜面14に対する大掛りな切削作業は不要となり、更には、この斜面の切削により発生した土(切削土)の廃棄も不要となることから、その作業性の向上、およびその施工コストの低減等が確実にはかられる。そして、上述したように、斜面14に存在する樹木28の伐採、および岩36の取り除き等も不要であるため、この点からも、作業性が向上される。
【0032】
また、この補強枠10によれば、樹脂製管体22によって覆われた型枠24内に、セメントミルク等のグラウト材26を、圧送装置等により充填すれば足りるため、その作業の容易化が確実にはかられる。そして、作業者が装置等を担いだ状態で斜面14上を移動する必要もないため、作業者に過度の負担を強いることもなく、その作業性、および作業の安全性が確実に向上される。
【0033】
ここで、この発明の実施の形態においては、PC鋼より線20を補強枠10の可撓性線材として具体化しているが、折曲自在な線材であれば足りるため、これに限定されず、たとえばロープ、チェーン等を可撓性線材として利用してもよい。また、この可撓性線材20の数を4本とし、それによりなる断面形状を略円形状として具体化しているが、中空状の型枠24を形成可能であれば足りるため、たとえば他の本数の可撓性線材から四角形や他の多角形状等に、型枠、ひいては補強枠10の断面形状を形成してもよい。
【0034】
なお、この可撓性線材20の本数は、補強枠10に要求される強度等により、適宜選択すれば良い。
【0035】
また、この発明の実施の形態においては、支持体の主支持体16-1、補助支持体16-2を交互に配置している。しかし、斜面14、ひいては地山等12に対する補強枠10の十分な支持強度を主支持体16-1によって確保すれば足りるため、これに限定されず、たとえば、二つおき、三つおき等に、主支持体を配置する構成としてもよい。
【0036】
更に、この発明においては、補強枠10の平面形状を略格子状としているが、ここでいうその形状はあくまでも概略のものであり、縦方向、横方向に配設された可撓性線材(PC鋼より線)20を主体とした平面形状を有すれば足りるため、その平面形状に多少の変形の加えられたものも、ここでいう略格子状に包含されるものとする。
【0037】
そして、この実施の形態においては、蛇腹状の樹脂製管体22を、補強枠10の可撓性被覆材として具体化しているが、折曲自在な可撓性素材であれば足りるため、これに限定されず、たとえば、伸縮性、およびグラウト材26の漏出性をほとんど持たない、ナイロン糸等からなる織布等を、この可撓性被覆材として利用してもよい。
【0038】
ここで、この発明の実施の形態においては、スパイラル状鉄筋を型枠形成体18として具体化しているが、離間並置されたPC鋼より線20をその離間位置で保持可能とすれば足りるため、これに限定されず、たとえば複数のリング体の組み合わせ等を、この型枠形成体として利用してもよい。
【0039】
また、この実施の形態においては、型枠形成体(スパイラル鉄筋)18をPC鋼より線20の回りに配しているが、これに限定されず、たとえば、複数のPC鋼より線の内方位置に、この型枠形成体を配置してもよい。
【0040】
上述した実施の形態は、この発明を説明するためのものであり、この発明を何等限定するものでなく、この発明の技術範囲内で変形、改造等の施されたものも全てこの発明に包含されることはいうまでもない。
【0041】
【発明の効果】
上記のように、折曲自在な可撓性線材、および可撓性被覆材を主体とした折曲配置の自在な型枠からなる補強枠を、地山等の斜面上に形成、構築するこの発明に係る斜面安定工法によれば、樹木等の植物の自然生育した地山等の自然形態の斜面を、推測崩壊層の切削を伴うことなく補強することができるため、その地山等の自然環境、あるいは自然景観の確保が十分にはかられる。
【0042】
そして、自然生育した樹木等の植物を伐採せずにその斜面に残すことが可能であるため、地山等の全体的な自然環境、および自然景観に違和感等を与えることもない。
【0043】
更に、この補強枠は、斜面に自然生育する樹木、あるいは部分的に埋設された岩等を避けての補強枠の配置が容易に可能となるため、この点からも、自然環境、あるいは自然景観の確保が十分にはかられる。
【0044】
また、地山等を大きく切削しないため、地山等の斜面に対する大掛りな切削作業は不要となり、更には、この斜面の切削により発生した土(切削土)の廃棄も不要となることから、その作業性の向上、およびその施工コストの低減等が確実にはかられる。
【0045】
そして、この補強枠によれば、可撓性被覆材によって覆われた折曲配置の自在な型枠内にグラウト材を充填すれば足りるため、その作業の容易化が確実にはかられる。そして、作業者が装置等を担いだ状態で斜面上を移動する必要もないため、作業者に過度の負担を強いることもなく、その作業性、および作業の安全性が確実に向上される。
【図面の簡単な説明】
【図1】この発明に係る斜面安定工法を示す、斜面の概略縦断面図である。
【図2】この発明の斜面安定工法を示す、斜面の概略平面図である。
【図3】この発明に係る補強枠の概略斜視図である。
【符号の説明】
10 補強枠
14 斜面
16(16-1,16-2) 支持体(主支持体、補助支持体)
18 型枠形成体
20 可撓性線材(PC鋼より線)
22 可撓性被覆材(樹脂製管体)
24 型枠
26 グラウト材
30 推測崩壊層
[0001]
BACKGROUND OF THE INVENTION
The present invention reinforces and stabilizes the slope of the natural ground by fixedly connecting and supporting the reinforcing frame constructed in a substantially lattice shape on the slope of the natural ground and the like. The present invention relates to a slope stabilization method and its reinforcing frame.
[0002]
[Prior art]
