JP2004000847A - Vibration feeding and sifting apparatus - Google Patents

Vibration feeding and sifting apparatus Download PDF

Info

Publication number
JP2004000847A
JP2004000847A JP2002160090A JP2002160090A JP2004000847A JP 2004000847 A JP2004000847 A JP 2004000847A JP 2002160090 A JP2002160090 A JP 2002160090A JP 2002160090 A JP2002160090 A JP 2002160090A JP 2004000847 A JP2004000847 A JP 2004000847A
Authority
JP
Japan
Prior art keywords
processing unit
selection processing
specific
vibration
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002160090A
Other languages
Japanese (ja)
Other versions
JP3658706B2 (en
Inventor
Masahiro Narisawa
成沢 雅博
Mitsuteru Asari
浅利 光輝
Reiji Tasaka
田坂 禮士
Yoji Sato
佐藤 陽二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuyama Juki Kk
Original Assignee
Fukuyama Juki Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuyama Juki Kk filed Critical Fukuyama Juki Kk
Priority to JP2002160090A priority Critical patent/JP3658706B2/en
Publication of JP2004000847A publication Critical patent/JP2004000847A/en
Application granted granted Critical
Publication of JP3658706B2 publication Critical patent/JP3658706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently perform sifting by simply coping with such a situation that the property of a material to be treated is changed or the material to be treated is changed to other kind during the sifting. <P>SOLUTION: A vibration feeding and sifting apparatus provided with a sorting part 1 possessing sifting surface parts 100a and 100b, a supporting and guiding means 2 for supporting the sorting part 1 to be reciprocally displaced on a specific gradient locus (a) and a vibration generating means 3 for generating vibration to reciprocally displace the sorting part 1 along the specific gradient locus (a). The apparatus is further provided with a detecting means 4 for detecting the displacement in the specific direction related to the direction of the specific gradient locus (a) in the relative displacement of the sorting part 1 to a fixed part 11a of the supporting and guiding means 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、振動されるふるい面部上で鉄鉱石、石炭、砕石、骨粉、貝殻粉、穀物など種々のバラ状固形物或いは粉体などの被処理物を送り移動させながらふるい選別することのできる振動送りふるい装置に関する。
【0002】
【従来の技術】
上面に被処理物を供給されるふるい面部を具備した選別処理部と、この選別処理部を特定傾斜軌跡上での往復変位可能に支持すると共にゴム材又はバネなどの弾性部材の弾性変形による前記選別処理部の前記特定傾斜軌跡方向の一定範囲内の変位を可能になしたものとした支持案内手段と、前記選別処理部を前記特定傾斜軌跡に沿って往復変位させる任意な振幅の振動を発生させるものとした起振手段とを備え、前記選別処理部の前記特定傾斜軌跡に沿った往復変位が前記ふるい面部上の被処理物を特定方向へ送り変位させるものとなる振動送りふるい装置は存在している。
【0003】
このふるい装置では、被処理物は前記ふるい面部の上面の特定箇所に連続的に供給され、この後、前記選別処理部の振動により、この振動の向きに関連した特定方向へ順次に送り移動され、この移動の過程でふるい選別され、前記ふるい面部のふるい目を通過できなかった被処理物は順次に送り移動されて、最終的に、選別処理部の外方へ送り出され、特定場所に集積されるものとなる。
【0004】
【発明が解決しようとする課題】
上記した在来の振動送りふるい装置においては、これの使用前に、前記選別処理部の前記特定傾斜軌跡の向きに沿った振幅が被処理物に対して最適となるように調整することが行われている。
【0005】
上記ふるい装置で被処理物を処理するときは、被処理物が予定通りの性状を有している状態ではその被処理物はふるい面部上を特定方向へ向け的確に送り変位されつつふるい面部で円滑にふるい選別されるのであるが、その性状が過度に変化すると、ふるい面部の振幅が不適切となって処理効率が低下したり、周囲の条件によってはふるい面部のふるい目に被処理物が詰まるなどして、ふるい処理が行えないようになる。
【0006】
また上記ふるい装置の使用中において、被処理物が途中で別のものに変更されることがあるが、この場合にも被処理物の性状の相違に起因して、上述と同様に、ふるい処理が効率的に行われないことがある。
【0007】
このようなとき、該ふるい装置の作動を一旦、停止させて、再び、前記選別処理部の前記特定傾斜軌跡の向きに沿った振幅を現在の被処理物に対して最適となすように調整し直すことが必要となり、塵埃の多い環境下で面倒な思いをするほか、作業能率が低下するなどの弊害が生じるのである。
【0008】
本発明は、斯かる問題点に鑑みて創案されたもので、被処理物の性状が処理途中で変わったり或いは被処理物が処理途中で他種のものに変更されるなどしても、簡易にこれに対処できて効率的なふるい処理を可能とする振動送りふるい装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明では請求項1に記載したように、上面に被処理物を供給されるふるい面部を具備した選別処理部と、この選別処理部を特定傾斜軌跡上での往復変位可能に支持すると共にゴム材又はバネなどの弾性部材の弾性変形による前記選別処理部の前記特定傾斜軌跡方向の一定範囲内の変位を可能になしたものとした支持案内手段と、前記選別処理部を前記特定傾斜軌跡に沿って往復変位させる任意な振幅の振動を発生させるものとした起振手段とを備え、前記選別処理部の前記特定傾斜軌跡に沿った往復変位が前記ふるい面部上の被処理物を特定方向へ送り変位させるものとなる振動送りふるい装置において、前記選別処理部と前記支持案内手段の固定状部との相対的な変位量のうち前記特定傾斜軌跡の向きに関連した特定向きの変位量を検出するための検出手段を設けた構成となす。
【0010】
これによれば、前記検出手段が本発明装置の作動中における選別処理部の振動の特定向きの振幅を連続して検出することを可能となし、このことが前記ふるい面部の振幅の最適化に寄与するものとなる。
【0011】
上記発明は次のように具体化することができる。
即ち、請求項2に記載したように、前記検出手段の検出情報に基づいて前記選別処理部の特定方向の振幅を数値表示させるための数値表示装置を設ける。これによれば、前記数値表示装置が現時点の前記選別処理部の特定向きの振幅の大きさを作業者に視覚を通じて直ちに正確に認識させるものとなる。
【0012】
また請求項3に記載したように、前記検出手段が前記選別処理部と前記支持案内手段の固定状部との相対的な変位量を、光を媒体として測定するものとした光学式変位測定手段となされた構成となす。これによれば、前記選別処理部と前記支持案内手段の固定状部との相対的な変位を測定するために前記選別処理部又は前記固定状部に固体を接触させる必要のないものとなって、測定中の固体摩擦による損耗の生じないものとなり、長期に亘る正確な測定が可能となる。
【0013】
また請求項4に記載したように、前記光学式変位測定手段が投受光器とこの投受光器の発した光を反射するための反射面部材とからなり、前記投受光器はその投受光部が下面に位置するように前記固定状部に固定し、また反射面部材は選別処理部に固定した構成となす。
【0014】
これによれば、請求項3記載の発明の場合と同様な作用が得られる上に、次のような作用が得られるのであって、即ち、前記投受光器が固定状態に保持されて耐久性に富むものとなり、また前記投受光部が前記投受光器の下面にあるため、被処理物から舞い上がった塵埃が前記投受光部に堆積する現象が阻止され、前記投受光器の機能が長く良好に維持されるものとなる。
【0015】
また請求項5に記載したように、前記起振手段が、電動モータの回転を特定傾斜軌跡に沿った往復変位に変換してこの往復変位を前記選別処理部に伝達する構成となす。これによれば、前記電動モータの回転速度が変更されることにより前記選別処理部の前記特定傾斜軌跡に沿った方向の慣性力が変化すること、及び、前記選別処理部がゴム又はバネなどの弾性部材の弾性変形による一定範囲内の変位を可能となされていることが、前記選別処理部の特定向きの振幅を任意に変更させるものとなる。
【0016】
さらに請求項6に記載したように、前記検出手段の検出情報に基づいて前記電動モータに供給する電流の周波数を変化させるものとしたインバータを設ける。これによれば、本発明装置の使用中に、被処理物の性状が変化したり周囲環境が変化しても、電動モータの回転速度が自動的に変化されて、前記選別処理部の特定向きの振幅が自動的に最適化され、常に効率的なふるい選別が行われるようになる。
【0017】
【実施の形態】
図1は本発明に係る一実施例としての振動送りふるい装置の選別要部機構を示す斜視図、図2は前記選別要部機構の側面図、図3は前記選別要部機構の正面図、図4は前記選別要部機構の断面図、図5は前記選別要部機構の起振手段の周辺を示す図、図6は前記検出手段の一部を示す側面図、図7は前記選別要部機構の検出手段の説明図、図8は実際に製造された前記選別要部機構から採取した測定結果を示す図である。
【0018】
これらの図において、1は上面に被処理物を供給される選別処理部、2は前記選別処理部1を特定傾斜軌跡a上での往復変位可能に支持すると共に前記選別処理部1の前記特定傾斜軌跡aに沿った方向の一定範囲内の弾性変位を可能になすものとした支持案内手段、3は選別処理部1を特定傾斜軌跡a上で任意な振幅で往復変位させる振動を発生させるものとした起振手段、4は選別処理部1と、支持案内手段3の固定状部との相対的な変位量のうち特定傾斜軌跡aの向きに関連した特定向きの変位量を検出するための検出手段である。ここに、特定向きとは必ずしも特定傾斜軌跡aに合致するものではない。
【0019】
先ず、選別処理部1について図1〜図5を参照して説明する。
図2に示すようにこの図の紙面に沿った方向(前後方向)を特に長くなされた細長状の箱状密閉通路体5を備えており、この通路体5は上面壁5aの左端部に被処理物の投入口6を形成されると共に、下面壁5bの右端部に上下位置を段違い状に相違させた3つの縦向き被処理物取出口7、8、9を形成されている。
【0020】
そして、箱状密閉通路体5の内方には、ふるい面部としての平面状の2つのふるい網100a、100bを略水平状の上下二段に配設して、箱状密閉通路体5の内方をこれらのふるい網100a、100bで3つの区画b1、b2、b3に仕切った状態となされており、最上位の区画b1が被処理物取出口7と連通され、中間位の区画b2が被処理物取出口8と連通され、最低位の区画b3が被処理物取出口9と連通されている。
【0021】
さらに箱状密閉通路体5の下面壁5bの前後方向途中の3箇所には図1に示すような左右向きのバネ受け部材10が突状に固着してあり、各バネ受け部材10の左右端面と箱状密閉通路体5の側面壁5c又は5dとに渡って図2に示す縦向きの結合片10aが固着してある。
【0022】
次に支持案内手段2について図1〜図4を参照して説明する。
固定状部の主要部をなす溝型鋼からなる左右一対の固定フレーム部材11a、11bを備えており、それぞれの固定フレーム部材11a、11bの上面の長手方向途中の3箇所に3つの軸受組立部材12が起立状に固定されている。
【0023】
この際、左右の固定フレーム部材11a、11bは図示しない適宜な基台に直接固定してもよいし、或いはこれに代えて、相互を左右向きの結合部材で一体状に結合して四角枠体となした後、この四角枠体を複数の防振バネを介して前記基台に据え付けてもよい。また各軸受組立部材12は本体部13の最上部に軸受部14を有しており、各軸受部14は本体部13に固着された円筒部材の内方にゴムブッシュ15を嵌着されている。
【0024】
そして、左右で対向した各対の軸受組立部材12、12のゴムブッシュ15、15間には横向き支持軸16が幾分の周方向揺動が許容されるように架装してあり、それぞれの横向き支持軸16の左右端寄り箇所には左右一対の可動支持レバー17が特定向きの略45度傾斜状に固定されている。各可動支持レバー17は各端部に軸受部17a、17bを有しており、各軸受部17a、17bは先の軸受部14と同様に円筒部材の内方にゴムブッシュ18a、18bを嵌着されている。
【0025】
3つの横向き支持軸16の真下には前後方向へ長くなされた方形状のバネ受け枠体19が配置してあり、このバネ受け枠体19は左右一対の溝型鋼20、20の下面部間などを適当数の結合部材21で連結すると共に、左右一対の溝型鋼20、20の上面の長手方向の3箇所間を山形鋼からなる左右向きの3つのバネ受け部材22及びこれの両端に固着された結合片22aで連結したものとなされている。そして、左右各側の各可動支持レバー17の下側の軸受部17bのゴムブッシュ18bに嵌着された支軸部材23を左右一対の溝型鋼20、20の外側面の対応する箇所に固定させることにより、バネ受け枠体19を3対の可動支持レバー17の下端部に支持させた状態となしている。
【0026】
一方、3対の可動支持レバー17の上側の軸受部17aのゴムブッシュ18aには、横向き支持軸16の真上に配置された選別処理部1の箱状密閉通路体5の左右の側面壁5c、5dに結合片10aを介して固定される支軸部材24が嵌着してある。
さらにバネ受け枠体19のバネ受け部材22の左右方向箇所には、この箇所と選別処理部1のバネ受け部材10の左右方向箇所との間に特定向きの略45度傾斜状に装着される複数の圧縮バネ25の下端を支持させている。
【0027】
次に起振手段3について図1、図2、図4及び図5を参照して説明する。
右側の固定フレーム部材11bの外側面に台部材26を固着し、この台部材26の上面に電動モータ27を固定し、このモーター27の出力軸に原動プーリ28が固定してある。一方、方形状バネ受け枠体19の左右の溝型鋼20、20のそれぞれの上面の特定箇所に、図示しないベアリングの内蔵されたベアリングハウジング29、29を固定し、これらベアリングハウジング29、29の図示しないベアリング間にクランク軸30を回転自在に装着し、このクランク軸30の右端に従動プーリ31を固定し、このプーリ31と、原動プーリ28との間に伝動ベルト32を掛け回している。
【0028】
クランク軸30は図4に示すように一対のベアリングハウジング29、29の外側方となる部分にクランク部33、33を形成されており、各クランク部33にはクランクベアリング34が回転自在に外嵌されている。そして、各クランクベアリング34からは弾性撓曲可能とした板バネ連結連部材35がこれの巾方向を左右向きとなされて特定方向の略45度傾斜状に延出させてある。一方では、選別処理部1の箱状密閉通路体5の左右の各側面壁5c、5dの長さ途中に支持板部材36を固着し、各支持板部材36の外側面に断面コ字形従動部材37の中央面部を特定方向の略45度傾斜状に固着している。そして、各断面コ字形従動部材37の対向面部c、cの中間箇所に板バネ連結連部材35の先側部分を位置させ、この先側部分の上下面と前記対向面部c、cの内面とをゴム部材38、38で結合し、これらゴム部材38、38の弾性変形により、板バネ連結連部材35の先側部分と断面コ字形従動部材37とが前後向き縦面に沿って相対変位する構成としている。
【0029】
次に検出手段4について図1、図2及び図6を参照して説明する。
選別処理部1と支持案内手段2の固定フレーム部材11a、11bとの相対的な変位量を、光を媒体として測定する光学式変位測定手段となしてあって、投受光器39と、この投受光器39の投受光部39aから発した光を反射するための反射面部材40からなっている。
【0030】
そして、投受光器39は固定フレーム部材11bの外側面に固着されたコ字形状の支持部材41の上辺部の下面箇所に固定されており、また投受光部39aは投受光器39の下面に配置されて下方へ向け測定光(例えばレーザ光など)dを投射するようになされている。ここで、投受光器39がコ字形状の支持部材41の上辺部の下面箇所に固定されたことは、投受光器39の上方から落下した被処理物や、投受光器39の周囲に近接した比較的大きな他物が投受光器39に直接に当たるのを阻止する上で寄与し、また投受光部39aが投受光器39の下面に位置していることは投受光器39の上方から降下した被処理物の塵埃が投受光部39a上に堆積するのを阻止してその機能を維持させる上で寄与する。
【0031】
一方、反射面部材40は支持部材41の上辺部と下辺部の間で投受光器39の下方に配置されると共に箱状密閉通路体5の右側の側面壁5dから垂下させた縦方向へ長い支持棒部材42の下端に水平状に固着されている。ここで、反射面部材40が支持部材41の上辺部と下辺部の間に配置されていることは、支持部材41の上方から降下した被処理物の塵埃などが反射面部材40の上面である反射面eの上に堆積するのを阻止する上で寄与する。
【0032】
そして、投受光器39は微少時間毎に投受光部39aから測定光dを下向きへ投射し、この測定光dが反射面eに当たり、ここで反射された後に上向きへ向かい、この上向きの測定光dを受光し、各測定光d毎にその投射時点から受光時点までの時間を算出して、投受光部39aから反射面eまでの垂直距離fに対応する検出信号を出力するものとなしてある。
【0033】
次に検出手段4に関連した構成について図7を参照して説明する。
投受光器39から発せられる検出信号を増幅させるアンプ43を投受光器39の近傍などに設け、一方では選別作業空間gから隔離された遠隔制御室44を形成し、その内方に振幅演算処理部45aの組み込まれた振幅表示装置45や、電動モータ27に供給される電流の周波数を制御するものとしたインバータ46aの組み込まれたモータ制御装置46を設けている。
【0034】
振幅演算処理部45aはアンプ43の出力である増幅検出情報を入力されると共にこの入力された増幅検出情報に基づいて特定傾斜軌跡aの傾斜角度(図示例では凡そ45°)に関連した任意な特定方向に沿った選別処理部1の振幅を算出するものとなす。
