JP3658706B2 - Vibrating feed sieve device - Google Patents

Vibrating feed sieve device Download PDF

Info

Publication number
JP3658706B2
JP3658706B2 JP2002160090A JP2002160090A JP3658706B2 JP 3658706 B2 JP3658706 B2 JP 3658706B2 JP 2002160090 A JP2002160090 A JP 2002160090A JP 2002160090 A JP2002160090 A JP 2002160090A JP 3658706 B2 JP3658706 B2 JP 3658706B2
Authority
JP
Japan
Prior art keywords
processing unit
specific
vibration
amplitude
sorting processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002160090A
Other languages
Japanese (ja)
Other versions
JP2004000847A (en
Inventor
雅博 成沢
光輝 浅利
禮士 田坂
陽二 佐藤
Original Assignee
福山重機 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福山重機 株式会社 filed Critical 福山重機 株式会社
Priority to JP2002160090A priority Critical patent/JP3658706B2/en
Publication of JP2004000847A publication Critical patent/JP2004000847A/en
Application granted granted Critical
Publication of JP3658706B2 publication Critical patent/JP3658706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、振動されるふるい面部上で鉄鉱石、石炭、砕石、骨粉、貝殻粉、穀物など種々のバラ状固形物或いは粉体などの被処理物を送り移動させながらふるい選別することのできる振動送りふるい装置に関する。
【0002】
【従来の技術】
上面に被処理物を供給されるふるい面部を具備した選別処理部と、この選別処理部を特定傾斜軌跡上での往復変位可能に支持すると共にゴム材又はバネなどの弾性部材の弾性変形による前記選別処理部の前記特定傾斜軌跡方向の一定範囲内の変位を可能になしたものとした支持案内手段と、前記選別処理部を前記特定傾斜軌跡に沿って往復変位させる任意な振幅の振動を発生させるものとした起振手段とを備え、前記選別処理部の前記特定傾斜軌跡に沿った往復変位が前記ふるい面部上の被処理物を特定方向へ送り変位させるものとなる振動送りふるい装置は存在している。
【0003】
このふるい装置では、被処理物は前記ふるい面部の上面の特定箇所に連続的に供給され、この後、前記選別処理部の振動により、この振動の向きに関連した特定方向へ順次に送り移動され、この移動の過程でふるい選別され、前記ふるい面部のふるい目を通過できなかった被処理物は順次に送り移動されて、最終的に、選別処理部の外方へ送り出され、特定場所に集積されるものとなる。
【0004】
【発明が解決しようとする課題】
上記した在来の振動送りふるい装置においては、これの使用前に、前記選別処理部の前記特定傾斜軌跡の向きに沿った振幅が被処理物に対して最適となるように調整することが行われている。
【0005】
上記ふるい装置で被処理物を処理するときは、被処理物が予定通りの性状を有している状態ではその被処理物はふるい面部上を特定方向へ向け的確に送り変位されつつふるい面部で円滑にふるい選別されるのであるが、その性状が過度に変化すると、ふるい面部の振幅が不適切となって処理効率が低下したり、周囲の条件によってはふるい面部のふるい目に被処理物が詰まるなどして、ふるい処理が行えないようになる。
【0006】
また上記ふるい装置の使用中において、被処理物が途中で別のものに変更されることがあるが、この場合にも被処理物の性状の相違に起因して、上述と同様に、ふるい処理が効率的に行われないことがある。
【0007】
このようなとき、該ふるい装置の作動を一旦、停止させて、再び、前記選別処理部の前記特定傾斜軌跡の向きに沿った振幅を現在の被処理物に対して最適となすように調整し直すことが必要となり、塵埃の多い環境下で面倒な思いをするほか、作業能率が低下するなどの弊害が生じるのである。
【0008】
本発明は、斯かる問題点に鑑みて創案されたもので、被処理物の性状が処理途中で変わったり或いは被処理物が処理途中で他種のものに変更されるなどしても、簡易にこれに対処できて効率的なふるい処理を可能とする振動送りふるい装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明では請求項1に記載したように、上面に被処理物が供給されるふるい面部を具備した選別処理部と、この選別処理部を一定範囲内の特定傾斜軌跡で往復変位させることを可能にする支持案内手段と、前記選別処理部を前記特定傾斜軌跡で往復変位させるために任意な振幅の振動を発生させる起振手段とを備え、前記ふるい面部上の被処理物を特定方向へ送り変位させるものとした振動送りふるい装置において、前記選別処理部と前記支持案内手段の固定状部との相対的な変位量のうち前記特定傾斜軌跡に沿った特定向きの変位量を検出するための検出手段を設けた構成となす。
【0010】
これによれば、前記検出手段が本発明装置の作動中における選別処理部の振動の特定向きの振幅を連続して検出することを可能となし、このことが前記ふるい面部の振幅の最適化に寄与するものとなる。
【0011】
上記発明は以上のように具体化することができる。
即ち、請求項2に記載したように、前記検出手段の検出情報に基づいて特定向きの変位量を表示させるための数値表示装置を設ける。これによれば、前記数値表示装置が現時点の前記選別処理部の特定向きの振幅の大きさを作業者に視覚を通じて直ちに正確に認識させるものとなる。
【0012】
また請求項3に記載したように、前記検出手段が光を媒体として測定するものとした光学式変位測定手段となす。これによれば、前記選別処理部と前記支持案内手段の固定状部との相対的な変位を測定するために前記選別処理部又は前記固定状部に固体を接触させる必要のないものとなって、測定中の固体摩擦による損耗の生じないものとなり、長期に亘る正確な測定が可能となる。
【0013】
また請求項4に記載したように、前記光学式変位測定手段が投受光器とこの投受光器の発した光を反射するための反射面部材とからなり、前記投受光器はその投受光部が下面に位置するように前記固定状部に固定し、また反射面部材は選別処理部に固定した構成となす。
【0014】
これによれば、請求項3記載の発明の場合と同様な作用が得られる上に、次のような作用が得られるのであって、即ち、前記投受光器が固定状態に保持されて耐久性に富むものとなり、また前記投受光部が前記投受光器の下面にあるため、被処理物から舞い上がった塵埃が前記投受光部に堆積する現象が阻止され、前記投受光器の機能が長く良好に維持されるものとなる。
【0015】
また請求項5に記載したように、前記起振手段が、電動モータの回転を特定傾斜軌跡に沿った往復変位に変換してこの往復変位を前記選別処理部に伝達する構成となす。これによれば、前記電動モータの回転速度が変更されることにより前記選別処理部の前記特定傾斜軌跡に沿った方向の慣性力が変化すること、及び、前記選別処理部がゴム又はバネなどの弾性部材の弾性変形による一定範囲内の変位を可能となされていることが、前記選別処理部の特定向きの振幅を任意に変更させるものとなる。
【0016】
さらに請求項6に記載したように、前記検出手段の検出情報に基づいて前記電動モータに供給する電流の周波数を変化させるものとしたインバータを設ける。これによれば、本発明装置の使用中に、被処理物の性状が変化したり周囲環境が変化しても、電動モータの回転速度が自動的に変化されて、前記選別処理部の特定向きの振幅が自動的に最適化され、常に効率的なふるい選別が行われるようになる。
【0017】
【実施の形態】
図1は本発明に係る一実施例としての振動送りふるい装置の選別要部機構を示す斜視図、図2は前記選別要部機構の側面図、図3は前記選別要部機構の正面図、図4は前記選別要部機構の断面図、図5は前記選別要部機構の起振手段の周辺を示す図、図6は前記検出手段の一部を示す側面図、図7は前記選別要部機構の検出手段の説明図、図8は実際に製造された前記選別要部機構から採取した測定結果を示す図である。
【0018】
これらの図において、1は上面に被処理物を供給される選別処理部、2は前記選別処理部1を特定傾斜軌跡a上での往復変位可能に支持すると共に前記選別処理部1の前記特定傾斜軌跡aに沿った方向の一定範囲内の弾性変位を可能になすものとした支持案内手段、3は選別処理部1を特定傾斜軌跡a上で任意な振幅で往復変位させる振動を発生させるものとした起振手段、4は選別処理部1と、支持案内手段3の固定状部との相対的な変位量のうち特定傾斜軌跡aに沿った特定向きの変位量を検出するための検出手段である。ここに、特定向きとは必ずしも特定傾斜軌跡aに合致するものではない。
【0019】
先ず、選別処理部1について図1〜図5を参照して説明する。
図2に示すようにこの図の紙面に沿った方向(前後方向)を特に長くなされた細長状の箱状密閉通路体5を備えており、この通路体5は上面壁5aの左端部に被処理物の投入口6を形成されると共に、下面壁5bの右端部に上下位置を段違い状に相違させた3つの縦向き被処理物取出口7、8、9を形成されている。
【0020】
そして、箱状密閉通路体5の内方には、ふるい面部としての平面状の2つのふるい網100a、100bを略水平状の上下二段に配設して、箱状密閉通路体5の内方をこれらのふるい網100a、100bで3つの区画b1、b2、b3に仕切った状態となされており、最上位の区画b1が被処理物取出口7と連通され、中間位の区画b2が被処理物取出口8と連通され、最低位の区画b3が被処理物取出口9と連通されている。
【0021】
さらに箱状密閉通路体5の下面壁5bの前後方向途中の3箇所には図1に示すような左右向きのバネ受け部材10が突状に固着してあり、各バネ受け部材10の左右端面と箱状密閉通路体5の側面壁5c又は5dとに渡って図2に示す縦向きの結合片10aが固着してある。
【0022】
次に支持案内手段2について図1〜図4を参照して説明する。
固定状部の主要部をなす溝型鋼からなる左右一対の固定フレーム部材11a、11bを備えており、それぞれの固定フレーム部材11a、11bの上面の長手方向途中の3箇所に3つの軸受組立部材12が起立状に固定されている。
【0023】
この際、左右の固定フレーム部材11a、11bは図示しない適宜な基台に直接固定してもよいし、或いはこれに代えて、相互を左右向きの結合部材で一体状に結合して四角枠体となした後、この四角枠体を複数の防振バネを介して前記基台に据え付けてもよい。また各軸受組立部材12は本体部13の最上部に軸受部14を有しており、各軸受部14は本体部13に固着された円筒部材の内方にゴムブッシュ15を嵌着されている。
【0024】
そして、左右で対向した各対の軸受組立部材12、12のゴムブッシュ15、15間には横向き支持軸16が幾分の周方向揺動が許容されるように架装してあり、それぞれの横向き支持軸16の左右端寄り箇所には左右一対の可動支持レバー17が特定向きの略45度傾斜状に固定されている。各可動支持レバー17は各端部に軸受部17a、17bを有しており、各軸受部17a、17bは先の軸受部14と同様に円筒部材の内方にゴムブッシュ18a、18bを嵌着されている。
【0025】
3つの横向き支持軸16の真下には前後方向へ長くなされた方形状のバネ受け枠体19が配置してあり、このバネ受け枠体19は左右一対の溝型鋼20、20の下面部間などを適当数の結合部材21で連結すると共に、左右一対の溝型鋼20、20の上面の長手方向の3箇所間を山形鋼からなる左右向きの3つのバネ受け部材22及びこれの両端に固着された結合片22aで連結したものとなされている。そして、左右各側の各可動支持レバー17の下側の軸受部17bのゴムブッシュ18bに嵌着された支軸部材23を左右一対の溝型鋼20、20の外側面の対応する箇所に固定させることにより、バネ受け枠体19を3対の可動支持レバー17の下端部に支持させた状態となしている。
【0026】
一方、3対の可動支持レバー17の上側の軸受部17aのゴムブッシュ18aには、横向き支持軸16の真上に配置された選別処理部1の箱状密閉通路体5の左右の側面壁5c、5dに結合片10aを介して固定される支軸部材24が嵌着してある。
さらにバネ受け枠体19のバネ受け部材22の左右方向箇所には、この箇所と選別処理部1のバネ受け部材10の左右方向箇所との間に特定向きの略45度傾斜状に装着される複数の圧縮バネ25の下端を支持させている。
【0027】
次に起振手段3について図1、図2、図4及び図5を参照して説明する。
右側の固定フレーム部材11bの外側面に台部材26を固着し、この台部材26の上面に電動モータ27を固定し、このモーター27の出力軸に原動プーリ28が固定してある。一方、方形状バネ受け枠体19の左右の溝型鋼20、20のそれぞれの上面の特定箇所に、図示しないベアリングの内蔵されたベアリングハウジング29、29を固定し、これらベアリングハウジング29、29の図示しないベアリング間にクランク軸30を回転自在に装着し、このクランク軸30の右端に従動プーリ31を固定し、このプーリ31と、原動プーリ28との間に伝動ベルト32を掛け回している。
【0028】
クランク軸30は図4に示すように一対のベアリングハウジング29、29の外側方となる部分にクランク部33、33を形成されており、各クランク部33にはクランクベアリング34が回転自在に外嵌されている。そして、各クランクベアリング34からは弾性撓曲可能とした板バネ連結連部材35がこれの巾方向を左右向きとなされて特定方向の略45度傾斜状に延出させてある。一方では、選別処理部1の箱状密閉通路体5の左右の各側面壁5c、5dの長さ途中に支持板部材36を固着し、各支持板部材36の外側面に断面コ字形従動部材37の中央面部を特定方向の略45度傾斜状に固着している。そして、各断面コ字形従動部材37の対向面部c、cの中間箇所に板バネ連結連部材35の先側部分を位置させ、この先側部分の上下面と前記対向面部c、cの内面とをゴム部材38、38で結合し、これらゴム部材38、38の弾性変形により、板バネ連結連部材35の先側部分と断面コ字形従動部材37とが前後向き縦面に沿って相対変位する構成としている。
【0029】
次に検出手段4について図1、図2及び図6を参照して説明する。
選別処理部1と支持案内手段2の固定フレーム部材11a、11bとの相対的な変位量を、光を媒体として測定する光学式変位測定手段となしてあって、投受光器39と、この投受光器39の投受光部39aから発した光を反射するための反射面部材40からなっている。
【0030】
そして、投受光器39は固定フレーム部材11bの外側面に固着されたコ字形状の支持部材41の上辺部の下面箇所に固定されており、また投受光部39aは投受光器39の下面に配置されて下方へ向け測定光(例えばレーザ光など)dを投射するようになされている。ここで、投受光器39がコ字形状の支持部材41の上辺部の下面箇所に固定されたことは、投受光器39の上方から落下した被処理物や、投受光器39の周囲に近接した比較的大きな他物が投受光器39に直接に当たるのを阻止する上で寄与し、また投受光部39aが投受光器39の下面に位置していることは投受光器39の上方から降下した被処理物の塵埃が投受光部39a上に堆積するのを阻止してその機能を維持させる上で寄与する。
【0031】
一方、反射面部材40は支持部材41の上辺部と下辺部の間で投受光器39の下方に配置されると共に箱状密閉通路体5の右側の側面壁5dから垂下させた縦方向へ長い支持棒部材42の下端に水平状に固着されている。ここで、反射面部材40が支持部材41の上辺部と下辺部の間に配置されていることは、支持部材41の上方から降下した被処理物の塵埃などが反射面部材40の上面である反射面eの上に堆積するのを阻止する上で寄与する。
【0032】
そして、投受光器39は微少時間毎に投受光部39aから測定光dを下向きへ投射し、この測定光dが反射面eに当たり、ここで反射された後に上向きへ向かい、この上向きの測定光dを受光し、各測定光d毎にその投射時点から受光時点までの時間を算出して、投受光部39aから反射面eまでの垂直距離fに対応する検出信号を出力するものとなしてある。
【0033】
次に検出手段4に関連した構成について図7を参照して説明する。
投受光器39から発せられる検出信号を増幅させるアンプ43を投受光器39の近傍などに設け、一方では選別作業空間gから隔離された遠隔制御室44を形成し、その内方に振幅演算処理部45aの組み込まれた振幅表示装置45や、電動モータ27に供給される電流の周波数を制御するものとしたインバータ46aの組み込まれたモータ制御装置46を設けている。
【0034】
振幅演算処理部45aはアンプ43の出力である増幅検出情報を入力されると共にこの入力された増幅検出情報に基づいて特定傾斜軌跡aの傾斜角度(図示例では凡そ45°)に関連した任意な特定方向に沿った選別処理部1の振幅を算出するものとなす。
この実施例では特定傾斜軌跡aの傾斜にぼぼ倣った45°方向に沿った振幅(以下、「特定向き振幅」と称す。)Sを算出させるのであり、それには先ず投受光器39から微少時間毎に発せられる各検出信号に基づいて投受光部39aから反射面eまでの前記各検出信号に対応した垂直距離fを演算し、この垂直距離fと、特定向き振幅Sの傾斜角度である45°と、この傾斜角度方向の前記垂直距離fに対応する特定向き距離f1の関係から得られる数式、即ち「f1=f/SIN45°」を使用して、垂直距離fに対応した特定向き距離f1を演算させるのであり、次に電動モータ27による選別処理部1の1回の往復変位毎にこの特定距離f1の最大値と最低値とを判別させてこれら2つの値の減算を行わせるのであり、この減算結果値がその1回の往復変位に対応する特定向き振幅Sである。
【0035】
振幅表示装置45にはデジタル表示部45bが組み込んであり、このデジタル表示部45bは振幅演算処理部45aの算出結果である特定向き振幅値情報を入力されてこの特定向き振幅値を選別処理部1の1往復変位毎に数値表示するものとなす。
【0036】
そしてインバータ46はデジタル表示部45bと同一の特定向き振幅値情報を入力される周波数制御回路部46aを備えており、またこの周波数制御回路部46aは振幅設定摘みhを有し、この振幅設定摘みhの設定操作で得られる設定振幅値情報と、振幅演算処理部45aから出力された現在の特定向き振幅値情報とを比較し、この比較結果に対応した周波数の電流を電動モータ27に供給するものとなしてある。
【0037】
これをさらに詳細に説明すると、実際に製作された図1に示す選別要部機構についての振動特性を予め採取するのであり、例えば、電動モータ27に手動で種々異なる周波数の電流を供給して該電動モータ27を種々の回転速度で回転させることにより、電動モータ27の各回転速度におけるその供給電流についての電流値、周波数及び振幅値などを測定する。この測定結果は一般には、実際に製作された各選別要部機構に特有のものとなる。図8は特定の選別要部機構についての測定結果の一例である。
【0038】
そして、上記測定により得られた測定結果に基づいて、周波数制御回路46aの制御特性を決定するのであり、これによりインバータ46は前記特定向き振幅値情報や前記設定振幅値情報に関連して電動モータ27に最適周波数の電流を供給するものとなる。例えば、図8に示すような測定結果であれば、特定向き振幅の増大に比例して周波数や電流値が増大する関係にあるため、周波数制御回路46aの制御特性の概要は次のようになすのであって、即ち、特定向き振幅値情報が設定振幅値情報より小さいときはインバータ46から電動モータ27に供給される電流の周波数を増大させ、逆に特定向き振幅値情報が設定振幅値情報より大きいときはインバータ46から電動モータ27に供給される電流の周波数を減少させるものとなす。
【0039】