As a so-called slope stabilization method that reinforces and stabilizes natural forms of slopes, slopes (slopes) formed by cuts or embankments, etc. By preliminarily cutting this estimated layer (presumed collapse layer), or by performing embankment after the cutting, etc., a suppressor that creates the slope (slope) to an appropriate gradient that does not easily cause collapse, Or, after cutting the speculative collapse layer, a deterrent that forcibly reinforces the slope by generally constructing a reinforcement frame called a legal frame etc. on the slope in a substantially lattice shape is generally used. Known to.
[0003]
[Problems to be solved by the invention]
However, both of the above-mentioned restraint works and restraint works for slopes such as natural ground suppress the slope collapse by cutting the slope, and thus the natural ground, to a so-called stable layer where slope failure does not occur. Therefore, since it is a deterrent construction method, a large-scale cutting operation on a slope such as a natural ground is required. And since it is not easy to dispose of the soil (cutting soil) generated by cutting the slope, and the cost for the cutting work and disposal tends to be large, this kind of known restraining work and restraining work However, it is inevitable that the workability is reduced and the construction cost is increased.
[0004]
Moreover, the well-known slope stabilization method makes the slope the slope after leveling by cutting, embankment, etc. as the construction object. And, by cutting the slopes of natural ground to the stable layer, plants such as trees that grow naturally on the slopes are inevitably cut and removed, so in the known slope stabilization method, While it is possible to suppress or deter the collapse of the forest, it cannot be denied that it is accompanied by the destruction of the natural environment such as natural ground and the natural landscape.
[0005]
In addition, in the deterrent work etc. which reinforce a slope with a reinforcement frame, the greening construction method which artificially plants an exotic species plant etc. in the exposed part of soil after the reinforcement is also known. However, since this kind of greening is only artificial, there is a possibility that the natural environment or the natural scenery will be uncomfortable when considered in the whole ground.
[0006]
By the way, a formwork composed of a combination of reinforcing bars, wire mesh, etc. is arranged in a plane substantially lattice form on the slope, and a mortar or concrete is sprayed on this formwork to construct a substantially lattice-like reinforcement frame fixedly. The so-called on-site spray slope work is widely known as one of deterrent works that reinforce the slope with a reinforcing frame.
[0007]
In general, the mortar or concrete spraying work in this field spray slope work is performed by an operator who carries the spraying machine. However, the work on the slope is difficult, and the work is carried out with the sprayer. Therefore, it is inevitable that the worker is forced to make a great effort, and the workability is also lowered at the same time.
[0008]
In addition, although the formwork is formed by deformable reinforcing bars and wire mesh, since these deformations are only capable of dealing with relatively gentle irregularities, a known reinforcement frame used for on-site spray slope work, etc. However, it is inevitable that the adaptability to small unevenness or sudden unevenness is inferior. That is, the construction object of a known reinforcing frame is easily limited to a sloped surface made of cut, embankment or the like, and its versatility is inevitable.
[0009]
The present invention is a slope stabilization method that can be constructed without involving cutting of a slope and cutting of a plant, etc., and the slope stabilization method can be appropriately performed, and is excellent in adaptability to a slope and versatility. The purpose is to provide the reinforcement frame.
[0010]
[Means for Solving the Problems]
In order to achieve this object, according to the slope stabilization method of the present invention, a substantially hollow structure having a flexible arrangement in which a plurality of spaced apart parallel flexible wires are covered with a flexible coating material. A mold frame is arranged in a plane substantially lattice shape on a slope such as a natural ground, and a grout material is filled in the mold frame, thereby constructing a substantially grid-like reinforcing frame on a slope such as a natural ground. And by a plurality of supports disposed at intersections of the vertical and horizontal directions of the reinforcing frame, including at least a main support that is cast on a natural ground under a casting length that exceeds the estimated collapse layer of the slope that has been estimated in advance, This slope stabilization method is carried out to connect and support this reinforcing frame fixedly to a natural ground or the like.
[0011]
Further, the reinforcing frame of the present invention is a mold frame that holds a plurality of flexible wires arranged in the vertical and horizontal directions on an inclined surface such as a natural ground, and a plurality of flexible wires so as to be spaced apart from each other. By filling the grout material into a freely-foldable substantially hollow formwork having at least a formed body and a flexible coating material that covers a plurality of spaced apart juxtaposed flexible wires. Has been built.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0013]
In the slope stabilization method according to the present invention, as shown in FIGS. 1 and 2, the reinforcing frame 10 is constructed in a substantially lattice shape on the slope 14 of the natural ground 12, and is placed and built in the natural ground. The reinforcing frame is fixedly connected and supported by the support body 16 (16-1, 16-2) to reinforce and stabilize the slope.
[0014]
Then, as shown in FIG. 3, a flexible hollow material having a flexible arrangement in which a plurality of flexible wire materials 20 that are spaced apart and juxtaposed by a mold forming body 18 are covered with a flexible coating material 22. The reinforcing frame 10 according to the present invention is constructed by filling the mold 24 with the grout material 26.
[0015]
Hereinafter, the slope stabilization method according to the present invention using the reinforcing frame 10 will be schematically described along the steps. As can be seen from FIG. 1 and FIG. 2, here, the slope 14 of the natural form in which the plant such as the tree 28 naturally grows is exemplified as the construction target.
[0016]
In this slope stabilization method, first of all, the depth of a layer that is in danger of collapsing, such as a natural mountain 12, is estimated in advance, and the vertical and horizontal intersection positions of the reinforcing frame 10 in a substantially lattice shape are assumed on the slope 14. To do. Then, a support 16 (16-1, 16-2) for fixedly connecting and supporting the reinforcing frame 10 to the natural ground 12 at the assumed intersection position is previously placed on the natural ground. .
[0017]
Here, as can be seen from FIG. 1, in the present invention, among the supports 16 (16-1, 16-2), the support 16-1 is preliminarily estimated collapse layer (presumed collapse layer) 30. It is the main support that has been cast in the ground and other places with a casting length exceeding. As can be seen from FIG. 2 in addition to FIG. 1, the main support 16-1 has a vertical length and a horizontal intersection of the reinforcing frame 10, and whether or not there is a penetration length, that is, whether or not there is a penetration to the speculative collapse layer 30. The auxiliary support 16-2 is not disposed at an alternate position.
[0018]
As shown in FIG. 1, the main support 16-1 is formed by, for example, fixing and fixing a fixing length defined on the front end side of the tension member 32 to a natural ground 12 or the like with a grout 34. An anchor body such as a so-called ground anchor can be exemplified, but the anchor body itself is well known, and its configuration, construction method, and the like are not the gist of the present invention, so detailed description thereof will be omitted here. .
[0019]
Further, as the auxiliary support 16-2, a known rod-like support such as a so-called anchor pin or a lock bolt can be exemplified.
[0020]
In the procedure in this embodiment in which the vertical and horizontal intersections of the reinforcing frame 10 are preliminarily assumed and the support 16 (16-1, 16-2) is placed in advance at this assumed point, the intersection is located at the position of the support. The reinforcing frame 10 is arranged and constructed so as to be arranged. As can be seen from FIG. 3, in this slope stabilization method, first, a set of a plurality of flexible wires, for example, four flexible wires 20 separated and juxtaposed by the formwork forming body 18. As described above, the flexible wires are arranged so as to intersect with each other in the vertical direction and the horizontal direction of the slope 14.
[0021]
As the flexible wire 20, a flexible wire, for example, a PC steel wire can be used. Then, for example, a mold forming body 18 as a spiral reinforcing bar is arranged around the four PC steel strands (flexible wire) 20, and the PC steel strand is bound to the mold forming body. By connecting and holding together, the framework of the mold 24 having a substantially circular cross section in which the wires of the four PC steels are spaced apart is formed.
[0022]
Next, the PC steel strand 20 and the spiral rebar (former forming body) 18 are covered with a flexible covering material 22 to form a substantially hollow mold 24 having a substantially circular cross section. .
[0023]
As the flexible covering material 22, for example, a bellows-shaped resin tube that can be expanded and contracted can be used.
[0024]
Then, the mold 24 covered with the resin tube (flexible covering material) 22 is filled with a grout material 26, for example, cement milk, for example, by a pumping device or the like, and this is fixed in the mold. At the same time, the support 16 arranged at each intersection, that is, the main support 16-1 and the auxiliary support 16-2 is fixedly connected to the support 16 (not shown) such as an anchor head, for example. By connecting, the plane substantially lattice-like reinforcing frame 10 is fixedly formed and constructed on the slope 14 with respect to the natural ground 12 (see FIGS. 1 to 3).
[0025]
Although detailed description is omitted here, for example, a dedicated intersection mold is provided at the vertical and horizontal intersections of the reinforcing frame 10, and the mold 24 is formed continuously with the intersection mold. Is preferred.
[0026]
As described above, in the slope stabilization method of the present invention, a plurality of (four) PC steel strands 20 which are flexible flexible wires are connected to a flexible bellows-like resin tube 22. By covering with, a form frame 24 of a reinforcing frame that can be bent and arranged freely is formed. In other words, according to the formwork 24 of this reinforcing frame, under the free bending of the PC steel strand 20 and the resin pipe body 22, the unevenness of the slope 14, that is, the formwork along the uneven shape Since the placement, formation, and eventually the reinforcement frame 10 can be easily constructed, the formation and construction object of the reinforcement frame is not limited to the slope that is leveled almost flat. Even uneven slopes can be sufficiently formed and constructed (see FIG. 1).
[0027]
And, because the main support 16-1 of the support 16 (16-1, 16-2) is driven into the ground and the like 12 with a driving length exceeding the estimated collapse layer 30 estimated in advance, Holding of the reinforcing frame 10 against the collapse force (sliding force) of the slope 14 can be sufficiently ensured without cutting the estimated collapse layer.
[0028]
That is, as shown in FIG. 1 and FIG. 2, according to the present invention, the natural form slopes 12 of natural ground such as trees 28 are reinforced without cutting the estimated collapse layer 30. Therefore, it is possible to sufficiently secure the natural environment such as the natural mountain or the natural scenery.
[0029]
And unlike the known tree planting method that artificially plants exotic plants, etc., it is possible to leave plants such as naturally grown trees 28 without cutting them, so the entire natural environment of natural ground 12 And it does not give a sense of incongruity to the natural landscape.