この実施例では特定傾斜軌跡aの傾斜にぼぼ倣った45°方向に沿った振幅(以下、「特定向き振幅」と称す。)Sを算出させるのであり、それには先ず投受光器39から微少時間毎に発せられる各検出信号に基づいて投受光部39aから反射面eまでの前記各検出信号に対応した垂直距離fを演算し、この垂直距離fと、特定向き振幅Sの傾斜角度である45°と、この傾斜角度方向の前記垂直距離fに対応する特定向き距離f1の関係から得られる数式、即ち「f1=f/SIN45°」を使用して、垂直距離fに対応した特定向き距離f1を演算させるのであり、次に電動モータ27による選別処理部1の1回の往復変位毎にこの特定距離f1の最大値と最低値とを判別させてこれら2つの値の減算を行わせるのであり、この減算結果値がその1回の往復変位に対応する特定向き振幅Sである。
【0035】
振幅表示装置45にはデジタル表示部45bが組み込んであり、このデジタル表示部45bは振幅演算処理部45aの算出結果である特定向き振幅値情報を入力されてこの特定向き振幅値を選別処理部1の1往復変位毎に数値表示するものとなす。
【0036】
そしてインバータ46はデジタル表示部45bと同一の特定向き振幅値情報を入力される周波数制御回路部46aを備えており、またこの周波数制御回路部46aは振幅設定摘みhを有し、この振幅設定摘みhの設定操作で得られる設定振幅値情報と、振幅演算処理部45aから出力された現在の特定向き振幅値情報とを比較し、この比較結果に対応した周波数の電流を電動モータ27に供給するものとなしてある。
【0037】
これをさらに詳細に説明すると、実際に製作された図1に示す選別要部機構についての振動特性を予め採取するのであり、例えば、電動モータ27に手動で種々異なる周波数の電流を供給して該電動モータ27を種々の回転速度で回転させることにより、電動モータ27の各回転速度におけるその供給電流についての電流値、周波数及び振幅値などを測定する。この測定結果は一般には、実際に製作された各選別要部機構に特有のものとなる。図8は特定の選別要部機構についての測定結果の一例である。
【0038】
そして、上記測定により得られた測定結果に基づいて、周波数制御回路46aの制御特性を決定するのであり、これによりインバータ46は前記特定向き振幅値情報や前記設定振幅値情報に関連して電動モータ27に最適周波数の電流を供給するものとなる。例えば、図8に示すような測定結果であれば、特定向き振幅の増大に比例して周波数や電流値が増大する関係にあるため、周波数制御回路46aの制御特性の概要は次のようになすのであって、即ち、特定向き振幅値情報が設定振幅値情報より小さいときはインバータ46から電動モータ27に供給される電流の周波数を増大させ、逆に特定向き振幅値情報が設定振幅値情報より大きいときはインバータ46から電動モータ27に供給される電流の周波数を減少させるものとなす。
【0039】
なお、起振手段3の起振力と選別要部機構の自然振動数との関連でこれらの共振現象が現れるときは周波数制御回路46aの制御特性の決定においてこれを考慮することが必要となるのであり、また被処理物を実際にふるい選別しているときと、そうでないときの選別処理部1の特定向き振幅Sは相違したものとなるため、必要に応じてこれを考慮する必要がある。
【0040】
次に上記した実施例装置の使用例及び作動について説明する。
振幅設定摘みhを経験則による任意な設定振幅値を設定するように操作すると共に、モータ制御装置46などを操作をして各部を作動状態とする。
【0041】
これにより、電動モータ27は回転を開始するのであり、この回転は伝動ベルト32を介してクランク軸30を回転させる。またクランク軸30の回転はクランク部33及び板バネ連結部材35などを介して特定傾斜軌跡aに沿った方向の往復変位に変換され、この往復変位がゴム部材38、38を介して選別処理部1をほぼ同体状に変位させる。この際、板バネ連結部材35やゴム部材38はクランク部33の回転変位に連動して無理なく撓んで選別処理部1の変位を円滑となす。
【0042】
選別処理部1は、板ばね連結部材35が特定傾斜軌跡aに沿った略斜め45°下方へ変位するとき、可動支持レバー17の軸受部17aに支持されて横向き支持軸16回りの下方へ圧縮バネ25の弾力に抗して変位され、また板ばね連結部材35が特定傾斜軌跡aに沿った斜め45°上方へ変位するとき、可動支持レバー17の軸受部17aに支持されて横向き支持軸16回りの上方へ向け圧縮バネ25の弾力に補助されつつ変位される。
【0043】
一方、光学式検出手段4の投受光器39はその投受光部39aから下向きに測定光dを微少間隔で投射するのであり、この投射された各測定光dは反射面部40の反射面eに到達して反射され、その後、上方へ向かい投受光部39aにより受光される。この際、各測定光d毎にこれの投射時点から受光時点までの経過時間に基づいて投受光部39aから反射面eまでの垂直距離fに対応する検出信号を発出する。
【0044】
そして各測定光d毎のその検出信号はアンプ43を経て振幅表示装置45の振幅演算処理部45aに入力され、この演算処理部45aはそれら各検出信号に基づいて投受光部39aから反射面eまでの各検出信号毎の垂直距離fを演算し、さらにこの垂直距離情報から特定向き距離f1を算出し、この後、選別処理部1の特定傾斜方向aの1往復変位毎における特定向き距離f1の最大値と最小値とを判別し、次にこれら値の減算を実行し、その結果値から特定傾斜方向aに沿った方向の選別処理部1の特定向き振幅(特定向き振幅)Sを演算し、デジタル表示部45bはこの演算により得られた特定向き振幅値情報を伝達され、各特定向き振幅Sを数値表示する。
【0045】
一方、各特定向き振幅値情報はインバータ46にも入力されるのであり、これにより、インバータ46は先に特定された設定振幅値情報とこの特定向き振幅値情報とからこれらの差を無くするような周波数の電流を電動モータ27に供給するものとなり、これにより特定向き振幅値はやがて設定振幅値に合致した状態となる。
【0046】
この後、採掘された鉄鉱石や石炭などの被処理物を投入口6を通じて上側のふるい網100aの上面に一定流量で連続的に供給する。このように被処理物を供給された選別処理部1はこれに載っている被処理物の重量分だけ重くなるため、特定向き振幅値は一般に一時的に小さくなるが、インバータ46の制御作用により、やがて設定振幅値に合致し、以後、被処理物の供給流量などが変化しない限り、同じ特定向き振幅値が維持されるものとなる。
【0047】
投入口6を通じて選別処理部1内に供給された被処理物は上側のふるい網100a上に到達した後、選別処理部1の特定傾斜軌跡aに沿った往復変位によりそのふるい網100a上で後側へ小刻みに押し移動され、この移動過程で一次的なふるい選別を実施されるのであり、この際、ふるい網100a上には比較的大きい粒径の被処理物が残り、やがて最上位の被処理物取出口7に達し、ここから落下する。
【0048】
また上側のふるい網100aを通過した被処理物は下側のふるい網100b上に到達し、この後、選別処理部1の特定傾斜軌跡aに沿った往復変位により下側のふるい網100b上で後側へ小刻みに押し移動され、この移動過程で二次的なふるい選別を実施されるのであり、この際、ふるい網100b上に残った中間的な粒径の被処理物がやがて中間位の被処理物取出口8に達し、ここから落下する。
【0049】
さらに、下側のふるい網100bを通過した比較的小さい粒径の被処理物は箱状密閉通路体5の下面壁5bの内面上に到達するのであり、ここに到達した被処理物はやはり選別処理部1の特定傾斜軌跡aに沿った往復変位により下面壁5b上で後側へ小刻みに押し移動され、やがて最下位の被処理物取出口9に達し、ここから落下する。
【0050】
上記のように実施されるふるい選別処理の過程で、被処理物の流量や性状などが一時的に変化して、選別処理部1の特定向き振幅値が大小に変化することがあるが、このような場合にも、インバータ46は特定向き振幅値を設定振幅値に合致させるように作動するため、選別処理部1はやがて設定振幅値と同じ大きさの特定向き振幅値で往復変位されるものとなり、従って特定向き振幅Sが過小となってふるい網100a、100bのふるい目に被処理物が詰まるなどして箱状密閉通路体5の内方での被処理物の後方への送り移動が停滞気味となる現象は阻止され、また被処理物の後方への送り移動が停滞気味となることに起因して電動モータ27に過電流が流れる現象も阻止されるのであり、また特定向き振幅Sが過大となってふるい網100a、100bと被処理物との接触が不適切となり、ふるい選別が効率的に行われなくなる現象も阻止される。
【0051】
また選別処理部1でのふるい選別処理が定常的に行われているものの、設定振幅値の大きさが適当でないため、ふるい選別処理が効率的に行われていないと判断されたときは、作業者は振幅設定摘みhを再操作して、その設定振幅値を適当な大きさに修正するのであり、これによりインバータ46はやがて選別処理部1の特定向き振幅値を修正後のそれに合致させるものとなり、適切なふるい選別処理が実施されるようになる。
【0052】
また被処理物のふるい選別処理が終了した後に、直ちに、異種の被処理物をふるい選別処理しなければならないこともあるが、このような場合は、振幅設定摘みhを操作して、設定振幅値を前記異種の被処理物に適合する大きさに変更するのであり、これによりインバータ46は選別処理部1を前記異種の被処理物に適合する特定向き振幅Sで往復変位させるものとなり、前記異種の被処理物は適切にふるい選別される。
【0053】
さらに振幅表示装置45のデジタル表示部45bにはふるい選別処理中の選別処理部1の1往復変位毎の特定向き振幅値が表示されるため、作業者はその表示を見ることにより選別処理部1でのふるい選別処理の状況を直ちに判断でき、不適切と判断されたときなどには直ちに必要な処置が取れるのである。
【0054】
上記実施例は次のように変形できる。
即ち、選別処理部1は単一のふるい網を設けて粒径程度の異なる2群に分別してもよいし、或いは3つ以上のふるい網を設けて粒径程度の異なる4群以上に分別してもよいのであり、これに関連して縦向き被処理物取出口7、8、9の数は適宜に変更する。
【0055】
またデジタル表示部45bには選別処理部1の複数回の往復変位毎に、これら複数回の往復変位に係る各1往復変位毎の特定向き振幅値の平均値を数値表示させるようにしてもよい。
なお、上記実施例は本発明の一具体例であり、本発明思想を逸脱しない範囲で任意に変形して差し支えないものである。
【0056】
【発明の効果】
以上のように構成した本発明によれば、次のような効果が得られる。
即ち、請求項1に記載したものによれば、選別処理部1の特定向き振幅Sを連続して検出することを可能として、ふるい面部100a、100bの特定向き振幅Sの最適化に寄与するもので、被処理物の性状が処理途中で変わったり或いは被処理物が処理途中で他種のものに変更されるなどしても、簡易にこれに対処できて効率的なふるい選別処理を可能となすものである。
【0057】
請求項2に記載したものによれば、振幅表示装置45に現時点の選別処理部1の特定向き振幅Sの大きさが数値表示されるため、作業者などは視覚により選別処理部1の特定向き振幅Sを直ちに正確に認識することができ、従って選別処理部のふるい選別の状態を最適化させる処理を必要に応じ迅速且つ的確に行えるようになる。
【0058】
請求項3に記載したものによれば、選別処理部1と支持案内手段2の固定状部である固定フレーム部材11bとの相対的な変位を光を媒体として測定するため、選別処理部1又は固定フレーム部材11bに測定子などを接触させる必要のないものとなって、測定のための固体摩擦の損耗が生じず、長期に亘る正確な測定が行えるようになる。
【0059】
請求項4に記載したものによれば、請求項3記載の発明の場合と同様な効果が得られる上に、次のような作用が得られるのであって、即ち、投受光器39を固定状態に保持してその耐久性を向上させることができ、また投受光部39aが投受光器39の下面にあるため、被処理物から舞い上がった塵埃が投受光部39aに堆積する現象を阻止することができ、投受光器39の機能を長く良好に維持させることができる。
【0060】
請求項5に記載したものによれば、電動モータ27の回転速度を変更することにより、選別処理部1の特定向き振幅Sを任意に変更させることができるものである。
【0061】
請求項6に記載したものによれば、本発明装置の使用中に、被処理物の性状が変化したり周囲環境が変化するなどしても、インバータ46がこの変化に関連して電動モータ27の回転速度を自動的に変化させるものとなり、選別処理部1の特定向き振幅Sを自動的に最適化して、常に効率的なふるい選別を行わせることができるものである。
【図面の簡単な説明】
【図1】本発明に係る振動送りふるい装置の選別要部機構を示す斜視図である。
【図2】前記選別要部機構の側面図である。
【図3】前記選別要部機構の正面図である。
【図4】前記選別要部機構の断面図である。
【図5】前記選別要部機構の起振手段の周辺を示す図である。
【図6】前記検出手段の一部を示す側面図である。
【図7】前記選別要部機構の検出手段の説明図である。
【図8】実際に製造された前記選別要部機構から採取した測定結果の一例を示す図である。
【符号の説明】
1 選別処理部
2 支持案内手段
3 起振手段
4 検出手段
100a ふるい網(ふるい面部)
100b ふるい網(ふるい面部)
11a 固定フレーム部材(固定状部)
11b 固定フレーム部材(固定状部)
15 ゴムブッシュ(弾性部材)
18a ゴムブッシュ(弾性部材)
18b ゴムブッシュ(弾性部材)
25 圧縮バネ(弾性部材)
35 板バネ連結部材(弾性部材)
38 ゴム部材(弾性部材)
39 投受光器
39a 投受光部
40 反射面部材
45 数値表示手段(光学式変位測定手段)
46 インバータ
S 特定向き振幅(相対的な変位量)
a 特定傾斜軌跡
f 垂直距離(相対的な変位量)
f1 特定向き距離(相対的な変位量)
[0001]
[Industrial applications]
INDUSTRIAL APPLICABILITY The present invention can perform sieve sorting while moving and moving various kinds of objects to be processed such as iron ore, coal, crushed stone, bone powder, shell powder, and various kinds of solids such as grains on a vibrating sieve surface. It relates to a vibration feed sieve device.
[0002]
[Prior art]
A sorting processing unit having a sieve surface portion to which an object to be processed is supplied on an upper surface, and the sorting processing unit supporting the sorting processing unit so as to be reciprocally displaceable on a specific inclined locus and elastically deforming an elastic member such as a rubber material or a spring. A support / guide unit that enables the selection processing unit to be displaced within a certain range in the direction of the specific inclination trajectory, and generates vibration of an arbitrary amplitude that causes the selection processing unit to reciprocate along the specific inclination trajectory. There is a vibrating feed sieve device comprising a vibrating means for causing the reciprocating displacement of the sorting processing unit along the specific inclination trajectory to feed and displace an object to be processed on the sieve surface in a specific direction. are doing.
[0003]
In this sieving apparatus, the object to be processed is continuously supplied to a specific portion on the upper surface of the sieving surface portion, and thereafter, is sequentially fed and moved in a specific direction related to the direction of the vibration by the vibration of the sorting processing portion. In the course of this movement, the objects to be sieved and which could not pass through the sieving of the sieving surface part are sequentially sent and moved, and finally sent out of the sifting processing unit and accumulated at a specific place. Will be done.
[0004]
[Problems to be solved by the invention]
In the above-described conventional vibration feed sieve device, before use, it is necessary to adjust the amplitude of the selection processing unit along the direction of the specific tilt trajectory so as to be optimal for the workpiece. Has been done.
[0005]
When the object to be processed is processed by the above-mentioned sieve device, the object to be processed is accurately fed in a specific direction on the sieve surface in a state where the object has the properties as expected, and is displaced by the sieve surface. Sieving is performed smoothly, but if the properties change excessively, the amplitude of the sieving surface becomes inappropriate and the processing efficiency decreases, or depending on the surrounding conditions, the object to be processed is sifted through the sieving surface. The sieving process cannot be performed due to clogging.
[0006]
Further, during the use of the sieving apparatus, the object to be processed may be changed to another one on the way, but also in this case, due to the difference in the properties of the object to be processed, the sieving process is performed in the same manner as described above. May not be performed efficiently.
[0007]
In such a case, the operation of the sieving device is temporarily stopped, and the amplitude of the selection processing unit along the direction of the specific inclination trajectory is adjusted again so as to be optimal for the current workpiece. This has to be fixed, which is troublesome in a dusty environment, and causes adverse effects such as a decrease in work efficiency.
[0008]
The present invention has been devised in view of the above-described problems. Even if the properties of an object to be processed change during processing or the object to be processed is changed to another type during processing, the present invention is simplified. It is another object of the present invention to provide a vibration feed sieve device capable of coping with the above problem and enabling efficient sieving.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, as described in claim 1, a sorting processing section having a sieve surface portion to which an object to be processed is supplied on an upper surface, and reciprocating the sorting processing section on a specific inclined locus. A support guide means for displaceably supporting and allowing the selection processing unit to be displaced within a certain range in the direction of the specific inclination trajectory by elastic deformation of an elastic member such as a rubber material or a spring; and the selection processing Vibrating means for generating vibration of an arbitrary amplitude to reciprocate the portion along the specific tilt locus, wherein the reciprocal displacement of the selection processing unit along the specific tilt locus is on the sieve surface portion. In a vibration feed sieve device that feeds and displaces an object to be processed in a specific direction, a relative displacement amount between the selection processing unit and the fixed portion of the support and guide unit is related to the direction of the specific inclination locus. Eggplant and structure in which a detection means for detecting a displacement amount of a particular orientation.
[0010]
According to this, it is possible for the detection means to continuously detect the amplitude of the vibration of the selection processing unit in the specific direction during the operation of the apparatus of the present invention, and this makes it possible to optimize the amplitude of the sieve surface. Will contribute.
[0011]
The above invention can be embodied as follows.
That is, as described in claim 2, a numerical value display device for numerically displaying the amplitude of the selection processing unit in a specific direction based on the detection information of the detection means is provided. According to this, the numerical display device allows the operator to immediately and accurately recognize the magnitude of the amplitude of the specific direction of the selection processing unit at the present time through the visual sense.
[0012]
4. An optical displacement measuring means according to claim 3, wherein said detecting means measures a relative displacement amount between said selection processing part and a fixed part of said support and guide means using light as a medium. And the configuration made. According to this, in order to measure the relative displacement between the sorting section and the fixed section of the support and guide means, there is no need to bring a solid into contact with the sorting section or the fixed section. In addition, wear due to solid friction during measurement does not occur, and accurate measurement can be performed for a long time.
[0013]
The optical displacement measuring means comprises a light emitting and receiving device and a reflecting surface member for reflecting light emitted from the light emitting and receiving device. Are fixed to the fixed portion so that the reflection surface member is located on the lower surface, and the reflection surface member is fixed to the selection processing unit.
[0014]
According to this, the same operation as that of the invention according to claim 3 can be obtained, and the following operation can be obtained, that is, the light emitting and receiving device is held in a fixed state and the durability is improved. In addition, since the light emitting and receiving unit is on the lower surface of the light emitting and receiving unit, a phenomenon in which dust flying up from an object to be processed is deposited on the light emitting and receiving unit is prevented, and the function of the light emitting and receiving unit is long and good. Will be maintained.
[0015]
According to a fifth aspect of the present invention, the vibrating means converts the rotation of the electric motor into a reciprocating displacement along a specific inclination locus and transmits the reciprocating displacement to the selection processing unit. According to this, by changing the rotation speed of the electric motor, the inertia force of the selection processing unit in the direction along the specific inclination trajectory changes, and the selection processing unit is made of rubber or a spring. The fact that the displacement within a certain range due to the elastic deformation of the elastic member is enabled allows the amplitude of the selection processing unit in a specific direction to be arbitrarily changed.
[0016]
According to a sixth aspect of the present invention, there is provided an inverter for changing a frequency of a current supplied to the electric motor based on detection information of the detection means. According to this, even when the property of the object to be processed changes or the surrounding environment changes during use of the apparatus of the present invention, the rotation speed of the electric motor is automatically changed, and the specific direction of the sorting processing unit is changed. Is automatically optimized, so that efficient sieving is always performed.
[0017]
Embodiment
FIG. 1 is a perspective view showing a main part mechanism of a vibration feed sieve device as one embodiment according to the present invention, FIG. 2 is a side view of the main part mechanism, and FIG. 3 is a front view of the main part mechanism. FIG. 4 is a cross-sectional view of the main sorting mechanism, FIG. 5 is a diagram showing the vicinity of a vibrating means of the main sorting mechanism, FIG. 6 is a side view showing a part of the detecting means, and FIG. FIG. 8 is a view for explaining the detection means of the part mechanism, and FIG. 8 is a view showing a measurement result obtained from the sorting main part mechanism actually manufactured.
[0018]
In these drawings, reference numeral 1 denotes a sorting processing unit to which an object to be processed is supplied on an upper surface, and 2 supports the sorting processing unit 1 so as to be reciprocally displaceable on a specific inclined trajectory a and specifies the sorting processing unit 1. The supporting and guiding means, which enables elastic displacement within a certain range in the direction along the inclination locus a, generates vibration for reciprocating the selection processing section 1 at an arbitrary amplitude on the specific inclination locus a. The vibrating means 4 is used to detect a displacement amount in a specific direction related to the direction of the specific inclination locus a among relative displacement amounts between the selection processing unit 1 and the fixed portion of the support and guide means 3. It is a detecting means. Here, the specific direction does not always match the specific inclination locus a.
[0019]
First, the selection processing unit 1 will be described with reference to FIGS.
As shown in FIG. 2, an elongated box-shaped closed passage body 5 having a particularly long direction (front-rear direction) along the paper surface of FIG. 2 is provided, and the passage body 5 is covered on the left end of the upper surface wall 5 a. An inlet 6 for the processed material is formed, and three vertically-oriented processed material outlets 7, 8, and 9 having different vertical positions are formed at the right end of the lower surface wall 5b.
[0020]
Inside the box-shaped closed passage body 5, two planar sieve nets 100 a and 100 b as sieve surfaces are arranged in substantially horizontal upper and lower stages, and inside the box-shaped closed passage body 5. Are divided into three sections b1, b2, b3 by these sieve nets 100a, 100b, the uppermost section b1 is communicated with the workpiece outlet 7, and the middle section b2 is covered. The lowest section b3 is communicated with the processing object outlet 8 and the lowest processing section outlet 9.
[0021]
Further, right and left spring receiving members 10 as shown in FIG. 1 are fixed to the lower surface wall 5b of the box-shaped closed passage body 5 at three positions in the front-rear direction in a protruding manner. A vertical connecting piece 10a shown in FIG. 2 is fixed to the box-shaped closed passage body 5 and the side wall 5c or 5d.
[0022]
Next, the support and guide means 2 will be described with reference to FIGS.
A pair of left and right fixed frame members 11a and 11b made of grooved steel, which form the main part of the fixed portion, are provided. Three bearing assembly members 12 are provided at three locations on the upper surface of each fixed frame member 11a and 11b in the longitudinal direction. Are fixed upright.
[0023]
At this time, the left and right fixed frame members 11a and 11b may be directly fixed to an appropriate base (not shown) or, alternatively, may be integrally connected to each other by a left-right connecting member. After that, the square frame may be installed on the base via a plurality of vibration isolating springs. Each of the bearing assembly members 12 has a bearing portion 14 at the uppermost portion of the main body portion 13, and each of the bearing portions 14 has a rubber bush 15 fitted inside a cylindrical member fixed to the main body portion 13. .
[0024]
A lateral support shaft 16 is mounted between the rubber bushes 15 and 15 of each pair of bearing assembly members 12 and 12 facing each other so as to allow some circumferential swing. A pair of left and right movable support levers 17 are fixed at a position near the left and right ends of the lateral support shaft 16 so as to be inclined approximately 45 degrees in a specific direction. Each movable support lever 17 has a bearing portion 17a, 17b at each end, and each bearing portion 17a, 17b is fitted with a rubber bush 18a, 18b inside the cylindrical member similarly to the previous bearing portion 14. Have been.
[0025]
A rectangular spring receiving frame 19 elongated in the front-rear direction is disposed directly below the three lateral support shafts 16, and the spring receiving frame 19 is located between the lower surfaces of a pair of left and right channel steels 20, 20. Are connected by an appropriate number of connecting members 21, and are fixed to three left-right spring receiving members 22 made of angle iron and three ends in the longitudinal direction between the three upper surfaces of the pair of left and right channel steels 20, 20. The connecting pieces 22a are connected together. Then, the support shaft member 23 fitted to the rubber bush 18b of the lower bearing portion 17b of each of the movable support levers 17 on the left and right sides is fixed to a corresponding position on the outer surface of the pair of left and right channel steels 20,20. Thus, the spring receiving frame 19 is supported by the lower end portions of the three pairs of movable support levers 17.
[0026]
On the other hand, the rubber bush 18a of the bearing 17a on the upper side of the three pairs of movable support levers 17 has left and right side walls 5c of the box-shaped closed passage body 5 of the sorting unit 1 disposed directly above the horizontal support shaft 16. 5d, a support shaft member 24 fixed via the coupling piece 10a is fitted.
Further, the spring receiving member 22 of the spring receiving frame 19 is attached to the horizontal direction of the spring receiving member 10 of the selection processing unit 1 at an angle of about 45 degrees in a specific direction between the horizontal direction and the spring receiving member 10. The lower ends of the plurality of compression springs 25 are supported.
[0027]
Next, the vibration generating means 3 will be described with reference to FIGS. 1, 2, 4, and 5. FIG.
A base member 26 is fixed to the outer surface of the right fixed frame member 11b, an electric motor 27 is fixed to the upper surface of the base member 26, and a driving pulley 28 is fixed to an output shaft of the motor 27. On the other hand, bearing housings 29, 29 each having a built-in bearing (not shown) are fixed to specific locations on the upper surfaces of the left and right channel steels 20, 20 of the rectangular spring receiving frame 19, and these bearing housings 29, 29 are shown. The crankshaft 30 is rotatably mounted between the bearings not to be driven, the driven pulley 31 is fixed at the right end of the crankshaft 30, and the transmission belt 32 is looped between the pulley 31 and the driving pulley 28.
[0028]
As shown in FIG. 4, the crankshaft 30 is formed with crank portions 33, 33 at portions outside the pair of bearing housings 29, 29, and a crank bearing 34 is rotatably fitted to each crank portion 33. Have been. From each of the crank bearings 34, a leaf spring connecting and linking member 35 which is elastically bendable extends in the width direction thereof to the left and right and extends in a substantially 45-degree inclined shape in a specific direction. On the other hand, the support plate members 36 are fixed to the left and right side walls 5c and 5d of the box-shaped closed passage body 5 of the selection processing unit 1 in the middle of the length thereof. 37 is fixed to the central surface portion at an inclination of approximately 45 degrees in a specific direction. Then, the front portion of the leaf spring connecting and connecting member 35 is located at an intermediate position between the opposing surface portions c, c of the U-shaped driven member 37, and the upper and lower surfaces of the front portion and the inner surfaces of the opposing surface portions c, c are aligned. A configuration in which the front side portion of the leaf spring connection connecting member 35 and the U-shaped driven member 37 are relatively displaced along the front-rear vertical surface by elastic deformation of the rubber members 38, 38. And
[0029]
Next, the detecting means 4 will be described with reference to FIGS.
An optical displacement measuring means for measuring the relative displacement between the selection processing section 1 and the fixed frame members 11a and 11b of the support and guide means 2 using light as a medium is provided. The light receiving unit 39 includes a reflecting surface member 40 for reflecting light emitted from the light emitting / receiving unit 39a.
[0030]
The light emitter / receiver 39 is fixed to the lower surface of the upper side of the U-shaped support member 41 fixed to the outer surface of the fixed frame member 11b, and the light emitter / receiver 39a is attached to the lower surface of the light emitter / receiver 39. It is arranged so as to project the measuring light (eg, laser light) d downward. Here, the fact that the light emitting and receiving device 39 is fixed to the lower surface of the upper side of the U-shaped support member 41 means that the object to be processed dropped from above the light emitting and receiving device 39 or the vicinity of the light emitting and receiving device 39 Contributes to preventing the relatively large other object from directly hitting the light emitter / receiver 39, and the fact that the light emitter / receiver 39a is located on the lower surface of the light emitter / receiver 39 means that the object falls from above the light emitter / receiver 39. This prevents dust of the processed object from accumulating on the light emitting and receiving unit 39a and contributes to maintaining its function.
[0031]
On the other hand, the reflection surface member 40 is disposed below the light emitter / receiver 39 between the upper side and the lower side of the support member 41 and is vertically elongated from the right side wall 5 d of the box-shaped closed passage body 5. It is horizontally fixed to the lower end of the support rod member 42. Here, the fact that the reflection surface member 40 is disposed between the upper side and the lower side of the support member 41 means that dust or the like of the object to be processed that has dropped from above the support member 41 is the upper surface of the reflection surface member 40. This contributes to preventing deposition on the reflecting surface e.
[0032]
The light emitting and receiving device 39 projects the measuring light d downward from the light emitting and receiving unit 39a every minute time, and the measuring light d hits the reflecting surface e, and after reflected there, goes upward, and the upward measuring light d, and calculates the time from the projection time to the light reception time for each measurement light d, and outputs a detection signal corresponding to the vertical distance f from the light emitting / receiving section 39a to the reflection surface e. is there.
[0033]
Next, a configuration related to the detection means 4 will be described with reference to FIG.
An amplifier 43 for amplifying a detection signal emitted from the light emitting and receiving device 39 is provided in the vicinity of the light emitting and receiving device 39, and a remote control room 44 isolated from the sorting work space g is formed. An amplitude display device 45 having a built-in portion 45a and a motor control device 46 having an inverter 46a for controlling the frequency of the current supplied to the electric motor 27 are provided.
[0034]
The amplitude calculation processing section 45a receives the amplification detection information output from the amplifier 43 and, based on the input amplification detection information, an arbitrary value related to the inclination angle of the specific inclination locus a (about 45 ° in the illustrated example). The amplitude of the selection processing unit 1 along the specific direction is calculated.
In this embodiment, an amplitude S (hereinafter, referred to as “specific direction amplitude”) S following the inclination of the specific inclination locus a along the 45 ° direction is calculated. A vertical distance f corresponding to each detection signal from the light emitting / receiving section 39a to the reflection surface e is calculated based on each detection signal emitted every time, and the vertical distance f and the inclination angle 45 of the specific direction amplitude S are calculated. Using a mathematical expression obtained from the relationship between ° and the specific direction distance f1 corresponding to the vertical distance f in the tilt angle direction, that is, “f1 = f / SIN45 °”, the specific direction distance f1 corresponding to the vertical distance f. Next, the maximum value and the minimum value of the specific distance f1 are determined each time the reciprocating displacement of the selection processing unit 1 by the electric motor 27 is performed, and the two values are subtracted. , This subtraction result value Is a specific orientation amplitude S that corresponds to the one reciprocating displacement.
[0035]
A digital display unit 45b is incorporated in the amplitude display device 45. The digital display unit 45b receives specific direction amplitude value information which is a calculation result of the amplitude calculation processing unit 45a, and selects the specific direction amplitude value. Numerical value shall be displayed for each reciprocating displacement.
[0036]
The inverter 46 includes a frequency control circuit unit 46a to which the same specific direction amplitude value information as the digital display unit 45b is input. The frequency control circuit unit 46a has an amplitude setting knob h. The set amplitude value information obtained by the setting operation of h is compared with the current specific direction amplitude value information output from the amplitude calculation processing unit 45a, and a current having a frequency corresponding to the comparison result is supplied to the electric motor 27. It has been assumed.
[0037]
This will be described in more detail. Vibration characteristics of an actually manufactured sorting main part mechanism shown in FIG. 1 are sampled in advance. For example, currents of various frequencies are manually supplied to the electric motor 27 to obtain the vibration characteristics. By rotating the electric motor 27 at various rotation speeds, the current value, frequency, amplitude value, and the like of the supply current at each rotation speed of the electric motor 27 are measured. In general, the measurement result is specific to each sort main mechanism actually manufactured. FIG. 8 is an example of a measurement result for a specific sorting main part mechanism.
[0038]
Then, the control characteristic of the frequency control circuit 46a is determined based on the measurement result obtained by the above measurement, whereby the inverter 46 controls the electric motor in association with the specific direction amplitude value information and the set amplitude value information. 27 is supplied with a current having an optimum frequency. For example, in the measurement result as shown in FIG. 8, since the frequency and the current value increase in proportion to the increase in the amplitude in the specific direction, the outline of the control characteristics of the frequency control circuit 46a is as follows. That is, when the specific direction amplitude value information is smaller than the set amplitude value information, the frequency of the current supplied from the inverter 46 to the electric motor 27 is increased. When it is larger, the frequency of the current supplied from the inverter 46 to the electric motor 27 is reduced.
[0039]
When these resonance phenomena appear due to the relationship between the vibrating force of the vibrating means 3 and the natural frequency of the main sorting mechanism, it is necessary to consider these in determining the control characteristics of the frequency control circuit 46a. In addition, since the specific direction amplitude S of the selection processing unit 1 when the object is actually sieved and when the object is not sieved is different, it is necessary to consider this as necessary. .
[0040]
Next, an example of use and operation of the above-described embodiment device will be described.
The amplitude setting knob h is operated so as to set an arbitrary set amplitude value based on an empirical rule, and at the same time, the motor control device 46 and the like are operated so as to bring the respective units into the operating state.
[0041]
As a result, the electric motor 27 starts rotating, and this rotation rotates the crankshaft 30 via the transmission belt 32. The rotation of the crankshaft 30 is converted into a reciprocating displacement in a direction along the specific inclination locus a via the crank portion 33 and the leaf spring connecting member 35 and the like, and the reciprocating displacement is passed through the rubber members 38, 38 to the sorting processing section. 1 is displaced substantially in the same manner. At this time, the leaf spring connecting member 35 and the rubber member 38 bend without difficulty in conjunction with the rotational displacement of the crank part 33, and the displacement of the sorting processing unit 1 is made smooth.
[0042]
When the leaf spring connecting member 35 is displaced substantially obliquely 45 ° downward along the specific inclined locus a, the selection processing unit 1 is supported by the bearing 17 a of the movable support lever 17 and compressed downward around the lateral support shaft 16. When the leaf spring connecting member 35 is displaced upward by 45 ° obliquely along the specific inclined trajectory a when the leaf spring connecting member 35 is displaced against the elasticity of the spring 25, the lateral support shaft 16 is supported by the bearing 17a of the movable support lever 17. It is displaced upward and around by the elasticity of the compression spring 25.
[0043]
On the other hand, the light emitting and receiving device 39 of the optical detecting means 4 projects the measuring light d downward at a small interval from the light emitting and receiving portion 39a, and each of the projected measuring light d is projected onto the reflecting surface e of the reflecting surface portion 40. The light reaches and is reflected, and thereafter, is received by the light emitting and receiving unit 39a going upward. At this time, a detection signal corresponding to the vertical distance f from the light emitting / receiving section 39a to the reflecting surface e is issued for each measurement light d based on the elapsed time from the time of projection to the time of light reception.
[0044]
Then, the detection signal for each measurement light d is input to the amplitude calculation processing section 45a of the amplitude display device 45 via the amplifier 43, and the calculation processing section 45a transmits the light from the light emitting / receiving section 39a to the reflection surface e based on each detection signal. The vertical distance f for each detection signal is calculated, and the specific direction distance f1 is calculated from the vertical distance information. Is determined, and then these values are subtracted, and the specific direction amplitude (specific direction amplitude) S of the selection processing unit 1 in the direction along the specific inclination direction a is calculated from the resulting value. Then, the digital display unit 45b receives the specific direction amplitude value information obtained by this calculation and displays each specific direction amplitude S numerically.
[0045]
On the other hand, the specific direction amplitude value information is also input to the inverter 46, whereby the inverter 46 eliminates these differences from the previously specified set amplitude value information and the specific direction amplitude value information. A current having a specific frequency is supplied to the electric motor 27, whereby the specific direction amplitude value eventually matches the set amplitude value.
[0046]
Thereafter, the to-be-processed objects such as mined iron ore and coal are continuously supplied at a constant flow rate to the upper surface of the upper screen 100a through the inlet 6. In this way, the sorting processing unit 1 to which the processing object is supplied becomes heavier by the weight of the processing object placed thereon, so that the specific direction amplitude value generally temporarily decreases. Eventually, the amplitude value matches the set amplitude value, and thereafter, the same specific direction amplitude value is maintained as long as the supply flow rate of the workpiece does not change.
[0047]
The workpiece supplied into the sorting unit 1 through the inlet 6 reaches the upper screen 100a, and then moves on the screen 100a by reciprocating displacement along the specific inclination locus a of the sorting unit 1. In this process, a primary sieving process is performed, and a relatively large particle size remains on the sieving net 100a. It reaches the processed material outlet 7, and falls from here.
[0048]
Further, the object to be processed that has passed through the upper screen 100a reaches the lower screen 100b, and thereafter, the reciprocating displacement along the specific inclined locus a of the selection processing unit 1 causes the object to be processed on the lower screen 100b. It is pushed to the rear side in small increments, and secondary sieving and sorting are performed in the course of this movement. At this time, the object having an intermediate particle size remaining on the sieving net 100b eventually becomes intermediate. It reaches the workpiece outlet 8 and falls from here.
[0049]
Further, the object having a relatively small particle diameter that has passed through the lower sieve net 100b reaches the inner surface of the lower surface wall 5b of the box-shaped closed passage body 5, and the object that has reached there is still sorted. Due to the reciprocal displacement of the processing unit 1 along the specific inclination locus a, the processing unit 1 is slightly pushed and moved rearward on the lower surface wall 5b, and eventually reaches the lowest workpiece outlet 9 and falls therefrom.
[0050]
In the course of the sieve selection process performed as described above, the flow rate and properties of the object to be processed may temporarily change, and the specific direction amplitude value of the selection processing unit 1 may change in magnitude. Even in such a case, since the inverter 46 operates so as to match the specific direction amplitude value with the set amplitude value, the selection processing unit 1 is eventually reciprocated with the specific direction amplitude value having the same size as the set amplitude value. Therefore, the specific direction amplitude S becomes too small, and the object to be processed is clogged in the sieves of the sieve nets 100a and 100b. The phenomenon of stagnation is prevented, and the phenomenon that an overcurrent flows through the electric motor 27 due to the stagnation of the backward movement of the workpiece is also prevented. Is too large and sieve net 1 0a, contact between 100b and the object to be treated is inappropriate, the phenomenon that the sieve screening is not performed effectively also prevented.
[0051]
If the sieve selection processing in the selection processing unit 1 is performed regularly, but the size of the set amplitude value is not appropriate, it is determined that the sieve selection processing is not efficiently performed. The operator re-operates the amplitude setting knob h to correct the set amplitude value to an appropriate value, whereby the inverter 46 eventually matches the specific direction amplitude value of the selection processing unit 1 to the corrected amplitude value. , And an appropriate sieving process is performed.
[0052]
In addition, after the sieving process of the object to be processed is completed, it may be necessary to immediately perform the sieving process of different types of the object to be processed. In such a case, the amplitude setting knob h is operated to set the set amplitude. The value is changed to a size suitable for the different types of workpieces, whereby the inverter 46 reciprocates the selection processing unit 1 with a specific direction amplitude S suitable for the different types of workpieces. Different kinds of workpieces are appropriately screened.
[0053]
Further, the digital display unit 45b of the amplitude display device 45 displays a specific direction amplitude value for each reciprocating displacement of the selection processing unit 1 during the sieve selection processing. In this case, it is possible to immediately determine the status of the sieve selection process, and immediately take necessary measures when it is determined to be inappropriate.
[0054]
The above embodiment can be modified as follows.
That is, the sorting processing unit 1 may provide a single sieve net and separate it into two groups having different particle sizes, or may provide three or more sieve nets and separate them into four or more groups having different particle sizes. In this connection, the number of the vertical workpiece outlets 7, 8, 9 is appropriately changed.
[0055]
Further, the digital display unit 45b may numerically display the average value of the specific direction amplitude values for each of the plurality of reciprocating displacements of the sorting processing unit 1 for each of the plurality of reciprocating displacements. .
The above embodiment is a specific example of the present invention, and may be arbitrarily modified without departing from the spirit of the present invention.
[0056]
【The invention's effect】
According to the present invention configured as described above, the following effects can be obtained.
That is, according to the first aspect, it is possible to continuously detect the specific direction amplitude S of the selection processing unit 1 and contribute to the optimization of the specific direction amplitude S of the sieving surface parts 100a and 100b. Therefore, even if the properties of the object to be processed change during processing or the object to be processed is changed to another type during the processing, it is possible to easily cope with this and enable efficient sieve sorting processing. What to do.
[0057]
According to the second aspect, since the magnitude of the specific direction amplitude S of the selection processing unit 1 at the current time is numerically displayed on the amplitude display device 45, an operator or the like visually recognizes the specific direction of the selection processing unit 1 as a specific direction. The amplitude S can be immediately and accurately recognized, so that the process of optimizing the sieving state of the sifting processing unit can be performed quickly and accurately as required.
[0058]
According to the third aspect, since the relative displacement between the selection processing unit 1 and the fixed frame member 11b, which is the fixed portion of the support and guide means 2, is measured using light as a medium, the selection processing unit 1 or There is no need to bring the measuring element or the like into contact with the fixed frame member 11b, so that solid friction for measurement does not wear out, and accurate measurement can be performed for a long time.
[0059]
According to the fourth aspect, the same effect as that of the third aspect can be obtained, and the following operation can be obtained, that is, the light emitting and receiving device 39 is fixed. To prevent the dust from rising from the processing object and accumulating on the light emitting and receiving unit 39a because the light emitting and receiving unit 39a is provided on the lower surface of the light emitting and receiving unit 39a. Therefore, the function of the light emitting and receiving device 39 can be maintained well for a long time.
[0060]
According to the fifth aspect, it is possible to arbitrarily change the specific direction amplitude S of the selection processing unit 1 by changing the rotation speed of the electric motor 27.
[0061]
According to the present invention, even if the properties of the object to be processed change or the surrounding environment changes during the use of the apparatus of the present invention, the inverter 46 operates in accordance with the change. Is automatically changed, and the specific direction amplitude S of the selection processing unit 1 is automatically optimized, so that efficient sieve selection can always be performed.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a main mechanism for selection of a vibration feed sieve device according to the present invention.
FIG. 2 is a side view of the main sorting mechanism.
FIG. 3 is a front view of the main sorting mechanism.
FIG. 4 is a sectional view of the main sorting mechanism.
FIG. 5 is a diagram showing the vicinity of a vibrating means of the main sorting mechanism.
FIG. 6 is a side view showing a part of the detection means.
FIG. 7 is an explanatory diagram of a detecting means of the main sorting mechanism.
FIG. 8 is a diagram showing an example of a measurement result obtained from the sorting main part mechanism actually manufactured.
[Explanation of symbols]
1 Sorting section
2 Supporting guide means
3 Exciting means
4 Detecting means
100a sieve net (sieve side)
100b sieve net (screen part)
11a Fixed frame member (fixed part)
11b Fixed frame member (fixed part)
15 Rubber bush (elastic member)
18a Rubber bush (elastic member)
18b Rubber bush (elastic member)
25 Compression spring (elastic member)
35 leaf spring connecting member (elastic member)
38 Rubber member (elastic member)
39 Emitter / Receiver
39a Emitter / receiver
40 Reflective surface member
45 Numerical display means (optical displacement measuring means)
46 Inverter
S Specific direction amplitude (relative displacement)
a Specific tilt locus
f Vertical distance (relative displacement)
f1 Specific direction distance (relative displacement amount)

Claims (6)

上面に被処理物を供給されるふるい面部を具備した選別処理部と、この選別処理部を特定傾斜軌跡上での往復変位可能に支持すると共にゴム材又はバネなどの弾性部材の弾性変形による前記選別処理部の前記特定傾斜軌跡方向の一定範囲内の変位を可能になしたものとした支持案内手段と、前記選別処理部を前記特定傾斜軌跡に沿って往復変位させる任意な振幅の振動を発生させるものとした起振手段とを備え、前記選別処理部の前記特定傾斜軌跡に沿った往復変位が前記ふるい面部上の被処理物を特定方向へ送り変位させるものとなる振動送りふるい装置において、前記選別処理部と前記支持案内手段の固定状部との相対的な変位量のうち前記特定傾斜軌跡の向きに関連した特定向きの変位量を検出するための検出手段を設けたことを特徴とする振動送りふるい装置。A sorting processing unit having a sieve surface portion to which an object to be processed is supplied on an upper surface, and the sorting processing unit supporting the sorting processing unit so as to be reciprocally displaceable on a specific inclined trajectory and elastically deforming an elastic member such as a rubber material or a spring. A support / guide unit that enables the selection processing unit to be displaced within a certain range in the direction of the specific inclination trajectory, and generates vibration of an arbitrary amplitude that reciprocates the selection processing unit along the specific inclination trajectory. A vibration feed sieve device comprising: a vibrating means for causing the reciprocating displacement along the specific inclination locus of the selection processing unit to feed and displace an object to be processed on the sieve surface in a specific direction. Detecting means for detecting a displacement amount in a specific direction related to the direction of the specific inclination trajectory among relative displacement amounts of the selection processing unit and the fixed portion of the support and guide unit; Vibration feed sieve apparatus. 前記検出手段の検出情報に基づいて前記選別処理部の特定方向の振幅を数値表示させるための数値表示装置を設けたことを特徴とする請求項1記載の振動送りふるい装置。The vibration feed sieve device according to claim 1, further comprising a numerical display device for numerically displaying the amplitude of the specific direction of the selection processing unit based on the detection information of the detection unit. 前記検出手段が、前記選別処理部と前記支持案内手段の固定状部との相対的な変位量を、光を媒体として測定するものとした光学式変位測定手段となされていることを特徴とする請求項1又は2記載の振動送りふるい装置。The detection means is an optical displacement measurement means for measuring a relative displacement amount between the selection processing unit and the fixed part of the support and guide means using light as a medium. The vibration feed sieve device according to claim 1 or 2. 前記光学式変位測定手段が、投受光器とこの投受光器の発した光を反射するための反射面部材とからなり、前記投受光器はその投受光部が下面に位置するように前記固定状部に固定し、また反射面部材は選別処理部に固定したことを特徴とする請求項3記載の振動送りふるい装置。The optical displacement measuring means comprises a light emitting and receiving device and a reflecting surface member for reflecting light emitted by the light emitting and receiving device, and the light emitting and receiving device is fixed so that the light emitting and receiving portion is located on a lower surface. The vibration feed sieve device according to claim 3, wherein the vibration feed sieve device is fixed to the shape portion, and the reflection surface member is fixed to the selection processing portion. 前記起振手段が、電動モータの回転を前記特定傾斜軌跡に沿った往復変位に変換してこの往復変位を前記選別処理部に伝達する構成であることを特徴とする請求項1、2、3又は4記載の振動送りふるい装置。4. The apparatus according to claim 1, wherein said vibration generating means converts the rotation of the electric motor into a reciprocating displacement along the specific inclination locus and transmits the reciprocating displacement to the selection processing unit. Or the vibration feed sieve device according to 4. 前記検出手段の検出情報に基づいて前記電動モータに供給する電流の周波数を変化させるものとしたインバータを設けたことを特徴とする請求項5記載の振動送りふるい装置。The vibration feed sieve device according to claim 5, further comprising an inverter configured to change a frequency of a current supplied to the electric motor based on detection information of the detection unit.
JP2002160090A 2002-05-31 2002-05-31 Vibrating feed sieve device Expired - Fee Related JP3658706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002160090A JP3658706B2 (en) 2002-05-31 2002-05-31 Vibrating feed sieve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002160090A JP3658706B2 (en) 2002-05-31 2002-05-31 Vibrating feed sieve device

Publications (2)

Publication Number Publication Date
JP2004000847A true JP2004000847A (en) 2004-01-08
JP3658706B2 JP3658706B2 (en) 2005-06-08

Family

ID=30429625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002160090A Expired - Fee Related JP3658706B2 (en) 2002-05-31 2002-05-31 Vibrating feed sieve device

Country Status (1)

Country Link
JP (1) JP3658706B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015027294A (en) * 2013-06-27 2015-02-12 節夫 新開 Pulverized soybean skin separator, and production method of soybean milk using the same
CN104722483A (en) * 2015-03-29 2015-06-24 浙江东立绿源科技股份有限公司 Vibratory screening device for feed production
CN105672667A (en) * 2016-04-12 2016-06-15 中交一航局安装工程有限公司 Installation process for electric coal wharf screening system
JP2020521623A (en) * 2017-05-29 2020-07-27 エー オー イデアス ゲーエムベーハー Sieving device and operating method
CN114293417A (en) * 2022-03-09 2022-04-08 河北铁达科技有限公司 Steel rail elastic strip buckling pressure detection device and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316834A (en) * 2013-05-23 2013-09-25 新乡市高服筛分机械有限公司 Screening machine with two screening boxes
CN109939928B (en) * 2019-04-18 2020-09-29 杭州富阳顺来粮油专业合作社 Sieving mechanism for peanut processing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015027294A (en) * 2013-06-27 2015-02-12 節夫 新開 Pulverized soybean skin separator, and production method of soybean milk using the same
CN104722483A (en) * 2015-03-29 2015-06-24 浙江东立绿源科技股份有限公司 Vibratory screening device for feed production
CN105672667A (en) * 2016-04-12 2016-06-15 中交一航局安装工程有限公司 Installation process for electric coal wharf screening system
JP2020521623A (en) * 2017-05-29 2020-07-27 エー オー イデアス ゲーエムベーハー Sieving device and operating method
JP7286161B2 (en) 2017-05-29 2023-06-05 エー オー イデアス ゲーエムベーハー Sieving device and method of operation
CN114293417A (en) * 2022-03-09 2022-04-08 河北铁达科技有限公司 Steel rail elastic strip buckling pressure detection device and method

Also Published As

Publication number Publication date
JP3658706B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
RU2404566C2 (en) Method and contruction of drive of device for harvested mass transportation
US20010007300A1 (en) Differential impulse conveyor with linear motor drive
KR101232595B1 (en) Sorting device of shellfish
US9694391B1 (en) Adjustable split weight gyratory sifter
JP3658706B2 (en) Vibrating feed sieve device
WO2007014444A1 (en) System for controlling the separation efficiency of vibrating screens
CN104399678A (en) Color sorter
EP1464949B1 (en) Granular material inspection device and method
CA2205963C (en) Apparatus for sieving a particulate material
JP7220232B2 (en) vibrating conveyor
JP6846057B2 (en) Food foreign matter sorting system
CN204320682U (en) Color selector
KR101587444B1 (en) Specific gravity separator using air and vibration
WO2007147419A1 (en) Multihead weigher and method of operating such multihead weigher
CN114950952A (en) Building regeneration aggregate vibration winnowing equipment
JPH09150117A (en) Sorting machine
CN109731779A (en) A kind of vibrating screening machine
US257928A (en) Sifter
JP2008212874A (en) Vegetables and fruits sorting apparatus
CN114602798B (en) Support structure for acquiring material distribution, excitation control method and vibrating screen
KR20200014960A (en) Sorting device
US2355131A (en) Grading machine
CN112570265B (en) Conveyer with vibration picking function
US555262A (en) Shaker-screen
JP2006150313A (en) Raw tea leaf sieving apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Effective date: 20041004

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20041124

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Effective date: 20050302

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Effective date: 20050120

Free format text: JAPANESE INTERMEDIATE CODE: A523

LAPS Cancellation because of no payment of annual fees