なお、起振手段3の起振力と選別要部機構の自然振動数との関連でこれらの共振現象が現れるときは周波数制御回路46aの制御特性の決定においてこれを考慮することが必要となるのであり、また被処理物を実際にふるい選別しているときと、そうでないときの選別処理部1の特定向き振幅Sは相違したものとなるため、必要に応じてこれを考慮する必要がある。
【0040】
次に上記した実施例装置の使用例及び作動について説明する。
振幅設定摘みhを経験則による任意な設定振幅値を設定するように操作すると共に、モータ制御装置46などを操作をして各部を作動状態とする。
【0041】
これにより、電動モータ27は回転を開始するのであり、この回転は伝動ベルト32を介してクランク軸30を回転させる。またクランク軸30の回転はクランク部33及び板バネ連結部材35などを介して特定傾斜軌跡aに沿った方向の往復変位に変換され、この往復変位がゴム部材38、38を介して選別処理部1をほぼ同体状に変位させる。この際、板バネ連結部材35やゴム部材38はクランク部33の回転変位に連動して無理なく撓んで選別処理部1の変位を円滑となす。
【0042】
選別処理部1は、板ばね連結部材35が特定傾斜軌跡aに沿った略斜め45°下方へ変位するとき、可動支持レバー17の軸受部17aに支持されて横向き支持軸16回りの下方へ圧縮バネ25の弾力に抗して変位され、また板ばね連結部材35が特定傾斜軌跡aに沿った斜め45°上方へ変位するとき、可動支持レバー17の軸受部17aに支持されて横向き支持軸16回りの上方へ向け圧縮バネ25の弾力に補助されつつ変位される。
【0043】
一方、光学式検出手段4の投受光器39はその投受光部39aから下向きに測定光dを微少間隔で投射するのであり、この投射された各測定光dは反射面部40の反射面eに到達して反射され、その後、上方へ向かい投受光部39aにより受光される。この際、各測定光d毎にこれの投射時点から受光時点までの経過時間に基づいて投受光部39aから反射面eまでの垂直距離fに対応する検出信号を発出する。
【0044】
そして各測定光d毎のその検出信号はアンプ43を経て振幅表示装置45の振幅演算処理部45aに入力され、この演算処理部45aはそれら各検出信号に基づいて投受光部39aから反射面eまでの各検出信号毎の垂直距離fを演算し、さらにこの垂直距離情報から特定向き距離f1を算出し、この後、選別処理部1の特定傾斜方向aの1往復変位毎における特定向き距離f1の最大値と最小値とを判別し、次にこれら値の減算を実行し、その結果値から特定傾斜方向aに沿った方向の選別処理部1の特定向き振幅(特定向き振幅)Sを演算し、デジタル表示部45bはこの演算により得られた特定向き振幅値情報を伝達され、各特定向き振幅Sを数値表示する。
【0045】
一方、各特定向き振幅値情報はインバータ46にも入力されるのであり、これにより、インバータ46は先に特定された設定振幅値情報とこの特定向き振幅値情報とからこれらの差を無くするような周波数の電流を電動モータ27に供給するものとなり、これにより特定向き振幅値はやがて設定振幅値に合致した状態となる。
【0046】
この後、採掘された鉄鉱石や石炭などの被処理物を投入口6を通じて上側のふるい網100aの上面に一定流量で連続的に供給する。このように被処理物を供給された選別処理部1はこれに載っている被処理物の重量分だけ重くなるため、特定向き振幅値は一般に一時的に小さくなるが、インバータ46の制御作用により、やがて設定振幅値に合致し、以後、被処理物の供給流量などが変化しない限り、同じ特定向き振幅値が維持されるものとなる。
【0047】
投入口6を通じて選別処理部1内に供給された被処理物は上側のふるい網100a上に到達した後、選別処理部1の特定傾斜軌跡aに沿った往復変位によりそのふるい網100a上で後側へ小刻みに押し移動され、この移動過程で一次的なふるい選別を実施されるのであり、この際、ふるい網100a上には比較的大きい粒径の被処理物が残り、やがて最上位の被処理物取出口7に達し、ここから落下する。
【0048】
また上側のふるい網100aを通過した被処理物は下側のふるい網100b上に到達し、この後、選別処理部1の特定傾斜軌跡aに沿った往復変位により下側のふるい網100b上で後側へ小刻みに押し移動され、この移動過程で二次的なふるい選別を実施されるのであり、この際、ふるい網100b上に残った中間的な粒径の被処理物がやがて中間位の被処理物取出口8に達し、ここから落下する。
【0049】
さらに、下側のふるい網100bを通過した比較的小さい粒径の被処理物は箱状密閉通路体5の下面壁5bの内面上に到達するのであり、ここに到達した被処理物はやはり選別処理部1の特定傾斜軌跡aに沿った往復変位により下面壁5b上で後側へ小刻みに押し移動され、やがて最下位の被処理物取出口9に達し、ここから落下する。
【0050】
上記のように実施されるふるい選別処理の過程で、被処理物の流量や性状などが一時的に変化して、選別処理部1の特定向き振幅値が大小に変化することがあるが、このような場合にも、インバータ46は特定向き振幅値を設定振幅値に合致させるように作動するため、選別処理部1はやがて設定振幅値と同じ大きさの特定向き振幅値で往復変位されるものとなり、従って特定向き振幅Sが過小となってふるい網100a、100bのふるい目に被処理物が詰まるなどして箱状密閉通路体5の内方での被処理物の後方への送り移動が停滞気味となる現象は阻止され、また被処理物の後方への送り移動が停滞気味となることに起因して電動モータ27に過電流が流れる現象も阻止されるのであり、また特定向き振幅Sが過大となってふるい網100a、100bと被処理物との接触が不適切となり、ふるい選別が効率的に行われなくなる現象も阻止される。
【0051】
また選別処理部1でのふるい選別処理が定常的に行われているものの、設定振幅値の大きさが適当でないため、ふるい選別処理が効率的に行われていないと判断されたときは、作業者は振幅設定摘みhを再操作して、その設定振幅値を適当な大きさに修正するのであり、これによりインバータ46はやがて選別処理部1の特定向き振幅値を修正後のそれに合致させるものとなり、適切なふるい選別処理が実施されるようになる。
【0052】
また被処理物のふるい選別処理が終了した後に、直ちに、異種の被処理物をふるい選別処理しなければならないこともあるが、このような場合は、振幅設定摘みhを操作して、設定振幅値を前記異種の被処理物に適合する大きさに変更するのであり、これによりインバータ46は選別処理部1を前記異種の被処理物に適合する特定向き振幅Sで往復変位させるものとなり、前記異種の被処理物は適切にふるい選別される。
【0053】
さらに振幅表示装置45のデジタル表示部45bにはふるい選別処理中の選別処理部1の1往復変位毎の特定向き振幅値が表示されるため、作業者はその表示を見ることにより選別処理部1でのふるい選別処理の状況を直ちに判断でき、不適切と判断されたときなどには直ちに必要な処置が取れるのである。
【0054】
上記実施例は次のように変形できる。
即ち、選別処理部1は単一のふるい網を設けて粒径程度の異なる2群に分別してもよいし、或いは3つ以上のふるい網を設けて粒径程度の異なる4群以上に分別してもよいのであり、これに関連して縦向き被処理物取出口7、8、9の数は適宜に変更する。
【0055】
またデジタル表示部45bには選別処理部1の複数回の往復変位毎に、これら複数回の往復変位に係る各1往復変位毎の特定向き振幅値の平均値を数値表示させるようにしてもよい。
なお、上記実施例は本発明の一具体例であり、本発明思想を逸脱しない範囲で任意に変形して差し支えないものである。
【0056】
【発明の効果】
以上のように構成した本発明によれば、次のような効果が得られる。
即ち、請求項1に記載したものによれば、選別処理部1の特定向き振幅Sを連続して検出することを可能として、ふるい面部100a、100bの特定向き振幅Sの最適化に寄与するもので、被処理物の性状が処理途中で変わったり或いは被処理物が処理途中で他種のものに変更されるなどしても、簡易にこれに対処できて効率的なふるい選別処理を可能となすものである。
【0057】
請求項2に記載したものによれば、振幅表示装置45に現時点の選別処理部1の特定向き振幅Sの大きさが数値表示されるため、作業者などは視覚により選別処理部1の特定向き振幅Sを直ちに正確に認識することができ、従って選別処理部のふるい選別の状態を最適化させる処理を必要に応じ迅速且つ的確に行えるようになる。
【0058】
請求項3に記載したものによれば、選別処理部1と支持案内手段2の固定状部である固定フレーム部材11bとの相対的な変位を光を媒体として測定するため、選別処理部1又は固定フレーム部材11bに測定子などを接触させる必要のないものとなって、測定のための固体摩擦の損耗が生じず、長期に亘る正確な測定が行えるようになる。
【0059】
請求項4に記載したものによれば、請求項3記載の発明の場合と同様な効果が得られる上に、次のような作用が得られるのであって、即ち、投受光器39を固定状態に保持してその耐久性を向上させることができ、また投受光部39aが投受光器39の下面にあるため、被処理物から舞い上がった塵埃が投受光部39aに堆積する現象を阻止することができ、投受光器39の機能を長く良好に維持させることができる。
【0060】
請求項5に記載したものによれば、電動モータ27の回転速度を変更することにより、選別処理部1の特定向き振幅Sを任意に変更させることができるものである。
【0061】
請求項6に記載したものによれば、本発明装置の使用中に、被処理物の性状が変化したり周囲環境が変化するなどしても、インバータ46がこの変化に関連して電動モータ27の回転速度を自動的に変化させるものとなり、選別処理部1の特定向き振幅Sを自動的に最適化して、常に効率的なふるい選別を行わせることができるものである。
【図面の簡単な説明】
【図1】本発明に係る振動送りふるい装置の選別要部機構を示す斜視図である。
【図2】前記選別要部機構の側面図である。
【図3】前記選別要部機構の正面図である。
【図4】前記選別要部機構の断面図である。
【図5】前記選別要部機構の起振手段の周辺を示す図である。
【図6】前記検出手段の一部を示す側面図である。
【図7】前記選別要部機構の検出手段の説明図である。
【図8】実際に製造された前記選別要部機構から採取した測定結果の一例を示す図である。
【符号の説明】
1 選別処理部
2 支持案内手段
3 起振手段
4 検出手段
100a ふるい網(ふるい面部)
100b ふるい網(ふるい面部)
11a 固定フレーム部材(固定状部)
11b 固定フレーム部材(固定状部)
15 ゴムブッシュ(弾性部材)
18a ゴムブッシュ(弾性部材)
18b ゴムブッシュ(弾性部材)
25 圧縮バネ(弾性部材)
35 板バネ連結部材(弾性部材)
38 ゴム部材(弾性部材)
39 投受光器
39a 投受光部
40 反射面部材
45 数値表示手段(光学式変位測定手段)
46 インバータ
S 特定向き振幅(相対的な変位量)
a 特定傾斜軌跡
f 垂直距離(相対的な変位量)
f1 特定向き距離(相対的な変位量)
[0001]
[Industrial application fields]
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to select a sieve while feeding and moving various kinds of solid materials such as iron ore, coal, crushed stone, bone powder, shell powder, and grains, or powder on the vibrating screen surface portion. The present invention relates to a vibration feed sieve device.
[0002]
[Prior art]
A sorting processing unit having a sieving surface portion to which an object to be processed is supplied on the upper surface, and supporting the sorting processing unit so as to be reciprocally displaceable on a specific inclination trajectory and elastic deformation of an elastic member such as a rubber material or a spring. A support guide means that enables displacement within a certain range in the direction of the specific inclination trajectory of the selection processing section, and vibration of arbitrary amplitude that causes the selection processing section to reciprocate along the specific inclination trajectory. There is a vibration feed sieving device that includes a vibration generating means, and a reciprocating displacement along the specific inclination trajectory of the selection processing unit feeds and displaces the workpiece on the sieve surface portion in a specific direction. doing.
[0003]
In this sieving apparatus, the object to be processed is continuously supplied to a specific location on the upper surface of the sieving surface portion, and then sequentially moved in a specific direction related to the direction of the vibration by the vibration of the sorting processing portion. The objects to be processed that have been screened in the course of this movement and that could not pass through the sieve screen part are sequentially sent and moved, and finally sent out to the outside of the sorting processing unit, where they are collected at a specific location. Will be.
[0004]
[Problems to be solved by the invention]
In the conventional vibration feed sieving apparatus described above, before use, the amplitude along the direction of the specific inclination trajectory of the selection processing unit is adjusted so as to be optimal for the workpiece. It has been broken.
[0005]
When processing an object to be processed by the above-mentioned sieving device, the object to be processed has a property as planned. Screening is performed smoothly, but if the properties change excessively, the amplitude of the screen surface part becomes inappropriate and the processing efficiency decreases, or depending on the surrounding conditions, the object to be processed is placed on the screen screen part sieve. Due to clogging, it becomes impossible to perform sieving.
[0006]
In addition, during the use of the sieving apparatus, the object to be processed may be changed to a different one on the way, but in this case as well, due to the difference in properties of the object to be processed, the sieving process is similar to the above. May not be performed efficiently.
[0007]
In such a case, the operation of the sieving device is temporarily stopped, and the amplitude along the direction of the specific inclination trajectory of the selection processing unit is adjusted again so as to be optimal for the current object to be processed. In addition to being troublesome in a dusty environment, the work efficiency is reduced.
[0008]
The present invention was devised in view of such problems, and even if the properties of the object to be processed are changed during the process or the object to be processed is changed to another type during the process. Another object of the present invention is to provide a vibration feed sieving apparatus that can cope with this problem and enables efficient sieving.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, as described in claim 1, a sorting processing unit having a sieving surface portion to which an object to be processed is supplied on the upper surface, and the sorting processing unit are provided. Enables reciprocal displacement with a specific inclination trajectory within a certain range The support guide means and the selection processing section are reciprocally displaced along the specific inclination trajectory. for Generate vibration of arbitrary amplitude Wake With vibration means Writing To displace the workpiece on the surface of the ridge in a specific direction did In the vibration feed sieving device, of the relative displacement amount between the selection processing unit and the fixed part of the support guide means of The specific inclination trajectory Along The detection means for detecting the displacement amount in a specific direction is provided.
[0010]
According to this, it becomes possible for the detection means to continuously detect the amplitude in the specific direction of the vibration of the sorting processing unit during the operation of the apparatus of the present invention, and this is for optimizing the amplitude of the sieve surface portion. Will contribute.
[0011]
The above invention can be embodied as described above.
That is, as described in claim 2, based on the detection information of the detection means. Displacement in a specific direction Is provided with a numerical display device. According to this, the numerical display device causes the operator to immediately and accurately recognize the magnitude of the amplitude in the specific direction of the selection processing unit at the present time.
[0012]
Further, as described in claim 3, the detection means Is light Optical displacement measuring means for measuring a medium as a medium And The According to this, in order to measure the relative displacement between the sorting unit and the fixed part of the support guide means, it is not necessary to bring the solid into contact with the sorting unit or the fixed part. Thus, wear due to solid friction during measurement does not occur, and accurate measurement over a long period of time becomes possible.
[0013]
According to a fourth aspect of the present invention, the optical displacement measuring means comprises a light projecting / receiving device and a reflecting surface member for reflecting light emitted from the light projecting / receiving device, and the light projecting / receiving device has its light projecting / receiving unit. Is fixed to the fixed portion so as to be positioned on the lower surface, and the reflecting surface member is fixed to the sorting processing portion.
[0014]
According to this, the same action as in the case of the invention of claim 3 can be obtained, and the following action can be obtained. That is, the light emitter / receiver is held in a fixed state and has durability. In addition, since the light projecting / receiving unit is on the lower surface of the light projecting / receiving unit, the phenomenon that dust rising from the object to be processed accumulates on the light projecting / receiving unit is prevented, and the function of the light projecting / receiving unit is long and good. Will be maintained.
[0015]
According to a fifth aspect of the present invention, the vibration generating unit converts the rotation of the electric motor into a reciprocating displacement along a specific inclination locus and transmits the reciprocating displacement to the selection processing unit. According to this, when the rotational speed of the electric motor is changed, the inertial force in the direction along the specific inclination trajectory of the sorting processing unit changes, and the sorting processing unit is made of rubber or a spring. The fact that the displacement within a certain range due to the elastic deformation of the elastic member is made possible causes the amplitude in the specific direction of the selection processing unit to be arbitrarily changed.
[0016]
Further, according to a sixth aspect of the present invention, there is provided an inverter that changes the frequency of the current supplied to the electric motor based on the detection information of the detection means. According to this, even when the property of the object to be processed or the surrounding environment is changed during use of the apparatus of the present invention, the rotation speed of the electric motor is automatically changed, and the specific direction of the sorting processing unit is determined. Is automatically optimized so that efficient screening is always performed.
[0017]
Embodiment
FIG. 1 is a perspective view showing a selection main part mechanism of a vibration feed sieving device as an embodiment according to the present invention, FIG. 2 is a side view of the selection main part mechanism, and FIG. 3 is a front view of the selection main part mechanism. 4 is a cross-sectional view of the selection main part mechanism, FIG. 5 is a view showing the periphery of the vibration generating means of the selection main part mechanism, FIG. 6 is a side view showing a part of the detection means, and FIG. FIG. 8 is a diagram showing the measurement results collected from the actually produced main part mechanism for sorting.
[0018]
In these drawings, reference numeral 1 denotes a sorting processing unit whose workpiece is supplied to the upper surface, and 2 denotes the sorting processing unit 1 that supports the sorting processing unit 1 so as to be reciprocally displaceable on a specific inclination trajectory a. Support guide means 3 that enables elastic displacement within a certain range in the direction along the inclined trajectory a, 3 generates a vibration that causes the sorting processing unit 1 to reciprocate with an arbitrary amplitude on the specific inclined trajectory a The vibration generating means 4 is a specific inclination trajectory a out of the relative displacement amount between the sorting processing part 1 and the fixed part of the support guide means 3. Along It is a detection means for detecting a displacement amount in a specific direction. Here, the specific direction does not necessarily match the specific inclination trajectory a.
[0019]
First, the sorting processing unit 1 will be described with reference to FIGS.
As shown in FIG. 2, an elongate box-shaped sealed passage body 5 having a particularly long direction (front-rear direction) along the plane of the drawing is provided, and this passage body 5 is covered at the left end of the upper surface wall 5a. A workpiece inlet 6 is formed, and three vertically-treated workpiece outlets 7, 8, and 9 are formed at the right end of the lower wall 5b with different vertical positions.
[0020]
In the inside of the box-shaped sealed passage body 5, two planar sieve nets 100 a, 100 b serving as a screen surface portion are arranged in two substantially horizontal upper and lower stages, The screen is divided into three sections b1, b2 and b3 by these sieve nets 100a and 100b. The uppermost section b1 is communicated with the workpiece outlet 7 and the intermediate section b2 is covered. The processed object outlet 8 is communicated with, and the lowest section b3 is communicated with the processed object outlet 9.
[0021]
Further, left and right spring receiving members 10 as shown in FIG. 1 are fixed in a projecting manner at three locations on the lower surface wall 5b of the box-shaped sealed passage body 5 in the front-rear direction. 2 and the side wall 5c or 5d of the box-shaped sealed passage body 5 are fixed to each other in the vertical direction as shown in FIG.
[0022]
Next, the support guide means 2 will be described with reference to FIGS.
A pair of left and right fixed frame members 11a and 11b made of channel steel forming the main part of the fixed portion is provided, and three bearing assembly members 12 are provided at three positions in the longitudinal direction of the upper surfaces of the fixed frame members 11a and 11b. Is fixed upright.
[0023]
At this time, the left and right fixed frame members 11a and 11b may be directly fixed to an appropriate base (not shown). Alternatively, the left and right fixed frame members 11a and 11b are joined together by a right and left joint member to form a square frame. Then, this square frame body may be installed on the base via a plurality of vibration isolation springs. Each bearing assembly member 12 has a bearing portion 14 at the uppermost portion of the main body portion 13, and each bearing portion 14 is fitted with a rubber bush 15 inside the cylindrical member fixed to the main body portion 13. .
[0024]
A lateral support shaft 16 is installed between the rubber bushes 15 and 15 of each pair of bearing assembly members 12 and 12 facing left and right so that some circumferential swing is allowed. A pair of left and right movable support levers 17 are fixed at a position near the left and right ends of the lateral support shaft 16 so as to be inclined at a specific direction of approximately 45 degrees. Each movable support lever 17 has a bearing portion 17a, 17b at each end, and each bearing portion 17a, 17b is fitted with a rubber bush 18a, 18b inside the cylindrical member in the same manner as the previous bearing portion 14. Has been.
[0025]
A rectangular spring receiving frame 19 that is elongated in the front-rear direction is disposed directly below the three lateral support shafts 16. The spring receiving frame 19 is disposed between the lower surface portions of the pair of left and right channel steels 20 and 20. Are connected by a suitable number of coupling members 21, and are fixed to three left and right spring receiving members 22 made of angle steel and to both ends thereof between three longitudinal portions of the upper surfaces of the pair of left and right groove steels 20, 20. The connecting pieces 22a are connected. Then, the support shaft member 23 fitted to the rubber bush 18b of the lower bearing portion 17b of each of the left and right movable support levers 17 is fixed to a corresponding location on the outer surface of the pair of left and right channel steels 20, 20. As a result, the spring receiving frame 19 is supported by the lower ends of the three pairs of movable support levers 17.
[0026]
On the other hand, the rubber bushes 18a of the upper bearing portions 17a of the three pairs of movable support levers 17 are provided on the left and right side walls 5c of the box-shaped sealed passage body 5 of the sorting processing unit 1 disposed directly above the lateral support shaft 16. A support shaft member 24 is fixed to 5d via the coupling piece 10a.
Further, the spring receiving member 19 of the spring receiving frame 19 is attached to the left and right portions of the spring receiving member 22 in an inclined manner of approximately 45 degrees in a specific direction between this portion and the left and right portions of the spring receiving member 10 of the sorting processing unit 1. The lower ends of the plurality of compression springs 25 are supported.
[0027]
Next, the vibration generating means 3 will be described with reference to FIGS. 1, 2, 4 and 5.
A base member 26 is fixed to the outer surface of the right fixed frame member 11 b, an electric motor 27 is fixed to the upper surface of the base member 26, and a driving pulley 28 is fixed to the output shaft of the motor 27. On the other hand, bearing housings 29 and 29 in which bearings (not shown) are incorporated are fixed to specific locations on the upper surfaces of the left and right grooved steels 20 and 20 of the rectangular spring receiving frame body 19. A crankshaft 30 is rotatably mounted between the non-bearing bearings, a driven pulley 31 is fixed to the right end of the crankshaft 30, and a transmission belt 32 is wound around the pulley 31 and the driving pulley 28.
[0028]
As shown in FIG. 4, the crankshaft 30 is formed with crank portions 33, 33 on the outer side of the pair of bearing housings 29, 29, and a crank bearing 34 is rotatably fitted to each crank portion 33. Has been. From each crank bearing 34, a leaf spring connecting member 35 that can be elastically bent is extended in an inclined direction of approximately 45 degrees in a specific direction with the width direction thereof being left and right. On the other hand, a support plate member 36 is fixed in the middle of the length of the left and right side walls 5c, 5d of the box-shaped sealed passage body 5 of the sorting processing unit 1, and a U-shaped follower member is formed on the outer surface of each support plate member 36. The central surface portion of 37 is fixed in an inclined direction of approximately 45 degrees in a specific direction. And the front side part of the leaf | plate spring connection connection member 35 is located in the intermediate location of the opposing surface parts c and c of each U-shaped follower member 37, and the upper and lower surfaces of this front side part and the inner surface of the opposing surface parts c and c are made into. The structure which couple | bonds with the rubber members 38 and 38, and the front side part of the leaf | plate spring connection connection member 35 and the U-shaped follower member 37 carry out relative displacement along the front-back direction vertical surface by elastic deformation of these rubber members 38 and 38. It is said.
[0029]
Next, the detection means 4 will be described with reference to FIGS.
Optical displacement measuring means for measuring the relative displacement between the sorting processing unit 1 and the fixed frame members 11a and 11b of the support guide means 2 by using light as a medium. It comprises a reflecting surface member 40 for reflecting light emitted from the light projecting / receiving unit 39a of the light receiver 39.
[0030]
The light emitter / receiver 39 is fixed to the lower surface portion of the upper side portion of the U-shaped support member 41 fixed to the outer surface of the fixed frame member 11 b, and the light emitter / receiver 39 a is attached to the lower surface of the light emitter / receiver 39. It is arranged to project measurement light (for example, laser light) d downward. Here, the fact that the light emitter / receiver 39 is fixed to the lower surface portion of the upper side portion of the U-shaped support member 41 is close to the object to be processed dropped from above the light emitter / receiver 39 and the vicinity of the light emitter / receiver 39. The relatively large object is prevented from directly hitting the light projecting / receiving device 39, and the fact that the light projecting / receiving unit 39a is located on the lower surface of the light projecting / receiving device 39 is lowered from above the light projecting / receiving device 39. This prevents the dust of the processed object from accumulating on the light projecting / receiving unit 39a and contributes to maintaining its function.
[0031]
On the other hand, the reflecting surface member 40 is disposed below the light projecting / receiving device 39 between the upper side portion and the lower side portion of the support member 41 and is long in the vertical direction suspended from the right side wall 5d of the box-shaped sealed passage body 5. The lower end of the support bar member 42 is fixed horizontally. Here, the reflective surface member 40 is disposed between the upper side portion and the lower side portion of the support member 41, so that dust or the like of the object to be processed that has fallen from above the support member 41 is the upper surface of the reflective surface member 40. This contributes to preventing deposition on the reflective surface e.
[0032]
The light projecting / receiving device 39 projects the measurement light d downward from the light projecting / receiving unit 39a every minute time, and the measurement light d hits the reflection surface e, is reflected here and then travels upward, and the upward measurement light. d is received, the time from the projection time to the light reception time is calculated for each measurement light d, and a detection signal corresponding to the vertical distance f from the light projecting / receiving unit 39a to the reflection surface e is output. is there.
[0033]
Next, a configuration related to the detection means 4 will be described with reference to FIG.
An amplifier 43 for amplifying a detection signal emitted from the light projecting / receiving device 39 is provided in the vicinity of the light projecting / receiving device 39, and on the other hand, a remote control chamber 44 isolated from the sorting work space g is formed, and an amplitude calculation process is performed on the inside thereof. An amplitude display device 45 incorporating the unit 45a and a motor control device 46 incorporating an inverter 46a for controlling the frequency of the current supplied to the electric motor 27 are provided.
[0034]
The amplitude calculation processing unit 45a receives amplification detection information that is an output of the amplifier 43, and based on the input amplification detection information, an arbitrary calculation related to the inclination angle of the specific inclination locus a (approximately 45 ° in the illustrated example). The amplitude of the selection processing unit 1 along the specific direction is calculated.
In this embodiment, an amplitude S (hereinafter referred to as “specific direction amplitude”) S along the 45 ° direction roughly following the inclination of the specific inclination locus a is calculated. A vertical distance f corresponding to each detection signal from the light projecting / receiving unit 39a to the reflection surface e is calculated based on each detection signal emitted every time, and the vertical distance f and the inclination angle 45 of the specific direction amplitude S are 45. The specific orientation distance f1 corresponding to the vertical distance f using a formula obtained from the relationship between ° and the specific orientation distance f1 corresponding to the vertical distance f in the inclination angle direction, that is, “f1 = f / SIN45 °”. Next, for each reciprocating displacement of the selection processing unit 1 by the electric motor 27, the maximum value and the minimum value of the specific distance f1 are discriminated and these two values are subtracted. , This subtraction result value Is a specific orientation amplitude S that corresponds to the one reciprocating displacement.
[0035]
A digital display unit 45b is incorporated in the amplitude display device 45, and the digital display unit 45b receives specific direction amplitude value information which is a calculation result of the amplitude calculation processing unit 45a and selects the specific direction amplitude value. A numerical value is displayed for each reciprocal displacement.
[0036]
The inverter 46 includes a frequency control circuit unit 46a to which the same specific-direction amplitude value information as that of the digital display unit 45b is input. The frequency control circuit unit 46a has an amplitude setting knob h. The set amplitude value information obtained by the setting operation of h is compared with the current specific direction amplitude value information output from the amplitude calculation processing unit 45a, and a current having a frequency corresponding to the comparison result is supplied to the electric motor 27. It is supposed to be.
[0037]
This will be described in more detail. The vibration characteristics of the actual selection main portion mechanism shown in FIG. 1 are collected in advance. For example, the electric motor 27 is manually supplied with currents of different frequencies. By rotating the electric motor 27 at various rotational speeds, the current value, frequency, amplitude value, and the like of the supplied current at each rotational speed of the electric motor 27 are measured. In general, this measurement result is specific to each of the selection main mechanisms actually manufactured. FIG. 8 is an example of a measurement result for a specific sorting main part mechanism.
[0038]
The control characteristic of the frequency control circuit 46a is determined on the basis of the measurement result obtained by the above measurement, whereby the inverter 46 is related to the specific-direction amplitude value information and the set amplitude value information. 27 is supplied with a current having an optimum frequency. For example, in the case of the measurement result as shown in FIG. 8, since the frequency and the current value increase in proportion to the increase in the specific direction amplitude, the outline of the control characteristic of the frequency control circuit 46a is as follows. That is, when the specific direction amplitude value information is smaller than the set amplitude value information, the frequency of the current supplied from the inverter 46 to the electric motor 27 is increased, and conversely, the specific direction amplitude value information is more than the set amplitude value information. When it is larger, the frequency of the current supplied from the inverter 46 to the electric motor 27 is reduced.
[0039]
When these resonance phenomena appear in relation to the vibration force of the vibration generating means 3 and the natural frequency of the selection main part mechanism, it is necessary to take this into consideration when determining the control characteristics of the frequency control circuit 46a. In addition, since the specific direction amplitude S of the selection processing unit 1 when the object to be processed is actually screened is different from that when it is not, it is necessary to consider this as necessary. .
[0040]
Next, usage examples and operations of the above-described embodiment apparatus will be described.
The amplitude setting knob h is operated so as to set an arbitrary set amplitude value based on an empirical rule, and the motor control device 46 and the like are operated to set each part in an operating state.
[0041]
As a result, the electric motor 27 starts rotating, and this rotation rotates the crankshaft 30 via the transmission belt 32. The rotation of the crankshaft 30 is converted into a reciprocating displacement in the direction along the specific inclination locus a through the crank portion 33 and the leaf spring connecting member 35, and the reciprocating displacement is converted through the rubber members 38, 38 into the sorting processing unit. 1 is displaced almost in the same body shape. At this time, the leaf spring connecting member 35 and the rubber member 38 are flexibly forced in conjunction with the rotational displacement of the crank portion 33 to smoothly displace the selection processing portion 1.
[0042]
When the leaf spring connecting member 35 is displaced substantially obliquely 45 ° along the specific inclination locus a, the sorting processing unit 1 is supported by the bearing portion 17a of the movable support lever 17 and compressed downward around the lateral support shaft 16. When the leaf spring connecting member 35 is displaced obliquely upward 45 ° along the specific inclination trajectory a, the lateral support shaft 16 is supported by the bearing portion 17a of the movable support lever 17 when displaced against the elasticity of the spring 25. It is displaced while being assisted by the elasticity of the compression spring 25 toward the upper part of the circumference.
[0043]
On the other hand, the light projecting / receiving device 39 of the optical detecting means 4 projects the measurement light d downward from the light projecting / receiving unit 39a at a minute interval, and each of the projected measurement light d is projected onto the reflection surface e of the reflection surface unit 40. It reaches and is reflected, and then it is received upward by the light projecting / receiving unit 39a. At this time, a detection signal corresponding to the vertical distance f from the light projecting / receiving unit 39a to the reflecting surface e is issued for each measurement light d based on the elapsed time from the projection time to the light reception time.
[0044]
The detection signal for each measurement light d is input to the amplitude calculation processing unit 45a of the amplitude display device 45 through the amplifier 43, and the calculation processing unit 45a is sent from the light projecting / receiving unit 39a to the reflection surface e based on the detection signals. The vertical distance f for each detection signal is calculated, and the specific direction distance f1 is calculated from the vertical distance information. Thereafter, the specific direction distance f1 for each reciprocal displacement in the specific inclination direction a of the selection processing unit 1 is calculated. And then subtracting these values, and calculating the specific direction amplitude (specific direction amplitude) S of the sorting processing unit 1 in the direction along the specific inclination direction a from the result value. The digital display unit 45b receives the specific direction amplitude value information obtained by this calculation and displays each specific direction amplitude S numerically.
[0045]
On the other hand, each specific direction amplitude value information is also input to the inverter 46, so that the inverter 46 eliminates these differences from the previously set amplitude value information and the specific direction amplitude value information. A current having a proper frequency is supplied to the electric motor 27, whereby the specific-direction amplitude value eventually matches the set amplitude value.
[0046]
After that, a mined object such as iron ore or coal is continuously supplied to the upper surface of the upper sieve net 100a through the inlet 6 at a constant flow rate. Since the sorting processing unit 1 supplied with the object to be processed becomes heavier by the weight of the object to be processed, the specific direction amplitude value is generally temporarily reduced. As long as it matches the set amplitude value and the supply flow rate of the workpiece is not changed, the same specific direction amplitude value is maintained.
[0047]
The object to be processed supplied into the sorting processing unit 1 through the inlet 6 reaches the upper sieve screen 100a, and then moves back on the sieve mesh 100a due to the reciprocating displacement along the specific inclination locus a of the sorting processing unit 1. In this movement process, the primary sieve selection is carried out. At this time, the workpiece having a relatively large particle size remains on the sieve net 100a, and eventually the uppermost coating is obtained. It reaches the treated product outlet 7 and falls from here.
[0048]
Further, the object to be processed that has passed through the upper sieve net 100a reaches the lower sieve mesh 100b, and then, on the lower sieve mesh 100b due to the reciprocal displacement along the specific inclination locus a of the selection processing unit 1. It is pushed and moved to the rear side in small increments, and secondary sieve selection is carried out in this movement process. At this time, the workpiece having an intermediate particle size remaining on the sieve net 100b is eventually put into an intermediate position. It reaches the workpiece outlet 8 and falls from here.
[0049]
Furthermore, the processing object having a relatively small particle diameter that has passed through the lower sieve net 100b reaches the inner surface of the lower surface wall 5b of the box-shaped sealed passage body 5, and the processing object that has reached here is still selected. By the reciprocating displacement along the specific inclination locus a of the processing unit 1, the processing unit 1 is pushed back and forth on the lower surface wall 5 b, and eventually reaches the lowest processing object outlet 9 and falls from here.
[0050]
In the course of the screening process performed as described above, the flow rate and properties of the object to be processed may change temporarily, and the specific direction amplitude value of the selection processing unit 1 may change in magnitude. Even in such a case, since the inverter 46 operates so as to match the specific direction amplitude value with the set amplitude value, the selection processing unit 1 is eventually reciprocally displaced by the specific direction amplitude value having the same magnitude as the set amplitude value. Accordingly, the specific-direction amplitude S becomes too small, and the object to be processed is clogged with the sieves of the sieve nets 100a and 100b, so that the movement of the object to be processed inward of the box-shaped sealed passage body 5 is caused. The phenomenon of stagnation is prevented, and the phenomenon in which an overcurrent flows through the electric motor 27 due to the stagnation of the backward movement of the workpiece is also prevented, and the specific direction amplitude S Sifted net 1 0a, contact between 100b and the object to be treated is inappropriate, the phenomenon that the sieve screening is not performed effectively also prevented.
[0051]
In addition, when it is determined that the screen selection processing is not performed efficiently because the size of the set amplitude value is not appropriate although the screen selection processing in the selection processing unit 1 is performed regularly. The operator re-operates the amplitude setting knob h and corrects the set amplitude value to an appropriate size, so that the inverter 46 eventually matches the specific direction amplitude value of the selection processing unit 1 with the corrected value. Thus, an appropriate sieve selection process is performed.
[0052]
In addition, in some cases, it is necessary to sort the different kinds of objects to be processed immediately after the process of screening the objects to be processed. In such a case, the amplitude setting knob h is operated to set the set amplitude. The value is changed to a size suitable for the different kinds of workpieces, so that the inverter 46 reciprocates the sorting processing unit 1 with a specific direction amplitude S suitable for the different kinds of workpieces. Different types of objects to be processed are appropriately screened.
[0053]
Further, since the specific direction amplitude value for each reciprocal displacement of the sorting processing unit 1 during the screen sorting process is displayed on the digital display unit 45b of the amplitude display device 45, the operator looks at the display to select the sorting processing unit 1 The state of the sieve sorting process in can be immediately determined, and when it is determined to be inappropriate, necessary measures can be taken immediately.
[0054]
The above embodiment can be modified as follows.
That is, the sorting processing unit 1 may be provided with a single sieve net to be classified into two groups having different particle sizes, or may be provided with three or more sieve nets to be classified into four or more groups having different particle sizes. In this connection, the number of the vertically oriented workpiece outlets 7, 8, and 9 is appropriately changed.
[0055]
Further, the digital display unit 45b may display the average value of the specific direction amplitude value for each reciprocating displacement for each of the reciprocating displacements of the sorting processing unit 1 for a plurality of reciprocating displacements. .
The above embodiment is a specific example of the present invention and can be arbitrarily modified without departing from the spirit of the present invention.
[0056]
【The invention's effect】
According to the present invention configured as described above, the following effects can be obtained.
That is, according to the first aspect, it is possible to continuously detect the specific direction amplitude S of the selection processing unit 1, and contribute to optimization of the specific direction amplitude S of the sieving surface portions 100a and 100b. Therefore, even if the properties of the object to be processed change during the process or the object to be processed is changed to another type during the process, this can be easily dealt with and an efficient sieve selection process can be performed. It is what you make.
[0057]
According to the second aspect of the present invention, since the magnitude of the specific direction amplitude S of the current sorting processing unit 1 is numerically displayed on the amplitude display device 45, the operator or the like can visually recognize the specific direction of the sorting processing unit 1 The amplitude S can be recognized immediately and accurately, so that the process of optimizing the state of screening selection by the selection processing unit can be performed quickly and accurately as necessary.
[0058]
According to the third aspect of the present invention, in order to measure the relative displacement between the sorting processing unit 1 and the fixed frame member 11b, which is a fixed part of the support guide means 2, using the light as a medium, the sorting processing unit 1 or There is no need to bring a probe or the like into contact with the fixed frame member 11b, so that wear of solid friction for measurement does not occur, and accurate measurement can be performed over a long period of time.
[0059]
According to the fourth aspect of the present invention, the same effect as in the case of the third aspect of the invention can be obtained, and the following operation can be obtained. That is, the light projecting / receiving device 39 is fixed. And the durability of the light projecting / receiving unit 39a is on the lower surface of the light projecting / receiving device 39, so that the phenomenon that dust rising from the object to be processed accumulates on the light projecting / receiving unit 39a is prevented. Thus, the function of the projector / receiver 39 can be maintained long and satisfactorily.
[0060]
According to the fifth aspect, the specific direction amplitude S of the sorting processing unit 1 can be arbitrarily changed by changing the rotation speed of the electric motor 27.
[0061]
According to the sixth aspect of the present invention, even if the property of the object to be processed or the surrounding environment changes during use of the apparatus of the present invention, the inverter 46 is related to this change. The rotation speed is automatically changed, and the specific direction amplitude S of the selection processing unit 1 is automatically optimized so that efficient sieve selection can always be performed.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a selection main part mechanism of a vibration feed sieving device according to the present invention.
FIG. 2 is a side view of the selection main part mechanism.
FIG. 3 is a front view of the selection main part mechanism.
FIG. 4 is a cross-sectional view of the selection main part mechanism.
FIG. 5 is a view showing the periphery of the vibration generating means of the selection main part mechanism.
FIG. 6 is a side view showing a part of the detection means.
FIG. 7 is an explanatory diagram of detection means of the selection main part mechanism.
FIG. 8 is a diagram showing an example of a measurement result collected from the actually manufactured main part mechanism for sorting.
[Explanation of symbols]
1 sorter
2 Support guidance means
3 Shaking means
4 detection means
100a Sieve net (Sieving face part)
100b Sieve net (Sieving face part)
11a Fixed frame member (fixed part)
11b Fixed frame member (fixed part)
15 Rubber bush (elastic member)
18a Rubber bush (elastic member)
18b Rubber bush (elastic member)
25 Compression spring (elastic member)
35 Leaf spring connecting member (elastic member)
38 Rubber member (elastic member)
39 Emitter / receiver
39a Emitter / receiver
40 Reflective surface member
45 Numerical display means (optical displacement measuring means)
46 Inverter
S Specific amplitude (relative displacement)
a Specific slope trajectory
f Vertical distance (relative displacement)
f1 Specific orientation distance (relative displacement)

Claims (6)

上面に被処理物が供給されるふるい面部を具備した選別処理部と、この選別処理部を一定範囲内の特定傾斜軌跡で往復変位させることを可能にする支持案内手段と、前記選別処理部を前記特定傾斜軌跡で往復変位させるために任意な振幅の振動を発生させる起振手段とを備え、前記ふるい面部上の被処理物を特定方向へ送り変位させるものとした振動送りふるい装置において、前記選別処理部と前記支持案内手段の固定状部との相対的な変位量のうち前記特定傾斜軌跡に沿った特定向きの変位量を検出するための検出手段を設けたことを特徴とする振動送りふるい装置。A sorting processing unit having a sieving surface part to which an object to be treated is supplied on the upper surface, a support guide means for enabling the sorting processing unit to reciprocate with a specific inclination trajectory within a certain range, and the sorting processing unit the specific inclined trajectory and a exciter means that generates a vibration of any amplitude in order to reciprocally displaced, before notation vibration feed sieving apparatus an object to be processed on Rui surface was assumed to feed displacing a specific direction In the above, a detecting means is provided for detecting a displacement amount in a specific direction along the specific inclination trajectory among the relative displacement amounts between the sorting processing portion and the fixed portion of the support guide means. And vibration feeding sieve device. 前記検出手段の検出情報に基づいて、前記特定向きの変位量を数値表示させる数値表示装置を設けたことを特徴とする請求項1記載の振動送りふるい装置。2. The vibration feed screen device according to claim 1, further comprising a numerical value display device that numerically displays the displacement amount in the specific direction based on detection information of the detection means. 前記検出手段が光を媒体として測定する光学式変位測定手段であることを特徴とする請求項1又は2記載の振動ふるい装置。The detection means, vibrating screen apparatus according to claim 1 or 2, wherein it is optical and displacement measuring means that measure the light as a medium. 前記光学式変位測定手段が、投受光器とこの投受光器の発した光を反射するための反射面部材とからなり、前記投受光器はその投受光部が下面に位置するように前記固定状部に固定し、また反射面部材は選別処理部に固定したことを特徴とする請求項3記載の振動送りふるい装置。The optical displacement measuring means comprises a light projecting / receiving device and a reflecting surface member for reflecting light emitted from the light projecting / receiving device, and the light receiving / receiving device is fixed so that the light projecting / receiving portion is located on the lower surface. 4. The vibration feed sieve device according to claim 3, wherein the vibration-sieving device is fixed to the shape portion, and the reflection surface member is fixed to the sorting processing portion. 前記起振手段が、電動モータの回転を前記特定傾斜軌跡に沿った往復変位に変換してこの往復変位を前記選別処理部に伝達する構成であることを特徴とする請求項1、2、3又は4記載の振動送りふるい装置。4. The structure according to claim 1, wherein the vibration generating means is configured to convert the rotation of the electric motor into a reciprocating displacement along the specific inclination locus and to transmit the reciprocating displacement to the selection processing unit. Or the vibration feed sieve apparatus of 4. 前記検出手段の検出情報に基づいて前記電動モータに供給する電流の周波数を変化させるものとしたインバータを設けたことを特徴とする請求項5記載の振動送りふるい装置。6. The vibration feed sieve device according to claim 5, further comprising an inverter that changes a frequency of a current supplied to the electric motor based on detection information of the detection means.
JP2002160090A 2002-05-31 2002-05-31 Vibrating feed sieve device Expired - Fee Related JP3658706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002160090A JP3658706B2 (en) 2002-05-31 2002-05-31 Vibrating feed sieve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002160090A JP3658706B2 (en) 2002-05-31 2002-05-31 Vibrating feed sieve device

Publications (2)

Publication Number Publication Date
JP2004000847A JP2004000847A (en) 2004-01-08
JP3658706B2 true JP3658706B2 (en) 2005-06-08

Family

ID=30429625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002160090A Expired - Fee Related JP3658706B2 (en) 2002-05-31 2002-05-31 Vibrating feed sieve device

Country Status (1)

Country Link
JP (1) JP3658706B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316834A (en) * 2013-05-23 2013-09-25 新乡市高服筛分机械有限公司 Screening machine with two screening boxes
CN109939928A (en) * 2019-04-18 2019-06-28 杭州富阳顺来粮油专业合作社 A kind of energy saving screening plant of peanut processing that screening effect is good

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5759596B2 (en) * 2013-06-27 2015-08-05 節夫 新開 Crushing soybean skin separating apparatus and method for producing soymilk using the same
CN104722483A (en) * 2015-03-29 2015-06-24 浙江东立绿源科技股份有限公司 Vibratory screening device for feed production
CN105672667A (en) * 2016-04-12 2016-06-15 中交一航局安装工程有限公司 Installation process for electric coal wharf screening system
WO2018219840A1 (en) * 2017-05-29 2018-12-06 A O Ideas Gmbh Screening device
CN114293417B (en) * 2022-03-09 2022-05-31 河北铁达科技有限公司 Steel rail elastic strip buckling pressure detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316834A (en) * 2013-05-23 2013-09-25 新乡市高服筛分机械有限公司 Screening machine with two screening boxes
CN109939928A (en) * 2019-04-18 2019-06-28 杭州富阳顺来粮油专业合作社 A kind of energy saving screening plant of peanut processing that screening effect is good

Also Published As

Publication number Publication date
JP2004000847A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP3658706B2 (en) Vibrating feed sieve device
US20140202937A1 (en) Welding inspection device
JP3152920U (en) Sorting device
WO1996016748A1 (en) Apparatus for sieving a particulate material
CN204320682U (en) Color selector
CN107021333A (en) Screwdriver head sorting system
JP2014018733A (en) Vibration type granulation device
CN107570410A (en) A kind of Multi-stage screening machine of automatic charging
EP2038621A1 (en) Multihead weigher and method of operating such multihead weigher
CN210965816U (en) Novel screening sand machine for building engineering
CN114247536A (en) Impact crusher
CN112570265B (en) Conveyer with vibration picking function
US2730234A (en) Color sorting mechanism
CN106052578B (en) A kind of evaluation method of object relative distance deviation
JP2021181065A (en) Food sorting apparatus
US257928A (en) Sifter
KR100652452B1 (en) The light separator for an extraneous substance of the construction waste using the vibration plate
JPH09210633A (en) Selection setting apparatus for angle plate spring fitting
US11795006B2 (en) Distribution apparatus
JP2008212874A (en) Vegetables and fruits sorting apparatus
CN108840042A (en) Vibra feeder
CN209764034U (en) be used for many specifications tile magnetism material symmetry check out test set
CN107185831A (en) A kind of dual proportion recleaner screen of cereal
CN214812525U (en) Be used for bridge construction to use concrete processing equipment
KR20200017619A (en) Selection apparatus for foodstuff pellet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050120

LAPS Cancellation because of no payment of annual fees