JP3654429B2 - Manufacturing method of optical semiconductor device - Google Patents

Manufacturing method of optical semiconductor device Download PDF

Info

Publication number
JP3654429B2
JP3654429B2 JP2001026728A JP2001026728A JP3654429B2 JP 3654429 B2 JP3654429 B2 JP 3654429B2 JP 2001026728 A JP2001026728 A JP 2001026728A JP 2001026728 A JP2001026728 A JP 2001026728A JP 3654429 B2 JP3654429 B2 JP 3654429B2
Authority
JP
Japan
Prior art keywords
region
mesa
growth
straight
stripe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001026728A
Other languages
Japanese (ja)
Other versions
JP2002232069A (en
Inventor
航太 浅香
龍三 伊賀
泰正 須崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001026728A priority Critical patent/JP3654429B2/en
Publication of JP2002232069A publication Critical patent/JP2002232069A/en
Application granted granted Critical
Publication of JP3654429B2 publication Critical patent/JP3654429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光情報通信等で用いられる光半導体装置の製造方法に関する。
【0002】
【従来の技術】
近年、光通信はその大容量、超高速化により、多くの情報通信網が用いられている。このような光通信網では、発光素子や受光素子などに光半導体部品が広く利用されており、その研究開発が盛んに行われている。光半導体部品の研究開発は、半導体レーザ(LD)やフォトダイオード(PD)のような個別部品は勿論のこと、LDやPD、半導体増幅器(SOA)、電界吸収型光変調器(EA)など半導体で作製可能な光デバイスを半導体基板上にモノリシック集積することも精力的に行われている。モノリシック集積では各々の機能に最適化された活性層構造及び導波路構造を用いること、これらを高い結合効率を保ったまま接続することが重要な課題の一つである。
【0003】
一方、LDなどの電流注入素子では、低消費電力を実現するために作動電流の低減が要求され、このためには注入効率を改善することが必須である。有機金属気相エピタキシャル(MOVPE)法による選択成長で作製された埋め込み構造は、強い電流狭窄効果を得ることができるため、LDなどの単体素子で広く用いられている。
【0004】
しかしながら、モノリシック集積素子のように異種の導波路層をもち、導波路構造も埋め込み構造やハイメサ構造、リッジ構造など様々な構造が混在する場合には、単体素子での作製方法をそのまま用いることが困難になる。
【0005】
従来の半導体装置における異種の導波路構造の接続方法(製造方法)を図7に基づいて説明する。ここでは、一例として、埋め込み構造をもつLDとハイメサ構造をもつアレイ導波路格子(AWG)を突き合わせる場合について説明する。
【0006】
図7(a) に示すように、まずInP 基板1上にLD活性層2とp-InP クラッド層3を形成し、図中右半分をウェットエッチングで除去した後、AWG導波路層4とi-InP クラッド層5を順次MOVPE法により形成する。MOVPE法では誘電体膜(SiO2)を用いた選択成長が可能なため、このような構造を作製することが可能となる。この後、LDは埋め込み構造を作製するために、[011]方向に平行なメサストライプ構造を形成してMOVPE成長を行う。このとき、AWG領域は埋め込み構造を必要としないので、メサストライプ上部と同様に誘電体膜を形成しておくことが考えられる。図7(b) には選択成長後の状態を示してある。
【0007】
しかし、この場合、AWG領域の誘電体膜の面積が埋め込み成長時の材料分子のマイグレーション距離より十分に大きくなり、AWG領域の誘電体膜の上に多結晶状の異常成長を引き起こすため、現実的ではない。そこで、図8(a) に示すように、図7(a) と同様なメサストライプ構造を形成し、AWG領域の誘電体膜を除去してMOVPE成長を行うことで埋め込み構造を作製することが考えられる。図8(b) には選択成長後の状態を示してある。
【0008】
【発明が解決しようとする課題】
しかしながら、図8に示した場合にもAWG領域の端面で異常成長などが生じるため問題となる。以下その問題について詳細に説明する。
【0009】
一般にGaInAsP 系のLDは(100)面を表面としたInP 基板に作製される。また、メサストライプは[011]方向(逆メサ方向)に平行とし、このメサストライプを選択MOVPE成長により埋め込む。これは、MOVPE成長工程が異方性により(111B)面での成長レートが(100)面の成長レートより低いため、図に示したように良好な選択成長を再現性よく得られることができるためである。
【0010】
しかしながら、[01−1]方向(順メサ方向)に平行とした場合には、逆メサ方向への成長レートが(100)面の成長レートと同等であるため、図8(b) 中のIX矢視方向視を表す図9に示すように、マスク上に被る方向へも成長が進行する。これは、メサストライプとAWG領域とのマスク端面部分に相当する。これにより、端面からの成長がメサストライプ脇でも発生し、ここを起点として成長されるため端面付近のメサストライプ上にも成長される。この成長層は、メサ幅が3μm以下と狭いことから容易に側面のからの成長層と接合され、端面付近では複数の結晶面方位が露出する。このような、面方位の定まらないマスク上の成長領域では異常成長を誘発し、誘電体膜上にもInP が成長される。この結果、この部分には電極構造を作製することが不可能となるので、LDの場合には大きな吸収損失領域となり、特性を大幅に劣化させる。
【0011】
本発明は上記状況に鑑みてなされたもので、特性を損なうことなく高性能なモノリシック集積素子を実現できる光半導体装置の製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するための本発明の光半導体装置の製造方法は、半導体基板上に形成された平面構造を持つ平面領域と、該平面領域に接続された誘電体膜を持つメサストライプ構造のストライプ領域とを有する光半導体装置の製造方法であって、前記ストライプ領域を、直線メサストライプ構造を持つ第1直線領域と、該第1直線領域に接してメサ幅が徐々に変化するメサストライプ構造を持つ遷移領域と、前記遷移領域に接すると共に前記平面領域に接して直線メサストライプ構造を持つ第2直線領域とで構成し、前記ストライプ領域の横と前記平面領域の上に有機金属気相エピタキシャル法により結晶を選択成長させる工程を有することを特徴とする。
【0013】
そして、前記第1直線領域の直線メサストライプ構造のメサ幅が3μm以下とされ、前記第2直線領域の直線メサストライプ構造のメサ幅がメサ深さの1.5倍から5倍とされ、長さがメサ深さの1倍から2倍とされ、前記遷移領域のメサ幅が、前記第1直線領域に接するメサ幅から前記第2直線領域に接するメサ幅まで徐々に広がり変化し、広がり角度が10度から45度に設定されていることを特徴とする。
【0014】
【発明の実施の形態】
図1乃至図3には本発明の一実施形態例に係る光半導体装置の製造方法の工程説明を示してあり、図1は選択成長前の状態、図2は選択成長後の状態、図3は図2中のIII 矢視である上面からの状態である。
【0015】
ここでは、一例として(100)面を表面としたInP 基板で説明する。図中、11はInP 基板、12はLD活性層、13はp-InP クラッド層、14はAWG導波路層、15はi-InP クラッド層である。LDでは光導波モードのシングルモード条件を満たす必要があるため、導波路幅を3μm以下としている。一般にメサストライプは1.5μm程度で、良好な埋め込み構造を得るために逆メサ方向に対して平行に形成される。
【0016】
一方、選択成長工程では半絶縁性半導体であるFeをドーピングしたInP により埋め込む方法がある。この方法を用いると、素子容量が大幅に低減できるため光素子の高速動作が容易に実現できる。このとき、十分な絶縁抵抗を得るためには適当な埋め込み層厚が必要となり、一般的な埋め込み層厚は約3μm以上である。これが第1直線領域としての第1直線導波路21に対応する。これに続いて、遷移領域22及び第2直線領域としての第2直線導波路23が配置される。このメサストライプ上に誘電体膜が配置され、これを選択成長用マスクとして選択成長を行い、以下に示した埋め込み構造を得る。
【0017】
第1直線導波路21では、逆メサ方向に対し平行に作製されたメサストライプと同様な良好な埋め込み構造が得られる。
【0018】
遷移領域22では、上記で述べた順メサ方向と逆メサ方向に平行なメサストライプの成分が共存するため、マスク上に被る方向への成長も進行する。この際、マスク上への成長は1の方向(逆メサ方向)に向かって進行するが、第1直線導波路21の方向へは(111B)面での成長抑制により進行しない。また、遷移領域22の第1直線導波路21のメサ幅と同じ領域へもマスク上への成長は進行しない。
【0019】
これは、従来例では、誘導体膜の端面が直近に位置しており、端面からの成長と両側面からの成長が接合して複数の結晶面方位が形成されて異常成長を誘発していたのに対し、本発明では、誘電体膜の端面を第2直線導波路23まで遠ざけているいることにより異常成長が誘発されないこと、遷移領域22のメサ幅が第2直線導波路23のメサ幅まで徐々に広くなることから、万一、マスク上に成長膜厚分の成長が進行した場合でも第1直線導波路21のメサ幅より内側まで到達しないことによるものである。
【0020】