[0030]
Furthermore, the reinforcing frame 10 is not limited to bending deformation in the direction along the unevenness (non-land) of the slope 14, but can be easily and freely bent in the plane direction. That is, as shown in FIG. 2, the reinforcement frame 10 avoids the trees 28 that naturally grow on the slope 14 or partially buried rocks 36, such as the a1 to a4 portions of the reinforcement frame 10, or other necessity. The meandering position can be easily set according to the position of the support 16 (16-1, 16-2) provided at an irregular position as in the b1 part. Therefore, it is possible to form and construct a plane substantially lattice-like reinforcing frame on the slope without cutting trees or removing rocks. Therefore, also from this point, the natural environment of the slope 14 or the natural landscape can be sufficiently secured.
[0031]
In addition, since the natural ground 12 is not cut significantly, a large cutting work on the slope 14 such as the natural ground is unnecessary, and furthermore, the disposal of the soil (cutting soil) generated by the cutting of the slope is unnecessary. Therefore, the improvement of the workability and the reduction of the construction cost can be surely made. As described above, since it is not necessary to cut down the tree 28 existing on the slope 14 and to remove the rock 36, the workability is also improved in this respect.
[0032]
In addition, according to the reinforcing frame 10, it is sufficient to fill the grout material 26 such as cement milk into the mold 24 covered with the resin pipe body 22 by a pumping device or the like. I can be sure. Further, since it is not necessary for the worker to move on the slope 14 with the device or the like, the workability and the safety of the work are surely improved without imposing an excessive burden on the worker. .
[0033]
Here, in the embodiment of the present invention, the PC steel strand 20 is embodied as a flexible wire of the reinforcing frame 10, but it is not limited to this because any wire material that can be bent is sufficient. For example, you may utilize a rope, a chain, etc. as a flexible wire. Further, the number of the flexible wires 20 is four and the cross-sectional shape formed thereby is embodied as a substantially circular shape. However, it is sufficient if the hollow mold 24 can be formed. The cross-sectional shape of the mold frame and thus the reinforcing frame 10 may be formed from a flexible wire to a quadrangle or other polygonal shape.
[0034]
Note that the number of the flexible wires 20 may be appropriately selected depending on the strength required for the reinforcing frame 10 and the like.
[0035]
In the embodiment of the present invention, the main support 16-1 and the auxiliary support 16-2 of the support are alternately arranged. However, it is sufficient to ensure that the main support 16-1 has sufficient support strength of the reinforcing frame 10 with respect to the slope 14, and thus the natural ground 12, etc., and is not limited to this, for example, every second, every third, etc. The main support may be arranged.
[0036]
Furthermore, in the present invention, the planar shape of the reinforcing frame 10 is a substantially lattice shape, but the shape here is only an approximate shape, and flexible wires (PCs) arranged in the vertical and horizontal directions are used. Since it is sufficient to have a planar shape mainly composed of a steel strand (20), it is assumed that even a slight modification of the planar shape is included in the substantially lattice shape here.
[0037]
In this embodiment, the bellows-shaped resin tube 22 is embodied as a flexible covering material for the reinforcing frame 10, but a flexible material that can be bent is sufficient. For example, a woven fabric made of nylon thread or the like that hardly has stretchability and leakage of the grout material 26 may be used as the flexible covering material.
[0038]
Here, in the embodiment of the present invention, the spiral rebar is embodied as the formwork forming body 18, but it is sufficient to be able to hold the separated and juxtaposed PC steel wires 20 at the separated position. For example, a combination of a plurality of ring bodies may be used as the formwork forming body.
[0039]
Further, in this embodiment, the formwork forming body (spiral rebar) 18 is arranged around the PC steel strand 20, but is not limited to this, for example, the inside of a plurality of PC steel strands You may arrange this formwork formation in a position.
[0040]
The above-described embodiments are for explaining the present invention, and do not limit the present invention. All modifications, alterations, and the like within the technical scope of the present invention are included in the present invention. It goes without saying that it is done.
[0041]
【The invention's effect】
As described above, a reinforcing frame composed of a flexible flexible wire rod and a flexible mold frame mainly composed of a flexible covering material is formed and constructed on a slope such as a natural ground. According to the slope stabilization method according to the invention, since natural slopes such as natural growth of plants such as trees can be reinforced without cutting the presumed collapse layer, Ensuring the environment or natural landscape is sufficient.
[0042]
And since it is possible to leave plants, such as a tree which grew naturally, on the slope, without cutting down, it does not give a sense of incongruity to the whole natural environment, such as a natural mountain, and a natural scenery.
[0043]
In addition, this reinforcement frame can easily arrange reinforcement frames avoiding trees that naturally grow on slopes or partially buried rocks, etc. From this point also, the natural environment or natural landscape Is sufficient.
[0044]
In addition, since large ground is not cut, large-scale cutting work on slopes such as ground is unnecessary, and furthermore, disposal of soil (cutting soil) generated by cutting this slope is unnecessary. Improvement of the workability and reduction of the construction cost can be surely achieved.
[0045]
And according to this reinforcement frame, since it is sufficient to fill the grout material into the flexible mold frame covered with the flexible covering material, the work can be facilitated. In addition, since it is not necessary for the worker to move on the slope while carrying the apparatus or the like, the workability and the safety of the work are reliably improved without imposing an excessive burden on the worker.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a slope showing a slope stabilization method according to the present invention.
FIG. 2 is a schematic plan view of a slope showing the slope stabilization method of the present invention.
FIG. 3 is a schematic perspective view of a reinforcing frame according to the present invention.
[Explanation of symbols]
10 Reinforcement frame
14 slope
16 (16-1,16-2) support (main support, auxiliary support)
18 Formwork
20 Flexible wire (PC steel strand)
22 Flexible coating (resin tube)
24 formwork
26 Grout
30 speculative collapse layer

Claims (2)

地山等の斜面上に平面略格子状の補強枠を構築し、地山等に打設、造成した所定の支持体によって、この補強枠を地山等に対して固定的に連結、支持する斜面安定工法において、
離間並置された複数本の可撓性線材回りを可撓性被覆材で被覆してなる折曲配置の自在な略中空の型枠を、地山等の斜面上で平面略格子状に配置し、この型枠内にグラウト材を充填することによって、略格子状の補強枠を、地山等の斜面上に構築するとともに、
予め推測した斜面の推測崩壊層を越える打設長のもとで地山等に打設された主支持体を少なくとも含む、補強枠の縦横の交点に配された複数の支持体によって、この補強枠を地山等に対して固定的に連結、支持したことを特徴とする斜面安定工法。
A plane substantially lattice-shaped reinforcement frame is constructed on the slope of a natural ground, etc., and this reinforcement frame is fixedly connected to and supported by the natural ground etc. by a predetermined support body that is placed and constructed on the natural ground. In slope stabilization method,
A substantially hollow formwork that can be bent and formed by covering a plurality of spaced apart parallel flexible wires with a flexible covering material is arranged in a substantially grid pattern on a slope such as a natural ground. By filling the mold with grout material, a substantially lattice-shaped reinforcing frame is constructed on a slope such as a natural ground,
This reinforcement is provided by a plurality of supports arranged at the intersections of the longitudinal and lateral directions of the reinforcement frame, including at least a main support that is cast on a natural ground under a cast length that exceeds the estimated collapse layer of the slope that has been estimated in advance. A slope stabilization method characterized in that the frame is fixedly connected to and supported by natural ground.
地山等の斜面上で縦横方向に配置される複数本の可撓性線材と;
複数本の可撓性線材を保持することにより、その離間並置をはかる型枠形成体と;
離間並置された複数本の可撓性線材回りを被覆する可撓性被覆材と;
を少なくとも備えた折曲配置の自在な略中空の型枠内に、グラウト材を充填してなる補強枠。
A plurality of flexible wires arranged vertically and horizontally on a slope such as a natural mountain;
A mold forming body that holds a plurality of flexible wires and thereby arranges them in parallel;
A flexible coating covering a plurality of spaced apart juxtaposed flexible wires;
A reinforcing frame formed by filling a grout material in a substantially hollow mold having a bent arrangement and having at least a bent shape.
JP2001020926A 2001-01-30 2001-01-30 Slope stabilization method and its reinforcement frame Expired - Fee Related JP3662500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001020926A JP3662500B2 (en) 2001-01-30 2001-01-30 Slope stabilization method and its reinforcement frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020926A JP3662500B2 (en) 2001-01-30 2001-01-30 Slope stabilization method and its reinforcement frame

Publications (2)

Publication Number Publication Date
JP2002227213A JP2002227213A (en) 2002-08-14
JP3662500B2 true JP3662500B2 (en) 2005-06-22

Family

ID=18886559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020926A Expired - Fee Related JP3662500B2 (en) 2001-01-30 2001-01-30 Slope stabilization method and its reinforcement frame

Country Status (1)

Country Link
JP (1) JP3662500B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100506489B1 (en) * 2004-11-05 2005-08-08 주식회사 오륙개발 A method of construction for stability and afforestation of a sloping surface
JP2009073512A (en) * 2007-09-19 2009-04-09 Ashimori Ind Co Ltd Grout material filling bag, method for manufacturing it, and method for filling grout material in bag
CN108775019A (en) * 2018-08-27 2018-11-09 深圳花果山生态科技有限公司 A kind of quick ecological protective slope structure
CN109024628A (en) * 2018-08-27 2018-12-18 深圳花果山生态科技有限公司 A kind of method of quick ecological slope controlling
JP7084648B2 (en) * 2020-10-21 2022-06-15 日本植生株式会社 Slope surface collapse prevention method
JP7084647B2 (en) * 2020-10-21 2022-06-15 日本植生株式会社 Slope surface collapse prevention method

Also Published As

Publication number Publication date
JP2002227213A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
CN205314115U (en) High steep side slope combined supporting greening structure of highway
JP3491243B2 (en) Underground hollow lining structure and lining method
CN110847195A (en) Construction method for stable treatment of side and upward slope of large-block-diameter loose rock pile body opening
JP3662500B2 (en) Slope stabilization method and its reinforcement frame
CN110144899A (en) Shallow foundation building foundation pit Deformation control structure and construction method are closed in a kind of soft soil layer underground parking
JPH0960498A (en) Structure and execution method for timbering wall
JPH11310913A (en) Civil engineering structure construction stone, using method thereof, and civil engineering structure
KR100966512B1 (en) Vegetion earths retaining wall and construction method of the same
ES2254070T3 (en) PROCEDURE TO FORM AN OUTER LAYER TO PLANT VEGETATION IN A LAND TALUD.
JP3271951B2 (en) Construction stone for civil engineering structures, method of manufacturing construction stone for civil engineering structures, method of using construction stone for civil engineering structures, construction stone unit for civil engineering structures and civil construction
JP3706780B2 (en) Slope and natural ground surface protection structure
JP3096424B2 (en) Vegetation infrastructure construction method
JP6793424B1 (en) Slope protection method
JP2000027186A (en) Anchor for wall surface material
JP2000248553A (en) Repairing scene seeding and planting construction method of face of slope
JP2005023722A (en) Slope greening method
JPH0960492A (en) Structure and execution method for timbering wall
JP2004143775A (en) Steel frame with lid and banking construction method
JP2007100344A (en) Method for grating crib work
JP3957431B2 (en) Revetment wall
JP2000027150A (en) Pebble-packed basket for engineering works
JP3025094U (en) Frame for forming legal frame
CN104060626B (en) Underground passage construction method and precast structure used for same
FR2500864A1 (en) Steel bracing for connecting and reinforcing metal gabions - has three dimensional frame for steadying gabion walls during filling
JP5703482B1 (en) Slope prevention method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees