JP5170869B2 - Optical semiconductor device and method for manufacturing optical semiconductor device - Google Patents

Optical semiconductor device and method for manufacturing optical semiconductor device Download PDF

Info

Publication number
JP5170869B2
JP5170869B2 JP2007287581A JP2007287581A JP5170869B2 JP 5170869 B2 JP5170869 B2 JP 5170869B2 JP 2007287581 A JP2007287581 A JP 2007287581A JP 2007287581 A JP2007287581 A JP 2007287581A JP 5170869 B2 JP5170869 B2 JP 5170869B2
Authority
JP
Japan
Prior art keywords
semiconductor
layer
optical
protective layer
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007287581A
Other languages
Japanese (ja)
Other versions
JP2009117539A (en
Inventor
政樹 舟橋
和明 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2007287581A priority Critical patent/JP5170869B2/en
Publication of JP2009117539A publication Critical patent/JP2009117539A/en
Application granted granted Critical
Publication of JP5170869B2 publication Critical patent/JP5170869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、光半導体素子、及び、光半導体素子の製造方法に関し、特に、ハイメサ形状に形成された活性層を有する光半導体素子の構造に関する。   The present invention relates to an optical semiconductor device and a method for manufacturing the optical semiconductor device, and more particularly to a structure of an optical semiconductor device having an active layer formed in a high mesa shape.

光通信ネットワークの普及や進展に伴って、光通信システムで使用される光部品の高機能化が進んでいる。特に、半導体材料をベースとした光半導体素子は、コンパクト、高速動作、高効率、低消費電力などといった特徴を有するため、半導体レーザや半導体受光素子をはじめ、様々な用途で開発・実用化が進められている。昨今の光部品の高機能化の要求に伴って、光半導体素子の素子構造や構成もより複雑化してきており、発光のみ、或いは、受光のみといった単一の機能を有する光半導体デバイスだけでなく、発光、受光、光変調、光増幅、光導波、合波、分波といった、2つ以上の異なる機能を持った光半導体素子を同一半導体基板(ウエハ)上に作製する、モノリシック集積技術の開発が進んでいる。   Along with the spread and progress of optical communication networks, higher performance of optical components used in optical communication systems is progressing. In particular, optical semiconductor elements based on semiconductor materials have features such as compactness, high-speed operation, high efficiency, and low power consumption. Therefore, development and commercialization of various applications including semiconductor lasers and semiconductor light-receiving elements have been promoted. It has been. With the recent demand for higher functionality of optical components, the element structure and configuration of optical semiconductor elements have become more complex, and not only optical semiconductor devices having a single function such as light emission only or light reception only. Development of monolithic integrated technology for manufacturing optical semiconductor elements with two or more different functions such as light emission, light reception, light modulation, optical amplification, optical waveguide, multiplexing and demultiplexing on the same semiconductor substrate (wafer) Is progressing.

光半導体素子の機能素子(アクティブ素子)における導波路構造としては、典型的にはハイメサ型、ローメサ型、埋込メサ型の3種類がよく使われている。ハイメサ型の導波路構造は、少なくとも活性層の部分までがメサ形状に形成されて、メサが外周側の半導体積層から上に突出する構造を有する。ローメサ型の導波路構造は、活性層の上部の積層までがメサ型に形成され、メサが外周側の半導体積層から上に突出する構造を有する。また、埋込メサ型の導波路構造は、ハイメサ又はローメサ型のメサ形状の外周側に半導体層が積層され、この半導体層によってメサが埋め込まれた構造を有する。   As a waveguide structure in a functional element (active element) of an optical semiconductor element, typically, three types of high mesa type, low mesa type, and embedded mesa type are often used. The high mesa type waveguide structure has a structure in which at least the active layer is formed in a mesa shape, and the mesa protrudes upward from the outer semiconductor stack. The low mesa type waveguide structure has a structure in which the layers up to the upper layer of the active layer are formed in a mesa shape, and the mesa protrudes upward from the semiconductor stack on the outer peripheral side. The embedded mesa waveguide structure has a structure in which a semiconductor layer is stacked on the outer periphery of a high mesa or low mesa type mesa and the mesa is embedded by this semiconductor layer.

光半導体素子の受動素子(パッシブ素子)を構成する光導波路では、ハイメサ型の構造を採用すると、横方向の屈折率差が特に大きいため、曲げ導波路での曲率半径を小さくできるという利点を有する。一方、この導波路構造を光機能素子に適用した場合には、活性層表面がメサ側部に露出しているため、機能素子としての信頼性の向上が難しいという課題がある。   In an optical waveguide that constitutes a passive element (passive element) of an optical semiconductor element, when a high mesa structure is adopted, since the difference in refractive index in the lateral direction is particularly large, there is an advantage that the radius of curvature in the bending waveguide can be reduced. . On the other hand, when this waveguide structure is applied to an optical functional element, the active layer surface is exposed on the mesa side, and thus there is a problem that it is difficult to improve the reliability of the functional element.

ローメサ型の導波路構造を採用した光半導体素子では、埋込結晶成長が不要であり、機能素子の活性層表面が露出してないため、表面の非発光再結合が小さいという利点がある。しかし、注入電流の広がりによるリーク電流の増大や、ローメサに形成する際のエッチング時における、残し厚の制御が難しいといった欠点もある。   An optical semiconductor element employing a low-mesa waveguide structure has the advantage that no embedded crystal growth is required and the active layer surface of the functional element is not exposed, so that non-radiative recombination on the surface is small. However, there are also drawbacks such as an increase in leakage current due to the spread of the injection current and difficulty in controlling the remaining thickness during etching when forming a low mesa.

埋込メサ型の導波路構造を採用した光半導体素子では、活性層の両脇をエッチングしてメサ形状に形成した後、電流ブロッキング用の半導体層を結晶成長することで、メサ形状を埋め込んだ構造を有する。このため、活性層以外を流れるリーク電流を小さくできること、及び、活性層表面が半導体層で覆われているので、表面での非発光再結合が抑制できる利点がある。例えば、レーザのような光機能素子では、高い信頼性を実現できる。従って、単体の半導体光機能素子の導波路構造としては、従来は埋込メサ型が用いられることが多かった。   In an optical semiconductor device using a buried mesa waveguide structure, both sides of the active layer are etched to form a mesa shape, and then the mesa shape is embedded by crystal growth of a current blocking semiconductor layer It has a structure. For this reason, there is an advantage that the leakage current that flows outside the active layer can be reduced and that the surface of the active layer is covered with the semiconductor layer, so that non-radiative recombination on the surface can be suppressed. For example, in an optical functional element such as a laser, high reliability can be realized. Therefore, conventionally, a buried mesa type is often used as the waveguide structure of a single semiconductor optical functional element.

埋込メサ型の光半導体素子においては、ブロッキング用半導体層の結晶成長が必要であること、及び、その結晶成長では、結晶の面方位に成長依存性があるため、ウエハ内での導波路の方向が限定されることなどの欠点があった。埋込結晶成長は、電流ブロック特性に大きく影響するため、埋込層の膜厚、ドーピング濃度などを正確に制御して結晶成長を行う必要があった。   In the embedded mesa type optical semiconductor element, the crystal growth of the blocking semiconductor layer is necessary, and the crystal growth is dependent on the crystal plane orientation. There were drawbacks such as limited direction. Since buried crystal growth greatly affects current blocking characteristics, it is necessary to perform crystal growth by accurately controlling the thickness of the buried layer, the doping concentration, and the like.

また、活性層領域とその両脇の埋込用半導体層との間での屈折率差が小さいため、曲げ導波路などを作製する際に、曲率半径を小さくすると、曲げ損失が他の構造の場合よりも大きくなるという欠点もある。単体の光半導体素子の実現においては、上記欠点もそれほど大きな問題ではなかったが、モノリシック集積を進めると、埋込結晶成長が必要であることやメサ方向が限定されてしまうこと、曲率半径の制限などにより、他の構造よりもコンパクトな集積が難しいといった問題が顕著になってくる。   In addition, since the difference in refractive index between the active layer region and the buried semiconductor layers on both sides of the active layer region is small, if the curvature radius is reduced when manufacturing a bending waveguide or the like, bending loss may be reduced to other structures. There is also a disadvantage that it becomes larger than the case. In the realization of a single optical semiconductor device, the above-mentioned drawbacks were not so big, but as monolithic integration progressed, embedded crystal growth was necessary, the mesa direction was limited, and the radius of curvature was limited. As a result, the problem that compact integration is more difficult than other structures becomes prominent.

ハイメサ型の導波路構造を有する半導体レーザや光導波路については、例えば特許文献1または特許文献2に記載されており、埋込型の導波路構造を有する半導体レーザは、例えば特許文献3に記載されている。特許文献1では光機能素子(活性)領域にはハイメサ構造ではなく埋込メサあるいはローメサ(リッジ)構造を用い、光導波路領域となる曲げ導波路部分にハイメサ構造を用いているが、異なるメサ構造を作りこむため作製工程が複雑になったり、高い精度が要求されたりしてしまう。
特開2002−118324号公報 特開2003−207665号公報 特開2001−320125号公報
A semiconductor laser or optical waveguide having a high-mesa waveguide structure is described in, for example, Patent Document 1 or Patent Document 2, and a semiconductor laser having an embedded waveguide structure is described in, for example, Patent Document 3. ing. In Patent Document 1, a buried mesa or a low mesa (ridge) structure is used for the optical functional element (active) region instead of a high mesa structure, and a high mesa structure is used for the bent waveguide portion serving as the optical waveguide region. Therefore, the manufacturing process becomes complicated and high accuracy is required.
JP 2002-118324 A JP 2003-207665 A JP 2001-320125 A

上記のような背景から、埋込結晶成長が不要で、結晶成長の面方位依存性もなく、曲率半径の小さな曲げ導波路形状を採用でき、且つ、コンパクトな集積が可能な構造として、ハイメサ構造の利点が注目されている。このため、上記で述べた活性層の表面露出に起因する非発光再結合による量子効率の低下や、特性の劣化を克服することが急務の課題となっている。   In view of the above background, a high-mesa structure is required as a structure that does not require buried crystal growth, does not depend on crystal plane orientation, can adopt a bent waveguide shape with a small radius of curvature, and can be compactly integrated. The benefits of are attracting attention. For this reason, it is an urgent task to overcome the above-described reduction in quantum efficiency due to non-radiative recombination due to surface exposure of the active layer and deterioration of characteristics.

本発明は、従来のハイメサ型の光半導体素子の課題を解決するためになされたものであって、埋込メサ型の光半導体素子とは異なり、厳密に制御された埋込結晶成長や、面方位に依存する埋込結晶成長を必要とせず、しかもコンパクトな集積が可能なハイメサ型の長所を有し、更に、埋込メサ型の長所であった高信頼性をも併せ持つような導波路構造を備え、少ない結晶成長回数で且つ作製の自由度も高く、コンパクトなモノリシック集積を可能とした高機能な光半導体素子を提供することを目的とする。   The present invention has been made to solve the problems of conventional high-mesa optical semiconductor elements. Unlike embedded mesa-type optical semiconductor elements, the present invention provides strictly controlled embedded crystal growth and surface growth. A waveguide structure that does not require orientation-dependent buried crystal growth, has a high mesa type advantage that enables compact integration, and also has the high reliability that was the advantage of a buried mesa type It is an object of the present invention to provide a high-performance optical semiconductor element that can be compactly monolithically integrated with a small number of crystal growth times and a high degree of freedom in fabrication.

本発明は、更に、上記導波路構造を有する光半導体素子の製造方法を提供することをも目的とする。   It is another object of the present invention to provide a method for manufacturing an optical semiconductor device having the above-described waveguide structure.

上記目的を達成するために、本発明の光半導体素子は、光機能素子の活性層を含む積層がハイメサ構造に形成された光半導体素子において、
少なくとも前記活性層の側面に、バンドギャップが活性層のバンドギャップよりも大きく、厚みが1.5μm以下の半導体保護層を形成したことを特徴とする。
In order to achieve the above object, an optical semiconductor element of the present invention is an optical semiconductor element in which a laminate including an active layer of an optical functional element is formed in a high mesa structure.
A semiconductor protective layer having a band gap larger than the band gap of the active layer and a thickness of 1.5 μm or less is formed at least on the side surface of the active layer.

また、本発明の光半導体素子の製造方法は、半導体基板上に、活性層を含む光機能素子を有する機能素子領域と、コア層を含む光導波路を有する光導波路領域とを備える光半導体素子を製造する方法であって、
半導体基板上に活性層を含む積層を堆積する工程と、
前記光導波路領域に形成された積層のうち少なくとも活性層を含む積層部分を除去する工程と、
前記除去された積層部分の位置にコア層を含む積層を堆積する工程と、
前記機能素子領域及び光導波路領域の積層をエッチングして、前記活性層及びコア層を含むハイメサ構造を形成する工程と、
前記ハイメサ構造における活性層及びコア層の露出した側面に、バンドギャップが活性層のバンドギャップよりも大きく、厚みが1.5μm以下の半導体保護層を堆積する工程と、
前記半導体保護層が堆積された機能素子領域及び光導波路領域のハイメサ構造からそれぞれ光機能素子及び光導波路を形成する工程と、を有することを特徴とする。
The method for manufacturing an optical semiconductor element of the present invention includes an optical semiconductor element comprising a functional element region having an optical functional element including an active layer and an optical waveguide region having an optical waveguide including a core layer on a semiconductor substrate. A method of manufacturing comprising:
Depositing a stack including an active layer on a semiconductor substrate;
Removing a laminated portion including at least an active layer among the laminated layers formed in the optical waveguide region;
Depositing a laminate including a core layer at the location of the removed laminate portion;
Etching the stack of the functional element region and the optical waveguide region to form a high mesa structure including the active layer and the core layer;
Depositing a semiconductor protective layer having a band gap larger than the band gap of the active layer and having a thickness of 1.5 μm or less on the exposed side surfaces of the active layer and the core layer in the high mesa structure;
Forming an optical functional element and an optical waveguide from the high mesa structure of the functional element region and the optical waveguide region on which the semiconductor protective layer is deposited, respectively.

本発明の光半導体素子及び本発明の製造方法により製造される光半導体素子では、半導体保護層を活性層の側面に形成したことにより、活性層で発生する電子及び正孔の対による非発光再結合を防止する。   In the optical semiconductor device of the present invention and the optical semiconductor device manufactured by the manufacturing method of the present invention, by forming the semiconductor protective layer on the side surface of the active layer, non-light-emitting re-generation due to pairs of electrons and holes generated in the active layer is achieved. Prevent binding.

また、本発明の製造方法で製造された光半導体素子、及び、光機能素子及び光導波路を同一の基板上に形成した本発明の光半導体素子では、半導体保護層による曲げ損失への影響がハイメサ構造に遜色ない、もしくは埋込メサ構造に比べて十分低損失に抑えられるので、小さな曲率半径で光導波路を曲げることが出来るため、コンパクトな構造の光半導体素子が得られる。   Further, in the optical semiconductor device of the present invention in which the optical semiconductor device manufactured by the manufacturing method of the present invention and the optical functional device and the optical waveguide are formed on the same substrate, the influence of the semiconductor protective layer on the bending loss is high. Since the structure is comparable or the loss is sufficiently low compared with the embedded mesa structure, the optical waveguide can be bent with a small radius of curvature, so that an optical semiconductor device having a compact structure can be obtained.

以下、図面を参照し、本発明の実施の形態を詳細に説明する。図1は、本発明の一実施形態例に係る光半導体素子(光半導体集積素子)の斜視図を示す。本実施形態例の光半導体素子100は、半導体基板11上に形成されており、光機能素子としての半導体レーザ31を有するレーザ領域10Aと、受動素子としての光導波路32を有する光導波路領域10Bとを有し、半導体レーザ31及び光導波路32を同一基板上にモノリシックに集積した構成を有する。光導波路32は、U字形状に折り曲げられた屈曲部33を有し、半導体レーザ31から入射した光を、屈曲部33で折り曲げ、入射方向と逆方向に向けて光を導波する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view of an optical semiconductor device (optical semiconductor integrated device) according to an embodiment of the present invention. The optical semiconductor device 100 of the present embodiment is formed on a semiconductor substrate 11, and includes a laser region 10A having a semiconductor laser 31 as an optical functional device, and an optical waveguide region 10B having an optical waveguide 32 as a passive device. The semiconductor laser 31 and the optical waveguide 32 are monolithically integrated on the same substrate. The optical waveguide 32 has a bent portion 33 bent into a U-shape, bends light incident from the semiconductor laser 31 at the bent portion 33, and guides light in a direction opposite to the incident direction.

図2(a)及び(b)はそれぞれ、図1のA−A’断面及びB−B’断面を示す。同図(a)に示すように、レーザ領域10Aに形成された半導体レーザ31は、半導体基板11上に順次に形成された、n−InPバッファ層12、レーザ活性層(MQW活性層)13、クラッド層14、18、及び、コンタクト層19から成る積層を有し、バッファ層12の一部から上の積層部分の全体がメサ構造を形成する。メサの側面を含むレーザ領域10Aが、半導体薄膜保護層(以下、薄膜保護層と呼ぶ)20によって覆われている。   2A and 2B show the A-A ′ and B-B ′ cross sections of FIG. 1, respectively. As shown in FIG. 2A, the semiconductor laser 31 formed in the laser region 10A includes an n-InP buffer layer 12, a laser active layer (MQW active layer) 13, which are sequentially formed on the semiconductor substrate 11. The clad layers 14 and 18 and the contact layer 19 are laminated, and the entire laminated portion from a part of the buffer layer 12 forms a mesa structure. The laser region 10 </ b> A including the side surface of the mesa is covered with a semiconductor thin film protective layer (hereinafter referred to as a thin film protective layer) 20.

図2(b)に示すように、光導波路領域10Bの光導波路32は、半導体基板11上に順次に形成された、バッファ層12、コア層16、クラッド層17、18から成る積層を有し、バッファ層12の一部から上の積層部分の全体がメサ構造を形成する。メサの側面を含む光導波路領域10Bが半導体薄膜保護層20に覆われている。   As shown in FIG. 2B, the optical waveguide 32 in the optical waveguide region 10B has a stack of the buffer layer 12, the core layer 16, and the cladding layers 17 and 18 that are sequentially formed on the semiconductor substrate 11. The entire laminated portion from a part of the buffer layer 12 forms a mesa structure. The optical waveguide region 10 </ b> B including the side surface of the mesa is covered with the semiconductor thin film protective layer 20.

薄膜保護層20は、バンドギャップが活性層のバンドギャップよりも大きく、厚みが1.5μm以下であり、例えばp型半導体層で形成される。薄膜保護層20は、半導体レーザ31の活性層13のバンドギャップよりも大きなバンドギャップを有することにより、レーザ活性層13の側面で発生する電子及び正孔の対による非発光再結合を抑止し、ハイメサ構造の活性層で特に発生しやすいしきい値電流の増大や、活性層の特性劣化を防止する。   The thin film protective layer 20 has a band gap larger than that of the active layer and a thickness of 1.5 μm or less, and is formed of, for example, a p-type semiconductor layer. The thin-film protective layer 20 has a band gap larger than the band gap of the active layer 13 of the semiconductor laser 31, thereby suppressing non-radiative recombination due to electron and hole pairs generated on the side surface of the laser active layer 13, This prevents an increase in threshold current and deterioration of characteristics of the active layer that are particularly likely to occur in an active layer having a high mesa structure.

本実施形態に係る光半導体素子100の作製方法について、図3を参照して説明する。図3(a)〜(e)は、図1のC−C’線に沿う断面を各工程段階毎に順次に示す断面図である。まず、MOCVD結晶成長装置を用い、成長温度600℃において、以下のような結晶成長を行う。最初に、n−InP基板11上に、n−InPバッファ層12、InGaAsPからなる多重量子井戸(MQW−SCH)活性層13、及び、p−InP上部クラッド層14を結晶成長する(図3(a))。次に、半導体レーザを形成するためのレーザ領域10Aを、SiNx層から成るハードマスク15によって保護し、光導波路領域10Bの積層のうちで、上部クラッド層14、及び、MQW−SCH活性層13をエッチングにより除去する(図3(b))。   A method for manufacturing the optical semiconductor element 100 according to this embodiment will be described with reference to FIG. 3A to 3E are cross-sectional views sequentially showing a cross section taken along line C-C ′ of FIG. 1 for each process step. First, the following crystal growth is performed at a growth temperature of 600 ° C. using an MOCVD crystal growth apparatus. First, an n-InP buffer layer 12, a multiple quantum well (MQW-SCH) active layer 13 made of InGaAsP, and a p-InP upper cladding layer 14 are crystal-grown on the n-InP substrate 11 (FIG. 3 ( a)). Next, the laser region 10A for forming the semiconductor laser is protected by a hard mask 15 made of a SiNx layer, and the upper cladding layer 14 and the MQW-SCH active layer 13 are formed in the laminated optical waveguide region 10B. It is removed by etching (FIG. 3B).

次に、エッチングにより除去した部分に、InGaAsPからなる光導波路のコア層16、及び、p−InP上部クラッド層17をバットジョイント成長法により形成する(図3(c))。SiNxハードマスク15を除去した後、レーザ領域10A、及び、光導波路領域10Bの双方に、p−InPクラッド層18、及び、InGaAsコンタクト層19を結晶成長する(図3(d))。次いで、光導波路領域10Bのコンタクト層19をエッチングにより除去した後(図3(e))、SiNx膜(図示しない)をマスクとして、レーザ領域10A及び光導波路領域10Bの双方で、ドライエッチングによりエッチングを行い、幅2μmのハイメサ構造を形成する。   Next, the core layer 16 of the optical waveguide made of InGaAsP and the p-InP upper clad layer 17 are formed by the butt joint growth method in the portion removed by the etching (FIG. 3C). After the SiNx hard mask 15 is removed, the p-InP cladding layer 18 and the InGaAs contact layer 19 are crystal-grown in both the laser region 10A and the optical waveguide region 10B (FIG. 3D). Next, after the contact layer 19 in the optical waveguide region 10B is removed by etching (FIG. 3E), etching is performed by dry etching in both the laser region 10A and the optical waveguide region 10B using a SiNx film (not shown) as a mask. A high mesa structure having a width of 2 μm is formed.

ハイメサ構造を形成するドライエッチングでは、クラッド層18、クラッド層14およびクラッド層17、活性層13およびコア層16を貫通し、n−InPバッファ層12の上側の一部に至る深さまでエッチングを行う。従って、エッチング直後では、活性層13の側面は露出している。   In dry etching for forming a high mesa structure, etching is performed to a depth that penetrates the cladding layer 18, the cladding layer 14 and the cladding layer 17, the active layer 13, and the core layer 16 and reaches a part of the upper side of the n-InP buffer layer 12. . Therefore, the side surface of the active layer 13 is exposed immediately after etching.

次いで、メサ形状を形成するエッチングで用いたSiNx膜(図示しない)を、そのまま結晶成長マスクとして使用し、ハイメサ形状のメサの側部にInP薄膜保護層20を結晶成長する。図3(e)のD−D’及びE−E’断面を、図4(a)及び(b)に示している。薄膜保護層20の厚みは、活性層13の側面の部分で、例えば0.1μm厚となるようにする。また、薄膜保護層20の導電性はp型とし、ドープ量は5×1017cm−3程度とする。薄膜保護層20の厚みと導電性、ドーピング濃度は以下に述べる点を考慮して決定する。 Next, the SiNx film (not shown) used in the etching for forming the mesa shape is used as a crystal growth mask as it is, and the InP thin film protective layer 20 is grown on the side of the high mesa shape mesa. Sections DD ′ and EE ′ of FIG. 3 (e) are shown in FIGS. 4 (a) and 4 (b). The thickness of the thin film protective layer 20 is, for example, 0.1 μm at the side surface portion of the active layer 13. The conductivity of the thin film protective layer 20 is p-type, and the doping amount is about 5 × 10 17 cm −3 . The thickness, conductivity, and doping concentration of the thin film protective layer 20 are determined in consideration of the following points.

図5に、活性層13の側面のInP薄膜保護層20の厚みを変えた場合におけるコア層16の曲げ損失の変化の計算結果を示す。薄膜保護層20を形成しない場合には(グラフ(i))、曲率半径が210μm程度でコア層の曲げ損失が増大し始めている。薄膜保護層20が0.1μm厚の場合には(グラフ(ii))、240μm付近でコア層16の曲げ損失が増大し始めており、薄膜保護層20がない場合と比べてさほど遜色がない損失を示している。薄膜保護層20の厚みを大きくしていくにつれて、曲げ損失が増加し始める曲率半径が大きくなっており、0.5μm厚みの場合には(vi)、曲率半径が360μm付近で、1.5μm厚みの場合には(グラフ(viii))、曲率半径が470μm付近で、それぞれ曲げ損失が増大し始めている。一方、埋込メサ型では(グラフ(ix))、曲率半径が530μm付近で曲げ損失が増大し始めている。   FIG. 5 shows the calculation result of the change in bending loss of the core layer 16 when the thickness of the InP thin film protective layer 20 on the side surface of the active layer 13 is changed. When the thin-film protective layer 20 is not formed (graph (i)), the bending loss of the core layer starts to increase when the radius of curvature is about 210 μm. When the thin film protective layer 20 has a thickness of 0.1 μm (graph (ii)), the bending loss of the core layer 16 starts to increase in the vicinity of 240 μm, and the loss is not much inferior to the case without the thin film protective layer 20. Is shown. As the thickness of the thin film protective layer 20 is increased, the radius of curvature at which bending loss begins to increase increases. When the thickness is 0.5 μm (vi), the thickness of the curvature is about 360 μm and the thickness is 1.5 μm. In the case of (graph (viii)), the bending loss starts to increase at a curvature radius of around 470 μm. On the other hand, in the embedded mesa type (graph (ix)), the bending loss starts to increase when the radius of curvature is around 530 μm.

従って、薄膜保護層20の厚みを1.5μm以下とすると、薄膜保護層20を形成したハイメサ型の光導波路が、曲げ損失に関して、埋込メサ型の光導波路よりも優れている。特に、薄膜保護層20の厚みを0.5μm以下にしたハイメサ型の構造では、埋込メサ型の構造に比して、大幅に曲率半径を小さくすることができる。   Therefore, when the thickness of the thin film protective layer 20 is 1.5 μm or less, the high mesa type optical waveguide formed with the thin film protective layer 20 is superior to the embedded mesa type optical waveguide in terms of bending loss. In particular, in the high mesa structure in which the thickness of the thin film protective layer 20 is 0.5 μm or less, the radius of curvature can be significantly reduced as compared with the embedded mesa structure.

活性層13の側部表面が露出している場合には、活性層13に注入された電子および正孔のキャリア対が、その表面準位を介して非発光の再結合を行うことによって消滅し、発光効率を低下させる。本実施形態では、メサ形状に加工した活性層13の側面に活性層13よりもバンドギャップが大きい薄膜保護層20を結晶成長し、活性層13の界面に現れるキャリアを制御することにより、非発光再結合を抑制する。前述のように、通常のハイメサ型の光導波路のような低い曲げ損失を実現するためには、活性層13及びコア層16の側面の薄膜保護層20の厚みは小さいほどよい。一方で、薄膜保護層20の厚みが小さいほど、活性層13内のキャリアが表面まで拡散して、非発光再結合に寄与する可能性が増加する。従って、薄膜保護層20の厚みをできるだけ小さくし、且つ、活性層13内のキャリアの側部表面への拡散を有効に防止することが好ましい。   When the side surface of the active layer 13 is exposed, the electron and hole carrier pair injected into the active layer 13 disappears by performing non-radiative recombination through the surface level. , Reduce the luminous efficiency. In the present embodiment, a thin film protective layer 20 having a band gap larger than that of the active layer 13 is crystal-grown on the side surface of the active layer 13 processed into a mesa shape, and the carriers appearing at the interface of the active layer 13 are controlled, thereby preventing non-light emission. Suppresses recombination. As described above, in order to realize a low bending loss like a normal high mesa type optical waveguide, the thickness of the thin film protective layer 20 on the side surfaces of the active layer 13 and the core layer 16 is preferably as small as possible. On the other hand, the smaller the thickness of the thin film protective layer 20, the more the carrier in the active layer 13 diffuses to the surface and the possibility of contributing to non-radiative recombination increases. Therefore, it is preferable to reduce the thickness of the thin film protective layer 20 as much as possible and to effectively prevent diffusion of carriers in the active layer 13 to the side surface.

薄膜保護層20に、p型又はn型のドーピングを行うことにより、それぞれ、電子又は正孔の活性層側面への拡散が大幅に抑制され、側面で発生する非発光再結合をより低減することが可能である。拡散長はドーピング濃度が高いほど短いため、適切なドーピング濃度は、薄膜保護層20の厚みに依存するものの、拡散の抑制という点では1×1017cm−3程度以上にすることが好ましい。ドーピング濃度が1×1018cm−3を超えると、特に導波路損失の増加に強く影響するため、過度のドーピングは避けることが好ましい。ドーピングを行う場合には、薄膜保護層20は薄くても、0.05μm程度以上にすることが好ましい。一般的に、ドーピング濃度が高いほど導波路損失が大きくなるため、導波路損失の低減を最優先する際には、薄膜保護層20はノンドープにすることが好ましい。 By performing p-type or n-type doping on the thin film protective layer 20, diffusion of electrons or holes to the side of the active layer is significantly suppressed, and non-radiative recombination generated on the side is further reduced. Is possible. Since the diffusion length is shorter as the doping concentration is higher, an appropriate doping concentration is preferably about 1 × 10 17 cm −3 or more in terms of suppression of diffusion, although it depends on the thickness of the thin film protective layer 20. If the doping concentration exceeds 1 × 10 18 cm −3 , the increase in waveguide loss is particularly strongly affected, so it is preferable to avoid excessive doping. When doping is performed, it is preferable that the thickness of the thin protective layer 20 is about 0.05 μm or more even if it is thin. In general, the higher the doping concentration, the greater the waveguide loss. Therefore, when the highest priority is given to reducing the waveguide loss, the thin film protective layer 20 is preferably non-doped.

薄膜保護層20にドーピングをする場合には、電流のリークパスとなることが危惧される。通常は、正孔に比べて電子の移動度が大きいため、特に電子のリークを抑えることが好ましく、従って、薄膜保護層20をp型不純物によりドープすることが、この観点からは好ましい。   When doping the thin-film protective layer 20, there is a concern that it may become a current leakage path. Usually, since the electron mobility is larger than that of holes, it is particularly preferable to suppress electron leakage. Therefore, it is preferable from this viewpoint to dope the thin film protective layer 20 with a p-type impurity.

上記を考慮して、薄膜保護層20の厚み、ドーピング濃度の範囲としては、厚みを0.05〜0.5μm程度、ドーピング濃度を1×1017〜1×1018cm−3程度、導電型をp型とすることが好ましい。本実施形態例では、薄膜保護層の厚みは0.1μm、ドーピングはp型不純物であり、その濃度は5×1017cm−3としてある。 In consideration of the above, the thickness and the doping concentration range of the thin film protective layer 20 are about 0.05 to 0.5 μm, the doping concentration is about 1 × 10 17 to 1 × 10 18 cm −3 , and the conductivity type. Is preferably p-type. In this embodiment, the thickness of the thin film protective layer is 0.1 μm, the doping is a p-type impurity, and its concentration is 5 × 10 17 cm −3 .

薄膜保護層20の成長後、SiNx膜でパッシベーションを行い、レーザ領域10Aのメサ上部のコンタクト層部分だけ窓明けをして、Ti/Pt/Auを蒸着してp型電極21(図2(a))を形成する。また、ウエハの裏面を研磨した後、裏面にAuGeNiのn型電極(図示せず)を形成する。   After the thin film protective layer 20 is grown, passivation is performed with a SiNx film, only the contact layer portion on the mesa in the laser region 10A is opened, Ti / Pt / Au is deposited, and the p-type electrode 21 (FIG. 2 (a )). Further, after polishing the back surface of the wafer, an n-type electrode (not shown) of AuGeNi is formed on the back surface.

上記実施形態例の光集積素子を、本発明のサンプルとして製造した。また、比較のために、薄膜保護層20の成長を行わずに、SiNxパッシベーションを行ったハイメサ型の光半導体素子と、同じ活性層構造を有し活性層幅も同じ2μmとした埋込ヘテロ型のレーザ素子とを、それぞれ比較例のサンプルとして作製した。作製した3種類のサンプルについて、レーザ領域を、共振器長が300μmで両端面へき開型のファブリ・ペローレーザとして特性評価を行った。その結果、上記実施形態例のハイメサ型の半導体レーザのサンプルは、埋込ヘテロ型のレーザ素子のサンプルとほぼ同じ8mA程度の低い閾値電流で発振した。一方、薄膜保護層成長を行わなかった比較例のサンプルでは、閾値電流は約12mAであり、薄膜保護層成長をしたサンプルよりも高かった。これは、注入されたキャリアの一部が表面準位を介して非発光再結合することによって、発光効率を低下させたことが原因と考えられる。   The optical integrated device of the above embodiment was manufactured as a sample of the present invention. For comparison, a high-mesa optical semiconductor device that has been subjected to SiNx passivation without growing the thin film protective layer 20 and a buried hetero type that has the same active layer structure and the same active layer width of 2 μm. Each of the laser elements was manufactured as a sample for a comparative example. The three types of samples produced were evaluated for the characteristics of the laser region as a Fabry-Perot laser with a cavity length of 300 μm and cleaved at both ends. As a result, the sample of the high mesa type semiconductor laser of the above embodiment oscillated with a threshold current as low as about 8 mA, which is almost the same as the sample of the buried hetero type laser element. On the other hand, in the sample of the comparative example in which the thin film protective layer was not grown, the threshold current was about 12 mA, which was higher than the sample in which the thin film protective layer was grown. This is presumably because a part of the injected carriers is non-radiatively recombined through the surface level, thereby reducing the luminous efficiency.

また、上記3種類のサンプルについて85℃の高温での通電試験を行った結果、薄膜保護層成長を行ったハイメサ型のレーザ素子のサンプルと埋込へテロ型のレーザ素子のサンプルとでは顕著な劣化が見られなかったのに対し、薄膜保護層成長を行わなかったハイメサ型のレーザ素子のサンプルにおいては、閾値電流の増加や発光効率の低下などの長期信頼性の低下が顕著に見受けられた。   In addition, as a result of conducting an energization test at a high temperature of 85 ° C. for the above three types of samples, a high mesa type laser element sample and a buried hetero type laser element sample in which a thin film protective layer was grown are prominent. While no degradation was observed, the high-mesa laser element sample without thin film protective layer growth showed a significant decrease in long-term reliability, such as an increase in threshold current and a decrease in light emission efficiency. .

更に、薄膜保護層成長を行ったハイメサ型の光半導体素子の光導波路部分の曲げ損失を評価した結果、曲率半径が250μmで3dB/mm程度、曲率半径が300μmで1dB/mm以下と、低損失であり、計算結果ともほぼ一致していることが確認できた。また、薄膜保護層成長を行った場合と行わない場合とで、キャリア寿命の測定を行った結果においても、薄膜保護層を成長しない場合の表面再結合速度は1.3×10cm/sと非常に大きかったのに対し、薄膜保護層成長を行った場合は、表面再結合速度が、4.0×10cm/sと大きく低下しており、薄膜保護層により非発光再結合を大幅に抑制できることが確認できた。 Furthermore, as a result of evaluating the bending loss of the optical waveguide portion of the high-mesa optical semiconductor element on which the thin film protective layer has been grown, the curvature radius is about 3 dB / mm when the radius of curvature is 250 μm, and the loss is as low as 1 dB / mm when the radius of curvature is 300 μm. It was confirmed that the calculation results were almost the same. In addition, the surface recombination rate when the thin film protective layer is not grown is 1.3 × 10 5 cm / s in the result of measuring the carrier lifetime depending on whether the thin film protective layer is grown or not. On the other hand, when the thin film protective layer was grown, the surface recombination rate was greatly reduced to 4.0 × 10 2 cm / s, and the thin film protective layer caused non-radiative recombination. It was confirmed that it could be greatly suppressed.

以上により、本実施形態例の光半導体素子は、機能素子部分としては通常の埋込メサ型と同等の発光特性と長期信頼性とを有し、かつ、導波路部分が通常のハイメサ導波路とほぼ同等の低い曲げ損失特性を同時に併せ持つことがわかった。   As described above, the optical semiconductor element of this embodiment example has a light emitting characteristic and long-term reliability equivalent to those of a normal embedded mesa type as a functional element portion, and the waveguide portion is a normal high mesa waveguide. It was found that they have almost the same low bending loss characteristics at the same time.

本実施形態例での薄膜保護層成長は、メサエッチングで使用したマスクをそのまま利用して結晶成長が可能であるため、工程としては通常の埋込へテロ型レーザとほぼ同様のプロセスで作製可能である。しかも、埋込ヘテロ型レーザでは通常2〜3μm厚の埋込成長を要するのに対し、上記実施形態例では、成長膜厚がサブミクロンオーダーと薄いため、結晶成長は非常に容易かつ短時間に行うことができる。また、通常の埋込へテロ型レーザの埋込成長と比較すると、薄膜保護層の厚さやドーピング濃度の厳しい制御は必要でない。   The thin film protective layer growth in this embodiment can be performed by using the mask used in the mesa etching as it is, so that the process can be manufactured by almost the same process as a normal buried hetero laser. It is. In addition, the buried hetero laser usually requires a buried growth of 2 to 3 μm. On the other hand, in the above embodiment, the growth film thickness is as small as submicron, so that the crystal growth is very easy and in a short time. It can be carried out. Further, compared with the buried growth of a normal buried hetero laser, it is not necessary to strictly control the thickness and doping concentration of the thin film protective layer.

上記の作製工程の説明では特に触れなかったが、メサ形成をドライエッチングで行ったことによるエッチングダメージ層を除去する必要があれば、薄膜保護層成長の前に、メサ形状が変化しない程度のごく軽度のウエットエッチングや、硫化アンモニウム処理、熱処理などをしてもよい。   Although not particularly mentioned in the above description of the manufacturing process, if it is necessary to remove the etching damage layer due to the mesa formation by dry etching, the mesa shape is not changed before the thin film protective layer growth. Mild wet etching, ammonium sulfide treatment, heat treatment, or the like may be performed.

上記実施形態例では、活性層にInGaAsP系のMQW構造を用いたが、本発明の光半導体素子は、この材料やMQW構造に限定されるものではない。例えば、InGaAsやInAlGaAsといった材料や、バルク、量子細線、量子ドットによる活性層においても、同様の非発光再結合の低減効果が得られると考えられる。特に、InAlGaAs系のように、表面酸化しやすいAl系の材料を活性層に用いる場合には、本発明における半導体薄膜成長は特に効果的であると考えられる。   In the above embodiment, an InGaAsP-based MQW structure is used for the active layer. However, the optical semiconductor element of the present invention is not limited to this material or the MQW structure. For example, it is considered that the same non-radiative recombination reduction effect can be obtained also in materials such as InGaAs and InAlGaAs, and active layers made of bulk, quantum wires, and quantum dots. In particular, when an Al-based material that is easily surface oxidized, such as InAlGaAs, is used for the active layer, the semiconductor thin film growth in the present invention is considered to be particularly effective.

上記実施形態例では、薄膜保護層20は、p型にドーピングしたInPの単層としたが、ドーピング層とノンドープ層とを組み合わせた多層構造としてもよい。しかし、既に述べたように、薄膜保護層のトータル膜厚は、0.5μm以下とすることが好ましいので、全体の膜厚をこれ以下に抑えることが好ましい。上記実施形態例では、活性層を貫通する深さまでメサエッチングをした後に薄膜保護層の成長を行ったが、活性層の途中の深さまでメサエッチングしたような場合であっても、薄膜保護層成長により表面非発光再結合を抑制する効果を得ることができる。なお、ハイメサ形状と比べると、曲げ損失は幾分大きくなることが予想される。   In the embodiment described above, the thin film protective layer 20 is a single layer of p-doped InP, but may have a multilayer structure in which a doped layer and a non-doped layer are combined. However, as already described, since the total film thickness of the thin film protective layer is preferably 0.5 μm or less, it is preferable to suppress the total film thickness below this. In the above embodiment, the thin film protective layer was grown after mesa etching to a depth penetrating the active layer. However, even if the mesa etching is performed to a depth in the middle of the active layer, the thin film protective layer is grown. Thus, the effect of suppressing surface non-radiative recombination can be obtained. Note that the bending loss is expected to be somewhat larger than the high mesa shape.

以上、本発明をその好適な実施態様に基づいて説明したが、本発明の光半導体素子、及び、光半導体素子の製造方法は、上記実施態様の構成にのみ限定されるものではなく、上記実施態様の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。   As mentioned above, although this invention was demonstrated based on the suitable embodiment, the optical semiconductor element of this invention and the manufacturing method of an optical semiconductor element are not limited only to the structure of the said embodiment, The said implementation is carried out. What carried out various correction | amendment and change from the structure of an aspect is also contained in the scope of the present invention.

本発明の一実施形態例に係る光半導体素子の斜視図。1 is a perspective view of an optical semiconductor element according to an embodiment of the present invention. (a)及び(b)はそれぞれ、図1の光半導体素子の断面図。(A) And (b) is sectional drawing of the optical semiconductor element of FIG. 1, respectively. (a)〜(e)はそれぞれ、図1の光半導体素子を製造するプロセスにおける、各工程段階毎の断面を順次に示す断面図。(A)-(e) is sectional drawing which shows the cross section for each process step in order in the process which manufactures the optical semiconductor element of FIG. 1, respectively. (a)及び(b)はそれぞれ、図3(e)のD−D’及びE−E’線に沿う断面図。(A) And (b) is sectional drawing which follows the D-D 'and E-E' line | wire of FIG.3 (e), respectively. 図1の光半導体素子における薄膜保護層の厚みと、曲げ損失の曲率依存性との関係を示すグラフ。The graph which shows the relationship between the thickness of the thin film protective layer in the optical semiconductor element of FIG. 1, and the curvature dependence of bending loss.

符号の説明Explanation of symbols

100:光半導体素子
10A:レーザ領域
10B:光導波路領域
11:半導体基板
12:バッファ層
13:MQW活性層
14:クラッド層
15:SiNxハードマスク
16:コア層
17:クラッド層
18:クラッド層
19:コンタクト層
20:薄膜保護層
21:p側電極
31:レーザ
32:光導波路
33:屈曲部
100: optical semiconductor element 10A: laser region 10B: optical waveguide region 11: semiconductor substrate 12: buffer layer 13: MQW active layer 14: cladding layer 15: SiNx hard mask 16: core layer 17: cladding layer 18: cladding layer 19: Contact layer 20: thin film protective layer 21: p-side electrode 31: laser 32: optical waveguide 33: bent portion

Claims (7)

半導体基板上に、光機能素子の活性層を含む積層がハイメサ構造に形成された光半導体素子において、
前記ハイメサ構造の全側面に、バンドギャップが前記活性層のバンドギャップよりも大きく、厚みが0.05μm〜0.5μmの範囲にある半導体保護層を形成し、
前記半導体保護層は、前記半導体保護層の全層で導電型が同一であり、前記半導体保護層は電子又は正孔の活性層側面への拡散を抑制する層であり、
前記ハイメサ構造の前記半導体基板に対して垂直な断面が矩形状であり、
前記半導体基板上に、前記光機能素子に加えて、コア層を含む光導波路が前記ハイメサ構造に形成されており、前記活性層及びコア層の双方の側面に前記半導体保護層が形成され、
前記光機能素子と前記光導波路は光学的に連結された光半導体素子。
In an optical semiconductor element in which a stack including an active layer of an optical functional element is formed in a high mesa structure on a semiconductor substrate,
A semiconductor protective layer having a band gap larger than the band gap of the active layer and having a thickness in the range of 0.05 μm to 0.5 μm is formed on all sides of the high mesa structure .
The semiconductor protective layer has the same conductivity type in all layers of the semiconductor protective layer, and the semiconductor protective layer is a layer that suppresses diffusion of electrons or holes to the side of the active layer,
A cross section perpendicular to the semiconductor substrate of the high mesa structure is rectangular,
On the semiconductor substrate, in addition to the optical functional element, an optical waveguide including a core layer is formed in the high mesa structure, and the semiconductor protective layer is formed on both side surfaces of the active layer and the core layer,
An optical semiconductor element in which the optical functional element and the optical waveguide are optically coupled .
前記光導波路が、基板面と平行に360μm以下の曲率半径で曲げられた屈曲部を有する、請求項に記載の光半導体素子。 2. The optical semiconductor device according to claim 1 , wherein the optical waveguide has a bent portion that is bent with a curvature radius of 360 μm or less parallel to the substrate surface. 前記光導波路が、基板面と平行に240μm以下の曲率半径で曲げられた屈曲部を有する、請求項に記載の光半導体素子。 The optical semiconductor element according to claim 1 , wherein the optical waveguide has a bent portion that is bent with a curvature radius of 240 μm or less parallel to the substrate surface. 前記半導体保護層がp型半導体である、請求項1〜の何れか一に記載の光半導体素子。 The semiconductor protective layer is a p-type semiconductor, an optical semiconductor device according to any one of claims 1-3. 前記半導体保護層がp型又はn型半導体であり、ドーピング濃度が1×1017〜1×1018cm−3の範囲にある、請求項1〜の何れか一に記載の光半導体素子。 Wherein a semiconductor protective layer is p-type or n-type semiconductor, the doping concentration is in the range of 1 × 10 17 ~1 × 10 18 cm -3, an optical semiconductor device according to any one of claims 1-3. 前記半導体保護層が、当該ドーピング濃度により、電子または正孔の活性層側面への拡散を抑制する層である、請求項に記載の光半導体素子。 The optical semiconductor element according to claim 5 , wherein the semiconductor protective layer is a layer that suppresses diffusion of electrons or holes to the side surface of the active layer depending on the doping concentration. 半導体基板上に、活性層を含む光機能素子を有する機能素子領域と、コア層を含む光導波路を有する光導波路領域とを備える光半導体素子を製造する方法であって、
前記半導体基板上に活性層を含む積層を堆積する工程と、
前記光導波路領域に形成された積層のうち少なくとも活性層を含む積層部分を除去する工程と、
前記除去された積層部分の位置にコア層を含む積層を堆積する工程と、
前記機能素子領域及び光導波路領域の積層をエッチングして、前記活性層及びコア層を含むハイメサ構造を形成する工程と、
前記ハイメサ構造における前記活性層及びコア層の露出した側面であって、前記ハイメサ構造の全側面に、バンドギャップが活性層のバンドギャップよりも大きく、厚みが0.05μm〜0.5μmの範囲にある半導体保護層を堆積する工程と、
前記半導体保護層が堆積された機能素子領域及び光導波路領域のハイメサ構造からそれぞれ光機能素子及び光導波路を形成する工程と、を有することを特徴とし、
前記半導体保護層は、前記半導体保護層の全層で導電型が同一であり、前記半導体保護層は電子又は正孔の活性層側面への拡散を抑制する層であり、
前記ハイメサ構造の基板に対して垂直な断面が矩形状であり、
前記半導体基板上に、前記光機能素子に加えて、コア層を含む光導波路が前記ハイメサ構造に形成されており、前記活性層及びコア層の双方の側面に前記半導体保護層が形成され、
前記光機能素子と前記光導波路は光学的に連結される光半導体素子の製造方法。
A method of manufacturing an optical semiconductor element comprising a functional element region having an optical functional element including an active layer and an optical waveguide region having an optical waveguide including a core layer on a semiconductor substrate,
Depositing a stack including an active layer on the semiconductor substrate;
Removing a laminated portion including at least an active layer among the laminated layers formed in the optical waveguide region;
Depositing a laminate including a core layer at the location of the removed laminate portion;
Etching the stack of the functional element region and the optical waveguide region to form a high mesa structure including the active layer and the core layer;
The exposed side surfaces of the active layer and the core layer in the high mesa structure, the band gap being larger than the band gap of the active layer and the thickness being in the range of 0.05 μm to 0.5 μm on all side surfaces of the high mesa structure. Depositing a semiconductor protective layer;
Forming the optical functional element and the optical waveguide from the high mesa structure of the functional element region and the optical waveguide region where the semiconductor protective layer is deposited, respectively,
The semiconductor protective layer has the same conductivity type in all layers of the semiconductor protective layer, and the semiconductor protective layer is a layer that suppresses diffusion of electrons or holes to the side of the active layer,
The cross section perpendicular to the high mesa structure substrate is rectangular,
On the semiconductor substrate, in addition to the optical functional element, an optical waveguide including a core layer is formed in the high mesa structure, and the semiconductor protective layer is formed on both side surfaces of the active layer and the core layer,
Method for manufacturing an optical semiconductor element and the optical waveguide and the optical functional element that will be coupled optically.
JP2007287581A 2007-11-05 2007-11-05 Optical semiconductor device and method for manufacturing optical semiconductor device Active JP5170869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007287581A JP5170869B2 (en) 2007-11-05 2007-11-05 Optical semiconductor device and method for manufacturing optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007287581A JP5170869B2 (en) 2007-11-05 2007-11-05 Optical semiconductor device and method for manufacturing optical semiconductor device

Publications (2)

Publication Number Publication Date
JP2009117539A JP2009117539A (en) 2009-05-28
JP5170869B2 true JP5170869B2 (en) 2013-03-27

Family

ID=40784353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007287581A Active JP5170869B2 (en) 2007-11-05 2007-11-05 Optical semiconductor device and method for manufacturing optical semiconductor device

Country Status (1)

Country Link
JP (1) JP5170869B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198377A1 (en) 2014-06-23 2015-12-30 富士通株式会社 Semiconductor laser light source and semiconductor laser light source manufacturing method
WO2016093187A1 (en) * 2014-12-10 2016-06-16 日本碍子株式会社 External resonator type light-emitting device
US9484492B2 (en) * 2015-01-06 2016-11-01 Apple Inc. LED structures for reduced non-radiative sidewall recombination
WO2017112490A1 (en) * 2015-12-22 2017-06-29 Sxaymiq Technologies Llc Led sidewall processing to mitigate non-radiative recombination
CN110088995B (en) * 2016-12-19 2021-06-04 古河电气工业株式会社 Optical integrated element and optical transmitter module
CN114342193A (en) * 2019-08-02 2022-04-12 古河电气工业株式会社 Semiconductor optical amplifier array element
JP2021027314A (en) * 2019-08-02 2021-02-22 古河電気工業株式会社 Semiconductor optical amplifier array element
JP2024115301A (en) * 2023-02-14 2024-08-26 古河電気工業株式会社 Semiconductor optical device and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169184A (en) * 1984-02-13 1985-09-02 Mitsubishi Electric Corp Semiconductor laser
JP2656490B2 (en) * 1987-05-20 1997-09-24 株式会社日立製作所 Semiconductor laser device
JP3487730B2 (en) * 1997-05-30 2004-01-19 日本電信電話株式会社 Array waveguide grating element
JP2002118324A (en) * 2000-10-10 2002-04-19 Nippon Telegr & Teleph Corp <Ntt> Semiconductor ring laser
JP2003207665A (en) * 2002-01-11 2003-07-25 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide
JP2007134480A (en) * 2005-11-10 2007-05-31 Nippon Telegr & Teleph Corp <Ntt> Tunable light source

Also Published As

Publication number Publication date
JP2009117539A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP5170869B2 (en) Optical semiconductor device and method for manufacturing optical semiconductor device
JP4639107B2 (en) Semiconductor laser and manufacturing method thereof
JP2008053649A (en) Buried semiconductor laser
US8003995B2 (en) Semiconductor optical device with suppressed double injection phenomenon
JP2010074131A (en) Semiconductor light emitting device and method for manufacturing same
JPH11330605A (en) Semiconductor laser
JP4861112B2 (en) Optical semiconductor device and manufacturing method thereof
US20030179794A1 (en) Ridge-waveguide semiconductor laser device
JP5489702B2 (en) Semiconductor optical device and integrated semiconductor optical device
US20100245987A1 (en) Semiconductor optical amplifier
JP4998238B2 (en) Integrated semiconductor optical device
JP2006261340A (en) Semiconductor device and its manufacturing method
JP5314435B2 (en) Integrated optical device and manufacturing method thereof
JP2006253212A (en) Semiconductor laser
JP2007299882A (en) Semiconductor opto-electrical element
JP4599700B2 (en) Distributed feedback laser diode
CN110431720B (en) Optical semiconductor element
JP3654429B2 (en) Manufacturing method of optical semiconductor device
JP4983791B2 (en) Optical semiconductor element
JP3241002B2 (en) Manufacturing method of semiconductor laser
JP3295932B2 (en) Semiconductor laser device
US20030174752A1 (en) Semiconductor laser and method of manufacturing the same
JP2006295040A (en) Optical semiconductor device, its manufacturing method, and optical communication equipment
WO2021074971A1 (en) Semiconductor device
US20060083279A1 (en) Semiconductor laser

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100601

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R151 Written notification of patent or utility model registration

Ref document number: 5170869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350