また、遷移領域22の広がり角が大きくなると、側面での逆メサ方向への成長成分は増加し、順メサ方向への成長成分が減少する。良好な埋め込み形状を得るためには、逆メサ方向の成長成分は少ない方が好ましいので、広がり角は両成長成分が1:1となる45度より小さいことが望ましい。広がり角は10度から45度に設定される。
【0021】
第2直線導波路23では、側面において逆メサ方向に対し平行に作製されたメサストライプと同様な良好な埋め込み構造が得られる。端面においては順メサ方向と平行なメサストライプの場合と同様にマスク上に被る方向、即ち、逆メサ方向に成長が進行する。これは、成長層厚と同程度以下であるので、第2直線導波路23の長さは成長層厚、即ち、メサ深さの2倍以下であれば十分である。
【0022】
第2直線導波路23の長さはメサ深さの1倍から2倍に設定される。端面と側面の境界付近では、マスク上に被る方向の成長がみられるが、もう一方の側面との距離が成長層厚より十分広くなるようメサ幅が成長層厚、即ち、メサ深さの1.5倍以上で5倍以下となっているため、従来例のように、側面からの成長層と接合することがなく、マスク上が完全に覆われることや複数の結晶面方位が形成されて不安定となり、異常成長を誘発してInP が成長することがない。
【0023】
このように本発明を用いると、直上に誘電体膜を持ったメサストライプ形状の埋め込み領域と誘電体膜を持たない乗り上げ成長領域が混在する光半導体装置において、選択成長用誘電体膜を用いた選択埋め込みMOVPE成長時に、メサストライプ上への成長や誘電体膜上へのInP の異常成長が抑制される。この結果、LDなどの場合に大きな吸収損失領域となる異常成長領域が発生することなく、素子特性を損なわずに異種の素子構造をモノリシック集積することができる。
【0024】
(実施例)
以下に本発明の実施例について図4乃至図6を参照して説明する。尚、実施例における成長は全てMOVPE法によるものである。図4乃至図6には本発明の一実施例に係る光半導体装置の製造方法の工程説明を示してある。
【0025】
まず、図4(a) に示すように、(100)面を表面としたn型 (n-)InP基板31に多重量子井戸(MQW)層32とp型(p-)InP クラッド層33、p-InGaAsキャップ層34を全面に成長する。SiO2膜35をスパッタ法により全面に形成し、図4(b) に示すように、フォトリソグラフィー法とCF4/H2-RIEによりLD領域以外のSiO2膜35を除去する。SiO2膜35をマスクとして、p-InGaAsキャップ層34、(p-)InP クラッド層33及びMQW層32を順次ウェットエッチングにより除去する。
【0026】
図4(c) に示すように、再度SiO2膜35を選択成長用マスクとしてAWG導波路層36とi型(i-)InP クラッド層37、InGaAsキャップ層38を順次選択成長する。図4(d) に示すように、SiO2膜35をウェットエッチングにより除去した後、再度SiO2膜35を形成する。フォトリソグラフィー法とCF4/H2-RIEによりストライプを形成する。この際、ストライプはLD領域を第1直線領域(図1に示した第1直線導波路21)と対応させ、ストライプ幅を1.5μmとし、AWG領域に遷移領域(図1で示した遷移領域22)及び第2直線領域(図1で示した第2直線導波路23)を対応させて第2直線領域のストライプ幅を10μmとし、遷移領域は1.5μmから10μmまで直線的にストライプ幅を変化させる。
【0027】
図5(a) に示すように、SiO2膜35をマスクとしてCF4/H2-RIEによりドライエッチングを行い、深さ3μmのメサストライプ構造26を形成する。図5(b) に示すように、フォトリソグラフィー法とCF4/H2-RIEにより、第1直線領域41から遷移領域42、第2直線領域43の端面までの領域以外のSiO2膜35を除去する。これにより、図1に示した本発明の誘電体膜の構造を形成できる。
【0028】
図5(c) に示すように、SiO2膜35を選択成長用マスクとしてFeドーピングされた(Fe-)InP埋め込み層39を選択成長する。この際、上記で述べた本発明の効果により、第1直線領域41と遷移領域42、及び第2直線領域43の端面から3μm以上離れた領域のストライプ幅1.5μmの範囲内では異常成長が抑制される。図5(d) に示すように、SiO2膜35をウェットエッチングにより除去した後、再度SiO2膜35を形成する。フォトリソグラフィー法とCF4/H2-RIEによりAWG領域に乗り上げ成長された(Fe-)InP埋め込み層39を除去する。
【0029】
図6(a) に示すように、SiO2膜35をウェットエッチングにより除去した後、再度SiO2膜35を形成する。前記SiO2膜35をフォトリソグラフィー法とCF4/H2-RIEによりAWG導波路形状に形成する。図6(b) に示すように、SiO2膜35をマスクとしてBr2-RIE によるドライエッチングによりハイメサ構造27を形成する。図6(c) に示すように、LD部にAuZnNi電極28を形成すると共に、裏面の全面にAuGeNi電極29を形成し、劈開により素子端面を形成する。
【0030】
このように、直上にSiO2膜35を持ったメサストライプ構造26の埋め込み領域とSiO2膜35を持たない乗り上げ成長領域であるAWG領域が混在する光半導体装置において、選択埋め込みMOVPE成長時に、メサストライプ構造26上への成長やSiO2膜35上へのInP の異常成長が抑制される。この結果、LDなどの場合に大きな吸収損失領域となる異常成長領域が発生することなく、素子特性を損なわずに異種の素子構造をモノリシック集積することができる。
【0031】
上記実施例では、InP 基板上での製造方法を例に挙げて説明したが、結晶構造と成長工程の異方性が同様であれば、例えば、本発明はGaAs基板上で製造を行うことも可能である。
【0032】
【発明の効果】
本発明の光半導体装置の製造方法は、半導体基板上に形成された平面構造を持つ平面領域と、平面領域に接続された誘電体膜を持つメサストライプ構造のストライプ領域とを有する光半導体装置において、ストライプ領域を、直線メサストライプ構造を持つ第1直線領域と、第1直線領域に接してメサ幅が徐々に変化するメサストライプ構造を持つ遷移領域と、遷移領域に接すると共に前記平面領域に接して直線メサストライプ構造を持つ第2直線領域とで構成したので、有機金属気相エピタキシャル法による結晶を選択成長時に、メサストライプ構造の上や誘電体膜の上への結晶成長を抑制することができる。この結果、特性を損なうことなく異種の素子構造をモノリシック集積することができ、高性能なモノリシック集積素子を実現できる光半導体装置の製造方法とすることが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態例に係る光半導体装置の製造方法の工程説明図。
【図2】本発明の一実施形態例に係る光半導体装置の製造方法の工程説明図。
【図3】本発明の一実施形態例に係る光半導体装置の製造方法の工程説明図。
【図4】本発明の一実施例に係る光半導体装置の製造方法の工程説明図。
【図5】本発明の一実施例に係る光半導体装置の製造方法の工程説明図。
【図6】本発明の一実施例に係る光半導体装置の製造方法の工程説明図。
【図7】従来の光半導体装置の製造方法の説明図。
【図8】従来の光半導体装置の製造方法の説明図。
【図9】従来の光半導体装置の製造方法の説明図。
【符号の説明】
21 第1直線導波路
22 遷移領域
23 第2直線導波路
26 メサストライプ構造
27 ハイメサ構造
28 AuZnNi電極
29 AuGeNi電極
31 (n-)InP基板
32 多重量子井戸(MQW)層
33 (p-)InP クラッド層
34 p-InGaAsキャップ層
35 SiO2
36 AWG導波路層
37 (i-)InP クラッド層
38 InGaAsキャップ層
39 InP 埋め込み層
41 第1直線領域
42 遷移領域
43 第2直線領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an optical semiconductor device used in optical information communication and the like.
[0002]
[Prior art]
In recent years, many information communication networks have been used for optical communication due to its large capacity and ultra-high speed. In such an optical communication network, an optical semiconductor component is widely used for a light emitting element, a light receiving element, and the like, and its research and development is actively performed. Research and development of optical semiconductor components include not only individual components such as semiconductor lasers (LD) and photodiodes (PD), but also semiconductors such as LDs and PDs, semiconductor amplifiers (SOA), and electroabsorption optical modulators (EA). It has also been energetically performed to monolithically integrate optical devices that can be manufactured by the method on a semiconductor substrate. In monolithic integration, it is one of the important issues to use an active layer structure and a waveguide structure optimized for each function and to connect them while maintaining high coupling efficiency.
[0003]
On the other hand, current injection elements such as LDs require a reduction in operating current in order to achieve low power consumption, and for this purpose it is essential to improve injection efficiency. A buried structure manufactured by selective growth by a metal organic vapor phase epitaxy (MOVPE) method is widely used in a single element such as an LD because a strong current confinement effect can be obtained.
[0004]
However, when a monolithic integrated device has different types of waveguide layers and the waveguide structure also includes various structures such as a buried structure, a high mesa structure, and a ridge structure, the manufacturing method using a single element can be used as it is. It becomes difficult.
[0005]
A connection method (manufacturing method) of different types of waveguide structures in a conventional semiconductor device will be described with reference to FIG. Here, as an example, a case where an LD having an embedded structure and an arrayed waveguide grating (AWG) having a high mesa structure are matched will be described.
[0006]
As shown in FIG. 7A, first, an LD active layer 2 and a p-InP cladding layer 3 are formed on an InP substrate 1, and the right half in the figure is removed by wet etching, and then the AWG waveguide layer 4 and i The InP cladding layer 5 is formed sequentially by the MOVPE method. Since the MOVPE method allows selective growth using a dielectric film (SiO 2 ), such a structure can be manufactured. Thereafter, in order to produce a buried structure, the LD forms a mesa stripe structure parallel to the [011] direction and performs MOVPE growth. At this time, since the AWG region does not require a buried structure, it is conceivable to form a dielectric film in the same manner as the upper part of the mesa stripe. FIG. 7B shows a state after selective growth.
[0007]
However, in this case, since the area of the dielectric film in the AWG region is sufficiently larger than the migration distance of the material molecules during the burying growth, it causes a polycrystalline abnormal growth on the dielectric film in the AWG region. is not. Therefore, as shown in FIG. 8 (a), a mesa stripe structure similar to that in FIG. 7 (a) is formed, the dielectric film in the AWG region is removed, and MOVPE growth is performed to produce a buried structure. Conceivable. FIG. 8B shows the state after selective growth.
[0008]
[Problems to be solved by the invention]
However, the case shown in FIG. 8 is also problematic because abnormal growth or the like occurs at the end face of the AWG region. The problem will be described in detail below.
[0009]
In general, a GaInAsP-based LD is manufactured on an InP substrate having a (100) plane as a surface. The mesa stripe is parallel to the [011] direction (reverse mesa direction), and this mesa stripe is embedded by selective MOVPE growth. This is because the growth rate on the (111B) plane is lower than the growth rate on the (100) plane due to the anisotropy of the MOVPE growth process, so that good selective growth can be obtained with good reproducibility as shown in the figure. Because.
[0010]
However, when parallel to the [01-1] direction (forward mesa direction), the growth rate in the reverse mesa direction is equivalent to the growth rate of the (100) plane, so IX in FIG. As shown in FIG. 9 showing the direction of the arrow, the growth also proceeds in the direction covering the mask. This corresponds to the mask end face portion between the mesa stripe and the AWG region. As a result, growth from the end face also occurs on the side of the mesa stripe, and the growth starts from here to grow on the mesa stripe near the end face. Since this growth layer has a narrow mesa width of 3 μm or less, it is easily joined to the growth layer from the side surface, and a plurality of crystal plane orientations are exposed in the vicinity of the end face. In such a growth region on the mask where the plane orientation is not fixed, abnormal growth is induced, and InP is also grown on the dielectric film. As a result, it becomes impossible to produce an electrode structure in this portion, and in the case of an LD, a large absorption loss region is obtained, and the characteristics are greatly deteriorated.
[0011]
The present invention has been made in view of the above situation, and an object thereof is to provide a method of manufacturing an optical semiconductor device capable of realizing a high-performance monolithic integrated element without impairing characteristics.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, an optical semiconductor device manufacturing method according to the present invention includes a planar region having a planar structure formed on a semiconductor substrate and a stripe having a mesa stripe structure having a dielectric film connected to the planar region. And a mesa stripe structure having a mesa stripe structure in which a mesa width is gradually changed in contact with the first linear area. And a second linear region in contact with the planar region and in contact with the planar region and having a linear mesa stripe structure, and a metal organic vapor phase epitaxial method beside the stripe region and on the planar region. And a step of selectively growing a crystal.
[0013]
The mesa width of the straight mesa stripe structure in the first straight region is 3 μm or less, the mesa width of the straight mesa stripe structure in the second straight region is 1.5 to 5 times the mesa depth, And the mesa width of the transition region gradually changes from the mesa width in contact with the first straight region to the mesa width in contact with the second straight region, and the spread angle Is set from 10 degrees to 45 degrees.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 to FIG. 3 show process descriptions of a method of manufacturing an optical semiconductor device according to an embodiment of the present invention. FIG. 1 shows a state before selective growth, FIG. 2 shows a state after selective growth, and FIG. Is the state from the top as seen in the direction of arrow III in FIG.
[0015]
Here, as an example, an InP substrate having a (100) plane as a surface will be described. In the figure, 11 is an InP substrate, 12 is an LD active layer, 13 is a p-InP cladding layer, 14 is an AWG waveguide layer, and 15 is an i-InP cladding layer. Since the LD needs to satisfy the single mode condition of the optical waveguide mode, the waveguide width is set to 3 μm or less. In general, the mesa stripe is about 1.5 μm and is formed parallel to the reverse mesa direction in order to obtain a good buried structure.
[0016]
On the other hand, in the selective growth process, there is a method of embedding with InP doped with Fe which is a semi-insulating semiconductor. When this method is used, the device capacitance can be greatly reduced, so that high-speed operation of the optical device can be easily realized. At this time, in order to obtain a sufficient insulation resistance, a suitable buried layer thickness is required, and a typical buried layer thickness is about 3 μm or more. This corresponds to the first straight waveguide 21 as the first straight region. Following this, a transition region 22 and a second straight waveguide 23 as a second straight region are arranged. A dielectric film is disposed on the mesa stripe, and selective growth is performed using the dielectric film as a mask for selective growth to obtain the buried structure shown below.
[0017]
In the first straight waveguide 21, a good buried structure similar to a mesa stripe produced in parallel to the reverse mesa direction can be obtained.
[0018]
In the transition region 22, since the mesa stripe components parallel to the forward mesa direction and the reverse mesa direction described above coexist, the growth in the direction covering the mask also proceeds. At this time, the growth on the mask proceeds in the direction 1 (reverse mesa direction), but does not proceed in the direction of the first linear waveguide 21 due to the growth suppression on the (111B) plane. Further, the growth on the mask does not proceed to the same region as the mesa width of the first straight waveguide 21 in the transition region 22.
[0019]
This is because, in the conventional example, the end face of the derivative film is located closest to each other, and the growth from the end face and the growth from the both side faces are joined to form a plurality of crystal plane orientations to induce abnormal growth. On the other hand, in the present invention, abnormal growth is not induced by keeping the end face of the dielectric film far away from the second linear waveguide 23, and the mesa width of the transition region 22 reaches the mesa width of the second linear waveguide 23. This is because the width gradually increases, so that even if growth of the grown film thickness proceeds on the mask, it does not reach the inside of the mesa width of the first linear waveguide 21.
[0020]
Further, as the spread angle of the transition region 22 increases, the growth component in the reverse mesa direction on the side surface increases and the growth component in the forward mesa direction decreases. In order to obtain a good embedding shape, it is preferable that the growth component in the reverse mesa direction is small. Therefore, it is desirable that the spread angle is smaller than 45 degrees at which both growth components are 1: 1. The divergence angle is set from 10 degrees to 45 degrees.
[0021]
In the second straight waveguide 23, a good buried structure similar to a mesa stripe produced in parallel to the reverse mesa direction on the side surface can be obtained. On the end face, growth proceeds in the direction on the mask, that is, in the reverse mesa direction, as in the case of the mesa stripe parallel to the forward mesa direction. Since this is less than or equal to the thickness of the growth layer, it is sufficient if the length of the second straight waveguide 23 is less than twice the growth layer thickness, that is, the mesa depth.
[0022]
The length of the second straight waveguide 23 is set to 1 to 2 times the mesa depth. In the vicinity of the boundary between the end surface and the side surface, growth in the direction of covering on the mask is observed, but the mesa width is 1 of the growth layer thickness, that is, the mesa depth so that the distance to the other side surface is sufficiently wider than the growth layer thickness. Since it is 5 times or more and 5 times or less, there is no bonding with the growth layer from the side as in the conventional example, and the mask is completely covered and a plurality of crystal plane orientations are formed. It becomes unstable and InP does not grow by inducing abnormal growth.
[0023]
As described above, when the present invention is used, a selective growth dielectric film is used in an optical semiconductor device in which a mesa stripe-shaped buried region having a dielectric film directly above and a rising growth region having no dielectric film are mixed. During selective embedding MOVPE growth, growth on the mesa stripe and abnormal growth of InP on the dielectric film are suppressed. As a result, an abnormal growth region that becomes a large absorption loss region in the case of an LD or the like does not occur, and different element structures can be monolithically integrated without impairing element characteristics.
[0024]
(Example)
Embodiments of the present invention will be described below with reference to FIGS. All growth in the examples is based on the MOVPE method. 4 to 6 show a process description of a method of manufacturing an optical semiconductor device according to an embodiment of the present invention.
[0025]
First, as shown in FIG. 4A, a multiple quantum well (MQW) layer 32 and a p-type (p-) InP cladding layer 33 are formed on an n-type (n-) InP substrate 31 having a (100) plane as a surface. A p-InGaAs cap layer 34 is grown on the entire surface. A SiO 2 film 35 is formed on the entire surface by sputtering, and as shown in FIG. 4B, the SiO 2 film 35 other than the LD region is removed by photolithography and CF 4 / H 2 -RIE. Using the SiO 2 film 35 as a mask, the p-InGaAs cap layer 34, the (p-) InP cladding layer 33, and the MQW layer 32 are sequentially removed by wet etching.
[0026]
As shown in FIG. 4C, the AWG waveguide layer 36, the i-type (i-) InP clad layer 37, and the InGaAs cap layer 38 are successively and selectively grown again using the SiO 2 film 35 as a selective growth mask. As shown in FIG. 4 (d), after the SiO 2 film 35 is removed by wet etching to form the SiO 2 film 35 again. Stripes are formed by photolithography and CF4 / H 2 -RIE. At this time, the stripe has an LD region corresponding to the first straight region (first straight waveguide 21 shown in FIG. 1), a stripe width of 1.5 μm, and a transition region (the transition region shown in FIG. 1) in the AWG region. 22) and the second linear region (second linear waveguide 23 shown in FIG. 1), the stripe width of the second linear region is set to 10 μm, and the transition region has a stripe width linearly from 1.5 μm to 10 μm. Change.
[0027]
As shown in FIG. 5A, dry etching is performed by CF 4 / H 2 -RIE using the SiO 2 film 35 as a mask to form a mesa stripe structure 26 having a depth of 3 μm. As shown in FIG. 5B, the SiO 2 film 35 other than the region from the first linear region 41 to the transition region 42 and the end surface of the second linear region 43 is removed by photolithography and CF4 / H 2 -RIE. To do. Thereby, the structure of the dielectric film of the present invention shown in FIG. 1 can be formed.
[0028]
As shown in FIG. 5C, the Fe-doped (Fe-) InP buried layer 39 is selectively grown using the SiO 2 film 35 as a selective growth mask. At this time, due to the effects of the present invention described above, abnormal growth occurs within a stripe width of 1.5 μm in a region 3 μm or more away from the end surfaces of the first linear region 41, the transition region 42, and the second linear region 43. It is suppressed. As shown in FIG. 5 (d), after the SiO 2 film 35 is removed by wet etching to form the SiO 2 film 35 again. Grown rides AWG region by photolithography and CF4 / H 2 -RIE (Fe-) removing the InP buried layer 39.
[0029]
As shown in FIG. 6 (a), after the SiO 2 film 35 is removed by wet etching to form the SiO 2 film 35 again. The SiO 2 film 35 is formed into an AWG waveguide shape by photolithography and CF 4 / H 2 -RIE. As shown in FIG. 6B, a high mesa structure 27 is formed by dry etching with Br 2 -RIE using the SiO 2 film 35 as a mask. As shown in FIG. 6 (c), an AuZnNi electrode 28 is formed in the LD portion, an AuGeNi electrode 29 is formed on the entire back surface, and an element end face is formed by cleavage.
[0030]
As described above, in the optical semiconductor device in which the buried region of the mesa stripe structure 26 having the SiO 2 film 35 directly above and the AWG region which is the run-up growth region without the SiO 2 film 35 are mixed, during the selective buried MOVPE growth, the mesa Growth on the stripe structure 26 and abnormal growth of InP on the SiO 2 film 35 are suppressed. As a result, an abnormal growth region that becomes a large absorption loss region in the case of an LD or the like does not occur, and different element structures can be monolithically integrated without impairing element characteristics.
[0031]
In the above embodiment, the manufacturing method on the InP substrate has been described as an example. However, if the crystal structure and the anisotropy of the growth process are the same, for example, the present invention may be manufactured on a GaAs substrate. Is possible.
[0032]
【The invention's effect】
An optical semiconductor device manufacturing method according to the present invention includes an optical semiconductor device having a planar region having a planar structure formed on a semiconductor substrate and a stripe region having a mesa stripe structure having a dielectric film connected to the planar region. The stripe region is in contact with the first linear region having a linear mesa stripe structure, the transition region having a mesa stripe structure in which the mesa width gradually changes in contact with the first linear region, and in contact with the planar region. And the second linear region having the straight mesa stripe structure, it is possible to suppress the crystal growth on the mesa stripe structure or on the dielectric film when the crystal is grown by metal organic vapor phase epitaxy. it can. As a result, a heterogeneous element structure can be monolithically integrated without impairing characteristics, and an optical semiconductor device manufacturing method capable of realizing a high-performance monolithic integrated element can be achieved.
[Brief description of the drawings]
FIG. 1 is a process explanatory diagram of an optical semiconductor device manufacturing method according to an embodiment of the present invention.
FIG. 2 is a process explanatory diagram of a method of manufacturing an optical semiconductor device according to an embodiment of the present invention.
FIG. 3 is a process explanatory diagram of an optical semiconductor device manufacturing method according to an embodiment of the present invention.
FIG. 4 is a process explanatory diagram of a method of manufacturing an optical semiconductor device according to an embodiment of the present invention.
FIG. 5 is a process explanatory diagram of a method of manufacturing an optical semiconductor device according to an embodiment of the present invention.
FIG. 6 is a process explanatory diagram of a method for manufacturing an optical semiconductor device according to an embodiment of the present invention.
FIG. 7 is an explanatory view of a conventional method for manufacturing an optical semiconductor device.
FIG. 8 is an explanatory diagram of a conventional method for manufacturing an optical semiconductor device.
FIG. 9 is an explanatory diagram of a conventional method for manufacturing an optical semiconductor device.
[Explanation of symbols]
21 first linear waveguide 22 transition region 23 second linear waveguide 26 mesa stripe structure 27 high mesa structure 28 AuZnNi electrode 29 AuGeNi electrode 31 (n-) InP substrate 32 multiple quantum well (MQW) layer 33 (p-) InP cladding Layer 34 p-InGaAs cap layer 35 SiO 2 film 36 AWG waveguide layer 37 (i-) InP cladding layer 38 InGaAs cap layer 39 InP buried layer 41 first linear region 42 transition region 43 second linear region

Claims (2)

半導体基板上に形成された平面構造を持つ平面領域と、該平面領域に接続された誘電体膜を持つメサストライプ構造のストライプ領域とを有する光半導体装置の製造方法であって、
前記ストライプ領域を、直線メサストライプ構造を持つ第1直線領域と、該第1直線領域に接してメサ幅が徐々に変化するメサストライプ構造を持つ遷移領域と、前記遷移領域に接すると共に前記平面領域に接して直線メサストライプ構造を持つ第2直線領域とで構成し、
前記ストライプ領域の横と前記平面領域の上に有機金属気相エピタキシャル法により結晶を選択成長させる工程を有する
ことを特徴とする光半導体装置の製造方法。
A method of manufacturing an optical semiconductor device having a planar region having a planar structure formed on a semiconductor substrate and a stripe region having a mesa stripe structure having a dielectric film connected to the planar region,
The stripe region includes a first straight region having a straight mesa stripe structure, a transition region having a mesa stripe structure in which the mesa width gradually changes in contact with the first straight region, and the planar region in contact with the transition region. And a second linear region having a linear mesa stripe structure in contact with
A method of manufacturing an optical semiconductor device, comprising a step of selectively growing a crystal by a metal organic vapor phase epitaxy method next to the stripe region and on the planar region.
請求項1において、
前記第1直線領域の直線メサストライプ構造のメサ幅が3μm以下とされ、
前記第2直線領域の直線メサストライプ構造のメサ幅がメサ深さの1.5倍から5倍とされ、長さがメサ深さの1倍から2倍とされ、
前記遷移領域のメサ幅が、前記第1直線領域に接するメサ幅から前記第2直線領域に接するメサ幅まで徐々に広がり変化し、広がり角度が10度から45度に設定されている
ことを特徴とする光半導体装置の製造方法。
In claim 1,
The mesa width of the straight mesa stripe structure of the first straight region is 3 μm or less;
The mesa width of the straight mesa stripe structure of the second straight region is 1.5 to 5 times the mesa depth, and the length is 1 to 2 times the mesa depth;
The mesa width of the transition area gradually changes from a mesa width in contact with the first straight line area to a mesa width in contact with the second straight line area, and a spread angle is set from 10 degrees to 45 degrees. A method for manufacturing an optical semiconductor device.
JP2001026728A 2001-02-02 2001-02-02 Manufacturing method of optical semiconductor device Expired - Fee Related JP3654429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001026728A JP3654429B2 (en) 2001-02-02 2001-02-02 Manufacturing method of optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001026728A JP3654429B2 (en) 2001-02-02 2001-02-02 Manufacturing method of optical semiconductor device

Publications (2)

Publication Number Publication Date
JP2002232069A JP2002232069A (en) 2002-08-16
JP3654429B2 true JP3654429B2 (en) 2005-06-02

Family

ID=18891497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001026728A Expired - Fee Related JP3654429B2 (en) 2001-02-02 2001-02-02 Manufacturing method of optical semiconductor device

Country Status (1)

Country Link
JP (1) JP3654429B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4962367B2 (en) * 2008-03-18 2012-06-27 富士通株式会社 Optical semiconductor device
JP5617178B2 (en) * 2008-09-19 2014-11-05 富士通株式会社 Manufacturing method of optical waveguide
JP6133025B2 (en) * 2012-08-10 2017-05-24 古河電気工業株式会社 Optical integrated device manufacturing method
JP6490705B2 (en) 2014-10-06 2019-03-27 古河電気工業株式会社 Semiconductor optical integrated device and manufacturing method thereof
CN106663916B (en) * 2015-02-12 2020-09-25 古河电气工业株式会社 Semiconductor laser device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880887A (en) * 1981-11-09 1983-05-16 Nec Corp Semiconductor laser photodiode photointegrated element
JP2686764B2 (en) * 1988-03-11 1997-12-08 国際電信電話株式会社 Method for manufacturing optical semiconductor device
JP2780829B2 (en) * 1989-12-26 1998-07-30 富士通株式会社 Method for manufacturing optical semiconductor integrated device
JPH0451569A (en) * 1990-06-20 1992-02-20 Nec Corp Manufacture of semiconductor integrated light source
JPH04130691A (en) * 1990-09-20 1992-05-01 Oki Electric Ind Co Ltd Manufacture of semiconductor laser
JPH04134896A (en) * 1990-09-27 1992-05-08 Toshiba Corp Integrated optical semiconductor device
JPH05251812A (en) * 1992-03-06 1993-09-28 Nippon Telegr & Teleph Corp <Ntt> Distributed-feedback semiconductor laser with quantum well structured optical modulator and manufacture thereof
JP3178565B2 (en) * 1993-06-30 2001-06-18 日本電信電話株式会社 Semiconductor optical device
JPH1187844A (en) * 1997-07-08 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical coupling circuit and its manufacture
JP2000151013A (en) * 1998-11-13 2000-05-30 Furukawa Electric Co Ltd:The Optical transmission/reception integrated element

Also Published As

Publication number Publication date
JP2002232069A (en) 2002-08-16

Similar Documents

Publication Publication Date Title
US7476558B2 (en) Method for manufacturing selective area grown stacked-layer electro-absorption modulated laser structure
CN101123342B (en) Optical waveguide, semiconductor optical integrated element, and methods for manufacturing the same
JP3484394B2 (en) Optical semiconductor device and method of manufacturing the same
US20030179794A1 (en) Ridge-waveguide semiconductor laser device
JP5170869B2 (en) Optical semiconductor device and method for manufacturing optical semiconductor device
JP5314435B2 (en) Integrated optical device and manufacturing method thereof
US6498889B2 (en) Waveguide optical device and method of fabricating the same
JP3654429B2 (en) Manufacturing method of optical semiconductor device
JP2002232079A (en) Ridge wavelength type optical semiconductor element and its manufacturing method
JP3695812B2 (en) Planar electrode type semiconductor optical device and manufacturing method thereof
JP3566107B2 (en) Optical communication module
WO2021209114A1 (en) Optical device
KR100584333B1 (en) Semiconductor laser device and method for fabricating the same
JP4164248B2 (en) Semiconductor element, manufacturing method thereof, and semiconductor optical device
JP2004311556A (en) Semiconductor laser, optical module using the same, and functionally integrated laser
US7598106B2 (en) Optical semiconductor device and fabrication method therefor
JP3255111B2 (en) Semiconductor laser and manufacturing method thereof
JP6987322B1 (en) Optical semiconductor devices and their manufacturing methods
JP3295932B2 (en) Semiconductor laser device
JP3652454B2 (en) Semiconductor laser and manufacturing method thereof
JP2500615B2 (en) Method for manufacturing embedded optical semiconductor device
JPH0656907B2 (en) Method for manufacturing semiconductor light emitting device
JPH09214026A (en) Optical semiconductor device and its fabrication
JP2004319554A (en) Optical semiconductor element and method of manufacturing the same
JPH1140897A (en) Semiconductor laser element and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20050223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees