WO2016093187A1 - External resonator type light-emitting device - Google Patents
External resonator type light-emitting device Download PDFInfo
- Publication number
- WO2016093187A1 WO2016093187A1 PCT/JP2015/084242 JP2015084242W WO2016093187A1 WO 2016093187 A1 WO2016093187 A1 WO 2016093187A1 JP 2015084242 W JP2015084242 W JP 2015084242W WO 2016093187 A1 WO2016093187 A1 WO 2016093187A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical waveguide
- grating
- core
- optical
- wavelength
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/14—External cavity lasers
- H01S5/146—External cavity lasers using a fiber as external cavity
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/124—Geodesic lenses or integrated gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/125—Bends, branchings or intersections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/14—External cavity lasers
- H01S5/141—External cavity lasers using a wavelength selective device, e.g. a grating or etalon
Definitions
- the present invention relates to an external resonator type light emitting device.
- a Fabry-Perot (FP) type is generally used in which an optical resonator is sandwiched between mirrors formed on both end faces of an active layer.
- FP Fabry-Perot
- DFB distributed feedback
- DBR distributed reflection
- the DBR laser realizes a resonator by forming irregularities on the waveguide surface on the extension of the waveguide of the active layer to form a mirror by Bragg reflection (Patent Document 1 (Japanese Patent Laid-Open No. 49-128689): Patent) Document 2 (Japanese Patent Laid-Open No. 56-148880). Since this laser is provided with diffraction gratings at both ends of the optical waveguide layer, the light emitted from the active layer propagates through the optical waveguide layer, a part of which is reflected by this diffraction grating, returns to the current injection part, and is amplified. Is done. Since only one wavelength of light reflects in the direction determined from the diffraction grating, the wavelength of the laser light is constant.
- an external resonator type semiconductor laser has been developed in which a diffraction grating is a component different from a semiconductor and a resonator is formed externally.
- This type of laser is a laser with good wavelength stability, temperature stability, and controllability.
- the external resonator includes a fiber Bragg grating (FBG) (Non-patent Document 1) and a volume hologram grating (VHG) (Non-patent Document 2). Since the diffraction grating is composed of a separate member from the semiconductor laser, it has the feature that the reflectance and resonator length can be individually designed, and it is not affected by the temperature rise due to heat generation due to current injection. Can be better. Moreover, since the temperature change of the refractive index of the semiconductor is different, the temperature stability can be improved by designing it together with the resonator length.
- Patent Document 6 Japanese Patent Laid-Open No. 2002-134833 discloses an external resonator type laser using a grating formed in a quartz glass waveguide. This is to provide a frequency stabilized laser that can be used in an environment where the room temperature changes greatly (for example, 30 ° C. or more) without a temperature controller. Further, it is described that a temperature-independent laser in which mode hopping is suppressed and the oscillation frequency is not temperature-dependent is provided.
- Patent Document 7 Japanese Patent Laid-Open No. 2010-171252 discloses an optical waveguide having SiO 2 , SiO 1-x N x (x is 0.55 to 0.65), or Si and SiN as a core layer, and the optical waveguide Discloses an external cavity laser in which a grating is formed.
- This is an external cavity laser that keeps the oscillation wavelength constant without precise temperature control.
- it is a precondition that the temperature change rate of the reflection wavelength of the diffraction grating (temperature coefficient of the Bragg reflection wavelength) is reduced.
- the power stability can be realized by setting the laser oscillation to the longitudinal mode multimode.
- Patent Document 8 discloses a laser as an external resonator using a grating formed on an optical waveguide made of quartz, InP, GaAs, LiNbO 3 , LiTaO 3 , or polyimide resin. This is because the reflectivity at the light exit surface of the semiconductor laser as the light source is the effective reflectivity Re (substantially 0.1 to 38.4%), and the laser oscillation is set to the longitudinal mode multimode. It is described that power stability can be realized.
- Non-Patent Document 1 mentions a mode hop mechanism that impairs the wavelength stability associated with a temperature rise, and an improvement measure thereof.
- Each temperature change ⁇ T a and ⁇ T f is expressed by the following equation from the standing wave condition.
- ⁇ 0 represents the grating reflection wavelength in the initial state.
- ⁇ G in the grating reflection wavelength is expressed by the following equation.
- the longitudinal mode interval ⁇ is approximately expressed by the following equation.
- Equation 5 is established.
- Mode hopping is a phenomenon in which the oscillation mode (longitudinal mode) in the resonator shifts from one mode to another.
- the gain and resonator conditions change, the laser oscillation wavelength changes, and the problem arises that optical power fluctuates, which is called kink. Therefore, in the case of an FP type GaAs semiconductor laser, the wavelength usually changes with a temperature coefficient of 0.3 nm / ° C., but when a mode hop occurs, a larger fluctuation occurs. At the same time, the output fluctuates by 5% or more.
- Patent Document 6 in order to make the temperature independent, the conventional resonator structure is left as it is, and stress is applied to the optical waveguide layer to compensate for the temperature coefficient due to thermal expansion, thereby realizing temperature independence. is doing. For this reason, a metal plate is attached to the element, and a layer for adjusting the temperature coefficient is added to the waveguide. For this reason, there exists a problem that a resonator structure becomes still larger.
- Patent Document 9 discloses a structure in which a waveguide and a light receiving element are integrated on a semiconductor substrate for miniaturization and simplification as an example of an optical integrated circuit as an application of a semiconductor laser.
- a curved optical waveguide, a tapered waveguide, and a light receiving element are mounted on the surface of the semiconductor substrate, and a semiconductor laser or an optical fiber is connected to the side surface portion, whereby a compact optical transceiver can be realized.
- Patent Document 10 a plurality of linear waveguides that are periodically poled on a lithium niobate substrate are serially connected by a curved waveguide to realize a compact and high-output wavelength conversion element.
- Patent Document 11 discloses an optical integrated circuit in which an optical waveguide formed of SiO 2 and a mirror are planarly formed on a silicon substrate.
- Non-Patent Documents 3 and 4 and Patent Document 12 in order to reduce the bending loss of a bent optical waveguide, a straight waveguide and a curved waveguide with a uniform bending radius are shifted from each other in the central axis of each waveguide.
- a connection (offset connection) method is disclosed.
- offset connection is performed in an optical waveguide formed in a semiconductor such as quartz glass, lithium niobate, or InP.
- the radius of curvature of the curved portion of the optical waveguide is 1 mm or more.
- Non-Patent Document 4 uses an offset technique, but there is a description that the radius of curvature of the curved portion can be 250 ⁇ m. However, recently, it has been desired to further reduce the size of the optical waveguide element, and for this reason, it has become necessary to make the curvature radius of the curved portion of the optical waveguide 100 ⁇ m or less. However, it is difficult to realize such a bending radius in the channel type optical waveguide of the optical waveguide substrate.
- Non-Patent Document 3 discloses a structure using a core having high refractive index of silicon photonics.
- the SiO 2 having a refractive index of 1.45 was formed as a cladding on silicon, the Si of refractive index 3.8 to form a core thereon, thereby forming a SiO 2 having a refractive index of 1.45 as overclad
- An embedded waveguide is used.
- the refractive index difference ⁇ n between the core and the clad is 2 or more, and the cross section of the core is 0.3 ⁇ m ⁇ 0.3 ⁇ m. This is such a dimension in order to set the transverse mode to the single mode because the difference in refractive index between the core and the clad is large.
- Silicon photonics has a problem that an ultrafine semiconductor patterning technology is required for device manufacturing, and that a coupling loss increases when a semiconductor laser or an optical fiber is connected. Furthermore, it is a problem that it cannot be used at a wavelength of 1 ⁇ m or less due to absorption of silicon.
- the problem of the present invention is that, without using a Peltier element, mode hopping is suppressed, wavelength stability is increased, optical power fluctuation is suppressed, and a semiconductor laser or a passive element is mounted in a planar manner by bending an optical path. It is to be able to be downsized and simplified.
- an object of the present invention is to provide an optical waveguide substrate having a structure in which the curvature radius of the curved portion can be 100 ⁇ m or less in the optical waveguide substrate including the curved portion of the channel type optical waveguide.
- the present invention is an external resonator type light emitting device including a light source that oscillates a semiconductor laser beam, and a grating element that constitutes the light source and an external resonator,
- the light source includes an active layer that oscillates the semiconductor laser light;
- the grating element includes an optical waveguide having an incident portion where the semiconductor laser light is incident and an output portion that emits outgoing light of a desired wavelength, a Bragg grating formed in the optical waveguide, and the incident portion and the Bragg grating.
- An optical path changing unit that bends the optical path of the semiconductor laser light in the grating element, and satisfies the relations of the following formulas (1) to (4): And ⁇ G ⁇ 0.8 nm (1) L b ⁇ 500 ⁇ m (2) L a ⁇ 500 ⁇ m (3) n b ⁇ 1.8 (4) (In formula (1), ⁇ G is the full width at half maximum at the peak of the Bragg reflectivity. In Expression (2), L b is the length of the Bragg grating. In the formula (3), L a is the length of the active layer. In the formula (4), n b is the refractive index of the material constituting the Bragg grating. )
- the present invention also includes a channel-type optical waveguide having an elongated core for propagating light and a clad in contact with the core, and a curved portion where the core is curved when viewed from the main surface of the optical waveguide substrate.
- An optical waveguide substrate comprising: The cross section of the core has a convex shape, the refractive index of the core is 1.7 or more and 3.5 or less, and the difference ⁇ n between the refractive index of the core and the refractive index of the cladding is 0. 3 or more, the width of the core is 1.5 ⁇ m or less, the thickness of the core is 0.5 ⁇ m or more and 2.0 ⁇ m or less, and the curvature radius of the curved portion is 100 ⁇ m or less. To do.
- mode hops can be suppressed, wavelength stability can be increased, and optical power fluctuations can be suppressed without using a Peltier element.
- quartz has a small temperature coefficient of refractive index, so d ⁇ G / dT is small and
- a material having a refractive index of 1.8 or more of the waveguide substrate on which the grating is formed is used.
- the temperature coefficient of the refractive index can be increased and d ⁇ G / dT can be increased. Therefore,
- mode hops are suppressed, wavelength stability is increased, optical power fluctuations are suppressed, and semiconductor lasers and passive elements are mounted in a plane by bending the optical path, downsizing, It can be simplified.
- the distance L g between the exit surface and entrance surface of the optical waveguide of the light source, the coupling efficiency of the light source and the optical waveguide may be less than 1 ⁇ m in terms of maximizing. However, from the viewpoint of operating in a wide temperature range, it is necessary to prevent mechanical interference due to thermal expansion, and in a preferred embodiment, equation (6) is satisfied. 1 ⁇ m ⁇ L g ⁇ 10 ⁇ m (6) (In Formula (6), L g is the distance between the exit surface of the light source and the entrance surface of the optical waveguide.)
- the exit portion of the emitted light is the end face of the optical waveguide.
- the incident portion and the emission portion are not provided on the side surfaces facing each other of the grating element, and are, for example, on the same surface or on two adjacent side surfaces.
- the Bragg grating is downstream of the optical path changer.
- the propagation part provided between the incident part and the Bragg grating has a tapered structure that changes the width of the optical waveguide. It may be.
- the external resonator type light emitting device of the present invention oscillates in a single mode in the longitudinal mode.
- the formula (5) may be further satisfied.
- d ⁇ G / dT is the temperature coefficient of the Bragg wavelength
- d ⁇ TM / dT is the temperature coefficient of the wavelength that satisfies the phase condition of the external cavity laser.
- FIG. 1 is a plan view schematically showing an external resonator type light emitting device.
- FIG. 2 is a side view schematically showing the apparatus of FIG. 3 is a cross-sectional view showing a grating element 9.
- FIG. It is a cross-sectional view showing the grating element 9A. It is a cross-sectional view showing the grating element 9B. It is a figure which shows a part of Bragg grating.
- It is a top view which shows typically another external resonator type light-emitting device.
- It is a top view which shows typically another external resonator type light-emitting device.
- It is a top view which shows typically another external resonator type light-emitting device.
- typically another external resonator type light-emitting device is typically another external resonator type light-emitting device.
- (A), (b) is a schematic diagram which shows the cross section of the grating elements 21D and 21E using the elongate stripe-shaped optical waveguides 30 and 30A, respectively. It is a schematic diagram of the optical waveguide of another form.
- (A), (b) shows the mirror which is an optical path changing part of an optical waveguide, respectively.
- It is a top view which shows an example of a curved optical waveguide.
- W b is a graph showing the waveguide propagation efficiency in the case of a 100 ⁇ m from the radius of curvature 10 ⁇ m in the case of 0.5 [mu] m. It is a graph which shows the propagation efficiency calculated by varying the offset amount of Offset1 about W b : 0.5 ⁇ m. W b: is a graph showing the propagation efficiency calculated by varying the offset amount of Offset2 about 0.5 [mu] m.
- W b is a graph showing the propagation efficiency calculated by varying the offset amount of Offset3 about 0.5 [mu] m.
- the cross-sectional shape of the high mesa type optical waveguide adopted in Reference Example 5 is shown.
- the calculation result of the waveguide propagation efficiency when the refractive index of the core is 1.5 and the refractive index of the clad on the side surface is 1 is shown.
- the result of calculating the waveguide propagation efficiency when the refractive index of the core is 1.7 and the refractive index of the cladding is 1.4 is shown.
- An external resonator type light emitting device 1 schematically shown in FIGS. 1 and 2 includes a light source 1 that oscillates a semiconductor laser beam and a grating element 9 (or 9A, 9B).
- the light source 1 and the grating element 9 are preferably mounted on a common substrate (not shown).
- the light source 1 includes an active layer 7 that oscillates semiconductor laser light.
- the light source 1 can be a light source capable of laser oscillation independently. This means that the light source 1 oscillates itself even without a grating element.
- the light source 1 preferably has a single mode oscillation in the longitudinal mode when laser oscillation is performed independently.
- the reflection characteristic can be given wavelength dependency, so that the longitudinal mode can be set to the multimode independently by controlling the shape of the wavelength characteristic. Even if it oscillates, it can oscillate in a single mode as an external resonator type laser.
- a highly reflective film 3A is provided on the outer end face of the light source 1, and a film 4 having a reflectance smaller than that of the grating is formed on the end face on the grating element side.
- the light source 1 may be a super luminescence diode or a semiconductor optical amplifier (SOA) that does not oscillate alone.
- SOA semiconductor optical amplifier
- the highly reflective film 3A is provided on the outer end face of the light source substrate, and the antireflective film 4 is formed on the end face on the grating element side.
- FIG. 1 shows a case where a semiconductor laser and an optical element are mounted on the same surface.
- the grating element 9 (9A, 9B) an optical waveguide 18 through which light from the semiconductor laser light source 1 propagates and a Bragg grating 12 are formed.
- An external resonator is configured between the semiconductor laser and the Bragg grating, and the laser oscillates at a wavelength that satisfies the Bragg diffraction conditions of the grating.
- the grating element 9 has four side surfaces 9a, 9b, 9c, and 9d, and the light source 1 and the optical waveguide element 21 are attached to the side surface 9a so as to face each other.
- 3B is a reflective film or a non-reflective film.
- the optical waveguide 18 includes an incident side propagation part 18a, a Bragg grating 12, and emission side propagation parts 18b, 18c, 18d on the downstream side thereof.
- a Bragg grating is not formed in the propagation part.
- a mirror 8A is installed at the end of the propagation part 18b, and a propagation part 18c intersecting the propagation part 18b is provided. Further, a mirror 8B is installed between the propagation portions 18c and 18d.
- the light incident from the incident surface 49 of the optical waveguide propagates through the incident-side propagation part 18a, passes through the Bragg grating, undergoes wavelength selection, propagates through the propagation part 18b, is reflected by the mirrors 8A and 8B, and is emitted from the emission surface 31.
- the entrance surface and the exit surface of the optical waveguide are on the same side surface 9a.
- the light emitted from the emission surface 31 can be incident on the optical waveguide 22 of the separate optical waveguide element 21.
- Reference numerals 5 and 6 denote non-reflective films.
- Such an optical waveguide element or optical element is not particularly limited, but may be an optical waveguide device such as a wavelength conversion element, an optical modulator, an optical filter, an optical isolator, or an optical fiber, or a photodiode. Also good.
- the reflectivity of the Bragg grating is larger than the reflectivity of the emission end of the light source, the reflectivity of the entrance surface of the grating element, and the reflectivity of the exit surface of the grating element. From this point of view, it is preferable that the reflectance at the light emitting end of the light source, the reflectance at the entrance surface of the grating element, and the reflectance at the exit surface of the grating element are 0.1% or less.
- the reflectance of the non-reflective layer may be a value smaller than the grating reflectance, and is preferably 0.1% or less. However, as long as the reflectance at the end face is smaller than the grating reflectance, the non-reflective layer may be omitted and a reflective film may be used.
- the light source 1 includes an active layer 7 that oscillates laser light.
- a non-reflective layer is not provided on the end surface of the active layer 7 on the grating element 9 side, and a reflective film can be formed instead.
- the oscillation wavelength of the laser light is determined by the wavelength reflected by the grating. If the reflected light from the grating and the reflected light from the end face of the active layer on the grating element side exceed the laser gain threshold, the oscillation condition is satisfied. Thereby, a laser beam with high wavelength stability can be obtained.
- the feedback amount from the grating may be increased.
- the reflectance of the grating is preferably larger than the reflectance at the end face of the active layer 7.
- the sectional structure of the grating element and the sectional structure of the ridge type optical waveguide are not particularly limited, but an example is shown below.
- the optical material layer 11 is provided on the support substrate 10.
- the optical material layer 11 may be formed on the same surface as the Bragg grating 12 or may be formed on an opposite surface.
- the optical material layer 11 is formed on the substrate 10 via the adhesive layer 15 and the lower buffer layer 16, and the upper buffer layer 17 is formed on the optical material layer 11.
- a pair of ridge grooves 19 are formed in the optical material layer 11, and a ridge-type optical waveguide 18 is formed between the ridge grooves.
- the Bragg grating may be formed on the flat surface 11a or may be formed on the 11b surface. From the viewpoint of reducing the shape variation of the Bragg grating and the ridge groove, it is preferable that the Bragg grating and the ridge groove 19 are provided on the opposite side of the substrate by forming the Bragg grating on the surface 11a.
- the optical material layer 11 is formed on the substrate 10 via the adhesive layer 15 and the lower buffer layer 16, and the upper buffer layer 17 is formed on the optical material layer 11. Yes.
- a pair of ridge grooves 19 are formed on the substrate 10 side of the optical material layer 11, and a ridge-type optical waveguide 18 is formed between the ridge grooves 19.
- the Bragg grating may be formed on the flat surface 11a side, or may be formed on the 11b surface having the ridge groove.
- the Bragg grating and the ridge groove 19 are provided on the opposite side of the substrate by forming the Bragg grating on the flat surface 11a surface side.
- the upper buffer layer 17 may be omitted, and in this case, the air layer can directly contact the grating.
- the difference in refractive index can be increased without the presence of a grating groove, and the reflectance can be increased with a short grating length.
- the optical material layer 11 is formed on the substrate 10 via the lower buffer layer 16, and the upper buffer layer 17 is formed on the optical material layer 11.
- a pair of ridge grooves 19 are formed in the optical material layer 11, and a ridge-type optical waveguide 18 is formed between the ridge grooves 19.
- an adhesive layer is not provided, and a buffer layer and an optical material layer are sequentially formed on the substrate 10 by a vapor phase method.
- FIG. 6 is a perspective view showing an example of the form of the Bragg grating. td is the grating depth and ⁇ is the period.
- FIG. 7 shows a case where the semiconductor laser and the optical element are mounted on the same surface.
- the grating element 29A an optical waveguide 28 through which light from the semiconductor laser light source 1 propagates and a Bragg grating 12 are formed.
- An external resonator is configured between the semiconductor laser and the Bragg grating, and the laser oscillates at a wavelength that satisfies the Bragg diffraction conditions of the grating.
- the grating element 29A has four side surfaces 29a, 29b, 29c, and 29d, and the light source 1 and the optical waveguide element 21 are attached to the side surface 29a so as to face each other. A reflective film and a non-reflective film provided on the end face of each element are not shown.
- the optical waveguide 28 includes incident-side propagation portions 28a, 28b, 28c, a Bragg grating 12, and an emission-side propagation portion 28d. A Bragg grating is not formed in each propagation part.
- a mirror 8A is installed between the propagation units 28a and 28b, and a miper 8B is installed between the propagation units 28b and 28c. In this example, the entrance surface and the exit surface of the optical waveguide are on the same side surface 9a.
- the Bragg grating 12 is downstream of the mirror that is the optical path changing unit.
- the fundamental mode of the transverse mode propagates efficiently through the optical waveguide. Therefore, the fundamental mode can be selectively oscillated by arranging the grating in the subsequent stage.
- the grating element 29B has four side surfaces 29a, 29b, 29c, and 29d, and the light source 1 and the optical waveguide element 21 are attached to the side surface 29a so as to face each other. A reflective film and a non-reflective film provided on the end face of each element are not shown.
- the optical waveguide 32 includes an incident-side propagation part 32a, a Bragg grating 12, and emission-side propagation parts 32b, 32c, and 32d.
- the propagation portions 32a, 32b, and 32d extend straight, and the propagation portion 32c is curved to form an optical path changing portion.
- the optical waveguide 32 is bent by 180 °, and the incident surface 49 and the emission surface 31 of the optical waveguide 32 are provided on the same side surface 29a.
- the optical waveguide 33 includes incident-side propagation portions 33a, 33b, 33c, a Bragg grating 12, and an emission-side propagation portion 33d.
- the propagation portions 33a, 33c, and 33d extend straight, and the propagation portion 33b is curved to form an optical path changing portion.
- the optical waveguide 33 is bent by 180 °, and the incident surface 49 and the emission surface 31 of the optical waveguide 33 are provided on the same side surface 29a.
- a reflective film and a non-reflective film provided on the end face of each element are not shown.
- the Bragg grating 12 is downstream of the curved portion 33b which is an optical path changing portion.
- Such an optical path changing unit can suppress the propagation of the multimode in the transverse mode, and therefore, it is possible to selectively oscillate the fundamental mode by arranging the grating in the subsequent stage.
- FIGS. 10 and 11 show the case where the semiconductor laser and the optical element are mounted on the same surface.
- the grating element 39 an optical waveguide 40 through which light from the semiconductor laser light source 1 propagates and a Bragg grating 12 are formed.
- a recess 42 is formed in the grating element 39 by etching or polishing, and the light source 1 is mounted in the recess 42.
- An external resonator is formed between the light source 1 and the Bragg grating 12, and laser oscillation is performed at a wavelength satisfying the Bragg diffraction condition of the grating.
- the grating element 39 has four side surfaces 39a, 39b, 39c and 39d, and is attached so that the optical waveguide element 21 faces the side surface 39a.
- a reflective film and a non-reflective film provided on the end face of each element are not shown.
- the optical waveguide 40 includes an incident-side propagation part 40a, a Bragg grating 12, and emission-side propagation parts 40b, 40c, and 40d.
- a mirror 8A is installed between the propagation units 40b and 40c, and a mirror 8B is installed between the propagation units 40c and 40d.
- the entrance surface 49 of the optical waveguide is on the side surface 39e facing the recess 42, and the exit surface is on the side surface 39a.
- the light source 1 is mounted in the recess 42 of the grating element 39A.
- the optical waveguide 43 includes incident-side propagation portions 43a, 43b, 43c, a Bragg grating 12, and an emission-side propagation portion 43d.
- a mirror 8A is installed between the propagation parts 43a and 43b, and a mirror 8B is also installed between the propagation parts 43b and 43c.
- a reflective film and a non-reflective film provided on the end face of each element are not shown.
- the Bragg grating 12 is downstream of the mirror that is the optical path changing unit.
- the fundamental mode of the transverse mode propagates efficiently through the optical waveguide. Therefore, the fundamental mode can be selectively oscillated by arranging the grating in the subsequent stage.
- the light source 1 is mounted in the recess 42 of the grating element 39B.
- the optical waveguide 44 includes an incident side propagation part 44a, a Bragg grating 12, and emission side propagation parts 44b and 44c.
- the propagation portions 44a and 44c extend straight, and the propagation portion 44b is curved to constitute an optical path changing portion.
- the optical waveguide 44 is bent by 180 °, and the emission surface 31 of the optical waveguide is provided on the side surface 39a.
- a reflective film and a non-reflective film provided on the end face of each element are not shown.
- the optical waveguide 45 of the element 39C includes incident-side propagation portions 45a, 45b, 45c, a Bragg grating 12, and an emission-side propagation portion 45d.
- the propagation portions 45a, 45c, and 45d extend straight, and the propagation portion 45b is curved to constitute an optical path changing portion.
- the optical waveguide 45 is bent by 180 °, and the output surface 31 of the optical waveguide is provided on the side surface 39a.
- a reflective film and a non-reflective film provided on the end face of each element are not shown.
- the grating element 29A has four side surfaces 29a, 29b, 29c, and 29d, and is attached so that the light source 1 faces the side surface 29a.
- the optical waveguide 28A includes incident-side propagation portions 28a, 28b, 28c, a Bragg grating 12, and emission-side propagation portions 28d, 28e.
- a mirror 8A is installed between the propagation units 28a and 28b
- a mirror 8B is installed between the propagation units 28b and 28c
- a mirror 8C is installed between the propagation units 28d and 28e.
- the incident surface 49 of the optical waveguide is on the side surface 29a
- the exit surface 31 is on the side surface 29d adjacent to the side surface 29a.
- a reflective film and a non-reflective film provided on the end face of each element are not shown.
- the optical waveguide 33A of the element 29C includes incident side propagation portions 33a, 33b, 33c, a Bragg grating 12, and emission side propagation portions 33d, 33e.
- the propagation portions 33a, 33c, and 33e extend straight, and the propagation portions 33b and 33d are curved to form an optical path changing portion.
- the optical waveguide 33A is bent twice.
- the incident surface 49 of the optical waveguide 33A is on the side surface 29a, and the exit surface 31 is on the adjacent side surface 29d.
- a plurality of curved portions 50b and 50d are formed on the upstream side of the Bragg grating 12 of the element 29E.
- the optical waveguide 50 includes straight propagation Bragg gratings 50a, 50c, 50e, and 50f and two curved portions 50b and 50d.
- the side surface 29a on which the light source 1 is provided and the side surface 29b on which the optical waveguide element 21 is provided can be opposed to each other.
- a reflective film and a non-reflective film provided on the end face of each element are not shown.
- the structure which uses a mirror instead of a curved waveguide may be sufficient.
- a mirror or a curved portion was installed in the optical waveguide to bend the optical path.
- the mirror and the curved portion can be used in combination.
- an optical path changing unit and an external emitting unit that emits the emitted light after changing the optical path to the outside of the device can be provided on the downstream side of the emitting unit of the emitted light.
- FIG. 18 relates to this embodiment.
- FIG. 18 shows a case where the semiconductor laser and the optical element are mounted on the same surface.
- a separate grating portion 52 is mounted on the grating element 53.
- an optical waveguide 51 through which light from the light source 1 propagates and a Bragg grating 12 are formed.
- the optical waveguide 51 includes an incident side propagation part 51a and an emission side propagation part 51b.
- An external resonator is formed between the light source 1 and the Bragg grating 12, and laser oscillation is performed at a wavelength satisfying the Bragg diffraction condition of the grating.
- a reflective film and a non-reflective film provided on the end face of each element are not shown.
- the grating element 53 has four side surfaces, and the light source 1 and the optical waveguide element 21 are attached to one side surface.
- the light emitted from the optical waveguide exit surface 31 of the grating element 52 propagates through the optical path 54A provided in the space, changes the optical path by the mirror 8A, propagates through the optical path 54B, and further changes the optical path by the mirror 8B.
- 53 a is the surface of the element 53.
- a laser with a highly reliable GaAs-based or InP-based material is suitable as the light source.
- a GaAs laser that oscillates near a wavelength of 1064 nm is used. Since GaAs-based and InP-based lasers have high reliability, a light source such as a one-dimensionally arranged laser array can be realized. Since the temperature change of the Bragg wavelength increases as the wavelength becomes longer, the laser oscillation wavelength is particularly preferably 990 nm or less in order to improve the wavelength stability.
- the laser oscillation wavelength is particularly preferably 780 nm or more in order to improve the wavelength stability.
- the material and wavelength of the active layer can be selected as appropriate.
- a ridge-type optical waveguide is obtained by, for example, physical processing and molding by cutting with an outer peripheral blade or laser ablation processing.
- the buffer layer can function as a cladding layer of the optical waveguide.
- the refractive index of the buffer layer is preferably lower than the refractive index of the optical material layer, and the refractive index difference is preferably 0.2 or more, and more preferably 0.4 or more.
- the refractive index difference between the buffer layer and the optical material layer is preferably further increased in order to reduce the bending loss, and 0.5 or more is most preferable. preferable.
- the Bragg grating can be formed by physical or chemical etching as follows.
- a metal film such as Ni or Ti is formed on a high refractive index substrate, and windows are periodically formed by photolithography to form an etching mask. Thereafter, periodic grating grooves are formed by a dry etching apparatus such as reactive ion etching. Finally, it can be formed by removing the metal mask.
- one or more metals selected from the group consisting of magnesium (Mg), zinc (Zn), scandium (Sc), and indium (In) are used to further improve the optical damage resistance of the optical waveguide. Elements may be included, in which case magnesium is particularly preferred.
- the crystal can contain a rare earth element as a doping component. As the rare earth element, Nd, Er, Tm, Ho, Dy, and Pr are particularly preferable.
- the material of the adhesive layer may be an inorganic adhesive, an organic adhesive, or a combination of an inorganic adhesive and an organic adhesive.
- the optical material layer 11 may be formed by forming a film on a supporting substrate by a thin film forming method. Examples of such a thin film forming method include sputtering, vapor deposition, and CVD. In this case, the optical material layer 11 is directly formed on the support substrate, and the above-described adhesive layer does not exist. In this case, the optical material layer 11 may be further formed after forming the lower buffer layer on the support substrate. Further, an upper buffer layer may be formed on the upper surface of the optical material layer 11. The thickness of the optical material layer is more preferably 0.5 to 3.0 ⁇ m.
- the specific material of the support substrate is not particularly limited, and examples thereof include glass such as lithium niobate, lithium tantalate, and quartz glass, quartz, Si, alumina, aluminum nitride, and sapphire.
- the reflectance of the non-reflective layer must be less than or equal to the grating reflectivity.
- a film laminated with an oxide such as silicon dioxide or tantalum pentoxide, or metal is also used. Is possible.
- each end face of the light source element and the grating element may be cut obliquely in order to suppress the end face reflection.
- the grating element and the support substrate may be bonded together by adhesion or direct bonding.
- the oscillation condition of the semiconductor laser is determined by gain condition ⁇ phase condition as shown in the following equation.
- ⁇ a and ⁇ b are the loss factors of the active layer and the grating layer, respectively
- L a and L b are the lengths of the active layer and the grating layer, respectively
- r 1 and r 2 are mirrors
- the reflectance (r 2 is the reflectance of the grating)
- C out is the coupling loss between the grating element and the light source
- ⁇ t g th is the gain threshold of the laser medium
- ⁇ 1 is the laser side reflecting mirror
- ⁇ 2 is the amount of phase change at the grating portion.
- the gain condition is determined by the grating. For this reason, in the comparison table, the gain condition can be considered only by the grating.
- phase condition is expressed by the following equation from the equation (2-1). However, ⁇ 1 is zero.
- the external resonator type laser a product using a quartz glass waveguide or FBG as an external resonator has been commercialized.
- the length of the grating portion is 1 mm.
- the satisfied wavelength is discrete and is designed so that there are two to three points in (2-3) within ⁇ g . For this reason, the thing with a long active layer length of a laser medium is needed, and the thing of 1 mm or more is used.
- the external cavity laser has a feature of high wavelength stability.
- the equivalent refractive index of the light source is 3.6
- the temperature change of the refractive index is 3 ⁇ 10 -4 / ° C
- the spectral waveform of the laser light thus laser-oscillated has a line width of 0.2 nm or less.
- the laser oscillation wavelength by an external resonator at room temperature of 25 ° C. should be shorter than the center wavelength of the grating reflectivity. preferable. In this case, as the temperature rises, the laser oscillation wavelength shifts to the longer wavelength side and laser oscillation occurs on the longer wavelength side than the center wavelength of the grating reflectivity.
- the laser oscillation wavelength by the external resonator at room temperature of 25 ° C. is longer than the oscillation wavelength of the light source 1 at the same temperature. It is preferable to oscillate at. In this case, as the temperature rises, the laser oscillation wavelength by the external resonator oscillates on the shorter wavelength side than the oscillation wavelength of the light source 1.
- the difference between the laser oscillation wavelength by the external resonator at room temperature and the oscillation wavelength of the light source 1 is preferably 0.5 nm or more, and may be 2 nm or more from the viewpoint of widening the temperature tolerance of laser oscillation. However, if the wavelength difference is increased too much, the temperature variation of the power increases, so from this viewpoint, it is preferably 10 nm or less, and more preferably 6 nm or less.
- ⁇ G TM is a wavelength interval (longitudinal mode interval) that satisfies the phase condition of the external cavity laser.
- T mh is about 5 ° C. For this reason, mode hops are likely to occur. Therefore, when a mode hop occurs, the power fluctuates based on the reflection characteristics of the grating and fluctuates by 5% or more.
- the conventional external cavity laser using the glass waveguide or FBG performs temperature control using the Peltier element.
- the present invention uses a grating element having a small denominator of the equation (2-4) as a precondition.
- the denominator of equation (2-4) must be 0.03 nm / ° C or less.
- Specific materials for forming the grating include gallium arsenide (GaAs), lithium niobate (LiNbO 3 ), and oxidation. Tantalum (Ta 2 O 5 ), zinc oxide (ZnO), and alumina (Al 2 O 3 ) are preferable.
- ⁇ G is designed to be about 1.3 nm, and the length of the active layer is 250 ⁇ m so that there are two wavelengths within ⁇ G that satisfy the phase condition.
- ⁇ G TM is, for example, 1.2 nm, T mh is 60 ° C., and the operating temperature range can be widened.
- FIG. 21 shows an example of this. Since the Bragg grating is formed in an optical waveguide, the material of the optical waveguide preferably has the refractive index described above, and the materials exemplified as the grating material are preferable.
- the spectral width of the output laser oscillated under such conditions is 0.1 nm or less.
- the oscillation wavelength changes at 0.05 nm / ° C. based on the temperature characteristics of the grating with respect to the temperature change, but mode hopping can be made difficult to occur.
- the grating length Lb is set to 100 ⁇ m in order to increase the ⁇ lambda G
- La in order to increase the ⁇ G TM is set to 250 [mu] m.
- FIG. 6 The present application realizes temperature independence by bringing the temperature coefficient of the grating wavelength and the temperature coefficient of the longitudinal mode close to each other. For this reason, the resonator structure can be made compact and an additional one is unnecessary.
- each parameter is described as follows, and each is in the category of the prior art.
- ⁇ ⁇ G 0.4nm Vertical mode interval
- ⁇ G TM 0.2nm Grating length
- L b 3mm
- the full width at half maximum ⁇ G at the peak of the Bragg reflectance is set to 0.8 nm or more (Formula 1).
- ⁇ G is the Bragg wavelength. That is, as shown in FIGS. 19, 20, and 21, when the reflection wavelength by the Bragg grating is taken on the horizontal axis and the reflectance is taken on the vertical axis, the wavelength at which the reflectance becomes maximum is the Bragg wavelength. In peak centered at the Bragg wavelength, the difference between the two wavelengths at which the reflectance becomes half the peak full width at half maximum [Delta] [lambda] G.
- the full width at half maximum ⁇ G at the Bragg reflectance peak is set to 0.8 nm or more is to make the reflectance peak broad as shown in FIG. From this viewpoint, it is preferable to be at least 1.2nm full width at half maximum [Delta] [lambda] G, it is further preferable to 1.5nm or more. Further, it is preferable that less 5nm a full width at half maximum [Delta] [lambda] G, more preferably to 3nm or less, it is preferable to 2nm or less.
- the length L b of the Bragg grating to 500 ⁇ m or less (equation 2).
- the length L b of the Bragg grating is a grating length in the direction of the optical axis of the light propagating through the optical waveguide. Be shorter than the Bragg grating length L b below the conventional 500 ⁇ m is a premise of the design concept of the present invention. From this viewpoint, it is more preferable to the Bragg grating length L b and 300 ⁇ m or less. Further, L b is more preferably set to 200 ⁇ m or less.
- the length of the active layer L a also a 500 ⁇ m or less (equation 3). It is also a prerequisite for the design concept of the present invention made shorter than the conventional length L a of the active layer. From this viewpoint, it is more preferable to set the length L a of the active layer and 300 ⁇ m or less.
- the length L a of the active layer is preferably set at 150 ⁇ m or more.
- Refractive index n b of the material of the Bragg grating is 1.8 or more (Equation 4).
- a material having a lower refractive index such as quartz, has been generally used.
- the refractive index of the material constituting the Bragg grating is increased. The reason for this is that a material with a large refractive index has a large temperature change in the refractive index, so that T mh in equation (2-4) can be increased and the temperature coefficient d ⁇ G / dT of the grating can be increased. It is. From this viewpoint, nb is more preferably 1.9 or more.
- n b is not particularly, although the grating pitch is 4 or less from the formation becomes too small it is difficult, it is preferably more than 3.6 or less. From the same viewpoint, the equivalent refractive index of the optical waveguide is preferably 3.3 or less.
- d ⁇ G / dT is the temperature coefficient of the Bragg wavelength.
- D ⁇ TM / dT is a temperature coefficient of the wavelength that satisfies the phase condition of the external cavity laser.
- ⁇ TM is a wavelength that satisfies the phase condition of the external cavity laser, that is, a wavelength that satisfies the above-described phase condition of (Equation 2.3). This is called “vertical mode” in this specification.
- ⁇ G TM is a wavelength interval (longitudinal mode interval) that satisfies the phase condition of the external cavity laser.
- lambda TM Since the plurality of, means the difference of a plurality of lambda TM. Previously used ⁇ lambda equals ⁇ G TM, ⁇ s is equal to lambda TM.
- the numerical value of the formula (5) is more preferably 0.025 or less.
- a plurality of gratings having different grating diffraction pitches may be arranged in series.
- the light source and the grating element are directly optically connected, and a resonator structure is formed between the outer end surface opposite to the emission surface of the active layer and the Bragg grating, and the active layer
- the length between the outer end face of the light source and the exit end point of the Bragg grating is 900 ⁇ m or less. Since light is gradually reflected at the grating portion, it is not possible to observe a clear reflection point like a reflection mirror. Although the effective reflection point can be defined mathematically, it exists on the laser side from the end point on the emission side of the Bragg grating. For this reason, in the present application, the length of the resonator is defined at the end point on the emission side.
- the length between the outer end face of the active layer and the exit end point of the Bragg grating is more preferably 800 ⁇ m or less, and particularly preferably 700 ⁇ m or less. From the viewpoint of increasing the laser output, this length is preferably 300 ⁇ m or more.
- the optical waveguide is a ridge type optical waveguide including a ridge portion and at least a pair of ridge grooves forming the ridge portion.
- the optical material is left under the ridge groove, and extending portions made of the optical material are also formed outside the ridge groove.
- the strip-shaped elongated core can be formed by removing the optical material under the ridge groove.
- the ridge-type optical waveguide is composed of an elongated core made of an optical material, and the cross section of the core forms a convex figure.
- a buffer layer (cladding layer) and an air layer exist around the core, and the buffer layer and the air layer function as a clad.
- the convex figure means that a line segment connecting any two points of the outer contour line of the core cross section is located inside the outer contour line of the core cross section.
- Examples of such figures include triangles, quadrangles, hexagons, octagons, and other polygons, circles, ellipses, and the like.
- a quadrangle having an upper side, a lower side, and a pair of side surfaces is particularly preferable, and a trapezoid is particularly preferable.
- the buffer layer 16 is formed on the support substrate 10, and the optical waveguide 30 is formed on the buffer layer 16.
- the optical waveguide 30 is composed of a core of an optical material having a refractive index of 1.8 or more as described above.
- the cross section of the optical waveguide (cross section in the direction perpendicular to the light propagation direction) is trapezoidal, and the optical waveguide is elongated.
- the upper side surface of the optical waveguide 30 is narrower than the lower side surface.
- the incident side propagation part, the Bragg grating, and the emission side propagation part as described above are formed.
- the buffer layer 22 is formed on the support substrate 10, and the optical waveguide 30 is embedded in the buffer layer 22.
- the cross section of the optical waveguide (cross section in the direction perpendicular to the light propagation direction) is trapezoidal, and the optical waveguide is elongated.
- the upper side surface of the optical waveguide 30 is narrower than the lower side surface.
- the buffer layer 22 includes an upper buffer 22 b on the optical waveguide 30, a lower buffer 22 a, and a side buffer 22 c that covers the side surface of the optical waveguide 30.
- the buffer layer 22 is formed on the support substrate 10, and the optical waveguide 30 ⁇ / b> A is embedded in the buffer layer 22.
- the optical waveguide 30A includes a core made of an optical material having a refractive index of 1.8 or more as described above.
- the cross section of the optical waveguide (cross section in the direction perpendicular to the light propagation direction) is trapezoidal, and the optical waveguide is elongated.
- the lower side surface of the optical waveguide 30A is narrower than the upper side surface.
- the buffer layer 16 is formed on the support substrate 10, and the optical waveguide 30 is formed on the buffer layer 16.
- the optical waveguide 20 is included and embedded by another buffer layer 23.
- the buffer layer 23 includes an upper buffer 23a and a side buffer 23b. In this example, the upper side surface of the optical waveguide 30 is narrower than the lower side surface.
- the buffer layer 16 is formed on the support substrate 10, and the optical waveguide 30 ⁇ / b> A is formed on the buffer layer 16.
- the optical waveguide 30 ⁇ / b> A is included and embedded by another buffer layer 23.
- the buffer layer 23 includes an upper buffer 23a and a side buffer 23b.
- the lower side surface of the optical waveguide 30A is narrower than the upper side surface.
- the shape of the optical waveguide may be a high mesa structure as shown in FIG.
- a lower buffer layer 63 is formed on a support substrate 61, an optical material layer 64 is formed thereon, and an upper buffer layer 65 is formed thereon.
- the width of the upper buffer layer is narrower than the width of the lower buffer layer, thereby forming a ridge shape.
- the ridge-type waveguide has strong light confinement, and the transverse mode is easily converted into a multimode.
- the thickness of the optical material layer is 0.5 ⁇ m or more and 3 ⁇ m or less, a multimode is obtained when the ridge width is larger than 1 ⁇ m.
- the propagation loss is higher in the higher order mode when the fundamental mode and the higher order mode are compared. It is unclear whether this is due to the loss caused by the mirror part, but the loss due to the longer propagation distance is greater in the higher order mode. Therefore, when an external resonator is configured, the oscillation threshold is higher in the higher order mode, and laser oscillation is less likely.
- the mirror material is preferably a metal material with small loss due to reflection.
- a specific material noble metals such as gold, silver and platinum are preferable, but metals such as copper, aluminum, molybdenum, tungsten, tantalum, nickel and chromium may be used. Further, it may be a dielectric multilayer film.
- the shape of the reflecting surface of the mirror may be a flat surface or a concave surface.
- the shape of the waveguide may be the same as or different from the width of the ridge before and after reflection.
- it may be a tapered waveguide as shown in FIG.
- the width of the propagation portion 67a and the width of 67b should be approximately the same. it can.
- the wide portions 68c and 68d are formed in the contact portion with the mirror 8, Tapered portions 68b and 68e whose width gradually changes can be provided between the wide portion and the propagation portions 68a and 68f, respectively.
- the optical path is bent using a bent waveguide
- the higher-order mode since the higher-order mode is cut off, only the fundamental mode can propagate. This is a phenomenon resulting from weak confinement because the effective refractive index of the higher order mode is smaller than that of the fundamental mode.
- the bending radius is preferably 200 ⁇ m or less, and the radius is preferably 100 ⁇ m or less, and most preferably 70 ⁇ m or less in order to greatly reduce the propagation loss in the higher-order mode.
- a mode conversion loss occurs in which the mode shape is deformed in the outer circumferential direction.
- a structure may be adopted in which the bent waveguide connection portion is offset (offset) in the width direction of the ridge waveguide.
- the width of the optical waveguide at the light incident portion can be made larger than the width of the optical waveguide at the curved portion of the optical waveguide.
- the propagation loss of light can be reduced by reducing the width of the optical waveguide in the curved portion.
- the coupling loss of incident light can be reduced by relatively increasing the width of the optical waveguide at the light incident portion.
- the width of the optical waveguide in the light emitting portion can be made larger than the width of the optical waveguide in the curved portion of the optical waveguide.
- the propagation loss of light can be reduced by reducing the width of the optical waveguide in the curved portion.
- the coupling efficiency to the optical component on the emitting side can be improved.
- the grating element 29D has four side surfaces 29a, 29b, 29c, and 29d, and the light source 1 and the optical waveguide element 21 are attached to the side surface 29a so as to face each other.
- a reflective film and a non-reflective film provided on the end face of each element are not shown.
- the optical waveguide 75 includes an incident side propagation part 75a, a Bragg grating 12, a taper part 75b, a curved part 75c, a taper part 75d, and an emission side propagation part 75e.
- the propagation parts 75a and 75e extend straight.
- the width W b of the curved portion 75c is smaller than the optical waveguide width W in of the incident side propagation portion 75a and the width W m of the emission side propagation portion 75e.
- a tapered portion 75b in which the optical waveguide width gradually decreases is provided between the incident side propagation portion and the curved portion, and the optical waveguide width gradually increases between the curved portion and the emission side propagation portion.
- a taper portion 75d that is large is provided.
- the optical waveguide 76 includes an incident side propagation part 76a, a taper part 76b, a curved part 76c, a linear propagation part 76d, a taper part 76e, and an emission side propagation part 76f.
- the Bragg grating 12 is downstream of the curved portion 76c that is the optical path changing portion.
- Such an optical path changing unit can suppress the propagation of the multimode in the transverse mode, and therefore, it is possible to selectively oscillate the fundamental mode by arranging the grating in the subsequent stage.
- the width of the optical waveguide at the light entrance and exit is preferably 1.6 ⁇ m or more, and more preferably 2.0 ⁇ m or more.
- the width of the optical waveguide in the curved portion is preferably 1.6 ⁇ m or less, and more preferably 1.5 ⁇ m or less, from the viewpoint of reducing loss.
- the width of the optical waveguide in the curved portion is preferably 0.3 ⁇ m or more.
- the difference between the optical waveguide width at the incident portion and the outgoing portion and the optical waveguide width at the curved portion is preferably 1.0 ⁇ m or more from the above viewpoint.
- this difference is preferably 4.0 ⁇ m or less.
- An optical waveguide substrate includes a channel-type optical waveguide having an elongated core for propagating light and a clad in contact with the core, and when viewed from the main surface of the optical waveguide substrate,
- the core includes a curved portion that is curved.
- the cross section of the core has a convex shape, the refractive index of the core is 1.7 or more and 3.5 or less, and the difference ⁇ n between the refractive index of the core and the refractive index of the clad is 0. 3 or more, the core width is 1.5 ⁇ m or less, the core thickness is 0.5 ⁇ m or more and 2.0 ⁇ m or less, and the curvature radius of the curved portion is 100 ⁇ m or less.
- This optical waveguide substrate can be suitably used for an isolator, a polarizing element, an optical switch, an optical modulator, a wavelength conversion element, an optical amplifier, and an optical filter in addition to a grating element.
- the radius of curvature is 100 ⁇ m or less, which is remarkably small compared to the prior art, it is epoch-making in that the propagation loss in the curved portion can be kept low.
- the radius of curvature can be made smaller as the effective refractive index of the optical waveguide is larger even if the refractive index difference between the core and the clad is the same. From this, the radius of curvature can be reduced as the refractive index of the core increases.
- the refractive index of the core material is preferably 1.7 or more, and more preferably 1.9 or more.
- the refractive index of the core is preferably 3.5 or less, and more preferably 3.0 or less.
- the difference ⁇ n between the refractive index of the core and the refractive index of the cladding is preferably 0.3 or more, and more preferably 0.5 or more, from the viewpoint of reducing the propagation loss in the curved portion.
- the width of the core in the curved portion is 1.5 ⁇ m or less from the viewpoint of reducing the propagation loss in the curved portion by setting the transverse direction as a single mode, but is preferably 1.3 ⁇ m or less, and more preferably 1.0 ⁇ m or less.
- the core width in the curved portion is too small, it becomes unstable near the cutoff and tends to increase the loss. Therefore, it is preferably 0.3 ⁇ m or more, and more preferably 0.5 ⁇ m or more. preferable.
- the thickness of the core is set to 2.0 ⁇ m or less from the viewpoint of reducing the propagation loss in the curved portion, but more preferably 1.5 ⁇ m or less. Further, from the viewpoint of reducing propagation loss, the thickness of the core is set to 0.5 ⁇ m or more, more preferably 0.7 ⁇ m or more.
- the radius of curvature of the curved portion is 100 ⁇ m or less, but can be 50 ⁇ m or less.
- the lower limit of the radius of curvature of the curved portion is not particularly limited, but from the viewpoint of generally improving the propagation loss,
- the curvature radius of the curved portion may be 10 ⁇ m or more, or 15 ⁇ m or more.
- the optical waveguide substrate includes a support substrate that supports the core and the clad.
- the material of the core is selected from the group consisting of gallium arsenide, lithium niobate single crystal, tantalum oxide, zinc oxide, and alumina.
- the cladding material is selected from SiO2, polyimide, SiO2 glass, and MgF, but is not limited thereto.
- This optical waveguide substrate uses an elongate core as an optical waveguide portion as described with reference to FIGS. That is, in the ridge type optical waveguide, the striped elongated core can be formed by removing the optical material under the ridge groove.
- the ridge-type optical waveguide is composed of an elongated core made of an optical material, and the cross section of the core forms a convex figure.
- a buffer layer (cladding layer) and an air layer exist around the core, and the buffer layer and the air layer function as a clad.
- the convex figure means that a line segment connecting any two points of the outer contour line of the core cross section is located inside the outer contour line of the core cross section.
- Examples of such figures include triangles, quadrangles, hexagons, octagons, and other polygons, circles, ellipses, and the like.
- a quadrangle having an upper side, a lower side, and a pair of side surfaces is particularly preferable, and a trapezoid is particularly preferable.
- FIG. 32 in addition to what is illustrated in FIGS. 24 and 25, a form as shown in FIG. 32 can also be illustrated. That is, in the optical waveguide substrate 75 of FIG. 32A, the buffer layer 16 is formed on the support substrate 10, and the optical waveguide (core) 30 is formed on the buffer layer 16.
- the optical waveguide 30 is preferably composed of a core made of an optical material having a refractive index of 1.8 or more as described above.
- the cross section of the optical waveguide (cross section in the direction perpendicular to the light propagation direction) is trapezoidal, and the optical waveguide is elongated. In this example, the upper side surface of the optical waveguide 30 is narrower than the lower side surface.
- grooves 77 are formed on both sides of the optical waveguide 30, and extending portions 76 are formed outside the grooves 77, respectively.
- An upper clad 17 is formed so as to cover the optical waveguide 30 and the extending portion 76, respectively.
- the optical waveguide width W m is at 1.5 ⁇ m or less
- thickness Ts is 0.5 ⁇ 2.0 .mu.m.
- the optical waveguide substrate of the present invention can be suitably applied to a grating element.
- a grating element for example, the curved portion of the optical waveguide shown in FIGS. 8, 9, 13, 14, 16, 17, 28, 30, and 31. Is applicable.
- the present invention can be applied to an optical waveguide 81 described later as shown in FIG. However, in each of these examples, only the planar pattern of the optical waveguide is illustrated.
- the light source mounting portion etching method as shown in FIGS. 10 to 14 can be performed by the following method. First, a metal mask pattern for forming a metal such as Ti, Ni, etc. on the entire surface of the grating element (actually in a wafer state), applying a resist, and etching the outer peripheral area of the semiconductor laser with a mask aligner
- the semiconductor laser mounting portion can be formed by etching the support substrate by dry etching with a fluorine-based gas.
- the incident-side end face of the optical waveguide can make an angle of 89 ° or more with respect to the optical axis, and can also be a mirror surface. Thereafter, the input end face can be coated without reflection.
- Example 1 Devices as shown in FIGS. 1, 2, 4, and 6 were produced. Specifically, Ti was deposited on a z-plate MgO-doped lithium niobate crystal substrate, and a grating pattern was produced in the y-axis direction by photolithography. Then, by reactive ion etching of the fluorine-based and the Ti pattern as a mask, to form the grating grooves 12 of the pitch lambda 222 nm, the length L b 100 [mu] m. The groove depth t d (FIG. 6) of the grating was 40 nm.
- an optical waveguide 18 was formed by reactive ion etching in the same process as described above, and a ridge groove 19 having a width W m of 3 ⁇ m and a Tr of 0.5 ⁇ m was formed. Further, a buffer layer 16 made of SiO 2 was formed on the groove forming surface by a sputtering apparatus to a thickness of 0.5 ⁇ m, and a black LN substrate was used as the support substrate 10 to adhere the grating forming surface.
- the support substrate 10 was attached to a polishing surface plate, and the back surface of the layer on which the grating was formed was precisely polished, so that the thickness (T s ) of the optical material layer 11 was 1.0 ⁇ m.
- the obtained assembly is removed from the surface plate, and reactive ion etching using a Ti mask is performed in the same manner as described above to form a mirror for bending by 90 °, and 1 ⁇ m-thick lithium niobate is formed in the mirror forming portion. Etched.
- gold was deposited by vapor deposition to form mirrors 8A and 8B.
- 0.5 ⁇ m of a buffer layer 17 made of SiO 2 was formed by sputtering.
- the assembly is cut into a bar shape with a dicing machine, the end surface on which the semiconductor laser and the wavelength conversion element are mounted is optically polished, an AR coat of 0.1% or less is formed on this end surface, and finally the chip is cut, and the grating An element was produced.
- the element size was 1 mm ⁇ 1 mm square.
- Optical characteristics of the grating element are reflected from its transmission characteristics by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting light into the grating element and analyzing the output light with an optical spectrum analyzer. Characteristics were evaluated. As a result, with respect to the TE mode, the center wavelength was 975 nm, the maximum reflectance was 20%, and the full width at half maximum ⁇ G was 2 nm.
- SLD super luminescence diode
- a laser module was mounted as shown in FIG. 1 in order to evaluate the characteristics of an external resonator type laser using this grating element.
- a GaAs laser that oscillates alone was used as the light source element.
- the laser characteristics were a center wavelength of 975 nm and an output of 30 mW.
- ACC current control
- a module was installed in a thermostatic chamber, and the temperature dependence of the laser oscillation wavelength, the temperature at which the mode hop occurred, and the output fluctuation were measured.
- the temperature coefficient of the oscillation wavelength was 0.05 nm / ° C.
- the mode hop temperature was 60 ° C.
- the power output fluctuation was within 1%.
- Example 1 Similarly to Example 1, Ti was deposited on a z-plate MgO-doped lithium niobate crystal substrate, and a grating pattern was produced in the y-axis direction by photolithography. Thereafter, a grating groove having a pitch interval of ⁇ 180 nm and a length of L b of 1000 ⁇ m was formed by fluorine-based reactive ion etching using the Ti pattern as a mask. The groove depth of the grating was 300 nm. In addition, in order to form an optical waveguide for y-axis propagation, a groove with a width W m of 3 ⁇ m and a Tr of 0.5 ⁇ m was formed on the grating portion with an excimer laser.
- a buffer layer 16 made of SiO 2 was formed on the groove forming surface by a sputtering apparatus to a thickness of 0.5 ⁇ m, and the grating forming surface was adhered using a black LN substrate as a supporting substrate.
- the support substrate was attached to a polishing surface plate, and the back surface of the MgO-doped lithium niobate crystal substrate on which the grating was formed was precisely polished to a thickness (T s ) of 1 ⁇ m.
- T s thickness of 1 ⁇ m.
- the assembly was removed from the surface plate, and the buffer layer 17 made of SiO 2 was formed to a thickness of 0.5 ⁇ m by sputtering on the polished surface.
- the element size was 1 mm wide and 1500 ⁇ m long.
- Optical characteristics of the grating element are reflected from its transmission characteristics by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting light into the grating element and analyzing the output light with an optical spectrum analyzer. Characteristics were evaluated. As a result, with respect to polarized light in the x-axis direction (ordinary light), a center wavelength of 800 nm, a maximum reflectance of 10%, and a full width at half maximum ⁇ G of 0.2 nm were obtained.
- SLD super luminescence diode
- a laser module was mounted in order to evaluate the characteristics of an external resonator type laser using this grating element.
- a light source element having a GaAs laser structure, a highly reflective film on one end face, and an AR coat having a reflectance of 0.1% on the other end face was prepared.
- Lg 1 ⁇ m
- the module After mounting the module, it was driven by current control (ACC) without using a Peltier device, and it was found that the laser characteristics were a center wavelength of 800 nm and an output of 50 mW.
- ACC current control
- a module was installed in a thermostatic chamber, and the temperature dependence of the laser oscillation wavelength, the temperature at which the mode hop occurred, and the output fluctuation were measured.
- the temperature coefficient of the oscillation wavelength was 0.05 nm / ° C.
- the mode hop temperature was 6 ° C.
- the power output fluctuation was 10%.
- Example 2 An apparatus as shown in FIGS. 9, 6 and 24A was produced. Specifically, a SiO 2 layer 16 that is a lower clad layer is formed on a support substrate 10 made of quartz by a sputtering apparatus to a thickness of 0.5 ⁇ m, and a Ta 2 O 5 film of 1.2 ⁇ m is formed on the SiO 2 layer 16. A material layer was formed.
- a grating pattern was produced by an EB drawing apparatus. Then, by reactive ion etching of the fluorine-based and the Ti pattern as a mask, to form a Bragg grating of pitch Ramuda239nm, the length L b 100 [mu] m. Groove depth t d of the grating was set to 40 nm.
- the planar shape of the optical waveguide is shown in FIG.
- the optical waveguide 70 was formed by reactive ion etching in the same manner as described above.
- 70a is a connecting portion between the light source
- 70b are tapered portion
- the width of the propagation unit 70c is constant in W b
- 70d are curved portion.
- the propagation unit 70e, 70f, Bragg grating 12 is straight
- the width is W m.
- Width W in the coupling portion 70a of the light source is 3 ⁇ m, and the W b is such that the width W m 2 [mu] m for 2 [mu] m, and the width of the grating portion 12, to form a ridge groove.
- the curved portion 70d is offset by 0.1 ⁇ m outward from the propagation portions 70c and 70e.
- the curvature radius R of the curved portion 70d was 100 ⁇ m.
- the thickness T s of the optical waveguide 70 is 1.2 ⁇ m.
- a buffer layer made of SiO 2 serving as the upper clad was formed by 2 ⁇ m sputtering so as to cover the optical waveguide 70. Thereafter, the assembly is cut into a bar shape by a dicing apparatus, the end face on which the semiconductor laser and the wavelength conversion element are mounted is optically polished, this end face is optically polished, and a 0.1% AR coating is formed on both end faces. Finally, the chip was cut to produce a grating element. The element size was 1 mm ⁇ 1 mm square. The distance between the semiconductor laser and the output end of the grating was 800 ⁇ m.
- Optical characteristics of the grating element are measured by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting TE mode light into the grating element and analyzing the output light with an optical spectrum analyzer.
- SLD super luminescence diode
- the reflection characteristics were evaluated from the characteristics.
- the reflection center wavelength of the measured grating element was 975 nm, the reflectance was 20%, and the full width at half maximum ⁇ G was 2 nm.
- a laser module was mounted as shown in FIG. 9 in order to evaluate the characteristics of an external resonator type laser using this grating element.
- a GaAs laser that oscillates alone was used as the light source element.
- the module After mounting the module, when driven by current control (ACC) without using a Peltier element, it oscillates at a center wavelength of 975 nm corresponding to the reflection wavelength of the grating, and the output is smaller than that without the grating element, but 30 mW It was a laser characteristic.
- ACC current control
- a module was installed in a thermostat and the temperature dependence of the laser oscillation wavelength and output fluctuation were measured. As a result, the temperature coefficient of the oscillation wavelength was 0.03 nm / ° C., the temperature range where the output fluctuation due to the mode hop was large was 45 ° C., and the power output fluctuation within this temperature range was within 1% even when the mode hop occurred.
- the transverse mode becomes multimode, and the reflection wavelength of the primary mode exists at 971 nm with respect to the reflection wavelength of 975 nm of the fundamental mode due to the difference in effective refractive index, but the temperature range of 45 ° C. Did not hop from the basic mode to the primary mode.
- FIGS. 6, 24A and 29 An apparatus as shown in FIGS. 6, 24A and 29 was produced. Specifically, a SiO 2 layer 16 that is a lower clad layer is formed on a support substrate 10 made of quartz by a sputtering apparatus to a thickness of 0.5 ⁇ m, and a Ta 2 O 5 film of 1.2 ⁇ m is formed thereon to form an optical material layer. Formed. Next, Ti was formed on the optical material layer, and a grating pattern was produced by an EB drawing apparatus. Thereafter, a Bragg grating having a pitch interval of ⁇ 239 nm and a length of L b of 100 ⁇ m was formed by fluorine-based reactive ion etching using the Ti pattern as a mask. Groove depth t d of the grating was set to 40 nm.
- the optical waveguide 71 shown in FIGS. 29 and 24A reactive ion etching was performed by the same method as described above. Width W in the 3 ⁇ m next coupling portion 71a of the semiconductor laser, propagation unit 71c, so that the width W m of the Bragg grating 12 and the exit side propagating portion 71d is 2 [mu] m, was etched to incise the complete optical material layer . A tapered portion 71d is provided between the coupling portion 71a and the propagation portion 71c. The thickness T s of the optical waveguide is 1.2 ⁇ m.
- a buffer layer made of SiO 2 serving as the upper clad was formed by 2 ⁇ m sputtering so as to cover the optical waveguide.
- the end face on which the semiconductor laser and the wavelength conversion element are mounted is optically polished, this end face is optically polished, and both end faces are formed with 0.1% AR coating.
- a grating element was manufactured by cutting the chip. The element size was 1 mm ⁇ 1 mm square. The distance between the semiconductor laser and the output end of the grating was 800 ⁇ m.
- Optical characteristics of the grating element are measured by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting TE mode light into the grating element and analyzing the output light with an optical spectrum analyzer.
- SLD super luminescence diode
- the reflection characteristics were evaluated from the characteristics.
- the reflection center wavelength of the measured grating element was 975 nm, the reflectance was 20%, and the full width at half maximum ⁇ G was 2 nm.
- a laser module was mounted in order to evaluate the characteristics of an external resonator type laser using this grating element.
- a GaAs laser that oscillates alone was used as the light source element.
- the module After mounting the module, when driven by current control (ACC) without using a Peltier element, it oscillates at a center wavelength of 975 nm corresponding to the reflection wavelength of the grating, and the output is smaller than that without the grating element, but a 30 mW laser It was a characteristic.
- ACC current control
- a module was installed in a thermostat and the temperature dependence of the laser oscillation wavelength and output fluctuation were measured. As a result, the temperature coefficient of the oscillation wavelength was 0.03 nm / ° C., the temperature range where the output fluctuation due to the mode hop was large was 35 ° C., and the power output fluctuation within this temperature range was within 1% even when the mode hop occurred.
- the transverse mode becomes multimode, and the reflection wavelength of the primary mode exists at 971 nm with respect to the reflection wavelength of 975 nm of the fundamental mode due to the difference in effective refractive index, and the above temperature range of 35 ° C. It was found that power fluctuations occurred when the mode was exceeded from the basic mode to the primary mode.
- Example 3 A grating element having the form shown in FIGS. 28, 30, and 32 was produced. Specifically, a SiO 2 layer to be a buffer layer 16 serving as a lower cladding is formed on a support substrate 10 made of quartz by a sputtering apparatus, and a Ta 2 O 5 film is formed thereon to a thickness of 1.2 ⁇ m. Thus, an optical material layer was formed.
- a Bragg grating 12 having a pitch interval of ⁇ 239 nm and a length of L b of 100 ⁇ m was formed by fluorine-based reactive ion etching using the Ti pattern as a mask.
- Groove depth t d of the grating 12 was set to 40 nm.
- the optical waveguide 70 shown in FIG. 28 was formed by reactive ion etching in the same manner as described above.
- Width W in the coupling portion between the light source (incident portion) 70a is 3 ⁇ m, and the propagation unit 70c, 70e, the optical waveguide width W b of the curved portion 70d becomes the width 3 ⁇ m for 0.5 ⁇ m, and the width of the grating section 12 Thus, a ridge groove was formed.
- the propagation portions 70c and 70e are offset by +0.15 ⁇ m at Offset 1 (80A), 0 ⁇ m by Offset 2 (80B), and ⁇ 0.15 ⁇ m by Offset 3 (80C).
- the curvature radius R of the curved portion 70d was 10 ⁇ m.
- the thickness T s of the optical waveguide 70 is 1.2 ⁇ m.
- the buffer layer 17 made of SiO 2 serving as the upper clad was formed by 1 ⁇ m sputtering so as to cover the optical waveguide 70. Thereafter, the assembly is cut into a bar shape by a dicing apparatus, the end face on which the semiconductor laser and the wavelength conversion element are mounted is optically polished, this end face is optically polished, and a 0.1% AR coating is formed on both end faces. Finally, the chip was cut to produce a grating element. The element size was 1 mm ⁇ 1 mm square. The distance between the semiconductor laser and the output end of the grating was 800 ⁇ m.
- Optical characteristics of the grating element are measured by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting TE mode light into the grating element and analyzing the output light with an optical spectrum analyzer.
- SLD super luminescence diode
- the reflection characteristics were evaluated from the characteristics.
- the reflection center wavelength of the measured grating element was 975 nm, the reflectance was 20%, and the full width at half maximum ⁇ G was 2 nm.
- a laser module was mounted as shown in FIG. 30 in order to evaluate the characteristics of the external resonator type laser using this grating element.
- a GaAs laser that oscillates alone was used as the light source element.
- a buffer layer made of SiO 2 serving as the upper clad was formed by 1 ⁇ m sputtering so as to cover the optical waveguide 70. Thereafter, the assembly is cut into a bar shape by a dicing apparatus, the end face on which the semiconductor laser and the wavelength conversion element are mounted is optically polished, this end face is optically polished, and a 0.1% AR coating is formed on both end faces. Finally, the chip was cut to produce a grating element. The element size was 1 mm ⁇ 1 mm square. The distance between the semiconductor laser and the output end of the grating was 800 ⁇ m.
- Optical characteristics of the grating element are measured by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting TE mode light into the grating element and analyzing the output light with an optical spectrum analyzer.
- SLD super luminescence diode
- the reflection characteristics were evaluated from the characteristics.
- the reflection center wavelength of the measured grating element was 975 nm, the reflectance was 20%, and the full width at half maximum ⁇ G was 2 nm.
- a laser module was mounted as shown in FIG. 30 in order to evaluate the characteristics of the external resonator type laser using this grating element.
- a GaAs laser that oscillates alone was used as the light source element.
- the module After mounting the module, it was driven by current control (ACC) without using a Peltier device, and oscillated at a central wavelength of 975 nm corresponding to the reflection wavelength of the grating.
- ACC current control
- the amount of light was reduced by 50% when there was a bending as compared with the case where there was a bending.
- Simulation experiment A simulation was conducted to optimize the design of the curved part. Three-dimensional analysis by BPM (beam propagation method) using Simulated Bend method and two-dimensional analysis by FDTD (time domain difference method) were performed.
- the cross-sectional structure of the optical waveguide substrate was the structure shown in FIG. 32, and the planar shape was the shape shown in FIG.
- the optical waveguide 81 includes an incident-side propagation part 81a, a taper part 81b, a linear propagation part 81c, curved parts 81d and 81e, and a linear propagation part 81f having a relatively large width.
- the curve is 90 degrees as a whole.
- an offset 80D Offset 2 is between the curved portions 81d and 81e
- an offset between the curved portion 81e and the linear propagation portion 81f There is 80C (Offset3).
- the offset direction indicated by the arrow in the drawing is positive.
- the core is Ta 2 O 5 (refractive index 2.14), the thickness is 1.2 ⁇ m, and the cladding layer is SiO 2 (1. 45), and the ridge angle was 70 °.
- the calculation was performed using the ridge line width W b and each offset amount as parameters.
- FIG. 34 shows the waveguide propagation efficiency at a wavelength of 800 nm when the bending radius is 10 ⁇ m to 100 ⁇ m when W b is 0.5 ⁇ m.
- the refractive index of the core was fixed at 2.15, and the refractive index Nc of the cladding was changed from 1.45 to 2.05 at 0.1 intervals.
- the offset amount was set to 0 ⁇ m (no offset) for Offset1 to Offset3.
- Nc185 1.85
- Example 5 35, 36, and 37 show propagation efficiencies calculated by varying the offset amounts of Offset1, Offset2, and Offset3 with respect to W b : 0.5 ⁇ m. As a result, it is understood that the bending propagation efficiency is improved by setting the offset to the positive side for Offset1, the offset to near zero for Offset2, and the negative side for Offset3.
- the offset is effective in suppressing a reduction in propagation loss due to the optical electric field shifting in the outer peripheral direction due to bending. For this reason, the efficiency is improved in the vicinity of the minimum bend radius where the efficiency is reduced without offset, and the bend radius can be further reduced.
- the coupling loss is increased by shifting the optical axis, if the offset amount is increased too much, an adverse effect is obtained.
- Example 7 In Example 6, the optical waveguide width W b of the curved portion 70d was 1.0 .mu.m. Other than that, the experiment was conducted in the same manner as in Example 3. As a result, the results shown in Table 3 were obtained for the waveguide propagation efficiency at a bending radius of 10 ⁇ m to 100 ⁇ m.
- Example 8 In Example 6, the optical waveguide width W b of the curved portion 70d was 1.5 [mu] m. The others were tested in the same manner as in Example 3. As a result, the results shown in Table 4 were obtained for the waveguide propagation efficiency at a bending radius of 10 ⁇ m to 100 ⁇ m.
- Example 6 the optical waveguide width W b of the curved portion 70d was 2.0 .mu.m. Other than that, the experiment was conducted in the same manner as in Example 3. As a result, the results shown in Table 5 were obtained for the waveguide propagation efficiency at a bending radius of 10 ⁇ m to 100 ⁇ m.
- the lower buffer layer 70 is formed on the support substrate 61.
- the lower buffer layer 70 includes a base layer 70 a that covers the surface of the support substrate 61, and a protrusion 70 b.
- An optical material layer 64 is formed on the protrusion 70b, and an upper buffer layer 65 is formed thereon.
- the width of the upper buffer layer 65 is narrower than the width of the protrusion 70b of the lower buffer layer.
- FIG. 39 shows the result of calculating the waveguide propagation efficiency at a wavelength of 800 nm when the bending radius is 10 ⁇ m to 100 ⁇ m when W b is 0.5 ⁇ m in this waveguide.
- the offset amount was set to 0 ⁇ m (no offset) for Offset1 to Offset3.
- Example 9 In Example 4, the refractive index of the core was 1.7, and the refractive index Nc of the cladding was 1.4. The refractive index difference between the two is 0.3.
- FIG. 40 shows the result of calculating the waveguide propagation efficiency at a wavelength of 800 nm when the bending radius is 10 ⁇ m to 100 ⁇ m when Wb is 0.5 ⁇ m in this waveguide. The offset amount was set to 0 ⁇ m (no offset) for Offset1 to Offset3. As a result, it was found that a bending propagation efficiency of 80% or more can be obtained with a radius of 15 ⁇ m or more.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Semiconductor Lasers (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Provided is an external resonator type light-emitting device provided with a light source 1 that causes semiconductor laser light to oscillate, and a grating element 9 constituting, together with the light source 1, an external resonator, the device producing a single longitudinal mode oscillation. The light source is provided with an active layer 7 which causes the semiconductor laser light to oscillate. The grating element 9 is provided with: an optical waveguide 18 including an incident portion 49 on which the semiconductor laser light is incident, and an emitting portion 31 that emits a desired wavelength of emitted light; a Bragg grating 12 formed in the optical waveguide 18; a propagation portion 18a disposed between the incident portion 49 and the Bragg grating 12; and an optical path modification unit that bends the optical path of the semiconductor laser light, in the grating element. The relationships according to expressions (1) to (4) are satisfied.
Description
本発明は、外部共振器型発光装置に関するものである。
The present invention relates to an external resonator type light emitting device.
半導体レーザは、一般的に、活性層の両端面に形成したミラーで挟まれた光共振器を構成した、ファブリ-ペロー(FP)型が利用されている。しかしながら、このFP型レーザは、定在波条件が成立する波長で発振するために、縦モードが多モードになりやすく、とくに電流や温度が変化すると発振波長が変化し、それにより光強度が変化する。
As a semiconductor laser, a Fabry-Perot (FP) type is generally used in which an optical resonator is sandwiched between mirrors formed on both end faces of an active layer. However, since this FP type laser oscillates at a wavelength that satisfies the standing wave condition, the longitudinal mode tends to become multimode, and the oscillation wavelength changes when the current or temperature changes, thereby changing the light intensity. To do.
このため、光通信やガスセンシングなどの目的では、波長安定性の高い単一モード発振のレーザが必要である。このため、分布帰還型(DFB)レーザや分布反射型(DBR)レーザが開発された。これらのレーザは、半導体中に回折格子を設け、その波長依存性を利用し
て特定の波長のみを発振させるものである。 For this reason, a single mode oscillation laser with high wavelength stability is required for purposes such as optical communication and gas sensing. For this reason, distributed feedback (DFB) lasers and distributed reflection (DBR) lasers have been developed. In these lasers, a diffraction grating is provided in a semiconductor, and only a specific wavelength is oscillated by utilizing the wavelength dependency thereof.
て特定の波長のみを発振させるものである。 For this reason, a single mode oscillation laser with high wavelength stability is required for purposes such as optical communication and gas sensing. For this reason, distributed feedback (DFB) lasers and distributed reflection (DBR) lasers have been developed. In these lasers, a diffraction grating is provided in a semiconductor, and only a specific wavelength is oscillated by utilizing the wavelength dependency thereof.
DBRレーザは、活性層の導波路の延長上の導波路面に凹凸を形成しブラッグ反射によるミラーを構成し、共振器を実現している(特許文献1(特開昭49-128689):特許文献2(特開昭56-148880))。このレーザは、光導波層の両端に回折格子が設けられているので、活性層で発光した光は光導波層を伝搬し、この回折格子で一部が反射され、電流注入部に戻り、増幅される。回折格子から決められた方向に反射するのは、一つの波長の光だけであるので、レーザ光の波長は一定になる。
The DBR laser realizes a resonator by forming irregularities on the waveguide surface on the extension of the waveguide of the active layer to form a mirror by Bragg reflection (Patent Document 1 (Japanese Patent Laid-Open No. 49-128689): Patent) Document 2 (Japanese Patent Laid-Open No. 56-148880). Since this laser is provided with diffraction gratings at both ends of the optical waveguide layer, the light emitted from the active layer propagates through the optical waveguide layer, a part of which is reflected by this diffraction grating, returns to the current injection part, and is amplified. Is done. Since only one wavelength of light reflects in the direction determined from the diffraction grating, the wavelength of the laser light is constant.
また、この応用として、回折格子を、半導体とは異なる部品とし、外部で共振器を形成する、外部共振器型半導体レーザが開発されている。このタイプのレーザは、波長安定性、温度安定性、制御性がよいレーザとなる。外部共振器は、ファイバ・ブラッグ・グレーティング(FBG)(非特許文献1)や、ボリューム・ホログラム・グレーティング(VHG)(非特許文献2)がある。回折格子を、半導体レーザとは別部材で構成するので、反射率、共振器長を個別に設計できるという特徴があり、電流注入による発熱による温度上昇の影響を受けないので、波長安定性をさらに良くすることができる。また、半導体の屈折率の温度変化が異なるので共振器長と合わせて設計することにより、温度安定性を高めることができる。
Also, as this application, an external resonator type semiconductor laser has been developed in which a diffraction grating is a component different from a semiconductor and a resonator is formed externally. This type of laser is a laser with good wavelength stability, temperature stability, and controllability. The external resonator includes a fiber Bragg grating (FBG) (Non-patent Document 1) and a volume hologram grating (VHG) (Non-patent Document 2). Since the diffraction grating is composed of a separate member from the semiconductor laser, it has the feature that the reflectance and resonator length can be individually designed, and it is not affected by the temperature rise due to heat generation due to current injection. Can be better. Moreover, since the temperature change of the refractive index of the semiconductor is different, the temperature stability can be improved by designing it together with the resonator length.
特許文献6(特開2002-134833)には、石英ガラス導波路に形成したグレーティングを利用した外部共振器型レーザが開示されている。これは温度コントローラなしで室温が大きく(例えば30℃以上)変化する環境で使える、周波数安定化レーザを提供しようとするものである。また、モードホッピングが抑圧され、かつ発振周波数の温度依存性がない温度無依存レーザを提供することが記載されている。
Patent Document 6 (Japanese Patent Laid-Open No. 2002-134833) discloses an external resonator type laser using a grating formed in a quartz glass waveguide. This is to provide a frequency stabilized laser that can be used in an environment where the room temperature changes greatly (for example, 30 ° C. or more) without a temperature controller. Further, it is described that a temperature-independent laser in which mode hopping is suppressed and the oscillation frequency is not temperature-dependent is provided.
特許文献7(特開2010-171252)には、SiO2、SiO1-xNx(xは0.55乃至0.65)、あるいはSiとSiNをコア層とする光導波路、およびこの光導波路にグレーティングを形成した外部共振器型レーザが開示されている。これは精密な温度制御なしで発振波長を一定に保つ外部共振器レーザで、このために回折格子の反射波長の温度変化率(ブラッグ反射波長の温度係数)を小さくすることを前提条件としている。その上でレーザ発振を縦モードマルチモードとすることでパワー安定性を実現できることが記載されている。
Patent Document 7 (Japanese Patent Laid-Open No. 2010-171252) discloses an optical waveguide having SiO 2 , SiO 1-x N x (x is 0.55 to 0.65), or Si and SiN as a core layer, and the optical waveguide Discloses an external cavity laser in which a grating is formed. This is an external cavity laser that keeps the oscillation wavelength constant without precise temperature control. For this purpose, it is a precondition that the temperature change rate of the reflection wavelength of the diffraction grating (temperature coefficient of the Bragg reflection wavelength) is reduced. In addition, it is described that the power stability can be realized by setting the laser oscillation to the longitudinal mode multimode.
特許文献8(特許第3667209)には、石英、InP、GaAs、LiNbO3、LiTaO3、ポリイミド樹脂とする光導波路に形成したグレーティングを利用した外部共振器がレーザが開示されている。これは、光源である半導体レーザの光射出面における反射率が実効反射率Re(実質的に0.1~38.4%)であり、その上でレーザ発振を縦モードマルチモードとすることでパワー安定性を実現できることが記載されている。
Patent Document 8 (Patent No. 3667209) discloses a laser as an external resonator using a grating formed on an optical waveguide made of quartz, InP, GaAs, LiNbO 3 , LiTaO 3 , or polyimide resin. This is because the reflectivity at the light exit surface of the semiconductor laser as the light source is the effective reflectivity Re (substantially 0.1 to 38.4%), and the laser oscillation is set to the longitudinal mode multimode. It is described that power stability can be realized.
非特許文献1には、温度上昇に伴う波長安定性を損なうモードホップのメカニズムと、その改善策について言及している。温度による外部共振器レーザの波長変化量δλsは、半導体の活性層領域の屈折率変化△na、活性層の長さLa、FBG領域の屈折率変化△nf、長さLf、それぞれの温度変化δTa、δTfに対して、定在波条件より下式により表される。
Non-Patent Document 1 mentions a mode hop mechanism that impairs the wavelength stability associated with a temperature rise, and an improvement measure thereof. Wavelength variation [delta] [lambda] s of the external cavity laser according to the temperature, the refractive index change of the semiconductor of the active layer region △ n a, the length of the active layer L a, the refractive index change of the FBG region △ n f, the length L f, Each temperature change ΔT a and ΔT f is expressed by the following equation from the standing wave condition.
ここで、λ0は初期状態でのグレーティング反射波長を表す。
また、グレーティング反射波長の変化δλGは、下式で表される。 Here, λ 0 represents the grating reflection wavelength in the initial state.
Further, the change Δλ G in the grating reflection wavelength is expressed by the following equation.
また、グレーティング反射波長の変化δλGは、下式で表される。 Here, λ 0 represents the grating reflection wavelength in the initial state.
Further, the change Δλ G in the grating reflection wavelength is expressed by the following equation.
モードホップは、外部共振器の縦モード間隔△λが波長変化量δλsとグレーティング反射波長の変化量δλGの差に等しくなったときに発生するので、次式が成立する。
Since the mode hop occurs when the longitudinal mode interval Δλ of the external resonator becomes equal to the difference between the wavelength change amount Δλ s and the grating reflection wavelength change amount Δλ G , the following equation is established.
縦モード間隔△λは、近似的に下式となる。
The longitudinal mode interval Δλ is approximately expressed by the following equation.
モードホップを抑制するためには、△Tall以下の温度内で使用する必要があり、ペルチェ素子にて温度制御している。数式5では、活性層とグレーティング層の屈折率変化が同じ場合(△na/na=△nf/nf)、分母が零になり、モードホップが生じる温度が無限大になり、モードホップがなくなることを示している。しかしながら、モノリシックDBRレーザでは、レーザ発振させるために、活性層は電流注入がなされるために、活性層とグレーティング層の屈折率変化は一致させることができないので、モードホップが生じてしまう。
In order to suppress the mode hop, it is necessary to use the temperature within ΔT all or less, and the temperature is controlled by a Peltier element. In Formula 5, when the refractive index changes of the active layer and the grating layer are the same (Δn a / n a = Δn f / n f ), the denominator becomes zero, the temperature at which the mode hop occurs becomes infinite, and the mode It indicates that there are no hops. However, in the monolithic DBR laser, since current is injected into the active layer in order to oscillate the laser, the change in refractive index between the active layer and the grating layer cannot be matched, resulting in a mode hop.
モードホップは、共振器内の発振モード(縦モード)が、あるモードから違うモードに移る現象である。温度や注入電流が変化すると、ゲインや共振器の条件が異なり、レーザ発振波長が変化し、キンクといわれる、光パワーが変動するという問題を生じる。したが
って、FP型のGaAs半導体レーザの場合、通常、波長が0.3nm/℃の温度係数で変化するが、モードホップが生じると、これよりも大きな変動が起こる。それと同時に、出力が5%以上変動する。 Mode hopping is a phenomenon in which the oscillation mode (longitudinal mode) in the resonator shifts from one mode to another. When the temperature and injection current change, the gain and resonator conditions change, the laser oscillation wavelength changes, and the problem arises that optical power fluctuates, which is called kink. Therefore, in the case of an FP type GaAs semiconductor laser, the wavelength usually changes with a temperature coefficient of 0.3 nm / ° C., but when a mode hop occurs, a larger fluctuation occurs. At the same time, the output fluctuates by 5% or more.
って、FP型のGaAs半導体レーザの場合、通常、波長が0.3nm/℃の温度係数で変化するが、モードホップが生じると、これよりも大きな変動が起こる。それと同時に、出力が5%以上変動する。 Mode hopping is a phenomenon in which the oscillation mode (longitudinal mode) in the resonator shifts from one mode to another. When the temperature and injection current change, the gain and resonator conditions change, the laser oscillation wavelength changes, and the problem arises that optical power fluctuates, which is called kink. Therefore, in the case of an FP type GaAs semiconductor laser, the wavelength usually changes with a temperature coefficient of 0.3 nm / ° C., but when a mode hop occurs, a larger fluctuation occurs. At the same time, the output fluctuates by 5% or more.
このため、モードホップを抑制するために、ペルチェ素子を用いて温度制御している。しかし、このために部品点数が増え、モジュールが大きくなり、コストが高くなる。
For this reason, in order to suppress mode hops, temperature control is performed using a Peltier element. However, this increases the number of parts, increases the size of the module, and increases the cost.
特許文献6では、温度無依存にするために、従来の共振器構造はそのままで光導波路層に応力を与えることで、熱膨張に起因する温度係数を補償することにより、温度無依存性を実現している。このため、素子に金属板を貼りつけ、さらに導波路中に温度係数を調整
する層を付加させている。このため共振器構造が、さらに大きくなるという問題がある。 InPatent Document 6, in order to make the temperature independent, the conventional resonator structure is left as it is, and stress is applied to the optical waveguide layer to compensate for the temperature coefficient due to thermal expansion, thereby realizing temperature independence. is doing. For this reason, a metal plate is attached to the element, and a layer for adjusting the temperature coefficient is added to the waveguide. For this reason, there exists a problem that a resonator structure becomes still larger.
する層を付加させている。このため共振器構造が、さらに大きくなるという問題がある。 In
特許文献9では、半導体レーザの応用として光集積回路の例として小型化、簡単化のために半導体基板に曲がり導波路や受光素子を集積化した構造が開示されている。半導体基板の表面に曲がり導波路、テーパ導波路、受光素子が実装されていて、側面部に半導体レーザや光ファイバが接続されることにより、コンパクトな光送受信器を実現することができる。
Patent Document 9 discloses a structure in which a waveguide and a light receiving element are integrated on a semiconductor substrate for miniaturization and simplification as an example of an optical integrated circuit as an application of a semiconductor laser. A curved optical waveguide, a tapered waveguide, and a light receiving element are mounted on the surface of the semiconductor substrate, and a semiconductor laser or an optical fiber is connected to the side surface portion, whereby a compact optical transceiver can be realized.
特許文献10では、ニオブ酸リチウム基板上に周期分極反転された複数の直線導波路を曲線導波路でシリアルに接続してコンパクトで高出力の波長変換素子を実現している。
In Patent Document 10, a plurality of linear waveguides that are periodically poled on a lithium niobate substrate are serially connected by a curved waveguide to realize a compact and high-output wavelength conversion element.
特許文献11では、シリコン基板上にSiO2で形成される光導波路とミラーを平面的に形成した光集積回路が開示されている
Patent Document 11 discloses an optical integrated circuit in which an optical waveguide formed of SiO 2 and a mirror are planarly formed on a silicon substrate.
非特許文献3、4および特許文献12は、曲がり光導波路の曲がり損失を低減するために、直線導波路と、一様な曲げ半径の曲線導波路とを、各導波路の中心軸をずらして接続する(オフセット接続)方法が開示されている。また、これらの文献の記載では、石英系ガラス、ニオブ酸リチウムやInPなどの半導体に形成した光導波路においてオフセット接続を実施している。しかし、光導波路の湾曲部分の曲率半径は1mm以上である。
In Non-Patent Documents 3 and 4 and Patent Document 12, in order to reduce the bending loss of a bent optical waveguide, a straight waveguide and a curved waveguide with a uniform bending radius are shifted from each other in the central axis of each waveguide. A connection (offset connection) method is disclosed. Moreover, in the description of these documents, offset connection is performed in an optical waveguide formed in a semiconductor such as quartz glass, lithium niobate, or InP. However, the radius of curvature of the curved portion of the optical waveguide is 1 mm or more.
非特許文献4では、オフセット技術を利用しているが、湾曲部分の曲率半径は250μmとすることが可能であるとの記載がある。
しかし、最近は、光導波路素子を更に小型化することが望まれてきており、このため光導波路の湾曲部分の曲率半径を100μm以下とすることが必要になった。しかし、光導波路基板のチャネル型光導波路において、このような曲がり半径を実現することは困難である。 Non-PatentDocument 4 uses an offset technique, but there is a description that the radius of curvature of the curved portion can be 250 μm.
However, recently, it has been desired to further reduce the size of the optical waveguide element, and for this reason, it has become necessary to make the curvature radius of the curved portion of theoptical waveguide 100 μm or less. However, it is difficult to realize such a bending radius in the channel type optical waveguide of the optical waveguide substrate.
しかし、最近は、光導波路素子を更に小型化することが望まれてきており、このため光導波路の湾曲部分の曲率半径を100μm以下とすることが必要になった。しかし、光導波路基板のチャネル型光導波路において、このような曲がり半径を実現することは困難である。 Non-Patent
However, recently, it has been desired to further reduce the size of the optical waveguide element, and for this reason, it has become necessary to make the curvature radius of the curved portion of the
さらに非特許文献3は、シリコンフォトニクスの屈折率の高いコアを利用した構造が開示されている。この場合、シリコン上にクラッドとして屈折率1.45のSiO2を形成し、その上にコアとして屈折率3.8のSiを形成し、オーバークラッドとして屈折率1.45のSiO2を形成した埋め込み型導波路を利用している。コアとクラッドの屈折率差△nは2以上あり、コアの断面は0.3μm×0.3μmとなっている。これは、コアとクラッドの屈折率差が大きいために、横モードをシングルモードとするために、このような寸法になっている。
Further, Non-Patent Document 3 discloses a structure using a core having high refractive index of silicon photonics. In this case, the SiO 2 having a refractive index of 1.45 was formed as a cladding on silicon, the Si of refractive index 3.8 to form a core thereon, thereby forming a SiO 2 having a refractive index of 1.45 as overclad An embedded waveguide is used. The refractive index difference Δn between the core and the clad is 2 or more, and the cross section of the core is 0.3 μm × 0.3 μm. This is such a dimension in order to set the transverse mode to the single mode because the difference in refractive index between the core and the clad is large.
シリコンフォトニクスは、デバイス製造について超微細な半導体パターニング技術が必要なることや、半導体レーザや光ファイバを接続する場合に結合損失が大きくなるという課題がある。さらに、シリコンの吸収により波長1μm帯以下の波長では使用できないということも課題となっている。
Silicon photonics has a problem that an ultrafine semiconductor patterning technology is required for device manufacturing, and that a coupling loss increases when a semiconductor laser or an optical fiber is connected. Furthermore, it is a problem that it cannot be used at a wavelength of 1 μm or less due to absorption of silicon.
本発明の課題は、ペルチェ素子を使用することなく、モードホップを抑制し、波長安定性を高くし、光パワー変動を抑制するとともに、光路を曲げて半導体レーザや受動素子を平面的に実装し、小型化、簡単化できるようにすることである。
The problem of the present invention is that, without using a Peltier element, mode hopping is suppressed, wavelength stability is increased, optical power fluctuation is suppressed, and a semiconductor laser or a passive element is mounted in a planar manner by bending an optical path. It is to be able to be downsized and simplified.
また、本発明の課題は、チャネル型光導波路の湾曲部分を含む光導波路基板において、湾曲部分の曲率半径を100μm以下とできるような構造の光導波路基板を提供することである。
Also, an object of the present invention is to provide an optical waveguide substrate having a structure in which the curvature radius of the curved portion can be 100 μm or less in the optical waveguide substrate including the curved portion of the channel type optical waveguide.
本発明は、半導体レーザ光を発振する光源、およびこの光源と外部共振器を構成するグレーティング素子を備え外部共振器型発光装置であって、
前記光源が、前記半導体レーザ光を発振する活性層を備えており、
前記グレーティング素子が、前記半導体レーザ光が入射する入射部と所望波長の出射光を出射する出射部を有する光導波路、この光導波路内に形成されたブラッググレーティング、前記入射部と前記ブラッググレーティングとの間に設けられている伝搬部、および前記グレーティング素子内で前記半導体レーザ光の光路を曲げる光路変更部を備えており、下記式(1)~式(4)の関係が満足されることを特徴とする。
ΔλG ≧0.8nm ・・・(1)
Lb ≦500μm ・・・(2)
La ≦500μm ・・・(3)
nb ≧1.8 ・・・(4)
(式(1)において、ΔλGは、ブラッグ反射率のピークにおける半値全幅である。
式(2)において、Lbは、前記ブラッググレーティングの長さである。
式(3)において、Laは、前記活性層の長さである。
式(4)において、nbは、前記ブラッググレーティングを構成する材質の屈折率である。) The present invention is an external resonator type light emitting device including a light source that oscillates a semiconductor laser beam, and a grating element that constitutes the light source and an external resonator,
The light source includes an active layer that oscillates the semiconductor laser light;
The grating element includes an optical waveguide having an incident portion where the semiconductor laser light is incident and an output portion that emits outgoing light of a desired wavelength, a Bragg grating formed in the optical waveguide, and the incident portion and the Bragg grating. An optical path changing unit that bends the optical path of the semiconductor laser light in the grating element, and satisfies the relations of the following formulas (1) to (4): And
Δλ G ≧ 0.8 nm (1)
L b ≦ 500 μm (2)
L a ≦ 500 μm (3)
n b ≧ 1.8 (4)
(In formula (1), Δλ G is the full width at half maximum at the peak of the Bragg reflectivity.
In Expression (2), L b is the length of the Bragg grating.
In the formula (3), L a is the length of the active layer.
In the formula (4), n b is the refractive index of the material constituting the Bragg grating. )
前記光源が、前記半導体レーザ光を発振する活性層を備えており、
前記グレーティング素子が、前記半導体レーザ光が入射する入射部と所望波長の出射光を出射する出射部を有する光導波路、この光導波路内に形成されたブラッググレーティング、前記入射部と前記ブラッググレーティングとの間に設けられている伝搬部、および前記グレーティング素子内で前記半導体レーザ光の光路を曲げる光路変更部を備えており、下記式(1)~式(4)の関係が満足されることを特徴とする。
ΔλG ≧0.8nm ・・・(1)
Lb ≦500μm ・・・(2)
La ≦500μm ・・・(3)
nb ≧1.8 ・・・(4)
(式(1)において、ΔλGは、ブラッグ反射率のピークにおける半値全幅である。
式(2)において、Lbは、前記ブラッググレーティングの長さである。
式(3)において、Laは、前記活性層の長さである。
式(4)において、nbは、前記ブラッググレーティングを構成する材質の屈折率である。) The present invention is an external resonator type light emitting device including a light source that oscillates a semiconductor laser beam, and a grating element that constitutes the light source and an external resonator,
The light source includes an active layer that oscillates the semiconductor laser light;
The grating element includes an optical waveguide having an incident portion where the semiconductor laser light is incident and an output portion that emits outgoing light of a desired wavelength, a Bragg grating formed in the optical waveguide, and the incident portion and the Bragg grating. An optical path changing unit that bends the optical path of the semiconductor laser light in the grating element, and satisfies the relations of the following formulas (1) to (4): And
Δλ G ≧ 0.8 nm (1)
L b ≦ 500 μm (2)
L a ≦ 500 μm (3)
n b ≧ 1.8 (4)
(In formula (1), Δλ G is the full width at half maximum at the peak of the Bragg reflectivity.
In Expression (2), L b is the length of the Bragg grating.
In the formula (3), L a is the length of the active layer.
In the formula (4), n b is the refractive index of the material constituting the Bragg grating. )
また、本発明は、光を伝搬する細長いコアと、このコアに接するクラッドとを有するチャネル型光導波路を備えており、光導波路基板の主面から見たときに前記コアが湾曲する湾曲部分を含む光導波路基板であって、
前記コアの横断面が凸図形をなしており、コアの屈折率が1.7以上、かつ3.5以下であり、前記コアの屈折率と前記クラッドの屈折率との差△nが0.3以上であり、前記コアの幅が1.5μm以下であり、前記コアの厚さが0.5μm以上、2.0μm以下であり、前記湾曲部分の曲率半径が100μm以下であることを特徴とする。 The present invention also includes a channel-type optical waveguide having an elongated core for propagating light and a clad in contact with the core, and a curved portion where the core is curved when viewed from the main surface of the optical waveguide substrate. An optical waveguide substrate comprising:
The cross section of the core has a convex shape, the refractive index of the core is 1.7 or more and 3.5 or less, and the difference Δn between the refractive index of the core and the refractive index of the cladding is 0. 3 or more, the width of the core is 1.5 μm or less, the thickness of the core is 0.5 μm or more and 2.0 μm or less, and the curvature radius of the curved portion is 100 μm or less. To do.
前記コアの横断面が凸図形をなしており、コアの屈折率が1.7以上、かつ3.5以下であり、前記コアの屈折率と前記クラッドの屈折率との差△nが0.3以上であり、前記コアの幅が1.5μm以下であり、前記コアの厚さが0.5μm以上、2.0μm以下であり、前記湾曲部分の曲率半径が100μm以下であることを特徴とする。 The present invention also includes a channel-type optical waveguide having an elongated core for propagating light and a clad in contact with the core, and a curved portion where the core is curved when viewed from the main surface of the optical waveguide substrate. An optical waveguide substrate comprising:
The cross section of the core has a convex shape, the refractive index of the core is 1.7 or more and 3.5 or less, and the difference Δn between the refractive index of the core and the refractive index of the cladding is 0. 3 or more, the width of the core is 1.5 μm or less, the thickness of the core is 0.5 μm or more and 2.0 μm or less, and the curvature radius of the curved portion is 100 μm or less. To do.
本発明によれば、ペルチェ素子を使用することなく、モードホップを抑制し、波長安定性を高くし、光パワー変動を抑制できる。
一般的に、ファイバグレーティングを使用する場合に、石英は屈折率の温度係数が小さいのでdλG/dTが小さく、|dλG/dT―dλTM/dT|が大きくなる。このためモードホップがおこる温度域△Tが小さくなってしまい、モードホップしやすくなってしまう。 According to the present invention, mode hops can be suppressed, wavelength stability can be increased, and optical power fluctuations can be suppressed without using a Peltier element.
In general, when a fiber grating is used, quartz has a small temperature coefficient of refractive index, so dλ G / dT is small and | dλ G / dT−dλ TM / dT | is large. For this reason, the temperature range ΔT in which the mode hop occurs becomes small, and the mode hop is likely to occur.
一般的に、ファイバグレーティングを使用する場合に、石英は屈折率の温度係数が小さいのでdλG/dTが小さく、|dλG/dT―dλTM/dT|が大きくなる。このためモードホップがおこる温度域△Tが小さくなってしまい、モードホップしやすくなってしまう。 According to the present invention, mode hops can be suppressed, wavelength stability can be increased, and optical power fluctuations can be suppressed without using a Peltier element.
In general, when a fiber grating is used, quartz has a small temperature coefficient of refractive index, so dλ G / dT is small and | dλ G / dT−dλ TM / dT | is large. For this reason, the temperature range ΔT in which the mode hop occurs becomes small, and the mode hop is likely to occur.
このため、本発明では、グレーティングが形成される導波路基板の屈折率が1.8以上の材料を使用する。これにより屈折率の温度係数を大きくでき、dλG/dTが大きくできるので、|dλG/dT―dλTM/dT|を小さくでき、モードホップがおこる温度域△Tを大きくで
きる。さらに、これによって光導波路(コア部)と周辺部(クラッド部)との屈折率差を大きくすることができるので、光路変更部をを形成した場合の曲がりによる過剰損失を抑制することができる。
そして、ペルチェ素子を使用することなく、モードホップを抑制し、波長安定性を高くし、光パワー変動を抑制するとともに、光路を曲げて半導体レーザや受動素子を平面的に実装し、小型化、簡単化できる。 For this reason, in the present invention, a material having a refractive index of 1.8 or more of the waveguide substrate on which the grating is formed is used. As a result, the temperature coefficient of the refractive index can be increased and dλ G / dT can be increased. Therefore, | dλ G / dT−dλ TM / dT | can be decreased, and the temperature range ΔT in which the mode hop occurs can be increased. Furthermore, this can increase the difference in refractive index between the optical waveguide (core portion) and the peripheral portion (cladding portion), so that excessive loss due to bending when the optical path changing portion is formed can be suppressed.
And without using Peltier elements, mode hops are suppressed, wavelength stability is increased, optical power fluctuations are suppressed, and semiconductor lasers and passive elements are mounted in a plane by bending the optical path, downsizing, It can be simplified.
きる。さらに、これによって光導波路(コア部)と周辺部(クラッド部)との屈折率差を大きくすることができるので、光路変更部をを形成した場合の曲がりによる過剰損失を抑制することができる。
そして、ペルチェ素子を使用することなく、モードホップを抑制し、波長安定性を高くし、光パワー変動を抑制するとともに、光路を曲げて半導体レーザや受動素子を平面的に実装し、小型化、簡単化できる。 For this reason, in the present invention, a material having a refractive index of 1.8 or more of the waveguide substrate on which the grating is formed is used. As a result, the temperature coefficient of the refractive index can be increased and dλ G / dT can be increased. Therefore, | dλ G / dT−dλ TM / dT | can be decreased, and the temperature range ΔT in which the mode hop occurs can be increased. Furthermore, this can increase the difference in refractive index between the optical waveguide (core portion) and the peripheral portion (cladding portion), so that excessive loss due to bending when the optical path changing portion is formed can be suppressed.
And without using Peltier elements, mode hops are suppressed, wavelength stability is increased, optical power fluctuations are suppressed, and semiconductor lasers and passive elements are mounted in a plane by bending the optical path, downsizing, It can be simplified.
光源の出射面と光導波路の入射面との距離Lgについては、光源と光導波路の結合効率を最大にするという観点で1μm未満であってもよい。しかし、広い温度範囲で動作させるという観点では熱膨張により機械的な干渉を防ぐ必要があり、好適な実施形態では、式(6)が満足される。
1μm ≦Lg ≦10μm ・・(6)
(式(6)において、Lgは、前記光源の出射面と前記光導波路の前記入射面との距離である。) The distance L g between the exit surface and entrance surface of the optical waveguide of the light source, the coupling efficiency of the light source and the optical waveguide may be less than 1μm in terms of maximizing. However, from the viewpoint of operating in a wide temperature range, it is necessary to prevent mechanical interference due to thermal expansion, and in a preferred embodiment, equation (6) is satisfied.
1 μm ≦ L g ≦ 10 μm (6)
(In Formula (6), L g is the distance between the exit surface of the light source and the entrance surface of the optical waveguide.)
1μm ≦Lg ≦10μm ・・(6)
(式(6)において、Lgは、前記光源の出射面と前記光導波路の前記入射面との距離である。) The distance L g between the exit surface and entrance surface of the optical waveguide of the light source, the coupling efficiency of the light source and the optical waveguide may be less than 1μm in terms of maximizing. However, from the viewpoint of operating in a wide temperature range, it is necessary to prevent mechanical interference due to thermal expansion, and in a preferred embodiment, equation (6) is satisfied.
1 μm ≦ L g ≦ 10 μm (6)
(In Formula (6), L g is the distance between the exit surface of the light source and the entrance surface of the optical waveguide.)
好適な実施形態においては、出射光の出射部が前記光導波路の端面である。
また好適な実施形態においては、入射部と出射部とがグレーティング素子の相対向する側面に設けられておらず、例えば同一面上にあるか、あるいは隣接する二つの側面にある。
好適な実施形態においては、ブラッググレーティングが、光路変更部の下流にある。
さらに好適な実施形態においては、前記光源の光軸ズレの影響を小さくするために、前記入射部と前記ブラッググレーティングとの間に設けられている伝搬部は、光導波路の幅を変えるテーパ構造となっていてもよい。
また、好適な実施形態においては、本発明の外部共振器型発光装置が縦モードで単一モード発振する。 In a preferred embodiment, the exit portion of the emitted light is the end face of the optical waveguide.
In a preferred embodiment, the incident portion and the emission portion are not provided on the side surfaces facing each other of the grating element, and are, for example, on the same surface or on two adjacent side surfaces.
In a preferred embodiment, the Bragg grating is downstream of the optical path changer.
In a further preferred embodiment, in order to reduce the influence of the optical axis shift of the light source, the propagation part provided between the incident part and the Bragg grating has a tapered structure that changes the width of the optical waveguide. It may be.
In a preferred embodiment, the external resonator type light emitting device of the present invention oscillates in a single mode in the longitudinal mode.
また好適な実施形態においては、入射部と出射部とがグレーティング素子の相対向する側面に設けられておらず、例えば同一面上にあるか、あるいは隣接する二つの側面にある。
好適な実施形態においては、ブラッググレーティングが、光路変更部の下流にある。
さらに好適な実施形態においては、前記光源の光軸ズレの影響を小さくするために、前記入射部と前記ブラッググレーティングとの間に設けられている伝搬部は、光導波路の幅を変えるテーパ構造となっていてもよい。
また、好適な実施形態においては、本発明の外部共振器型発光装置が縦モードで単一モード発振する。 In a preferred embodiment, the exit portion of the emitted light is the end face of the optical waveguide.
In a preferred embodiment, the incident portion and the emission portion are not provided on the side surfaces facing each other of the grating element, and are, for example, on the same surface or on two adjacent side surfaces.
In a preferred embodiment, the Bragg grating is downstream of the optical path changer.
In a further preferred embodiment, in order to reduce the influence of the optical axis shift of the light source, the propagation part provided between the incident part and the Bragg grating has a tapered structure that changes the width of the optical waveguide. It may be.
In a preferred embodiment, the external resonator type light emitting device of the present invention oscillates in a single mode in the longitudinal mode.
また、好適な実施形態においては、更に式(5)が満足されていてもよい。
式(5)において、dλG/dTは、ブラッグ波長の温度係数であり、dλTM/dTは、外部共振器レーザの位相条件を満足する波長の温度係数である。
In a preferred embodiment, the formula (5) may be further satisfied.
In equation (5), dλ G / dT is the temperature coefficient of the Bragg wavelength, and dλ TM / dT is the temperature coefficient of the wavelength that satisfies the phase condition of the external cavity laser.
図1、図2に模式的に示す外部共振器型発光装置1は、半導体レーザ光を発振する光源1と、グレーティング素子9(または9A、9B)とを備えている。光源1とグレーティング素子9とは、図示しない共通基板上にマウントされていることが好ましい。
An external resonator type light emitting device 1 schematically shown in FIGS. 1 and 2 includes a light source 1 that oscillates a semiconductor laser beam and a grating element 9 (or 9A, 9B). The light source 1 and the grating element 9 are preferably mounted on a common substrate (not shown).
光源1は、半導体レーザ光を発振する活性層7を備えている。ここで、光源1は、単独でレーザ発振可能な光源とすることができる。これは、光源1が、グレーティング素子がなくても、それ自体でレーザ発振することを意味する。
The light source 1 includes an active layer 7 that oscillates semiconductor laser light. Here, the light source 1 can be a light source capable of laser oscillation independently. This means that the light source 1 oscillates itself even without a grating element.
光源1は、単独でレーザ発振したときに、縦モードがシングルモード発振するものが好ましい。しかし、グレーティング素子を使用した外部共振器型レーザの場合、反射特性に波長依存性を持たせることができるので、その波長特性の形状を制御することにより、光源1が単独で縦モードがマルチモード発振していても、外部共振器型レーザとしてはシングルモード発振させることが可能である。
この場合、光源1の外側端面には高反射膜3Aが設けられており、グレーティング素子側の端面にはグレーティングの反射率よりも小さい反射率の膜4が形成されている。 Thelight source 1 preferably has a single mode oscillation in the longitudinal mode when laser oscillation is performed independently. However, in the case of an external resonator type laser using a grating element, the reflection characteristic can be given wavelength dependency, so that the longitudinal mode can be set to the multimode independently by controlling the shape of the wavelength characteristic. Even if it oscillates, it can oscillate in a single mode as an external resonator type laser.
In this case, a highlyreflective film 3A is provided on the outer end face of the light source 1, and a film 4 having a reflectance smaller than that of the grating is formed on the end face on the grating element side.
この場合、光源1の外側端面には高反射膜3Aが設けられており、グレーティング素子側の端面にはグレーティングの反射率よりも小さい反射率の膜4が形成されている。 The
In this case, a highly
光源1は、単独ではレーザ発振しないスーパールミネッセンスダイオードや半導体光増幅器(SOA)であってもよい。この場合には、光源の基体の外側端面には高反射膜3Aが設けられており、グレーティング素子側の端面には無反射膜4が形成されている。
The light source 1 may be a super luminescence diode or a semiconductor optical amplifier (SOA) that does not oscillate alone. In this case, the highly reflective film 3A is provided on the outer end face of the light source substrate, and the antireflective film 4 is formed on the end face on the grating element side.
図1には、半導体レーザと光学素子を同一面で実装する場合を示す。グレーティング素子9(9A、9B)には、半導体レーザ光源1からの光が伝搬する光導波路18とブラッググレーティング12とが形成されている。半導体レーザとブラッググレーティングとの間で外部共振器を構成しており、グレーティングのブラッグ回折条件を満足する波長でレーザ発振している。
FIG. 1 shows a case where a semiconductor laser and an optical element are mounted on the same surface. In the grating element 9 (9A, 9B), an optical waveguide 18 through which light from the semiconductor laser light source 1 propagates and a Bragg grating 12 are formed. An external resonator is configured between the semiconductor laser and the Bragg grating, and the laser oscillates at a wavelength that satisfies the Bragg diffraction conditions of the grating.
グレーティング素子9には、四つの側面9a、9b、9c、9dが形成されており、側面9aに光源1および光導波路素子21が対向するように取り付けられている。3Bは反射膜または無反射膜である。光導波路18は、入射側伝搬部18a、ブラッググレーティング12、およびその下流側の出射側伝搬部18b、18c、18dを備えている。伝搬部にはブラッググレーティングが形成されていない。伝搬部18bの末端にはミラー8Aが設置され、伝搬部18bと交差する伝搬部18cが設けられている。また、伝搬部18cと18dとの間にはミラー8Bが設置されている。光導波路の入射面49から入射した光は、入射側伝搬部18aを伝搬し、ブラッググレーティングを通過して波長選択を受け、伝搬部18bを伝搬し、ミラー8A、8Bによって反射され、出射面31から装置外に出射する。本例では、光導波路の入射面と出射面とが同一側面9a上にある。
The grating element 9 has four side surfaces 9a, 9b, 9c, and 9d, and the light source 1 and the optical waveguide element 21 are attached to the side surface 9a so as to face each other. 3B is a reflective film or a non-reflective film. The optical waveguide 18 includes an incident side propagation part 18a, a Bragg grating 12, and emission side propagation parts 18b, 18c, 18d on the downstream side thereof. A Bragg grating is not formed in the propagation part. A mirror 8A is installed at the end of the propagation part 18b, and a propagation part 18c intersecting the propagation part 18b is provided. Further, a mirror 8B is installed between the propagation portions 18c and 18d. The light incident from the incident surface 49 of the optical waveguide propagates through the incident-side propagation part 18a, passes through the Bragg grating, undergoes wavelength selection, propagates through the propagation part 18b, is reflected by the mirrors 8A and 8B, and is emitted from the emission surface 31. To the outside of the device. In this example, the entrance surface and the exit surface of the optical waveguide are on the same side surface 9a.
出射面31から出射した光は、別体の光導波路素子21の光導波路22に入射させることもできる。5、6は、無反射膜である。
The light emitted from the emission surface 31 can be incident on the optical waveguide 22 of the separate optical waveguide element 21. Reference numerals 5 and 6 denote non-reflective films.
こうした光導波路素子や光学素子については、特に限定はないが波長変換素子、光変調器、光フィルタ、光アイソレータ、等の光導波路デバイス、または、光ファイバであってもよく、フォトダイオードであってもよい。
Such an optical waveguide element or optical element is not particularly limited, but may be an optical waveguide device such as a wavelength conversion element, an optical modulator, an optical filter, an optical isolator, or an optical fiber, or a photodiode. Also good.
好適な実施形態においては、ブラッググレーティングの反射率が、光源の出射端の反射率、グレーティング素子の入射面の反射率、およびグレーティング素子の出射面の反射率よりも大きい。この観点からは、光源の出射端の反射率、グレーティング素子の入射面の反射率、およびグレーティング素子の出射面の反射率は、0.1%以下が好ましい。また、無反射層の反射率は、グレーティング反射率よりも小さい値であればよく、さらに0.1%以下が好ましい。しかし、端面における反射率がグレーティング反射率よりも小さい値であれば、無反射層はなくてもよく、反射膜であってもよい。
In a preferred embodiment, the reflectivity of the Bragg grating is larger than the reflectivity of the emission end of the light source, the reflectivity of the entrance surface of the grating element, and the reflectivity of the exit surface of the grating element. From this point of view, it is preferable that the reflectance at the light emitting end of the light source, the reflectance at the entrance surface of the grating element, and the reflectance at the exit surface of the grating element are 0.1% or less. The reflectance of the non-reflective layer may be a value smaller than the grating reflectance, and is preferably 0.1% or less. However, as long as the reflectance at the end face is smaller than the grating reflectance, the non-reflective layer may be omitted and a reflective film may be used.
光源1は、レーザ光を発振する活性層7を備えているが、活性層7のグレーティング素子9側の端面に無反射層を設けず、その代わりに反射膜を形成することができる。この場合、レーザ光の発振波長は、グレーティングにより反射される波長で決定される。グレーティングによる反射光と活性層のグレーティング素子側の端面からの反射光がレーザのゲイン閾値を上回れば、発振条件を満足する。これにより波長安定性の高いレーザ光を得ることができる。
The light source 1 includes an active layer 7 that oscillates laser light. However, a non-reflective layer is not provided on the end surface of the active layer 7 on the grating element 9 side, and a reflective film can be formed instead. In this case, the oscillation wavelength of the laser light is determined by the wavelength reflected by the grating. If the reflected light from the grating and the reflected light from the end face of the active layer on the grating element side exceed the laser gain threshold, the oscillation condition is satisfied. Thereby, a laser beam with high wavelength stability can be obtained.
波長安定性をより高くするには、グレーティングからの帰還量を大きくすればよく、この観点からグレーティングの反射率は活性層7の端面における反射率よりも大きくする方が好ましい。
In order to further improve the wavelength stability, the feedback amount from the grating may be increased. From this viewpoint, the reflectance of the grating is preferably larger than the reflectance at the end face of the active layer 7.
グレーティング素子の断面構造やリッジ型光導波路の断面構造は特に限定されないが、以下に一例を示す。
図3に示す例では、光学材料層11が支持基板10に設けられている。光学材料層11は、ブラッググレーティング12と同一面に形成されていてもよく、相対する面に形成されていてもよい。 The sectional structure of the grating element and the sectional structure of the ridge type optical waveguide are not particularly limited, but an example is shown below.
In the example shown in FIG. 3, theoptical material layer 11 is provided on the support substrate 10. The optical material layer 11 may be formed on the same surface as the Bragg grating 12 or may be formed on an opposite surface.
図3に示す例では、光学材料層11が支持基板10に設けられている。光学材料層11は、ブラッググレーティング12と同一面に形成されていてもよく、相対する面に形成されていてもよい。 The sectional structure of the grating element and the sectional structure of the ridge type optical waveguide are not particularly limited, but an example is shown below.
In the example shown in FIG. 3, the
図3に示す例では、基板10上に接着層15、下側バッファ層16を介して光学材料層11が形成されており、光学材料層11上に上側バッファ層17が形成されている。光学材料層11には例えば一対のリッジ溝19が形成されており、リッジ溝の間にリッジ型の光導波路18が形成されている。この場合、ブラッググレーティングは平坦面11a面に形成していてもよく、11b面に形成していてもよい。ブラッググレーティング、およびリッジ溝の形状ばらつきを低減するという観点では、ブラッググレーティングを11a面上に形成することによって、ブラッググレーティングとリッジ溝19とを基板の反対側に設けることが好ましい。
In the example shown in FIG. 3, the optical material layer 11 is formed on the substrate 10 via the adhesive layer 15 and the lower buffer layer 16, and the upper buffer layer 17 is formed on the optical material layer 11. For example, a pair of ridge grooves 19 are formed in the optical material layer 11, and a ridge-type optical waveguide 18 is formed between the ridge grooves. In this case, the Bragg grating may be formed on the flat surface 11a or may be formed on the 11b surface. From the viewpoint of reducing the shape variation of the Bragg grating and the ridge groove, it is preferable that the Bragg grating and the ridge groove 19 are provided on the opposite side of the substrate by forming the Bragg grating on the surface 11a.
また、図4に示す素子9Aでは、基板10上に接着層15、下側バッファ層16を介して光学材料層11が形成されており、光学材料層11上に上側バッファ層17が形成されている。光学材料層11の基板10側には、例えば一対のリッジ溝19が形成されており、リッジ溝19の間にリッジ型の光導波路18が形成されている。この場合、ブラッググレーティングは平坦面11a側に形成していてもよく、リッジ溝のある11b面に形成していてもよい。ブラッググレーティング、およびリッジ溝の形状ばらつきを低減するという観点では、ブラッググレーティングを平坦面11a面側に形成することによって、ブラッググレーティングとリッジ溝19とを基板の反対側に設けることが好ましい。また、上側バッファ層17はなくてもよく、この場合、空気層が直接グレーティングに接することができる。これによりグレーティング溝が有る無しで屈折率差を大きくすることができ、短いグレーティング長で反射率を大きくすることができる。
In the element 9A shown in FIG. 4, the optical material layer 11 is formed on the substrate 10 via the adhesive layer 15 and the lower buffer layer 16, and the upper buffer layer 17 is formed on the optical material layer 11. Yes. For example, a pair of ridge grooves 19 are formed on the substrate 10 side of the optical material layer 11, and a ridge-type optical waveguide 18 is formed between the ridge grooves 19. In this case, the Bragg grating may be formed on the flat surface 11a side, or may be formed on the 11b surface having the ridge groove. From the viewpoint of reducing the shape variation of the Bragg grating and the ridge groove, it is preferable to provide the Bragg grating and the ridge groove 19 on the opposite side of the substrate by forming the Bragg grating on the flat surface 11a surface side. Further, the upper buffer layer 17 may be omitted, and in this case, the air layer can directly contact the grating. As a result, the difference in refractive index can be increased without the presence of a grating groove, and the reflectance can be increased with a short grating length.
図5に示す素子9Bでは、基板10上に下側バッファ層16を介して光学材料層11が形成されており、光学材料層11上に上側バッファ層17が形成されている。光学材料層11には、例えば一対のリッジ溝19が形成されており、リッジ溝19の間にリッジ型の光導波路18が形成されている。本例では、接着層を設けず、基板10上に直接バッファ層、光学材料層を順次気相法で形成している。
5, the optical material layer 11 is formed on the substrate 10 via the lower buffer layer 16, and the upper buffer layer 17 is formed on the optical material layer 11. For example, a pair of ridge grooves 19 are formed in the optical material layer 11, and a ridge-type optical waveguide 18 is formed between the ridge grooves 19. In this example, an adhesive layer is not provided, and a buffer layer and an optical material layer are sequentially formed on the substrate 10 by a vapor phase method.
図6は、ブラッググレーティングの形態の一例を示す斜視図である。tdはグレーティング深さであり、Λは周期である。
FIG. 6 is a perspective view showing an example of the form of the Bragg grating. td is the grating depth and Λ is the period.
図7には、半導体レーザと光学素子が同一面で実装する場合を示す。グレーティング素子29Aには、半導体レーザ光源1からの光が伝搬する光導波路28とブラッググレーティング12とが形成されている。半導体レーザとブラッググレーティングとの間で外部共振器を構成しており、グレーティングのブラッグ回折条件を満足する波長でレーザ発振している。
FIG. 7 shows a case where the semiconductor laser and the optical element are mounted on the same surface. In the grating element 29A, an optical waveguide 28 through which light from the semiconductor laser light source 1 propagates and a Bragg grating 12 are formed. An external resonator is configured between the semiconductor laser and the Bragg grating, and the laser oscillates at a wavelength that satisfies the Bragg diffraction conditions of the grating.
グレーティング素子29Aには、四つの側面29a、29b、29c、29dが形成されており、側面29aに光源1および光導波路素子21が対向するように取り付けられている。各素子の端面に設ける反射膜や無反射膜などは図示省略している。光導波路28は、入射側伝搬部28a、28b、28c、ブラッググレーティング12、および出射側伝搬部28dを備えている。各伝搬部にはブラッググレーティングが形成されていない。伝搬部28aと28bとの間にはミラー8Aが設置され、伝搬部28bと28cとの間にもミパー8Bが設置されている。本例では、光導波路の入射面と出射面とが同一側面9a上にある。
The grating element 29A has four side surfaces 29a, 29b, 29c, and 29d, and the light source 1 and the optical waveguide element 21 are attached to the side surface 29a so as to face each other. A reflective film and a non-reflective film provided on the end face of each element are not shown. The optical waveguide 28 includes incident- side propagation portions 28a, 28b, 28c, a Bragg grating 12, and an emission-side propagation portion 28d. A Bragg grating is not formed in each propagation part. A mirror 8A is installed between the propagation units 28a and 28b, and a miper 8B is installed between the propagation units 28b and 28c. In this example, the entrance surface and the exit surface of the optical waveguide are on the same side surface 9a.
本例では、ブラッググレーティング12が、光路変更部であるミラーの下流にある。こうした光路変更部では、横モードの基本モードが効率的に光導波路を伝搬するので、グレーティングを後段に配置することにより、基本モードを選択的にレーザ発振することが可能である。
In this example, the Bragg grating 12 is downstream of the mirror that is the optical path changing unit. In such an optical path changing unit, the fundamental mode of the transverse mode propagates efficiently through the optical waveguide. Therefore, the fundamental mode can be selectively oscillated by arranging the grating in the subsequent stage.
図8の例では、グレーティング素子29Bには、四つの側面29a、29b、29c、29dが形成されており、側面29aに光源1および光導波路素子21が対向するように取り付けられている。各素子の端面に設ける反射膜や無反射膜などは図示省略している。光導波路32は、入射側伝搬部32a、ブラッググレーティング12、および出射側伝搬部32b、32c、32dを備えている。本例では、伝搬部32a、32b、32dは真っ直ぐに延びており、伝搬部32cが湾曲することで光路変更部を構成している。この結果、光導波路32は180°曲がり、光導波路32の入射面49と出射面31とが同一側面29a上に設けられる。
In the example of FIG. 8, the grating element 29B has four side surfaces 29a, 29b, 29c, and 29d, and the light source 1 and the optical waveguide element 21 are attached to the side surface 29a so as to face each other. A reflective film and a non-reflective film provided on the end face of each element are not shown. The optical waveguide 32 includes an incident-side propagation part 32a, a Bragg grating 12, and emission- side propagation parts 32b, 32c, and 32d. In this example, the propagation portions 32a, 32b, and 32d extend straight, and the propagation portion 32c is curved to form an optical path changing portion. As a result, the optical waveguide 32 is bent by 180 °, and the incident surface 49 and the emission surface 31 of the optical waveguide 32 are provided on the same side surface 29a.
図9の例では、光導波路33は、入射側伝搬部33a、33b、33c、ブラッググレーティング12および出射側伝搬部33dを備えている。本例では、伝搬部33a、33c、33dは真っ直ぐに延びており、伝搬部33bが湾曲することで光路変更部を構成している。この結果、光導波路33は180°曲がり、光導波路33の入射面49と出射面31とが同一側面29a上に設けられる。各素子の端面に設ける反射膜や無反射膜などは図示省略している。
In the example of FIG. 9, the optical waveguide 33 includes incident- side propagation portions 33a, 33b, 33c, a Bragg grating 12, and an emission-side propagation portion 33d. In this example, the propagation portions 33a, 33c, and 33d extend straight, and the propagation portion 33b is curved to form an optical path changing portion. As a result, the optical waveguide 33 is bent by 180 °, and the incident surface 49 and the emission surface 31 of the optical waveguide 33 are provided on the same side surface 29a. A reflective film and a non-reflective film provided on the end face of each element are not shown.
本例では、ブラッググレーティング12が、光路変更部である湾曲部分33bの下流にある。こうした光路変更部では、横モードのマルチモードの伝搬を抑制できるので、グレーティングを後段に配置することにより、基本モードを選択的にレーザ発振することが可能である。
In this example, the Bragg grating 12 is downstream of the curved portion 33b which is an optical path changing portion. Such an optical path changing unit can suppress the propagation of the multimode in the transverse mode, and therefore, it is possible to selectively oscillate the fundamental mode by arranging the grating in the subsequent stage.
図10、図11には、半導体レーザと光学素子を同一面で実装する場合を示す。グレーティング素子39には、半導体レーザ光源1からの光が伝搬する光導波路40とブラッググレーティング12とが形成されている。グレーティング素子39内には、エッチングや研磨加工によって凹部42が形成されており、凹部42内に光源1が実装されている。光源1とブラッググレーティング12との間で外部共振器を構成しており、グレーティングのブラッグ回折条件を満足する波長でレーザ発振している。
10 and 11 show the case where the semiconductor laser and the optical element are mounted on the same surface. In the grating element 39, an optical waveguide 40 through which light from the semiconductor laser light source 1 propagates and a Bragg grating 12 are formed. A recess 42 is formed in the grating element 39 by etching or polishing, and the light source 1 is mounted in the recess 42. An external resonator is formed between the light source 1 and the Bragg grating 12, and laser oscillation is performed at a wavelength satisfying the Bragg diffraction condition of the grating.
グレーティング素子39には、四つの側面39a、39b、39c、39dが形成されており、側面39aに光導波路素子21が対向するように取り付けられている。各素子の端面に設ける反射膜や無反射膜などは図示省略している。光導波路40は、入射側伝搬部40a、ブラッググレーティング12、出射側伝搬部40b、40c、40dを備えている。伝搬部40bと40cとの間にはミラー8Aが設置され、伝搬部40cと40dとの間にもミラー8Bが設置されている。
The grating element 39 has four side surfaces 39a, 39b, 39c and 39d, and is attached so that the optical waveguide element 21 faces the side surface 39a. A reflective film and a non-reflective film provided on the end face of each element are not shown. The optical waveguide 40 includes an incident-side propagation part 40a, a Bragg grating 12, and emission- side propagation parts 40b, 40c, and 40d. A mirror 8A is installed between the propagation units 40b and 40c, and a mirror 8B is installed between the propagation units 40c and 40d.
本例では、光導波路の入射面49が、凹部42に面する側面39eにあり、出射面が側面39a上にある。
In this example, the entrance surface 49 of the optical waveguide is on the side surface 39e facing the recess 42, and the exit surface is on the side surface 39a.
図12の例では、グレーティング素子39Aの凹部42に光源1が実装されている。光導波路43は、入射側伝搬部43a、43b、43c、ブラッググレーティング12、および出射側伝搬部43dを備えている。伝搬部43aと43bとの間にはミラー8Aが設置され、伝搬部43bと43cとの間にもミラー8Bが設置されている。各素子の端面に設ける反射膜や無反射膜などは図示省略している。
In the example of FIG. 12, the light source 1 is mounted in the recess 42 of the grating element 39A. The optical waveguide 43 includes incident- side propagation portions 43a, 43b, 43c, a Bragg grating 12, and an emission-side propagation portion 43d. A mirror 8A is installed between the propagation parts 43a and 43b, and a mirror 8B is also installed between the propagation parts 43b and 43c. A reflective film and a non-reflective film provided on the end face of each element are not shown.
本例では、ブラッググレーティング12が、光路変更部であるミラーの下流にある。こうした光路変更部では、横モードの基本モードが効率的に光導波路を伝搬するので、グレーティングを後段に配置することにより、基本モードを選択的にレーザ発振することが可能である。
In this example, the Bragg grating 12 is downstream of the mirror that is the optical path changing unit. In such an optical path changing unit, the fundamental mode of the transverse mode propagates efficiently through the optical waveguide. Therefore, the fundamental mode can be selectively oscillated by arranging the grating in the subsequent stage.
図13の例では、グレーティング素子39Bの凹部42に光源1が実装されている。光導波路44は、入射側伝搬部44a、ブラッググレーティング12、および出射側伝搬部44b、44cを備えている。本例では、伝搬部44a、44cは真っ直ぐに延びており、伝搬部44bが湾曲することで光路変更部を構成している。この結果、光導波路44は180°曲がり、光導波路の出射面31が側面39a上に設けられる。各素子の端面に設ける反射膜や無反射膜などは図示省略している。
In the example of FIG. 13, the light source 1 is mounted in the recess 42 of the grating element 39B. The optical waveguide 44 includes an incident side propagation part 44a, a Bragg grating 12, and emission side propagation parts 44b and 44c. In this example, the propagation portions 44a and 44c extend straight, and the propagation portion 44b is curved to constitute an optical path changing portion. As a result, the optical waveguide 44 is bent by 180 °, and the emission surface 31 of the optical waveguide is provided on the side surface 39a. A reflective film and a non-reflective film provided on the end face of each element are not shown.
図14の例では、素子39Cの光導波路45は、入射側伝搬部45a、45b、45c、ブラッググレーティング12および出射側伝搬部45dを備えている。本例では、伝搬部45a、45c、45dは真っ直ぐに延びており、伝搬部45bが湾曲することで光路変更部を構成している。この結果、光導波路45は180°曲がり、光導波路の出射面31が側面39a上に設けられる。各素子の端面に設ける反射膜や無反射膜などは図示省略している。
In the example of FIG. 14, the optical waveguide 45 of the element 39C includes incident- side propagation portions 45a, 45b, 45c, a Bragg grating 12, and an emission-side propagation portion 45d. In this example, the propagation portions 45a, 45c, and 45d extend straight, and the propagation portion 45b is curved to constitute an optical path changing portion. As a result, the optical waveguide 45 is bent by 180 °, and the output surface 31 of the optical waveguide is provided on the side surface 39a. A reflective film and a non-reflective film provided on the end face of each element are not shown.
図15の例では、グレーティング素子29Aには、四つの側面29a、29b、29c、29dが形成されており、側面29aに光源1が対向するように取り付けられている。光導波路28Aは、入射側伝搬部28a、28b、28c、ブラッググレーティング12、および出射側伝搬部28d、28eを備えている。伝搬部28aと28bとの間にはミラー8Aが設置され、伝搬部28bと28cとの間にミラー8Bが設置され、更に伝搬部28dと28eとの間にもミラー8Cが設置されている。本例では、光導波路の入射面49が側面29a上にあり、出射面31が、側面29aに隣接する側面29d上にある。各素子の端面に設ける反射膜や無反射膜などは図示省略している。
In the example of FIG. 15, the grating element 29A has four side surfaces 29a, 29b, 29c, and 29d, and is attached so that the light source 1 faces the side surface 29a. The optical waveguide 28A includes incident- side propagation portions 28a, 28b, 28c, a Bragg grating 12, and emission- side propagation portions 28d, 28e. A mirror 8A is installed between the propagation units 28a and 28b, a mirror 8B is installed between the propagation units 28b and 28c, and a mirror 8C is installed between the propagation units 28d and 28e. In this example, the incident surface 49 of the optical waveguide is on the side surface 29a, and the exit surface 31 is on the side surface 29d adjacent to the side surface 29a. A reflective film and a non-reflective film provided on the end face of each element are not shown.
図16の例では、素子29Cの光導波路33Aは、入射側伝搬部33a、33b、33c、ブラッググレーティング12、出射側伝搬部33d、33eを備えている。本例では、伝搬部33a、33c、33eは真っ直ぐに延びており、伝搬部33b、33dが湾曲することで光路変更部を構成している。この結果、光導波路33Aは2回曲がっている。光導波路33Aの入射面49は側面29a上にあり、出射面31は隣接する側面29d上にある。
In the example of FIG. 16, the optical waveguide 33A of the element 29C includes incident side propagation portions 33a, 33b, 33c, a Bragg grating 12, and emission side propagation portions 33d, 33e. In this example, the propagation portions 33a, 33c, and 33e extend straight, and the propagation portions 33b and 33d are curved to form an optical path changing portion. As a result, the optical waveguide 33A is bent twice. The incident surface 49 of the optical waveguide 33A is on the side surface 29a, and the exit surface 31 is on the adjacent side surface 29d.
図17の例では、素子29Eのブラッググレーティング12の上流側に複数の湾曲部50b、50dを形成している。すなわち、光導波路50は、真っ直ぐな伝搬ブラッググレーティング50a、50c、50e、50fと、二つの湾曲部50b、50dを備えている。このように複数の光路変更部をブラッググレーティングの前に形成することにより、横モードが高次の光の伝搬を抑制できるので基本モードのレーザ発振を促進し、高次モードのレーザ発振を抑制できる。またこの場合には、光源1が設けられている側面29aと、光導波路素子21が設けられている側面29bとを対向させることができる。各素子の端面に設ける反射膜や無反射膜などは図示省略している。
また、図17の例では、曲がり導波路の代わりにミラーを使用する構成でもよい。 In the example of FIG. 17, a plurality of curved portions 50b and 50d are formed on the upstream side of the Bragg grating 12 of the element 29E. In other words, the optical waveguide 50 includes straight propagation Bragg gratings 50a, 50c, 50e, and 50f and two curved portions 50b and 50d. By forming a plurality of optical path changing portions before the Bragg grating in this way, the transverse mode can suppress the propagation of higher-order light, so that the laser oscillation of the fundamental mode can be promoted and the laser oscillation of the higher-order mode can be suppressed. . In this case, the side surface 29a on which the light source 1 is provided and the side surface 29b on which the optical waveguide element 21 is provided can be opposed to each other. A reflective film and a non-reflective film provided on the end face of each element are not shown.
Moreover, in the example of FIG. 17, the structure which uses a mirror instead of a curved waveguide may be sufficient.
また、図17の例では、曲がり導波路の代わりにミラーを使用する構成でもよい。 In the example of FIG. 17, a plurality of
Moreover, in the example of FIG. 17, the structure which uses a mirror instead of a curved waveguide may be sufficient.
上述した各例では、光路を曲げるために、光導波路にミラーや湾曲部を設置した。しかし、ミラーと湾曲部とを併用することもできる。
In each example described above, a mirror or a curved portion was installed in the optical waveguide to bend the optical path. However, the mirror and the curved portion can be used in combination.
また、出射光の出射部の下流側に、光路変更部、および光路変更後の出射光を前記装置の外部に出射する外部出射部を設けることができる。図18は、この実施形態にかかるものである。
Also, an optical path changing unit and an external emitting unit that emits the emitted light after changing the optical path to the outside of the device can be provided on the downstream side of the emitting unit of the emitted light. FIG. 18 relates to this embodiment.
図18には、半導体レーザと光学素子を同一面で実装する場合を示す。グレーティング素子53には、別体のグレーティング部52が実装されている。グレーティング部52には、光源1からの光が伝搬する光導波路51とブラッググレーティング12とが形成されている。光導波路51は、入射側伝搬部51aと出射側伝搬部51bとを備えている。光源1とブラッググレーティング12との間で外部共振器を構成しており、グレーティングのブラッグ回折条件を満足する波長でレーザ発振している。各素子の端面に設ける反射膜や無反射膜などは図示省略している。
FIG. 18 shows a case where the semiconductor laser and the optical element are mounted on the same surface. A separate grating portion 52 is mounted on the grating element 53. In the grating portion 52, an optical waveguide 51 through which light from the light source 1 propagates and a Bragg grating 12 are formed. The optical waveguide 51 includes an incident side propagation part 51a and an emission side propagation part 51b. An external resonator is formed between the light source 1 and the Bragg grating 12, and laser oscillation is performed at a wavelength satisfying the Bragg diffraction condition of the grating. A reflective film and a non-reflective film provided on the end face of each element are not shown.
グレーティング素子53には、四つの側面が形成されており、ひとつの側面に光源1および光導波路素子21が取り付けられている。グレーティング素子52の光導波路出射面31から出射した光は、空間に設けられた光路54Aを伝搬し、ミラー8Aによって光路変更して光路54Bを伝搬し、更にミラー8Bによって光路変更され、光路54Cを伝搬し、外部出射部55から光導波路素子21に入射する。53aは素子53の表面である。
The grating element 53 has four side surfaces, and the light source 1 and the optical waveguide element 21 are attached to one side surface. The light emitted from the optical waveguide exit surface 31 of the grating element 52 propagates through the optical path 54A provided in the space, changes the optical path by the mirror 8A, propagates through the optical path 54B, and further changes the optical path by the mirror 8B. Propagate and enter the optical waveguide element 21 from the external emitting portion 55. 53 a is the surface of the element 53.
本発明においては、光源としては、高い信頼性を有するGaAs系やInP系材料によるレーザが好適である。本願構造の応用として、例えば、非線形光学素子を利用して第2高調波である緑色レーザを発振させる場合は、波長1064nm付近で発振するGaAs系のレーザを用いることになる。GaAs系やInP系のレーザは信頼性が高いため、一次元状に配列したレーザアレイ等の光源も実現可能である。波長が長くなるとブラッグ波長の温度変化が大きくなることから、波長安定性を高めるにはレーザの発振波長は990nm以下が特に好ましい。一方、波長が短くなると半導体の屈折率変化△naが大きくなりすぎるため、波長安定性を高めるためにはレーザの発振波長は780nm以上が特に好ましい。また、活性層の材質や波長も適宜選択できる。
In the present invention, a laser with a highly reliable GaAs-based or InP-based material is suitable as the light source. As an application of the structure of the present application, for example, when a green laser that is the second harmonic is oscillated using a nonlinear optical element, a GaAs laser that oscillates near a wavelength of 1064 nm is used. Since GaAs-based and InP-based lasers have high reliability, a light source such as a one-dimensionally arranged laser array can be realized. Since the temperature change of the Bragg wavelength increases as the wavelength becomes longer, the laser oscillation wavelength is particularly preferably 990 nm or less in order to improve the wavelength stability. On the other hand, since the refractive index change Δna of the semiconductor becomes too large when the wavelength is shortened, the laser oscillation wavelength is particularly preferably 780 nm or more in order to improve the wavelength stability. In addition, the material and wavelength of the active layer can be selected as appropriate.
リッジ型の光導波路は、例えば外周刃による切削加工やレーザアブレーション加工することによって物理的に加工し、成形することによって得られる。
A ridge-type optical waveguide is obtained by, for example, physical processing and molding by cutting with an outer peripheral blade or laser ablation processing.
バッファ層は、光導波路のクラッド層として機能することができる。この観点からは、バッファ層の屈折率は、光学材料層の屈折率よりも低いことが好ましく、その屈折率差は0.2以上が好ましく、0.4以上が更に好ましい。
また、導波路に湾曲部(曲がり部)を設ける場合には、曲がり損失を低減するために、バッファ層と光学材料層との屈折率差はさらに大きくする方が好ましく、0.5以上が最も好ましい。 The buffer layer can function as a cladding layer of the optical waveguide. From this viewpoint, the refractive index of the buffer layer is preferably lower than the refractive index of the optical material layer, and the refractive index difference is preferably 0.2 or more, and more preferably 0.4 or more.
In addition, when a curved portion (bent portion) is provided in the waveguide, the refractive index difference between the buffer layer and the optical material layer is preferably further increased in order to reduce the bending loss, and 0.5 or more is most preferable. preferable.
また、導波路に湾曲部(曲がり部)を設ける場合には、曲がり損失を低減するために、バッファ層と光学材料層との屈折率差はさらに大きくする方が好ましく、0.5以上が最も好ましい。 The buffer layer can function as a cladding layer of the optical waveguide. From this viewpoint, the refractive index of the buffer layer is preferably lower than the refractive index of the optical material layer, and the refractive index difference is preferably 0.2 or more, and more preferably 0.4 or more.
In addition, when a curved portion (bent portion) is provided in the waveguide, the refractive index difference between the buffer layer and the optical material layer is preferably further increased in order to reduce the bending loss, and 0.5 or more is most preferable. preferable.
ブラッググレーティングは以下のようにして物理的、あるいは化学的なエッチングにより形成することができる。
具体例として、Ni、Tiなどの金属膜を高屈折率基板に成膜し、フォトリソグラフィーにより周期的に窓を形成しエッチング用マスクを形成する。その後、反応性イオンエッチングなどのドライエッチング装置で周期的なグレーティング溝を形成する。最後に金属マスクを除去することにより形成できる。 The Bragg grating can be formed by physical or chemical etching as follows.
As a specific example, a metal film such as Ni or Ti is formed on a high refractive index substrate, and windows are periodically formed by photolithography to form an etching mask. Thereafter, periodic grating grooves are formed by a dry etching apparatus such as reactive ion etching. Finally, it can be formed by removing the metal mask.
具体例として、Ni、Tiなどの金属膜を高屈折率基板に成膜し、フォトリソグラフィーにより周期的に窓を形成しエッチング用マスクを形成する。その後、反応性イオンエッチングなどのドライエッチング装置で周期的なグレーティング溝を形成する。最後に金属マスクを除去することにより形成できる。 The Bragg grating can be formed by physical or chemical etching as follows.
As a specific example, a metal film such as Ni or Ti is formed on a high refractive index substrate, and windows are periodically formed by photolithography to form an etching mask. Thereafter, periodic grating grooves are formed by a dry etching apparatus such as reactive ion etching. Finally, it can be formed by removing the metal mask.
光学材料層中には、光導波路の耐光損傷性を更に向上させるために、マグネシウム(Mg)、亜鉛(Zn)、スカンジウム(Sc)及びインジウム(In)からなる群より選ばれる1種以上の金属元素を含有させてもよく、この場合、マグネシウムが特に好ましい。また結晶中には、ドープ成分として、希土類元素を含有させることができる。希土類元素としては、特にNd、Er、Tm、Ho、Dy、Prが好ましい。
In the optical material layer, one or more metals selected from the group consisting of magnesium (Mg), zinc (Zn), scandium (Sc), and indium (In) are used to further improve the optical damage resistance of the optical waveguide. Elements may be included, in which case magnesium is particularly preferred. The crystal can contain a rare earth element as a doping component. As the rare earth element, Nd, Er, Tm, Ho, Dy, and Pr are particularly preferable.
接着層の材質は、無機接着剤であってよく、有機接着剤であってよく、無機接着剤と有機接着剤との組み合わせであってよい。
The material of the adhesive layer may be an inorganic adhesive, an organic adhesive, or a combination of an inorganic adhesive and an organic adhesive.
また、光学材料層11は、支持基体上に薄膜形成法によって成膜して形成してもよい。こうした薄膜形成法としては、スパッタ、蒸着、CVDを例示できる。この場合には、光学材料層11は支持基体に直接形成されており、上述した接着層は存在しない。
この場合、支持基体上に下側バッファ層を形成した上で、さらに光学材料層11を形成してもよい。さらに光学材料層11の上面に上側バッファ層が形成されていてよい。
また、光学材料層の厚さは0.5~3.0μmであることが更に好ましい。 Further, theoptical material layer 11 may be formed by forming a film on a supporting substrate by a thin film forming method. Examples of such a thin film forming method include sputtering, vapor deposition, and CVD. In this case, the optical material layer 11 is directly formed on the support substrate, and the above-described adhesive layer does not exist.
In this case, theoptical material layer 11 may be further formed after forming the lower buffer layer on the support substrate. Further, an upper buffer layer may be formed on the upper surface of the optical material layer 11.
The thickness of the optical material layer is more preferably 0.5 to 3.0 μm.
この場合、支持基体上に下側バッファ層を形成した上で、さらに光学材料層11を形成してもよい。さらに光学材料層11の上面に上側バッファ層が形成されていてよい。
また、光学材料層の厚さは0.5~3.0μmであることが更に好ましい。 Further, the
In this case, the
The thickness of the optical material layer is more preferably 0.5 to 3.0 μm.
支持基体の具体的材質は特に限定されず,ニオブ酸リチウム、タンタル酸リチウム、石英ガラスなどのガラスや水晶、Si、アルミナ、窒化アルミ、サファイアなどを例示することができる。
The specific material of the support substrate is not particularly limited, and examples thereof include glass such as lithium niobate, lithium tantalate, and quartz glass, quartz, Si, alumina, aluminum nitride, and sapphire.
無反射層の反射率は、グレーティング反射率以下である必要があり、無反射層に成膜する膜材としては、二酸化珪素、五酸化タンタルなどの酸化物で積層した膜や、金属類も使用可能である。
The reflectance of the non-reflective layer must be less than or equal to the grating reflectivity. As the film material to be formed on the non-reflective layer, a film laminated with an oxide such as silicon dioxide or tantalum pentoxide, or metal is also used. Is possible.
また、光源素子、グレーティング素子の各端面は、それぞれ、端面反射を抑制するために斜めカットしていてもよい。また、グレーティング素子と支持基板の接合は、接着固定でもよく、直接接合でもよい。
Further, each end face of the light source element and the grating element may be cut obliquely in order to suppress the end face reflection. In addition, the grating element and the support substrate may be bonded together by adhesion or direct bonding.
以下、式(1)~式(6)の条件の意味について更に述べる。
ただし、数式は抽象的で理解しにくいので、最初に、従来技術の典型的な形態と本発明の実施形態とを端的に比較し、本発明の特徴を述べる。次いで、本発明の各条件について述べていくこととする。 Hereinafter, the meaning of the conditions of the formulas (1) to (6) will be further described.
However, since the mathematical expressions are abstract and difficult to understand, first, typical features of the prior art and embodiments of the present invention will be compared briefly to describe the features of the present invention. Next, each condition of the present invention will be described.
ただし、数式は抽象的で理解しにくいので、最初に、従来技術の典型的な形態と本発明の実施形態とを端的に比較し、本発明の特徴を述べる。次いで、本発明の各条件について述べていくこととする。 Hereinafter, the meaning of the conditions of the formulas (1) to (6) will be further described.
However, since the mathematical expressions are abstract and difficult to understand, first, typical features of the prior art and embodiments of the present invention will be compared briefly to describe the features of the present invention. Next, each condition of the present invention will be described.
まず、半導体レーザの発振条件は、下式のようにゲイン条件×位相条件で決まる。
First, the oscillation condition of the semiconductor laser is determined by gain condition × phase condition as shown in the following equation.
ただし、αa、αbは、それぞれ、活性層、グレーティング層の損失係数であり、La、Lbは、それぞれ、活性層、グレーティング層の長さであり、r1、r2は、ミラー反射率(r2はグレーティングの反射率)であり、Coutは、グレーティング素子と光源との結合損失であり、ζt gthは、レーザ媒体のゲイン閾値であり、φ1は、レーザ側反射ミラーによる位相変化量であり、φ2は、グレーティング部での位相変化量である。
Where α a and α b are the loss factors of the active layer and the grating layer, respectively, L a and L b are the lengths of the active layer and the grating layer, respectively, and r 1 and r 2 are mirrors The reflectance (r 2 is the reflectance of the grating), C out is the coupling loss between the grating element and the light source, ζ t g th is the gain threshold of the laser medium, and φ 1 is the laser side reflecting mirror , And φ2 is the amount of phase change at the grating portion.
(2-2)式より、レーザ媒体のゲインζt gth(ゲイン閾値)が損失を上回れば、レーザ発振することを表す。レーザ媒体のゲインカーブ(波長依存性)は、半値全幅は50nm以上あり、ブロードな特性をもっている。また、損失部(右辺)は、グレーティングの反射率以外はほとんど波長依存性がないので、ゲイン条件はグレーティングにより決まる。このため、比較表では、ゲイン条件はグレーティングのみで考えることができる。
From the equation (2-2), if the gain ζ t g th (gain threshold value) of the laser medium exceeds the loss, it indicates that laser oscillation occurs. The gain curve (wavelength dependence) of the laser medium has a full width at half maximum of 50 nm or more and has broad characteristics. Further, since the loss part (right side) has almost no wavelength dependence other than the reflectance of the grating, the gain condition is determined by the grating. For this reason, in the comparison table, the gain condition can be considered only by the grating.
一方、位相条件は(2-1)式から、下式のようになる。ただし、φ1については零となる。
On the other hand, the phase condition is expressed by the following equation from the equation (2-1). However, φ1 is zero.
光源2がレーザ発振している場合は、複合共振器になるために上記の(2-1)式、(2-2)式、(2-3)式は複雑な数式になり、レーザ発振の目安として考えることができる。
When the light source 2 is oscillating, the above equations (2-1), (2-2), and (2-3) become complex equations to become a complex resonator, and the laser oscillation It can be considered as a guide.
外部共振器型レーザは、外部共振器として、石英系ガラス導波路、FBGを用いたものが製品化されている。従来の設計コンセプトは、表1および図22、図23に示すように、グレーティングの反射特性は△λg=0.2nm程度、反射率10%となっている。このことから、グレーティング部の長さは1mmとなっている。一方、位相条件については、満足する波長は離散的になり、△λg内に、(2-3)式が2~3点あるように設計されている。このため、レーザ媒体の活性層長さが長いものが必要になり、1mm以上のものが使用されている。
As the external resonator type laser, a product using a quartz glass waveguide or FBG as an external resonator has been commercialized. In the conventional design concept, as shown in Table 1, FIG. 22, and FIG. 23, the reflection characteristic of the grating is about Δλ g = 0.2 nm and the reflectance is 10%. For this reason, the length of the grating portion is 1 mm. On the other hand, with respect to the phase condition, the satisfied wavelength is discrete and is designed so that there are two to three points in (2-3) within Δλ g . For this reason, the thing with a long active layer length of a laser medium is needed, and the thing of 1 mm or more is used.
ガラス導波路やFBGの場合、λgの温度依存性は非常に小さく、dλG/dT=0.01nm/℃程度となる。このことから、外部共振器型レーザは、波長安定性が高いという特徴をもつ。
しかし、位相条件を満足する波長の温度依存性は、これに比してdλs/dT=dλTM/dT =0.05nm/℃と大きく、その差は0.04nm/℃となる。 In the case of a glass waveguide or FBG, the temperature dependence of λ g is very small, and dλ G / dT = about 0.01 nm / ° C. For this reason, the external cavity laser has a feature of high wavelength stability.
However, the temperature dependence of the wavelength satisfying the phase condition is as large as dλ s / dT = dλ TM /dT=0.05 nm / ° C., and the difference is 0.04 nm / ° C.
しかし、位相条件を満足する波長の温度依存性は、これに比してdλs/dT=dλTM/dT =0.05nm/℃と大きく、その差は0.04nm/℃となる。 In the case of a glass waveguide or FBG, the temperature dependence of λ g is very small, and dλ G / dT = about 0.01 nm / ° C. For this reason, the external cavity laser has a feature of high wavelength stability.
However, the temperature dependence of the wavelength satisfying the phase condition is as large as dλ s / dT = dλ TM /dT=0.05 nm / ° C., and the difference is 0.04 nm / ° C.
また、コア層としてSi02やSiO(1-x)Nxを使用する場合、屈折率の温度変化率△nfは 1×10-5/℃と小さく、波長1.3μmではλgの温度依存性は非常に小さくdλG/dT=0.01nm/℃となる。一方、外部共振器の位相条件が成り立つ波長(発振波長)の温度係数について、InGaAsP系レーザを使用した場合、 光源の等価屈折率3.6、屈折率の温度変化3×10-4/℃、長さLa=400μm、回折格子の等価屈折率1.54、1×10-5/℃、長さ155μmとするとdλG/dT=dλTM/dT= 0.09nm/℃となる。したがって、その差は0.08 nm/℃となる。
Also, when using Si0 2 and SiO (1-x) Nx as the core layer, the temperature change rate of the refractive index △ n f is as small as 1 × 10 -5 / ℃, the temperature dependency of the wavelength 1.3 .mu.m lambda g Is very small, dλ G /dT=0.01 nm / ° C. On the other hand, regarding the temperature coefficient of the wavelength (oscillation wavelength) that satisfies the phase condition of the external resonator, when using an InGaAsP laser, the equivalent refractive index of the light source is 3.6, the temperature change of the refractive index is 3 × 10 -4 / ° C, and the length If La = 400 μm, the equivalent refractive index of the diffraction grating is 1.54, 1 × 10 −5 / ° C., and the length is 155 μm, then dλ G / dT = dλ TM /dT=0.09 nm / ° C. Therefore, the difference is 0.08 nm / ° C.
このようにしてレーザ発振したレーザ光のスペクトル波形は、線幅が0.2nm以下となる。広い温度範囲でレーザ発振するために、さらにモードホップしない温度範囲をより広くするために、室温25℃における外部共振器によるレーザ発振波長はグレーティング反射率の中心波長よりも短波長側であることが好ましい。この場合、温度が上昇するにつれてレーザ発振波長は長波長側にシフトしてグレーティング反射率の中心波長よりも長波長側でレーザ発振することになる。
The spectral waveform of the laser light thus laser-oscillated has a line width of 0.2 nm or less. In order to oscillate in a wide temperature range, in order to further widen the temperature range in which mode hopping is not performed, the laser oscillation wavelength by an external resonator at room temperature of 25 ° C. should be shorter than the center wavelength of the grating reflectivity. preferable. In this case, as the temperature rises, the laser oscillation wavelength shifts to the longer wavelength side and laser oscillation occurs on the longer wavelength side than the center wavelength of the grating reflectivity.
また広い温度範囲でレーザ発振するために、さらにモードホップしない温度範囲をより広くするために、室温25℃における外部共振器によるレーザ発振波長は光源1の同じ温度での発振波長よりも長波長側で発振することが好ましい。この場合、温度が上昇するにつれて外部共振器によるレーザ発振波長は光源1の発振波長に対して短波長側でレーザ発振することになる。
Further, in order to oscillate in a wide temperature range, in order to further widen the temperature range in which mode hopping is not performed, the laser oscillation wavelength by the external resonator at room temperature of 25 ° C. is longer than the oscillation wavelength of the light source 1 at the same temperature. It is preferable to oscillate at. In this case, as the temperature rises, the laser oscillation wavelength by the external resonator oscillates on the shorter wavelength side than the oscillation wavelength of the light source 1.
室温での外部共振器によるレーザ発振波長と光源1の発振波長の差は、レーザ発振の温度許容範囲を広くする観点において0.5nm以上が好ましく、さらに2nm以上であってもよい。しかし、波長差を大きくしすぎるとパワーの温度変動が大きくなるのでこの観点から10nm以下が好ましく、さらに6nm以下が好ましい。
The difference between the laser oscillation wavelength by the external resonator at room temperature and the oscillation wavelength of the light source 1 is preferably 0.5 nm or more, and may be 2 nm or more from the viewpoint of widening the temperature tolerance of laser oscillation. However, if the wavelength difference is increased too much, the temperature variation of the power increases, so from this viewpoint, it is preferably 10 nm or less, and more preferably 6 nm or less.
一般的に、モードホップが起こる温度Tmhは、非特許文献1より下式のように考えることができる(Ta=Tfとして考える)。
ΔGTMは、外部共振器レーザの位相条件を満足する波長間隔(縦モード間隔)である。
Generally, the temperature T mh at which the mode hop occurs can be considered as in the following equation from Non-Patent Document 1 (considered as T a = T f ).
ΔG TM is a wavelength interval (longitudinal mode interval) that satisfies the phase condition of the external cavity laser.
ΔGTMは、外部共振器レーザの位相条件を満足する波長間隔(縦モード間隔)である。
ΔG TM is a wavelength interval (longitudinal mode interval) that satisfies the phase condition of the external cavity laser.
これより従来の場合、Tmhは5℃程度となる。このためモードホップが起こりやすい。したがって、モードホップが起こってしまうと、グレーティングの反射特性に基づきパワーが変動し、5%以上変動することになる。
Thus, in the conventional case, T mh is about 5 ° C. For this reason, mode hops are likely to occur. Therefore, when a mode hop occurs, the power fluctuates based on the reflection characteristics of the grating and fluctuates by 5% or more.
以上から、実動作において、従来のガラス導波路やFBGを利用した外部共振器型レーザは、ペルチェ素子を利用して温度制御を行っていた。
From the above, in actual operation, the conventional external cavity laser using the glass waveguide or FBG performs temperature control using the Peltier element.
これに対し、本発明は、前提条件として(2-4)式の分母が小さくなるグレーティング素子を使用するものである。(2-4)式の分母は、0.03nm/℃以下にすることが必要であり、グレーティングが形成される具体的な材料としては、ガリウム砒素(GaAs)、ニオブ酸リチウム(LiNbO3)、酸化タンタル(Ta2O5)、酸化亜鉛(ZnO)、アルミナ(Al2O3)が好ましい。例えば、ニオブ酸リチウム(LiNbO3)を利用する場合、△λGを1.3nm程度に設計し、位相条件を満足する波長を△λG内に2点となるように活性層の長さを250μmに設定すると、△GTMは例えば1.2nmとなり、Tmhは60℃となり、動作温度範囲を広くすることができる。図21にこの例を示す。
ブラッググレーティングは光導波路に形成されるため、光導波路の材料としては、前述した屈折率を有するものが好ましく、またグレーティング材料として例示した材料が好ましい。 On the other hand, the present invention uses a grating element having a small denominator of the equation (2-4) as a precondition. The denominator of equation (2-4) must be 0.03 nm / ° C or less. Specific materials for forming the grating include gallium arsenide (GaAs), lithium niobate (LiNbO 3 ), and oxidation. Tantalum (Ta 2 O 5 ), zinc oxide (ZnO), and alumina (Al 2 O 3 ) are preferable. For example, when using lithium niobate (LiNbO 3 ), Δλ G is designed to be about 1.3 nm, and the length of the active layer is 250 μm so that there are two wavelengths within Δλ G that satisfy the phase condition. ΔG TM is, for example, 1.2 nm, T mh is 60 ° C., and the operating temperature range can be widened. FIG. 21 shows an example of this.
Since the Bragg grating is formed in an optical waveguide, the material of the optical waveguide preferably has the refractive index described above, and the materials exemplified as the grating material are preferable.
ブラッググレーティングは光導波路に形成されるため、光導波路の材料としては、前述した屈折率を有するものが好ましく、またグレーティング材料として例示した材料が好ましい。 On the other hand, the present invention uses a grating element having a small denominator of the equation (2-4) as a precondition. The denominator of equation (2-4) must be 0.03 nm / ° C or less. Specific materials for forming the grating include gallium arsenide (GaAs), lithium niobate (LiNbO 3 ), and oxidation. Tantalum (Ta 2 O 5 ), zinc oxide (ZnO), and alumina (Al 2 O 3 ) are preferable. For example, when using lithium niobate (LiNbO 3 ), Δλ G is designed to be about 1.3 nm, and the length of the active layer is 250 μm so that there are two wavelengths within Δλ G that satisfy the phase condition. ΔG TM is, for example, 1.2 nm, T mh is 60 ° C., and the operating temperature range can be widened. FIG. 21 shows an example of this.
Since the Bragg grating is formed in an optical waveguide, the material of the optical waveguide preferably has the refractive index described above, and the materials exemplified as the grating material are preferable.
位相条件を満足する波長は、△λG内に5点以下存在していれば、モードホップが起こりにくく、安定なレーザ発振条件で、かつ縦モードがシングルモードで発振が動作が可能である。このような条件でレーザ発振した出力のスペクトル幅は0.1nm以下となる。
If there are five or less wavelengths satisfying the phase condition within Δλ G , mode hops are unlikely to occur, and stable laser oscillation conditions and oscillation can be performed with the longitudinal mode being the single mode. The spectral width of the output laser oscillated under such conditions is 0.1 nm or less.
すなわち、本発明構造は、温度変化に対して、発振波長はグレーティングの温度特性に基づき0.05nm/℃で変化するが、モードホップは起こりにくくすることが可能である。本願構造は、△λGを大きくするためにグレーティング長Lbは100μmとし、△GTMを大きくするためにLaは250μmとしている。
That is, in the structure of the present invention, the oscillation wavelength changes at 0.05 nm / ° C. based on the temperature characteristics of the grating with respect to the temperature change, but mode hopping can be made difficult to occur. The present structure, the grating length Lb is set to 100μm in order to increase the △ lambda G, is La in order to increase the △ G TM is set to 250 [mu] m.
なお、特許文献6との相違についても補足する。
本願は、グレーティング波長の温度係数と縦モードの温度係数を近づけることで温度無依存を実現するもので、このために共振器構造をコンパクトにでき、かつ付加するものが不要である。特許文献6では、各パラメータは以下のように記載されており、いずれも従
来技術の範疇となっている。
△λG=0.4nm
縦モード間隔△GTM=0.2nm
グレーティング長Lb=3mm
LD活性層長さLa=600μm
伝搬部の長さ=1.5mm
In addition, it supplements also about the difference withpatent document 6. FIG.
The present application realizes temperature independence by bringing the temperature coefficient of the grating wavelength and the temperature coefficient of the longitudinal mode close to each other. For this reason, the resonator structure can be made compact and an additional one is unnecessary. Inpatent document 6, each parameter is described as follows, and each is in the category of the prior art.
△ λ G = 0.4nm
Vertical mode interval △ G TM = 0.2nm
Grating length L b = 3mm
LD active layer length L a = 600 μm
Propagation length = 1.5mm
本願は、グレーティング波長の温度係数と縦モードの温度係数を近づけることで温度無依存を実現するもので、このために共振器構造をコンパクトにでき、かつ付加するものが不要である。特許文献6では、各パラメータは以下のように記載されており、いずれも従
来技術の範疇となっている。
△λG=0.4nm
縦モード間隔△GTM=0.2nm
グレーティング長Lb=3mm
LD活性層長さLa=600μm
伝搬部の長さ=1.5mm
In addition, it supplements also about the difference with
The present application realizes temperature independence by bringing the temperature coefficient of the grating wavelength and the temperature coefficient of the longitudinal mode close to each other. For this reason, the resonator structure can be made compact and an additional one is unnecessary. In
△ λ G = 0.4nm
Vertical mode interval △ G TM = 0.2nm
Grating length L b = 3mm
LD active layer length L a = 600 μm
Propagation length = 1.5mm
以下、本発明の各条件について更に述べる。
ブラッグ反射率のピークにおける半値全幅ΔλGを0.8nm以上とする(式1)。λGはブラッグ波長である。すなわち、図19、図20、図21に示すように、横軸にブラッググレーティングによる反射波長をとり、縦軸に反射率をとったとき、反射率が最大となる波長をブラッグ波長とする。またブラッグ波長を中心とするピークにおいて、反射率がピークの半分になる二つの波長の差を半値全幅ΔλGとする。 Hereinafter, each condition of the present invention will be further described.
The full width at half maximum Δλ G at the peak of the Bragg reflectance is set to 0.8 nm or more (Formula 1). λ G is the Bragg wavelength. That is, as shown in FIGS. 19, 20, and 21, when the reflection wavelength by the Bragg grating is taken on the horizontal axis and the reflectance is taken on the vertical axis, the wavelength at which the reflectance becomes maximum is the Bragg wavelength. In peak centered at the Bragg wavelength, the difference between the two wavelengths at which the reflectance becomes half the peak full width at half maximum [Delta] [lambda] G.
ブラッグ反射率のピークにおける半値全幅ΔλGを0.8nm以上とする(式1)。λGはブラッグ波長である。すなわち、図19、図20、図21に示すように、横軸にブラッググレーティングによる反射波長をとり、縦軸に反射率をとったとき、反射率が最大となる波長をブラッグ波長とする。またブラッグ波長を中心とするピークにおいて、反射率がピークの半分になる二つの波長の差を半値全幅ΔλGとする。 Hereinafter, each condition of the present invention will be further described.
The full width at half maximum Δλ G at the peak of the Bragg reflectance is set to 0.8 nm or more (Formula 1). λ G is the Bragg wavelength. That is, as shown in FIGS. 19, 20, and 21, when the reflection wavelength by the Bragg grating is taken on the horizontal axis and the reflectance is taken on the vertical axis, the wavelength at which the reflectance becomes maximum is the Bragg wavelength. In peak centered at the Bragg wavelength, the difference between the two wavelengths at which the reflectance becomes half the peak full width at half maximum [Delta] [lambda] G.
ブラッグ反射率のピークにおける半値全幅ΔλGを0.8nm以上とするのは、図21に示すように反射率ピークをブロードにするためである。この観点からは、半値全幅ΔλGを1.2nm以上とすることが好ましく、1.5nm以上とすることが更に好ましい。また、半値全幅ΔλGを5nm以下とすることが好ましく、3nm以下とすることが更に好ましく、2nm以下とすることが好ましい。
The reason why the full width at half maximum Δλ G at the Bragg reflectance peak is set to 0.8 nm or more is to make the reflectance peak broad as shown in FIG. From this viewpoint, it is preferable to be at least 1.2nm full width at half maximum [Delta] [lambda] G, it is further preferable to 1.5nm or more. Further, it is preferable that less 5nm a full width at half maximum [Delta] [lambda] G, more preferably to 3nm or less, it is preferable to 2nm or less.
ブラッググレーティングの長さLbは500μm以下とする(式2)。ブラッググレーティングの長さLbは、光導波路を伝搬する光の光軸の方向におけるグレーティング長である。ブラッググレーティングの長さLbを500μm以下と従来に比べて短くすることは、本発明の設計思想の前提となる。この観点からは、ブラッググレーティングの長さLbを300μm以下とすることが更に好ましい。また、Lbは200μm以下とすることがいっそう好ましい。
The length L b of the Bragg grating to 500μm or less (equation 2). The length L b of the Bragg grating is a grating length in the direction of the optical axis of the light propagating through the optical waveguide. Be shorter than the Bragg grating length L b below the conventional 500μm is a premise of the design concept of the present invention. From this viewpoint, it is more preferable to the Bragg grating length L b and 300μm or less. Further, L b is more preferably set to 200μm or less.
活性層の長さLaも500μm以下とする(式3)。活性層の長さLaを従来と比べて短くすることも、本発明の設計思想の前提である。この観点からは、活性層の長さLaを300μm以下とすることが更に好ましい。また、活性層の長さLaは、150μm以上とすることが好ましい。
The length of the active layer L a also a 500μm or less (equation 3). It is also a prerequisite for the design concept of the present invention made shorter than the conventional length L a of the active layer. From this viewpoint, it is more preferable to set the length L a of the active layer and 300μm or less. The length L a of the active layer is preferably set at 150μm or more.
ブラッググレーティングを構成する材質の屈折率nbは1.8以上とする(式4)。従来は石英などの、より屈折率の低い材料が一般的であったが、本発明の思想では、ブラッググレーティングを構成する材質の屈折率を高くする。この理由は、屈折率が大きい材料は屈折率の温度変化が大きいからであり、(2-4)式のTmhを大きくすることができ、さらにグレーティングの温度係数dλG/dTを大きくできるからである。この観点からは、nbは1.9以上であることが更に好ましい。また、nbの上限は特にないが、グレーティングピッチが小さくなりすぎて形成が困難になることから4以下であるが、さらに3.6以下であることが好ましい。また、同じ観点で光導波路の等価屈折率は3.3以下になることが好ましい。
Refractive index n b of the material of the Bragg grating is 1.8 or more (Equation 4). Conventionally, a material having a lower refractive index, such as quartz, has been generally used. However, in the concept of the present invention, the refractive index of the material constituting the Bragg grating is increased. The reason for this is that a material with a large refractive index has a large temperature change in the refractive index, so that T mh in equation (2-4) can be increased and the temperature coefficient dλ G / dT of the grating can be increased. It is. From this viewpoint, nb is more preferably 1.9 or more. The upper limit of n b is not particularly, although the grating pitch is 4 or less from the formation becomes too small it is difficult, it is preferably more than 3.6 or less. From the same viewpoint, the equivalent refractive index of the optical waveguide is preferably 3.3 or less.
その上で、式(5)に示す条件も重要である。
式(5)において、dλG/dTは、ブラッグ波長の温度係数である。
また、dλTM/dTは、外部共振器レーザの位相条件を満足する波長の温度係数である。 In addition, the condition shown in the equation (5) is also important.
In equation (5), dλ G / dT is the temperature coefficient of the Bragg wavelength.
Dλ TM / dT is a temperature coefficient of the wavelength that satisfies the phase condition of the external cavity laser.
式(5)において、dλG/dTは、ブラッグ波長の温度係数である。
また、dλTM/dTは、外部共振器レーザの位相条件を満足する波長の温度係数である。 In addition, the condition shown in the equation (5) is also important.
In equation (5), dλ G / dT is the temperature coefficient of the Bragg wavelength.
Dλ TM / dT is a temperature coefficient of the wavelength that satisfies the phase condition of the external cavity laser.
ここで、λTMは、外部共振器レーザの位相条件を満足する波長であり、つまり前述した(2.3式)の位相条件を満足する波長である。これを本明細書では「縦モード」と呼ぶ。
Here, λ TM is a wavelength that satisfies the phase condition of the external cavity laser, that is, a wavelength that satisfies the above-described phase condition of (Equation 2.3). This is called “vertical mode” in this specification.
以下、縦モードについて補足する。
(2.3)式は、φ2+2βLa=2pπ、かつ、β=2π/λなので、これを満足するλがλTMとなる。φ2は、ブラッググレーティングの位相変化であり、下式で算出する。 The following supplements the vertical mode.
Since (2.3) is φ2 + 2βLa = 2pπ and β = 2π / λ, λ satisfying this is λ TM . φ2 is the phase change of the Bragg grating and is calculated by the following equation.
(2.3)式は、φ2+2βLa=2pπ、かつ、β=2π/λなので、これを満足するλがλTMとなる。φ2は、ブラッググレーティングの位相変化であり、下式で算出する。 The following supplements the vertical mode.
Since (2.3) is φ2 + 2βLa = 2pπ and β = 2π / λ, λ satisfying this is λ TM . φ2 is the phase change of the Bragg grating and is calculated by the following equation.
△GTMは、外部共振器レーザの位相条件を満足する波長間隔(縦モード間隔)である。
λTMは、複数存在するので、複数のλTMの差を意味する。先に用いた△λは△GTMに等しく、λsはλTMに等しい。 ΔG TM is a wavelength interval (longitudinal mode interval) that satisfies the phase condition of the external cavity laser.
lambda TM Since the plurality of, means the difference of a plurality of lambda TM. Previously used △ lambda equals △ G TM, λ s is equal to lambda TM.
λTMは、複数存在するので、複数のλTMの差を意味する。先に用いた△λは△GTMに等しく、λsはλTMに等しい。 ΔG TM is a wavelength interval (longitudinal mode interval) that satisfies the phase condition of the external cavity laser.
lambda TM Since the plurality of, means the difference of a plurality of lambda TM. Previously used △ lambda equals △ G TM, λ s is equal to lambda TM.
したがって、式(5)を満足することで、モードホップが起こる温度を高くし、事実上モードホップを抑制することができる。式(5)の数値は、0.025以下とすることが更に好ましい。
Therefore, satisfying the equation (5) makes it possible to increase the temperature at which the mode hop occurs and to effectively suppress the mode hop. The numerical value of the formula (5) is more preferably 0.025 or less.
モードホップを抑制し、パワー変動の小さい動作する温度範囲を
さらに広くするために、グレーティング回折格子のピッチの異なる
複数グレーティングを直列に配置してもよい。 In order to suppress the mode hopping and further widen the operating temperature range where the power fluctuation is small, a plurality of gratings having different grating diffraction pitches may be arranged in series.
さらに広くするために、グレーティング回折格子のピッチの異なる
複数グレーティングを直列に配置してもよい。 In order to suppress the mode hopping and further widen the operating temperature range where the power fluctuation is small, a plurality of gratings having different grating diffraction pitches may be arranged in series.
好適な実施形態においては、光源とグレーティング素子が直接光学的に接続されており、活性層の出射面と反対側の外側端面とブラッググレーティングとの間で共振器構造を形成しており、活性層の外側端面とブラッググレーティングの出射側終点との間の長さが900μm以下である。グレーティング部では光は徐々に反射されていくために反射ミラーのように明確な反射点を観測することはできない。実効的な反射点は数学的に定義することはできるが、ブラッググレーティングの出射側終点よりレーザ側に存在する。このよう
なことから本願では、出射側の終点で共振器の長さを定義している。本発明によれば、非常に短い共振器長であっても、高い効率で目的波長の光を発振させることができる。この観点からは、活性層の外側端面とブラッググレーティングの出射側終点との間の長さが800μm以下であることが更に好ましく、700μm以下であることが特に好ましい。また、レーザの出力を高めるという観点からこの長さは、300μm以上であることが好ましい。 In a preferred embodiment, the light source and the grating element are directly optically connected, and a resonator structure is formed between the outer end surface opposite to the emission surface of the active layer and the Bragg grating, and the active layer The length between the outer end face of the light source and the exit end point of the Bragg grating is 900 μm or less. Since light is gradually reflected at the grating portion, it is not possible to observe a clear reflection point like a reflection mirror. Although the effective reflection point can be defined mathematically, it exists on the laser side from the end point on the emission side of the Bragg grating. For this reason, in the present application, the length of the resonator is defined at the end point on the emission side. According to the present invention, even with a very short resonator length, light of a target wavelength can be oscillated with high efficiency. From this viewpoint, the length between the outer end face of the active layer and the exit end point of the Bragg grating is more preferably 800 μm or less, and particularly preferably 700 μm or less. From the viewpoint of increasing the laser output, this length is preferably 300 μm or more.
なことから本願では、出射側の終点で共振器の長さを定義している。本発明によれば、非常に短い共振器長であっても、高い効率で目的波長の光を発振させることができる。この観点からは、活性層の外側端面とブラッググレーティングの出射側終点との間の長さが800μm以下であることが更に好ましく、700μm以下であることが特に好ましい。また、レーザの出力を高めるという観点からこの長さは、300μm以上であることが好ましい。 In a preferred embodiment, the light source and the grating element are directly optically connected, and a resonator structure is formed between the outer end surface opposite to the emission surface of the active layer and the Bragg grating, and the active layer The length between the outer end face of the light source and the exit end point of the Bragg grating is 900 μm or less. Since light is gradually reflected at the grating portion, it is not possible to observe a clear reflection point like a reflection mirror. Although the effective reflection point can be defined mathematically, it exists on the laser side from the end point on the emission side of the Bragg grating. For this reason, in the present application, the length of the resonator is defined at the end point on the emission side. According to the present invention, even with a very short resonator length, light of a target wavelength can be oscillated with high efficiency. From this viewpoint, the length between the outer end face of the active layer and the exit end point of the Bragg grating is more preferably 800 μm or less, and particularly preferably 700 μm or less. From the viewpoint of increasing the laser output, this length is preferably 300 μm or more.
上述の各例では、光導波路が、リッジ部と、このリッジ部を成形する少なくとも一対のリッジ溝からなるリッジ型光導波路である。この場合には、リッジ溝の下に光学材料が残されており、かつリッジ溝の外側にもそれぞれ光学材料からなる延在部が形成されている。
In each of the above examples, the optical waveguide is a ridge type optical waveguide including a ridge portion and at least a pair of ridge grooves forming the ridge portion. In this case, the optical material is left under the ridge groove, and extending portions made of the optical material are also formed outside the ridge groove.
しかし、リッジ型光導波路において、リッジ溝の下にある光学材料を除去してしまうことで、ストライプ状の細長いコアを形成することもできる。この場合には、リッジ型光導波路が、光学材料からなる細長いコアからなり、コアの横断面が凸図形をなしている。このコアの周りには、バッファ層(クラッド層)や空気層が存在しており、バッファ層や空気層がクラッドとして機能する。
However, in the ridge-type optical waveguide, the strip-shaped elongated core can be formed by removing the optical material under the ridge groove. In this case, the ridge-type optical waveguide is composed of an elongated core made of an optical material, and the cross section of the core forms a convex figure. A buffer layer (cladding layer) and an air layer exist around the core, and the buffer layer and the air layer function as a clad.
凸図形とは、コアの横断面の外側輪郭線の任意の二点を結ぶ線分が、コアの横断面の外側輪郭線の内側に位置することを意味する。このような図形としては、三角形、四角形、六角形、八角形などの多角形、円形、楕円形などを例示できる。四角形としては、特に、上辺と下辺と一対の側面を有する四角形が好ましく、台形が特に好ましい。
The convex figure means that a line segment connecting any two points of the outer contour line of the core cross section is located inside the outer contour line of the core cross section. Examples of such figures include triangles, quadrangles, hexagons, octagons, and other polygons, circles, ellipses, and the like. As the quadrangle, a quadrangle having an upper side, a lower side, and a pair of side surfaces is particularly preferable, and a trapezoid is particularly preferable.
図24、図25は、この実施形態に係るものである。
図24(a)のグレーティング素子21Aでは、支持基板10上にバッファ層16が形成されており、バッファ層16上に光導波路30が形成されている。光導波路30は、前述したような屈折率1.8以上の光学材料のコアからなる。光導波路の横断面(光伝搬方向と垂直な方向の断面)形状は台形であり、光導波路は細長く伸びている。本例では、光導波路30の上側面が下側面よりも狭くなっている。光導波路30内には、前述したような入射側伝搬部、ブラッググレーティング、出射側伝搬部が形成されている。 24 and 25 relate to this embodiment.
In thegrating element 21 </ b> A of FIG. 24A, the buffer layer 16 is formed on the support substrate 10, and the optical waveguide 30 is formed on the buffer layer 16. The optical waveguide 30 is composed of a core of an optical material having a refractive index of 1.8 or more as described above. The cross section of the optical waveguide (cross section in the direction perpendicular to the light propagation direction) is trapezoidal, and the optical waveguide is elongated. In this example, the upper side surface of the optical waveguide 30 is narrower than the lower side surface. In the optical waveguide 30, the incident side propagation part, the Bragg grating, and the emission side propagation part as described above are formed.
図24(a)のグレーティング素子21Aでは、支持基板10上にバッファ層16が形成されており、バッファ層16上に光導波路30が形成されている。光導波路30は、前述したような屈折率1.8以上の光学材料のコアからなる。光導波路の横断面(光伝搬方向と垂直な方向の断面)形状は台形であり、光導波路は細長く伸びている。本例では、光導波路30の上側面が下側面よりも狭くなっている。光導波路30内には、前述したような入射側伝搬部、ブラッググレーティング、出射側伝搬部が形成されている。 24 and 25 relate to this embodiment.
In the
図24(b)のグレーティング素子21Bでは、支持基板10上にバッファ層22が形成されており、バッファ層22内に光導波路30が埋設されている。光導波路の横断面(光伝搬方向と垂直な方向の断面)形状は台形であり、光導波路は細長く伸びている。本例では、光導波路30の上側面が下側面よりも狭くなっている。バッファ層22は、光導波路30上の上側バッファ22b、下側バッファ22aおよび光導波路30の側面を被覆する側面バッファ22cを含む。
In the grating element 21 </ b> B of FIG. 24B, the buffer layer 22 is formed on the support substrate 10, and the optical waveguide 30 is embedded in the buffer layer 22. The cross section of the optical waveguide (cross section in the direction perpendicular to the light propagation direction) is trapezoidal, and the optical waveguide is elongated. In this example, the upper side surface of the optical waveguide 30 is narrower than the lower side surface. The buffer layer 22 includes an upper buffer 22 b on the optical waveguide 30, a lower buffer 22 a, and a side buffer 22 c that covers the side surface of the optical waveguide 30.
図24(c)のグレーティング素子21Cでは、支持基板10上にバッファ層22が形成されており、バッファ層22内に光導波路30Aが埋設されている。光導波路30Aは、前述したような屈折率1.8以上の光学材料からなるコアからなる。光導波路の横断面(光伝搬方向と垂直な方向の断面)形状は台形であり、光導波路は細長く伸びている。本例では、光導波路30Aの下側面が上側面よりも狭くなっている。
In the grating element 21 </ b> C of FIG. 24C, the buffer layer 22 is formed on the support substrate 10, and the optical waveguide 30 </ b> A is embedded in the buffer layer 22. The optical waveguide 30A includes a core made of an optical material having a refractive index of 1.8 or more as described above. The cross section of the optical waveguide (cross section in the direction perpendicular to the light propagation direction) is trapezoidal, and the optical waveguide is elongated. In this example, the lower side surface of the optical waveguide 30A is narrower than the upper side surface.
図25(a)のグレーティング素子21Dでは、支持基板10上にバッファ層16が形成されており、バッファ層16上に光導波路30が形成されている。そして、光導波路20が、別のバッファ層23によって包含され、埋設されている。バッファ層23は、上側バッファ23aおよび側面バッファ23bからなる。本例では、光導波路30の上側面が下側面よりも狭くなっている。
In the grating element 21 </ b> D of FIG. 25A, the buffer layer 16 is formed on the support substrate 10, and the optical waveguide 30 is formed on the buffer layer 16. The optical waveguide 20 is included and embedded by another buffer layer 23. The buffer layer 23 includes an upper buffer 23a and a side buffer 23b. In this example, the upper side surface of the optical waveguide 30 is narrower than the lower side surface.
図25(b)のグレーティング素子21Eでは、支持基板10上にバッファ層16が形成されており、バッファ層16上に光導波路30Aが形成されている。そして、光導波路30Aが、別のバッファ層23によって包含され、埋設されている。バッファ層23は、上側バッファ23aおよび側面バッファ23bからなる。本例では、光導波路30Aの下側面が上側面よりも狭くなっている。
なお、光導波路の幅Wmは、光導波路の横断面における幅のうち最も狭い部分の幅とする。 In thegrating element 21 </ b> E of FIG. 25B, the buffer layer 16 is formed on the support substrate 10, and the optical waveguide 30 </ b> A is formed on the buffer layer 16. The optical waveguide 30 </ b> A is included and embedded by another buffer layer 23. The buffer layer 23 includes an upper buffer 23a and a side buffer 23b. In this example, the lower side surface of the optical waveguide 30A is narrower than the upper side surface.
The width W m of the optical waveguide, the width of the narrowest part of the width in the cross section of the optical waveguide.
なお、光導波路の幅Wmは、光導波路の横断面における幅のうち最も狭い部分の幅とする。 In the
The width W m of the optical waveguide, the width of the narrowest part of the width in the cross section of the optical waveguide.
光導波路の形状については、図26に示すように、ハイメサ構造といわれるものであってもよい。この構造60は、支持基板61の上に下側バッファ層63を形成し、その上に光学材料層64を形成し、その上に上側バッファ層65を形成したものである。この際、下側バッファ層の幅よりも上側バッファ層の幅を狭くすることによって、リッジ形状にする。
The shape of the optical waveguide may be a high mesa structure as shown in FIG. In this structure 60, a lower buffer layer 63 is formed on a support substrate 61, an optical material layer 64 is formed thereon, and an upper buffer layer 65 is formed thereon. At this time, the width of the upper buffer layer is narrower than the width of the lower buffer layer, thereby forming a ridge shape.
リッジ型の導波路は、いずれの場合も光の閉じ込めが強く、横モードがマルチモード化しやすい。特に、光学材料層の厚みが0.5μm以上であり、3μm以下の場合においても、リッジ幅が1μmよりも大きいとマルチモードとなる。
In any case, the ridge-type waveguide has strong light confinement, and the transverse mode is easily converted into a multimode. In particular, even in the case where the thickness of the optical material layer is 0.5 μm or more and 3 μm or less, a multimode is obtained when the ridge width is larger than 1 μm.
光導波路とミラーを組み合わせて光路を曲げる場合、基本モードと高次モードを比較すると、高次モードの方が伝搬損失が大きくなる。この原因は、ミラー部による損失なのかどうかは不明であるが、伝搬距離が長くなることによる損失は高次モードの方が大きくなる。したがって、外部共振器を構成した場合に、高次モードの方が発振しきい値が上がり、レーザ発振しにくくなる。
When the optical path is bent by combining an optical waveguide and a mirror, the propagation loss is higher in the higher order mode when the fundamental mode and the higher order mode are compared. It is unclear whether this is due to the loss caused by the mirror part, but the loss due to the longer propagation distance is greater in the higher order mode. Therefore, when an external resonator is configured, the oscillation threshold is higher in the higher order mode, and laser oscillation is less likely.
ミラーの材質は、反射による損失が小さい金属材料が好ましい。具体的な材料として、金、銀、白金などの貴金属が好ましいが、銅、アルミニウム、モリブデン、タングステン、タンタル、ニッケル、クロムなどの金属でもよい。また、誘電体多層膜であってもよい。
The mirror material is preferably a metal material with small loss due to reflection. As a specific material, noble metals such as gold, silver and platinum are preferable, but metals such as copper, aluminum, molybdenum, tungsten, tantalum, nickel and chromium may be used. Further, it may be a dielectric multilayer film.
また、ミラーの反射面の形状は平面であってよく、凹面であってもよい。導波路の形状は、図27(a)に示すように反射前後でリッジの幅が同じであってよく、異なっていてもよい。さらに、図27(b)のようにテーパ形状の導波路であってもよい。
Further, the shape of the reflecting surface of the mirror may be a flat surface or a concave surface. As shown in FIG. 27A, the shape of the waveguide may be the same as or different from the width of the ridge before and after reflection. Furthermore, it may be a tapered waveguide as shown in FIG.
すなわち、図27(a)に示すように、光導波路の伝搬部67aと67bとの間でミラー8によって光路変更を行う場合、伝搬部67aの幅と67bの幅とは同程度とすることができる。あるいは、図27(b)に示すように、光導波路の伝搬部68aと68fとの間でミラー8によって光路変更を行う場合、ミラー8との接触部分に幅広部68c、68dを形成し、各幅広部と伝搬部68a、68fとの間に、それぞれ幅が徐々に変化するテーパ部68b、68eを設けることができる。
That is, as shown in FIG. 27A, when the optical path is changed by the mirror 8 between the propagation portions 67a and 67b of the optical waveguide, the width of the propagation portion 67a and the width of 67b should be approximately the same. it can. Alternatively, as shown in FIG. 27B, when the optical path is changed by the mirror 8 between the propagation portions 68a and 68f of the optical waveguide, the wide portions 68c and 68d are formed in the contact portion with the mirror 8, Tapered portions 68b and 68e whose width gradually changes can be provided between the wide portion and the propagation portions 68a and 68f, respectively.
一方、曲がり導波路を利用して光路を曲げる場合には、曲がり半径をできるだけ小さくすることが好ましい。一般的に、導波路の最小曲率半径付近の領域においては、高次のモードはカットオフになるために基本モードのみが伝搬可能である。これは高次モードの実効屈折率が基本モードのそれよりも小さいために、閉じ込めが弱いことから生じる現象である。
On the other hand, when the optical path is bent using a bent waveguide, it is preferable to make the bending radius as small as possible. In general, in the region near the minimum curvature radius of the waveguide, since the higher-order mode is cut off, only the fundamental mode can propagate. This is a phenomenon resulting from weak confinement because the effective refractive index of the higher order mode is smaller than that of the fundamental mode.
本願構造の場合、曲がり半径が200μm以下が好ましく、高次モードの伝搬損失を大きく低減させるためには半径100μm以下が好ましく、70μm以下が最も好ましい。
In the case of the structure of the present application, the bending radius is preferably 200 μm or less, and the radius is preferably 100 μm or less, and most preferably 70 μm or less in order to greatly reduce the propagation loss in the higher-order mode.
曲がり損失を低減するために、モード形状が外周方向に変形するモード変換損が発生する。これを改善するために曲がり導波路の接続部においてリッジ導波路の幅方向に軸ずれさせる(オフセットさせる)構造であってよい。
In order to reduce the bending loss, a mode conversion loss occurs in which the mode shape is deformed in the outer circumferential direction. In order to improve this, a structure may be adopted in which the bent waveguide connection portion is offset (offset) in the width direction of the ridge waveguide.
本発明のグレーティング素子においては、光の入射部における光導波路の幅を、光導波路の湾曲部分における光導波路の幅よりも大きくすることができる。湾曲部分における光導波路幅を小さくすることによって光の伝搬損失を低減できる。これと共に、光の入射部における光導波路幅を相対的に大きくすることによって、入射光の結合損失を低減できる。
In the grating element of the present invention, the width of the optical waveguide at the light incident portion can be made larger than the width of the optical waveguide at the curved portion of the optical waveguide. The propagation loss of light can be reduced by reducing the width of the optical waveguide in the curved portion. At the same time, the coupling loss of incident light can be reduced by relatively increasing the width of the optical waveguide at the light incident portion.
また、本発明のグレーティング素子においては、光の出射部における光導波路の幅を、光導波路の湾曲部分における光導波路の幅よりも大きくすることができる。湾曲部分における光導波路幅を小さくすることによって光の伝搬損失を低減できる。これと共に、光の出射部における光導波路幅を相対的に大きくすることによって、出射側にある光部品への結合効率を向上させることができる。
Further, in the grating element of the present invention, the width of the optical waveguide in the light emitting portion can be made larger than the width of the optical waveguide in the curved portion of the optical waveguide. The propagation loss of light can be reduced by reducing the width of the optical waveguide in the curved portion. At the same time, by relatively increasing the width of the optical waveguide at the light emitting portion, the coupling efficiency to the optical component on the emitting side can be improved.
例えば、図30の例では、グレーティング素子29Dには、四つの側面29a、29b、29c、29dが形成されており、側面29aに光源1および光導波路素子21が対向するように取り付けられている。各素子の端面に設ける反射膜や無反射膜などは図示省略している。
For example, in the example of FIG. 30, the grating element 29D has four side surfaces 29a, 29b, 29c, and 29d, and the light source 1 and the optical waveguide element 21 are attached to the side surface 29a so as to face each other. A reflective film and a non-reflective film provided on the end face of each element are not shown.
光導波路75は、入射側伝搬部75a、ブラッググレーティング12、テーパ部75b、湾曲部分75c、テーパ部75d、出射側伝搬部75eを備えている。本例では、伝搬部75a、75eは真っ直ぐに延びている。入射側伝搬部75aにおける光導波路幅Win、出射側伝搬部75eにおける幅Wmよりも、湾曲部分75cにおける幅Wbが小さくなっている。本例では、入射側伝搬部と湾曲部分との間に、光導波路幅が徐々に小さくなるテーパ部75bが設けられており、湾曲部分と出射側伝搬部との間に、光導波路幅が徐々に大きくなるテーパ部75dが設けられている。
The optical waveguide 75 includes an incident side propagation part 75a, a Bragg grating 12, a taper part 75b, a curved part 75c, a taper part 75d, and an emission side propagation part 75e. In this example, the propagation parts 75a and 75e extend straight. The width W b of the curved portion 75c is smaller than the optical waveguide width W in of the incident side propagation portion 75a and the width W m of the emission side propagation portion 75e. In this example, a tapered portion 75b in which the optical waveguide width gradually decreases is provided between the incident side propagation portion and the curved portion, and the optical waveguide width gradually increases between the curved portion and the emission side propagation portion. A taper portion 75d that is large is provided.
また、図31のグレーティング素子29Eでは、光導波路76は、入射側伝搬部76a、テーパ部76b、湾曲部分76c、直線状伝搬部76d、テーパ部76e、出射側伝搬部76fを備えている。入射側伝搬部76aにおける光導波路幅Win、出射側伝搬部76fにおける幅Wmよりも、湾曲部分76cにおける幅Wbが小さくなっている。
In the grating element 29E of FIG. 31, the optical waveguide 76 includes an incident side propagation part 76a, a taper part 76b, a curved part 76c, a linear propagation part 76d, a taper part 76e, and an emission side propagation part 76f. Optical waveguide width W in the entrance-side propagating portion 76a, than the width W m at the exit side propagating portion 76f, the width W b of the curved portion 76c is smaller.
本例では、ブラッググレーティング12が、光路変更部である湾曲部分76cの下流にある。こうした光路変更部では、横モードのマルチモードの伝搬を抑制できるので、グレーティングを後段に配置することにより、基本モードを選択的にレーザ発振することが可能である。
In this example, the Bragg grating 12 is downstream of the curved portion 76c that is the optical path changing portion. Such an optical path changing unit can suppress the propagation of the multimode in the transverse mode, and therefore, it is possible to selectively oscillate the fundamental mode by arranging the grating in the subsequent stage.
光の入射部、出射部における光導波路の幅は、上記した観点からは、1.6μm以上とすることが好ましく、2.0μm以上とすることが更に好ましい。また、湾曲部分における光導波路の幅は、損失低減という観点からは、1.6μm以下とすることが好ましく、1.5μm以下とすることが更に好ましい。一方、光導波路幅が小さくなり過ぎると伝搬損失が増大するので、湾曲部分における光導波路幅は0.3μm以上とすることが好ましい。
From the viewpoint described above, the width of the optical waveguide at the light entrance and exit is preferably 1.6 μm or more, and more preferably 2.0 μm or more. The width of the optical waveguide in the curved portion is preferably 1.6 μm or less, and more preferably 1.5 μm or less, from the viewpoint of reducing loss. On the other hand, if the width of the optical waveguide becomes too small, the propagation loss increases. Therefore, the width of the optical waveguide in the curved portion is preferably 0.3 μm or more.
また、入射部、出射部における光導波路幅と湾曲部分における光導波路幅との差は、上記した観点からは、1.0μm以上が好ましい。一方、入射部、出射部における光導波路幅と湾曲部分における光導波路幅との差が大きくなり過ぎると、この接続部分における損失が大きくなるので、この差は4.0μm以下が好ましい。
Further, the difference between the optical waveguide width at the incident portion and the outgoing portion and the optical waveguide width at the curved portion is preferably 1.0 μm or more from the above viewpoint. On the other hand, if the difference between the optical waveguide width at the incident part and the outgoing part and the optical waveguide width at the curved part becomes too large, the loss at this connection part becomes large, so this difference is preferably 4.0 μm or less.
また、他の発明に係る光導波路基板は、光を伝搬する細長いコアと、このコアに接するクラッドとを有するチャネル型光導波路を備えており、前記光導波路基板の主面から見たときに前記コアが湾曲する湾曲部分を含む。そして、コアの横断面が凸図形をなしており、コアの屈折率が1.7以上、かつ3.5以下であって、コアの屈折率とクラッドの屈折率との差△nが0.3以上であり、コアの幅が1.5μm以下であり、コアの厚さが0.5μm以上、2.0μm以下であり、湾曲部分の曲率半径が100μm以下である。
この光導波路基板は、グレーティング素子の他、アイソレータ、偏光素子、光スイッチ、光変調器、波長変換素子、光増幅器、光フィルタに好適に使用できる。 An optical waveguide substrate according to another invention includes a channel-type optical waveguide having an elongated core for propagating light and a clad in contact with the core, and when viewed from the main surface of the optical waveguide substrate, The core includes a curved portion that is curved. The cross section of the core has a convex shape, the refractive index of the core is 1.7 or more and 3.5 or less, and the difference Δn between the refractive index of the core and the refractive index of the clad is 0. 3 or more, the core width is 1.5 μm or less, the core thickness is 0.5 μm or more and 2.0 μm or less, and the curvature radius of the curved portion is 100 μm or less.
This optical waveguide substrate can be suitably used for an isolator, a polarizing element, an optical switch, an optical modulator, a wavelength conversion element, an optical amplifier, and an optical filter in addition to a grating element.
この光導波路基板は、グレーティング素子の他、アイソレータ、偏光素子、光スイッチ、光変調器、波長変換素子、光増幅器、光フィルタに好適に使用できる。 An optical waveguide substrate according to another invention includes a channel-type optical waveguide having an elongated core for propagating light and a clad in contact with the core, and when viewed from the main surface of the optical waveguide substrate, The core includes a curved portion that is curved. The cross section of the core has a convex shape, the refractive index of the core is 1.7 or more and 3.5 or less, and the difference Δn between the refractive index of the core and the refractive index of the clad is 0. 3 or more, the core width is 1.5 μm or less, the core thickness is 0.5 μm or more and 2.0 μm or less, and the curvature radius of the curved portion is 100 μm or less.
This optical waveguide substrate can be suitably used for an isolator, a polarizing element, an optical switch, an optical modulator, a wavelength conversion element, an optical amplifier, and an optical filter in addition to a grating element.
このような湾曲部分においては、曲率半径が100μm以下と従来技術に比べて著しく小さいのにもかかわらず、湾曲部分における伝搬損失を低く抑えることができる点で画期的である。
曲率半径は、コアとクラッドの屈折率差が同じでも光導波路の実効屈折率が大きいほど小さくすることができる。このことからコアの屈折率は大きいほど曲率半径を小さくすることができる。この観点からコアの材質の屈折率は、1.7以上であることが好ましく、1.9以上であることが更に好ましい。しかし、コアの屈折率が大きすぎると、シングルモードを得るための断面寸法が小さくなり光スポット径が小さくなってしまう。これにより半導体レーザや光ファイバとの結合損失が大きくなるという問題が発生する。この観点からコアの屈折率は、3.5以下であることが好ましく、3.0以下が更に好ましい。 In such a curved portion, although the radius of curvature is 100 μm or less, which is remarkably small compared to the prior art, it is epoch-making in that the propagation loss in the curved portion can be kept low.
The radius of curvature can be made smaller as the effective refractive index of the optical waveguide is larger even if the refractive index difference between the core and the clad is the same. From this, the radius of curvature can be reduced as the refractive index of the core increases. From this viewpoint, the refractive index of the core material is preferably 1.7 or more, and more preferably 1.9 or more. However, if the refractive index of the core is too large, the cross-sectional dimension for obtaining a single mode will be small and the light spot diameter will be small. This causes a problem that the coupling loss with the semiconductor laser or the optical fiber increases. From this viewpoint, the refractive index of the core is preferably 3.5 or less, and more preferably 3.0 or less.
曲率半径は、コアとクラッドの屈折率差が同じでも光導波路の実効屈折率が大きいほど小さくすることができる。このことからコアの屈折率は大きいほど曲率半径を小さくすることができる。この観点からコアの材質の屈折率は、1.7以上であることが好ましく、1.9以上であることが更に好ましい。しかし、コアの屈折率が大きすぎると、シングルモードを得るための断面寸法が小さくなり光スポット径が小さくなってしまう。これにより半導体レーザや光ファイバとの結合損失が大きくなるという問題が発生する。この観点からコアの屈折率は、3.5以下であることが好ましく、3.0以下が更に好ましい。 In such a curved portion, although the radius of curvature is 100 μm or less, which is remarkably small compared to the prior art, it is epoch-making in that the propagation loss in the curved portion can be kept low.
The radius of curvature can be made smaller as the effective refractive index of the optical waveguide is larger even if the refractive index difference between the core and the clad is the same. From this, the radius of curvature can be reduced as the refractive index of the core increases. From this viewpoint, the refractive index of the core material is preferably 1.7 or more, and more preferably 1.9 or more. However, if the refractive index of the core is too large, the cross-sectional dimension for obtaining a single mode will be small and the light spot diameter will be small. This causes a problem that the coupling loss with the semiconductor laser or the optical fiber increases. From this viewpoint, the refractive index of the core is preferably 3.5 or less, and more preferably 3.0 or less.
コアの屈折率とクラッドの屈折率との差△nは、湾曲部分における伝搬損失を低減するという観点からは、0.3以上が好ましく、0.5以上が更に好ましい。
また、湾曲部分におけるコアの幅は、横方向をシングルモードとして湾曲部分における伝搬損失を低減するという観点から1.5μm以下とするが、1.3μm以下が好ましく、1.0μm以下が更に好ましい。また、湾曲部分におけるコアの幅が小さすぎると、カットオフ付近となり不安定になり損失が大きくなる傾向があることから、0.3μm以上であることが好ましく、0.5μm以上であることが更に好ましい。 The difference Δn between the refractive index of the core and the refractive index of the cladding is preferably 0.3 or more, and more preferably 0.5 or more, from the viewpoint of reducing the propagation loss in the curved portion.
In addition, the width of the core in the curved portion is 1.5 μm or less from the viewpoint of reducing the propagation loss in the curved portion by setting the transverse direction as a single mode, but is preferably 1.3 μm or less, and more preferably 1.0 μm or less. In addition, if the core width in the curved portion is too small, it becomes unstable near the cutoff and tends to increase the loss. Therefore, it is preferably 0.3 μm or more, and more preferably 0.5 μm or more. preferable.
また、湾曲部分におけるコアの幅は、横方向をシングルモードとして湾曲部分における伝搬損失を低減するという観点から1.5μm以下とするが、1.3μm以下が好ましく、1.0μm以下が更に好ましい。また、湾曲部分におけるコアの幅が小さすぎると、カットオフ付近となり不安定になり損失が大きくなる傾向があることから、0.3μm以上であることが好ましく、0.5μm以上であることが更に好ましい。 The difference Δn between the refractive index of the core and the refractive index of the cladding is preferably 0.3 or more, and more preferably 0.5 or more, from the viewpoint of reducing the propagation loss in the curved portion.
In addition, the width of the core in the curved portion is 1.5 μm or less from the viewpoint of reducing the propagation loss in the curved portion by setting the transverse direction as a single mode, but is preferably 1.3 μm or less, and more preferably 1.0 μm or less. In addition, if the core width in the curved portion is too small, it becomes unstable near the cutoff and tends to increase the loss. Therefore, it is preferably 0.3 μm or more, and more preferably 0.5 μm or more. preferable.
また、コアの厚さは、湾曲部分における伝搬損失を低減するという観点から2.0μm以下とするが、1.5μm以下が更に好ましい。また、また、伝搬損失を低減するという観点からは、コアの厚さは、0.5μm以上とするが、0.7μm以上が更に好ましい。
Further, the thickness of the core is set to 2.0 μm or less from the viewpoint of reducing the propagation loss in the curved portion, but more preferably 1.5 μm or less. Further, from the viewpoint of reducing propagation loss, the thickness of the core is set to 0.5 μm or more, more preferably 0.7 μm or more.
湾曲部分の曲率半径は100μm以下とするが、50μm以下でも可能である。
また、従来の光導波路に比べて伝搬損失の低減という作用効果が得られる限り、湾曲部分の曲率半径の下限は特に限定する必要はないが、伝搬損失を一般的に向上させるという観点からは、湾曲部分の曲率半径を10μm以上としてもよく、15μm以上としても良い。 The radius of curvature of the curved portion is 100 μm or less, but can be 50 μm or less.
In addition, as long as the effect of reducing propagation loss as compared with the conventional optical waveguide can be obtained, the lower limit of the radius of curvature of the curved portion is not particularly limited, but from the viewpoint of generally improving the propagation loss, The curvature radius of the curved portion may be 10 μm or more, or 15 μm or more.
また、従来の光導波路に比べて伝搬損失の低減という作用効果が得られる限り、湾曲部分の曲率半径の下限は特に限定する必要はないが、伝搬損失を一般的に向上させるという観点からは、湾曲部分の曲率半径を10μm以上としてもよく、15μm以上としても良い。 The radius of curvature of the curved portion is 100 μm or less, but can be 50 μm or less.
In addition, as long as the effect of reducing propagation loss as compared with the conventional optical waveguide can be obtained, the lower limit of the radius of curvature of the curved portion is not particularly limited, but from the viewpoint of generally improving the propagation loss, The curvature radius of the curved portion may be 10 μm or more, or 15 μm or more.
好適な実施形態においては、光導波路基板が、コアおよびクラッドを支持する支持基板を備えている。
また、好適な実施形態においては、コアの材質が、ガリウム砒素、ニオブ酸リチウム単結晶、酸化タンタル、酸化亜鉛およびアルミナからなる群より選択される。
また、好適な実施形態においては、クラッドの材質が、SiO2、ポリイミド、SiO2系ガラス、MgFから選択されるが、これらに限定はされない。 In a preferred embodiment, the optical waveguide substrate includes a support substrate that supports the core and the clad.
In a preferred embodiment, the material of the core is selected from the group consisting of gallium arsenide, lithium niobate single crystal, tantalum oxide, zinc oxide, and alumina.
In a preferred embodiment, the cladding material is selected from SiO2, polyimide, SiO2 glass, and MgF, but is not limited thereto.
また、好適な実施形態においては、コアの材質が、ガリウム砒素、ニオブ酸リチウム単結晶、酸化タンタル、酸化亜鉛およびアルミナからなる群より選択される。
また、好適な実施形態においては、クラッドの材質が、SiO2、ポリイミド、SiO2系ガラス、MgFから選択されるが、これらに限定はされない。 In a preferred embodiment, the optical waveguide substrate includes a support substrate that supports the core and the clad.
In a preferred embodiment, the material of the core is selected from the group consisting of gallium arsenide, lithium niobate single crystal, tantalum oxide, zinc oxide, and alumina.
In a preferred embodiment, the cladding material is selected from SiO2, polyimide, SiO2 glass, and MgF, but is not limited thereto.
本光導波路基板は、図24、図25を参照して説明したような、細長いコアを光導波路部分として利用するものである。
すなわち、リッジ型光導波路において、リッジ溝の下にある光学材料を除去してしまうことで、ストライプ状の細長いコアを形成することができる。この場合には、リッジ型光導波路が、光学材料からなる細長いコアからなり、コアの横断面が凸図形をなしている。このコアの周りには、バッファ層(クラッド層)や空気層が存在しており、バッファ層や空気層がクラッドとして機能する。 This optical waveguide substrate uses an elongate core as an optical waveguide portion as described with reference to FIGS.
That is, in the ridge type optical waveguide, the striped elongated core can be formed by removing the optical material under the ridge groove. In this case, the ridge-type optical waveguide is composed of an elongated core made of an optical material, and the cross section of the core forms a convex figure. A buffer layer (cladding layer) and an air layer exist around the core, and the buffer layer and the air layer function as a clad.
すなわち、リッジ型光導波路において、リッジ溝の下にある光学材料を除去してしまうことで、ストライプ状の細長いコアを形成することができる。この場合には、リッジ型光導波路が、光学材料からなる細長いコアからなり、コアの横断面が凸図形をなしている。このコアの周りには、バッファ層(クラッド層)や空気層が存在しており、バッファ層や空気層がクラッドとして機能する。 This optical waveguide substrate uses an elongate core as an optical waveguide portion as described with reference to FIGS.
That is, in the ridge type optical waveguide, the striped elongated core can be formed by removing the optical material under the ridge groove. In this case, the ridge-type optical waveguide is composed of an elongated core made of an optical material, and the cross section of the core forms a convex figure. A buffer layer (cladding layer) and an air layer exist around the core, and the buffer layer and the air layer function as a clad.
凸図形とは、コアの横断面の外側輪郭線の任意の二点を結ぶ線分が、コアの横断面の外側輪郭線の内側に位置することを意味する。このような図形としては、三角形、四角形、六角形、八角形などの多角形、円形、楕円形などを例示できる。四角形としては、特に、上辺と下辺と一対の側面を有する四角形が好ましく、台形が特に好ましい。
The convex figure means that a line segment connecting any two points of the outer contour line of the core cross section is located inside the outer contour line of the core cross section. Examples of such figures include triangles, quadrangles, hexagons, octagons, and other polygons, circles, ellipses, and the like. As the quadrangle, a quadrangle having an upper side, a lower side, and a pair of side surfaces is particularly preferable, and a trapezoid is particularly preferable.
この例として、図24、図25に例示したものの他、図32に示すような形態も例示できる。
すなわち、図32(a)の光導波路基板75では、支持基板10上にバッファ層16が形成されており、バッファ層16上に光導波路(コア)30が形成されている。光導波路30は、好ましくは前述したような屈折率1.8以上の光学材料からなるコアからなる。光導波路の横断面(光伝搬方向と垂直な方向の断面)形状は台形であり、光導波路は細長く伸びている。本例では、光導波路30の上側面が下側面よりも狭くなっている。また、光導波路30の両側には溝77が形成されており、溝77の外側にそれぞれ延在部76が形成されている。光導波路30および延在部76をそれぞれ被覆するように上側クラッド17が形成されている。
本例では、光導波路幅Wmが1.5μm以下であり、厚さTsが0.5~2.0μmである。 As an example of this, in addition to what is illustrated in FIGS. 24 and 25, a form as shown in FIG. 32 can also be illustrated.
That is, in theoptical waveguide substrate 75 of FIG. 32A, the buffer layer 16 is formed on the support substrate 10, and the optical waveguide (core) 30 is formed on the buffer layer 16. The optical waveguide 30 is preferably composed of a core made of an optical material having a refractive index of 1.8 or more as described above. The cross section of the optical waveguide (cross section in the direction perpendicular to the light propagation direction) is trapezoidal, and the optical waveguide is elongated. In this example, the upper side surface of the optical waveguide 30 is narrower than the lower side surface. Further, grooves 77 are formed on both sides of the optical waveguide 30, and extending portions 76 are formed outside the grooves 77, respectively. An upper clad 17 is formed so as to cover the optical waveguide 30 and the extending portion 76, respectively.
In this example, the optical waveguide width W m is at 1.5μm or less, thickness Ts is 0.5 ~ 2.0 .mu.m.
すなわち、図32(a)の光導波路基板75では、支持基板10上にバッファ層16が形成されており、バッファ層16上に光導波路(コア)30が形成されている。光導波路30は、好ましくは前述したような屈折率1.8以上の光学材料からなるコアからなる。光導波路の横断面(光伝搬方向と垂直な方向の断面)形状は台形であり、光導波路は細長く伸びている。本例では、光導波路30の上側面が下側面よりも狭くなっている。また、光導波路30の両側には溝77が形成されており、溝77の外側にそれぞれ延在部76が形成されている。光導波路30および延在部76をそれぞれ被覆するように上側クラッド17が形成されている。
本例では、光導波路幅Wmが1.5μm以下であり、厚さTsが0.5~2.0μmである。 As an example of this, in addition to what is illustrated in FIGS. 24 and 25, a form as shown in FIG. 32 can also be illustrated.
That is, in the
In this example, the optical waveguide width W m is at 1.5μm or less, thickness Ts is 0.5 ~ 2.0 .mu.m.
本発明の光導波路基板は、グレーティング素子に好適に適用でき、例えば図8、図9、図13、図14、図16、図17、図28、図30、図31に示す光導波路の湾曲部分に対して適用可能である。また、例えば図33に示すような後述の光導波路81に対して適用可能である。ただし、これらの各例では、光導波路の平面的パターンのみを図示している。
The optical waveguide substrate of the present invention can be suitably applied to a grating element. For example, the curved portion of the optical waveguide shown in FIGS. 8, 9, 13, 14, 16, 17, 28, 30, and 31. Is applicable. For example, the present invention can be applied to an optical waveguide 81 described later as shown in FIG. However, in each of these examples, only the planar pattern of the optical waveguide is illustrated.
図10~図14に示すような、光源実装部のエッチングの方法については、以下の方法で実施することができる。
まず、グレーティング素子(実際にはウエハの状態)の表面全面にTi、Ni、等の金属を成膜して、レジスト塗布後、マスクアライナーにて半導体レーザの外周エリアをエッチングするためのメタルマスクパターンを形成し、フッ素系ガスのドライエッチングにより支持基板上までエッチングし、半導体レーザの実装部を形成することができる。光導波路の入射側端面は、光軸に対して89°以上の角度をなすことが可能であり、かつ鏡面とすることも可能である。その後、入力端面には無反射コートすることも可能である。 The light source mounting portion etching method as shown in FIGS. 10 to 14 can be performed by the following method.
First, a metal mask pattern for forming a metal such as Ti, Ni, etc. on the entire surface of the grating element (actually in a wafer state), applying a resist, and etching the outer peripheral area of the semiconductor laser with a mask aligner The semiconductor laser mounting portion can be formed by etching the support substrate by dry etching with a fluorine-based gas. The incident-side end face of the optical waveguide can make an angle of 89 ° or more with respect to the optical axis, and can also be a mirror surface. Thereafter, the input end face can be coated without reflection.
まず、グレーティング素子(実際にはウエハの状態)の表面全面にTi、Ni、等の金属を成膜して、レジスト塗布後、マスクアライナーにて半導体レーザの外周エリアをエッチングするためのメタルマスクパターンを形成し、フッ素系ガスのドライエッチングにより支持基板上までエッチングし、半導体レーザの実装部を形成することができる。光導波路の入射側端面は、光軸に対して89°以上の角度をなすことが可能であり、かつ鏡面とすることも可能である。その後、入力端面には無反射コートすることも可能である。 The light source mounting portion etching method as shown in FIGS. 10 to 14 can be performed by the following method.
First, a metal mask pattern for forming a metal such as Ti, Ni, etc. on the entire surface of the grating element (actually in a wafer state), applying a resist, and etching the outer peripheral area of the semiconductor laser with a mask aligner The semiconductor laser mounting portion can be formed by etching the support substrate by dry etching with a fluorine-based gas. The incident-side end face of the optical waveguide can make an angle of 89 ° or more with respect to the optical axis, and can also be a mirror surface. Thereafter, the input end face can be coated without reflection.
(実施例1)
図1、図2、図4、図6に示すような装置を作製した。
具体的には、z板MgOドープのニオブ酸リチウム結晶基板にTiを成膜して、フォトリソグラフィー技術によりy軸方向にグレーティングパターンを作製した。その後、Tiパターンをマスクにしてフッ素系の反応性イオンエッチングにより、ピッチ間隔Λ 222nm、長さLb 100μmのグレーティング溝12を形成した。グレーティングの溝深さtd(図6)は40nmであった。 (Example 1)
Devices as shown in FIGS. 1, 2, 4, and 6 were produced.
Specifically, Ti was deposited on a z-plate MgO-doped lithium niobate crystal substrate, and a grating pattern was produced in the y-axis direction by photolithography. Then, by reactive ion etching of the fluorine-based and the Ti pattern as a mask, to form thegrating grooves 12 of the pitch lambda 222 nm, the length L b 100 [mu] m. The groove depth t d (FIG. 6) of the grating was 40 nm.
図1、図2、図4、図6に示すような装置を作製した。
具体的には、z板MgOドープのニオブ酸リチウム結晶基板にTiを成膜して、フォトリソグラフィー技術によりy軸方向にグレーティングパターンを作製した。その後、Tiパターンをマスクにしてフッ素系の反応性イオンエッチングにより、ピッチ間隔Λ 222nm、長さLb 100μmのグレーティング溝12を形成した。グレーティングの溝深さtd(図6)は40nmであった。 (Example 1)
Devices as shown in FIGS. 1, 2, 4, and 6 were produced.
Specifically, Ti was deposited on a z-plate MgO-doped lithium niobate crystal substrate, and a grating pattern was produced in the y-axis direction by photolithography. Then, by reactive ion etching of the fluorine-based and the Ti pattern as a mask, to form the
続いて、上記と同様なプロセスにて反応性イオンエッチングにて光導波路18を形成し、幅Wm 3μm、Tr 0.5μmのリッジ溝19を形成した。更に、溝形成面にSiO2からなるバッファ層16をスパッタ装置で0.5μm成膜し、支持基板10としてブラックLN基板を使用してグレーティング形成面を接着した。
Subsequently, an optical waveguide 18 was formed by reactive ion etching in the same process as described above, and a ridge groove 19 having a width W m of 3 μm and a Tr of 0.5 μm was formed. Further, a buffer layer 16 made of SiO 2 was formed on the groove forming surface by a sputtering apparatus to a thickness of 0.5 μm, and a black LN substrate was used as the support substrate 10 to adhere the grating forming surface.
次に、支持基板10を研磨定盤に貼り付け、グレーティングを形成した層の裏面を精密研磨して、光学材料層11の厚み(Ts)を1.0μmとした。その後、得られたアセンブリを定盤から外し、90°曲げるためのミラーを形成するために上記と同様にTiマスクを使用した反応性イオンエッチングを行い、ミラー形成部において1μm厚みのニオブ酸リチウムをエッチングした。その後、蒸着にて金を成膜してミラー8A、8Bを形成した。次にスパッタにてSiO2からなるバッファ層17を0.5μm成膜した。
Next, the support substrate 10 was attached to a polishing surface plate, and the back surface of the layer on which the grating was formed was precisely polished, so that the thickness (T s ) of the optical material layer 11 was 1.0 μm. Thereafter, the obtained assembly is removed from the surface plate, and reactive ion etching using a Ti mask is performed in the same manner as described above to form a mirror for bending by 90 °, and 1 μm-thick lithium niobate is formed in the mirror forming portion. Etched. Thereafter, gold was deposited by vapor deposition to form mirrors 8A and 8B. Next, 0.5 μm of a buffer layer 17 made of SiO 2 was formed by sputtering.
その後、ダイシング装置にてアセンブリをバー状に切断し、半導体レーザと波長変換素子を実装する端面を光学研磨し、この端面に0.1%以下のARコートを形成し、最後にチップ切断を行い、グレーティング素子を作製した。素子サイズは1mm×1mm角とした。
After that, the assembly is cut into a bar shape with a dicing machine, the end surface on which the semiconductor laser and the wavelength conversion element are mounted is optically polished, an AR coat of 0.1% or less is formed on this end surface, and finally the chip is cut, and the grating An element was produced. The element size was 1 mm × 1 mm square.
グレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子に光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。その結果、TEモードに対して中心波長975nm、最大反射率は20%で、半値全幅△λGは2nmの特性を得た。
Optical characteristics of the grating element are reflected from its transmission characteristics by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting light into the grating element and analyzing the output light with an optical spectrum analyzer. Characteristics were evaluated. As a result, with respect to the TE mode, the center wavelength was 975 nm, the maximum reflectance was 20%, and the full width at half maximum Δλ G was 2 nm.
次に、このグレーティング素子を使用した外部共振器型レーザの特性評価のために、図1に示すようにレーザモジュールを実装した。光源素子として、単独で発振するGaAs系レーザを使用した。
光源素子仕様:
中心波長: 977nm
出力: 50mW
半値幅: 0.1nm
レーザ素子長 300μm
実装仕様:
(入射側伝搬部の長さ)Lm: 20μm
(光源の出射面と光導波路の入射面との距離)Lg: 1μm Next, a laser module was mounted as shown in FIG. 1 in order to evaluate the characteristics of an external resonator type laser using this grating element. A GaAs laser that oscillates alone was used as the light source element.
Light source element specifications:
Center wavelength: 977nm
Output: 50mW
Half width: 0.1 nm
Laser element length 300μm
Mounting specifications:
(Length of incident side propagation part) Lm: 20 μm
(Distance between light source exit surface and light guide entrance surface) Lg: 1 μm
光源素子仕様:
中心波長: 977nm
出力: 50mW
半値幅: 0.1nm
レーザ素子長 300μm
実装仕様:
(入射側伝搬部の長さ)Lm: 20μm
(光源の出射面と光導波路の入射面との距離)Lg: 1μm Next, a laser module was mounted as shown in FIG. 1 in order to evaluate the characteristics of an external resonator type laser using this grating element. A GaAs laser that oscillates alone was used as the light source element.
Light source element specifications:
Center wavelength: 977nm
Output: 50mW
Half width: 0.1 nm
Laser element length 300μm
Mounting specifications:
(Length of incident side propagation part) Lm: 20 μm
(Distance between light source exit surface and light guide entrance surface) Lg: 1 μm
モジュール実装後、ペルチェ素子を使用することなく電流制御(ACC)で駆動したところ、中心波長975nm、出力30mWのレーザ特性であった。また動作温度範囲を評価するために恒温槽内にモジュールを設置し、レーザ発振波長の温度依存性、モードホップが起こる温度、出力変動を測定した。その結果、発振波長の温度係数は0.05nm/℃、モードホップ温度60℃、パワー出力変動は1%以内であった。
When the module was mounted and driven by current control (ACC) without using a Peltier element, the laser characteristics were a center wavelength of 975 nm and an output of 30 mW. In order to evaluate the operating temperature range, a module was installed in a thermostatic chamber, and the temperature dependence of the laser oscillation wavelength, the temperature at which the mode hop occurred, and the output fluctuation were measured. As a result, the temperature coefficient of the oscillation wavelength was 0.05 nm / ° C., the mode hop temperature was 60 ° C., and the power output fluctuation was within 1%.
(参考例1)
実施例1と同様に、z板MgOドープのニオブ酸リチウム結晶基板にTiを成膜して、フォトリソグラフィー技術によりy軸方向にグレーティングパターンを作製した。その後、Tiパターンをマスクにしてフッ素系の反応性イオンエッチングによりピッチ間隔Λ 180nm、長さLb 1000μmのグレーティング溝を形成した。グレーティングの溝深さは300nmであった。また、y軸伝搬の光導波路を形成するためにエキシマレーザにてグレーティング部に幅Wm3μm、Tr 0.5μmの溝加工を実施した。
さらに、溝形成面にSiO2からなるバッファ層16をスパッタ装置で0.5μm成膜し、支持基板としてブラックLN基板を使用してグレーティング形成面を接着した。 (Reference Example 1)
Similarly to Example 1, Ti was deposited on a z-plate MgO-doped lithium niobate crystal substrate, and a grating pattern was produced in the y-axis direction by photolithography. Thereafter, a grating groove having a pitch interval of Λ 180 nm and a length of L b of 1000 μm was formed by fluorine-based reactive ion etching using the Ti pattern as a mask. The groove depth of the grating was 300 nm. In addition, in order to form an optical waveguide for y-axis propagation, a groove with awidth W m of 3 μm and a Tr of 0.5 μm was formed on the grating portion with an excimer laser.
Further, abuffer layer 16 made of SiO 2 was formed on the groove forming surface by a sputtering apparatus to a thickness of 0.5 μm, and the grating forming surface was adhered using a black LN substrate as a supporting substrate.
実施例1と同様に、z板MgOドープのニオブ酸リチウム結晶基板にTiを成膜して、フォトリソグラフィー技術によりy軸方向にグレーティングパターンを作製した。その後、Tiパターンをマスクにしてフッ素系の反応性イオンエッチングによりピッチ間隔Λ 180nm、長さLb 1000μmのグレーティング溝を形成した。グレーティングの溝深さは300nmであった。また、y軸伝搬の光導波路を形成するためにエキシマレーザにてグレーティング部に幅Wm3μm、Tr 0.5μmの溝加工を実施した。
さらに、溝形成面にSiO2からなるバッファ層16をスパッタ装置で0.5μm成膜し、支持基板としてブラックLN基板を使用してグレーティング形成面を接着した。 (Reference Example 1)
Similarly to Example 1, Ti was deposited on a z-plate MgO-doped lithium niobate crystal substrate, and a grating pattern was produced in the y-axis direction by photolithography. Thereafter, a grating groove having a pitch interval of Λ 180 nm and a length of L b of 1000 μm was formed by fluorine-based reactive ion etching using the Ti pattern as a mask. The groove depth of the grating was 300 nm. In addition, in order to form an optical waveguide for y-axis propagation, a groove with a
Further, a
次に、支持基板を研磨定盤に貼り付け、グレーティングを形成したMgOドープニオブ酸リチウム結晶基板の裏面を精密研磨して、1μmの厚み(Ts)とした。その後、定盤からアセンブリを外し、研磨面をスパッタにてSiO2からなるバッファ層17を0.5μm成膜した。その後、ダイシング装置にてバー状に切断し、両端面を光学研磨し、両端面を0.1%以下のARコートを形成し、最後にチップ切断を行いグレーティング素子を作製した。素子サイズは幅1mm、長さ1500μmとした。
Next, the support substrate was attached to a polishing surface plate, and the back surface of the MgO-doped lithium niobate crystal substrate on which the grating was formed was precisely polished to a thickness (T s ) of 1 μm. Thereafter, the assembly was removed from the surface plate, and the buffer layer 17 made of SiO 2 was formed to a thickness of 0.5 μm by sputtering on the polished surface. Then, it cut | disconnected in bar shape with the dicing apparatus, both ends were optically polished, both ends were formed with AR coating of 0.1% or less, and finally the chip was cut to produce a grating element. The element size was 1 mm wide and 1500 μm long.
グレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子に光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。その結果、x軸方向の偏光(常光)に対して中心波長800nm、最大反射率は10%で、半値全幅△λGは0.2nmの特性を得た。
Optical characteristics of the grating element are reflected from its transmission characteristics by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting light into the grating element and analyzing the output light with an optical spectrum analyzer. Characteristics were evaluated. As a result, with respect to polarized light in the x-axis direction (ordinary light), a center wavelength of 800 nm, a maximum reflectance of 10%, and a full width at half maximum Δλ G of 0.2 nm were obtained.
次に、このグレーティング素子を使用した外部共振器型レーザの特性評価のために、レーザモジュールを実装した。光源素子としてGaAs系レーザ構造を有し、片端面には高反射膜、もう一方の端面は反射率0.1%のARコートを成膜したものを用意した。
光源素子仕様:
中心波長: 800nm
レーザ素子長: 1000μm
実装仕様:
(入射側伝搬部の長さ)Lm: 20μm
(光源の出射面と光導波路の入射面との距離)Lg: 1μm Next, a laser module was mounted in order to evaluate the characteristics of an external resonator type laser using this grating element. A light source element having a GaAs laser structure, a highly reflective film on one end face, and an AR coat having a reflectance of 0.1% on the other end face was prepared.
Light source element specifications:
Center wavelength: 800nm
Laser element length: 1000μm
Mounting specifications:
(Length of incident side propagation part) Lm: 20 μm
(Distance between light source exit surface and light guide entrance surface) Lg: 1 μm
光源素子仕様:
中心波長: 800nm
レーザ素子長: 1000μm
実装仕様:
(入射側伝搬部の長さ)Lm: 20μm
(光源の出射面と光導波路の入射面との距離)Lg: 1μm Next, a laser module was mounted in order to evaluate the characteristics of an external resonator type laser using this grating element. A light source element having a GaAs laser structure, a highly reflective film on one end face, and an AR coat having a reflectance of 0.1% on the other end face was prepared.
Light source element specifications:
Center wavelength: 800nm
Laser element length: 1000μm
Mounting specifications:
(Length of incident side propagation part) Lm: 20 μm
(Distance between light source exit surface and light guide entrance surface) Lg: 1 μm
モジュール実装後、ペルチェ素子を使用することなく電流制御(ACC)で駆動したところ、中心波長800nm、出力50mWのレーザ特性であった。また動作温度範囲を評価するために恒温槽内にモジュールを設置し、レーザ発振波長の温度依存性、モードホップが起こる温度、出力変動を測定した。その結果、発振波長の温度係数は0.05nm/℃、モードホップ温度6℃、パワー出力変動は10%であった。
After mounting the module, it was driven by current control (ACC) without using a Peltier device, and it was found that the laser characteristics were a center wavelength of 800 nm and an output of 50 mW. In order to evaluate the operating temperature range, a module was installed in a thermostatic chamber, and the temperature dependence of the laser oscillation wavelength, the temperature at which the mode hop occurred, and the output fluctuation were measured. As a result, the temperature coefficient of the oscillation wavelength was 0.05 nm / ° C., the mode hop temperature was 6 ° C., and the power output fluctuation was 10%.
(実施例2)
図9、図6および図24(a)に示すような装置を作製した。
具体的には、石英からなる支持基板10にスパッタ装置にて下側クラッド層になるSiO2層16を0.5μm成膜し、またその上にTa2O5を1.2μm成膜して光学材料層を形成した。 (Example 2)
An apparatus as shown in FIGS. 9, 6 and 24A was produced.
Specifically, a SiO 2 layer 16 that is a lower clad layer is formed on asupport substrate 10 made of quartz by a sputtering apparatus to a thickness of 0.5 μm, and a Ta 2 O 5 film of 1.2 μm is formed on the SiO 2 layer 16. A material layer was formed.
図9、図6および図24(a)に示すような装置を作製した。
具体的には、石英からなる支持基板10にスパッタ装置にて下側クラッド層になるSiO2層16を0.5μm成膜し、またその上にTa2O5を1.2μm成膜して光学材料層を形成した。 (Example 2)
An apparatus as shown in FIGS. 9, 6 and 24A was produced.
Specifically, a SiO 2 layer 16 that is a lower clad layer is formed on a
次に、光学材料層上にTiを成膜して、EB描画装置によりグレーティングパターンを作製した。その後、Tiパターンをマスクにしてフッ素系の反応性イオンエッチングにより、ピッチ間隔Λ239nm、長さLb 100μmのブラッググレーティングを形成した。グレーティングの溝深さtdは40nmとした。
Next, Ti was formed on the optical material layer, and a grating pattern was produced by an EB drawing apparatus. Then, by reactive ion etching of the fluorine-based and the Ti pattern as a mask, to form a Bragg grating of pitch Ramuda239nm, the length L b 100 [mu] m. Groove depth t d of the grating was set to 40 nm.
光導波路の平面形状は図28に示す。光導波路70は、上記と同じ方法で反応性イオンエッチングによって形成した。70aは光源との結合部であり、70bはテーパ部であり、伝搬部70cの幅はWbで一定であり、70dは湾曲部である。また、伝搬部70e、70f、ブラッググレーティング12は真っ直ぐであり、幅はWmである。
The planar shape of the optical waveguide is shown in FIG. The optical waveguide 70 was formed by reactive ion etching in the same manner as described above. 70a is a connecting portion between the light source, 70b are tapered portion, the width of the propagation unit 70c is constant in W b, 70d are curved portion. Further, the propagation unit 70e, 70f, Bragg grating 12 is straight, the width is W m.
光源との結合部70aの幅Winが3μmとなり、Wbが2μmとなり、グレーティング部12の幅については幅Wm2μmとなるように、リッジ溝を形成した。湾曲部70dは、伝搬部70c、70eに対して、外側に0.1μmオフセットさせた。湾曲部70dの曲率半径Rは100μmとした。光導波路70の厚さTsは1.2μmである。
Width W in the coupling portion 70a of the light source is 3μm, and the W b is such that the width W m 2 [mu] m for 2 [mu] m, and the width of the grating portion 12, to form a ridge groove. The curved portion 70d is offset by 0.1 μm outward from the propagation portions 70c and 70e. The curvature radius R of the curved portion 70d was 100 μm. The thickness T s of the optical waveguide 70 is 1.2 μm.
最後に、上側クラッドとなるSiO2からなるバッファ層を光導波路70を覆うように2μmスパッタにて形成した。
その後、ダイシング装置にてアセンブリをバー状に切断し、半導体レーザと波長変換素子を実装する端面を光学研磨し、この端面を光学研磨し、両端面に0.1%のARコートを形成し、最後にチップ切断を行いグレーティング素子を作製した。素子サイズは1mm×1mm角とした。また半導体レーザとグレーティングの出力端までの距離は800μmであった。 Finally, a buffer layer made of SiO 2 serving as the upper clad was formed by 2 μm sputtering so as to cover theoptical waveguide 70.
Thereafter, the assembly is cut into a bar shape by a dicing apparatus, the end face on which the semiconductor laser and the wavelength conversion element are mounted is optically polished, this end face is optically polished, and a 0.1% AR coating is formed on both end faces. Finally, the chip was cut to produce a grating element. The element size was 1 mm × 1 mm square. The distance between the semiconductor laser and the output end of the grating was 800 μm.
その後、ダイシング装置にてアセンブリをバー状に切断し、半導体レーザと波長変換素子を実装する端面を光学研磨し、この端面を光学研磨し、両端面に0.1%のARコートを形成し、最後にチップ切断を行いグレーティング素子を作製した。素子サイズは1mm×1mm角とした。また半導体レーザとグレーティングの出力端までの距離は800μmであった。 Finally, a buffer layer made of SiO 2 serving as the upper clad was formed by 2 μm sputtering so as to cover the
Thereafter, the assembly is cut into a bar shape by a dicing apparatus, the end face on which the semiconductor laser and the wavelength conversion element are mounted is optically polished, this end face is optically polished, and a 0.1% AR coating is formed on both end faces. Finally, the chip was cut to produce a grating element. The element size was 1 mm × 1 mm square. The distance between the semiconductor laser and the output end of the grating was 800 μm.
グレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子にTEモードの光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。測定したグレーティング素子の反射中心波長は、975nmであり、反射率は20%、半値全幅△λGは2nmの特性を得た。
Optical characteristics of the grating element are measured by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting TE mode light into the grating element and analyzing the output light with an optical spectrum analyzer. The reflection characteristics were evaluated from the characteristics. The reflection center wavelength of the measured grating element was 975 nm, the reflectance was 20%, and the full width at half maximum Δλ G was 2 nm.
次に、このグレーティング素子を使用した外部共振器型レーザの特性評価のために、図9に示すようにレーザモジュールを実装した。光源素子として単独で発振するGaAs系レーザを使用した。
光源素子仕様:
中心波長: 977nm
出力: 50mW
半値幅: 0.1nm
レーザ素子長 300μm
実装仕様:
Lg: 1μm Next, a laser module was mounted as shown in FIG. 9 in order to evaluate the characteristics of an external resonator type laser using this grating element. A GaAs laser that oscillates alone was used as the light source element.
Light source element specifications:
Center wavelength: 977nm
Output: 50mW
Half width: 0.1nm
Laser element length 300μm
Mounting specifications:
Lg: 1μm
光源素子仕様:
中心波長: 977nm
出力: 50mW
半値幅: 0.1nm
レーザ素子長 300μm
実装仕様:
Lg: 1μm Next, a laser module was mounted as shown in FIG. 9 in order to evaluate the characteristics of an external resonator type laser using this grating element. A GaAs laser that oscillates alone was used as the light source element.
Light source element specifications:
Center wavelength: 977nm
Output: 50mW
Half width: 0.1nm
Laser element length 300μm
Mounting specifications:
Lg: 1μm
モジュール実装後、ペルチェ素子を使用することなく電流制御(ACC)で駆動したところ、グレーティングの反射波長に対応した中心波長975nmで発振し、出力はグレーティング素子がない場合よりも小さくなるが、30mWのレーザ特性であった。また動作温度範囲を評価するために恒温槽内にモジュールを設置し、レーザ発振波長の温度依存性、出力変動を測定した。その結果、発振波長の温度係数は0.03nm/℃、モードホップによる出力変動が大きくなる温度域は45℃、この温度域でのパワー出力変動はモードホップが起こっても1%以内であった。
この場合、グレーティングにおいては、横モードがマルチモードになり、実効屈折率の相違により基本モードの反射波長975nmに対し、971nmに1次モードによる反射波長が存在するが、上記の45℃の温度範囲においては基本モードから1次モードにモードホップすることはなかった。 After mounting the module, when driven by current control (ACC) without using a Peltier element, it oscillates at a center wavelength of 975 nm corresponding to the reflection wavelength of the grating, and the output is smaller than that without the grating element, but 30 mW It was a laser characteristic. In addition, in order to evaluate the operating temperature range, a module was installed in a thermostat and the temperature dependence of the laser oscillation wavelength and output fluctuation were measured. As a result, the temperature coefficient of the oscillation wavelength was 0.03 nm / ° C., the temperature range where the output fluctuation due to the mode hop was large was 45 ° C., and the power output fluctuation within this temperature range was within 1% even when the mode hop occurred.
In this case, in the grating, the transverse mode becomes multimode, and the reflection wavelength of the primary mode exists at 971 nm with respect to the reflection wavelength of 975 nm of the fundamental mode due to the difference in effective refractive index, but the temperature range of 45 ° C. Did not hop from the basic mode to the primary mode.
この場合、グレーティングにおいては、横モードがマルチモードになり、実効屈折率の相違により基本モードの反射波長975nmに対し、971nmに1次モードによる反射波長が存在するが、上記の45℃の温度範囲においては基本モードから1次モードにモードホップすることはなかった。 After mounting the module, when driven by current control (ACC) without using a Peltier element, it oscillates at a center wavelength of 975 nm corresponding to the reflection wavelength of the grating, and the output is smaller than that without the grating element, but 30 mW It was a laser characteristic. In addition, in order to evaluate the operating temperature range, a module was installed in a thermostat and the temperature dependence of the laser oscillation wavelength and output fluctuation were measured. As a result, the temperature coefficient of the oscillation wavelength was 0.03 nm / ° C., the temperature range where the output fluctuation due to the mode hop was large was 45 ° C., and the power output fluctuation within this temperature range was within 1% even when the mode hop occurred.
In this case, in the grating, the transverse mode becomes multimode, and the reflection wavelength of the primary mode exists at 971 nm with respect to the reflection wavelength of 975 nm of the fundamental mode due to the difference in effective refractive index, but the temperature range of 45 ° C. Did not hop from the basic mode to the primary mode.
(参考例2)
図6、図24(a)、図29に示すような装置を作製した。
具体的には、石英からなる支持基板10にスパッタ装置にて下側クラッド層になるSiO2層16を0.5μm成膜し、またその上にTa2O5を1.2μm成膜して光学材料層を形成した。
次に、光学材料層上にTiを成膜して、EB描画装置によりグレーティングパターンを作製した。その後、Tiパターンをマスクにしてフッ素系の反応性イオンエッチングにより、ピッチ間隔Λ239nm、長さLb 100μmのブラッググレーティングを形成した。グレーティングの溝深さtdは40nmとした。 (Reference Example 2)
An apparatus as shown in FIGS. 6, 24A and 29 was produced.
Specifically, aSiO 2 layer 16 that is a lower clad layer is formed on a support substrate 10 made of quartz by a sputtering apparatus to a thickness of 0.5 μm, and a Ta 2 O 5 film of 1.2 μm is formed thereon to form an optical material layer. Formed.
Next, Ti was formed on the optical material layer, and a grating pattern was produced by an EB drawing apparatus. Thereafter, a Bragg grating having a pitch interval of Λ239 nm and a length ofL b of 100 μm was formed by fluorine-based reactive ion etching using the Ti pattern as a mask. Groove depth t d of the grating was set to 40 nm.
図6、図24(a)、図29に示すような装置を作製した。
具体的には、石英からなる支持基板10にスパッタ装置にて下側クラッド層になるSiO2層16を0.5μm成膜し、またその上にTa2O5を1.2μm成膜して光学材料層を形成した。
次に、光学材料層上にTiを成膜して、EB描画装置によりグレーティングパターンを作製した。その後、Tiパターンをマスクにしてフッ素系の反応性イオンエッチングにより、ピッチ間隔Λ239nm、長さLb 100μmのブラッググレーティングを形成した。グレーティングの溝深さtdは40nmとした。 (Reference Example 2)
An apparatus as shown in FIGS. 6, 24A and 29 was produced.
Specifically, a
Next, Ti was formed on the optical material layer, and a grating pattern was produced by an EB drawing apparatus. Thereafter, a Bragg grating having a pitch interval of Λ239 nm and a length of
さらに、図29、図24(a)に示す光導波路71を形成するために、上記と同様な方法で反応性イオンエッチングした。半導体レーザとの結合部71aの幅Winが3μmとなり、伝搬部71c、ブラッググレーティング12および出射側伝搬部71dの幅Wmが2μmとなるように、光学材料層を完全に切り込むようにエッチングした。結合部71aと伝搬部71cとの間にテーパ部71dを設けた。光導波路の厚さTsは1.2μmである。
Furthermore, in order to form the optical waveguide 71 shown in FIGS. 29 and 24A, reactive ion etching was performed by the same method as described above. Width W in the 3μm next coupling portion 71a of the semiconductor laser, propagation unit 71c, so that the width W m of the Bragg grating 12 and the exit side propagating portion 71d is 2 [mu] m, was etched to incise the complete optical material layer . A tapered portion 71d is provided between the coupling portion 71a and the propagation portion 71c. The thickness T s of the optical waveguide is 1.2 μm.
最後に、上側クラッドとなるSiO2からなるバッファ層を光導波路を覆うように2μmスパッタにて形成した。
Finally, a buffer layer made of SiO 2 serving as the upper clad was formed by 2 μm sputtering so as to cover the optical waveguide.
その後、ダイシング装置にてバー状に切断し、半導体レーザと波長変換素子を実装する端面を光学研磨し、この端面を光学研磨し、両端面を0.1%のARコートを形成し、最後にチップ切断を行いグレーティング素子を作製した。素子サイズは1mm×1mm角とした。また半導体レーザとグレーティングの出力端までの距離は800μmであった。
After that, it is cut into a bar shape by a dicing machine, the end face on which the semiconductor laser and the wavelength conversion element are mounted is optically polished, this end face is optically polished, and both end faces are formed with 0.1% AR coating. A grating element was manufactured by cutting the chip. The element size was 1 mm × 1 mm square. The distance between the semiconductor laser and the output end of the grating was 800 μm.
グレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子にTEモードの光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。測定したグレーティング素子の反射中心波長は、975nmであり、反射率は20%、半値全幅△λGは2nmの特性を得た。
Optical characteristics of the grating element are measured by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting TE mode light into the grating element and analyzing the output light with an optical spectrum analyzer. The reflection characteristics were evaluated from the characteristics. The reflection center wavelength of the measured grating element was 975 nm, the reflectance was 20%, and the full width at half maximum Δλ G was 2 nm.
次に、このグレーティング素子を使用した外部共振器型レーザの特性評価のために、レーザモジュールを実装した。光源素子として単独で発振するGaAs系レーザを使用した。
光源素子仕様:
中心波長: 977nm
出力: 50mW
半値幅: 0.1nm
レーザ素子長 300μm
実装仕様:
Lg: 1μm Next, a laser module was mounted in order to evaluate the characteristics of an external resonator type laser using this grating element. A GaAs laser that oscillates alone was used as the light source element.
Light source element specifications:
Center wavelength: 977nm
Output: 50mW
Half width: 0.1nm
Laser element length 300μm
Mounting specifications:
Lg: 1μm
光源素子仕様:
中心波長: 977nm
出力: 50mW
半値幅: 0.1nm
レーザ素子長 300μm
実装仕様:
Lg: 1μm Next, a laser module was mounted in order to evaluate the characteristics of an external resonator type laser using this grating element. A GaAs laser that oscillates alone was used as the light source element.
Light source element specifications:
Center wavelength: 977nm
Output: 50mW
Half width: 0.1nm
Laser element length 300μm
Mounting specifications:
Lg: 1μm
モジュール実装後、ペルチェ素子を使用することなく電流制御(ACC)で駆動したところ、グレーティングの反射波長に対応した中心波長975nmで発振し、出力はグレーティング素子がない場合よりも小さくなるが30mWのレーザ特性であった。また動作温度範囲を評価するために恒温槽内にモジュールを設置し、レーザ発振波長の温度依存性、出力変動を測定した。その結果、発振波長の温度係数は0.03nm/℃、モードホップによる出力変動が大きくなる温度域は35℃、この温度域でのパワー出力変動はモードホップが起こっても1%以内であった。
After mounting the module, when driven by current control (ACC) without using a Peltier element, it oscillates at a center wavelength of 975 nm corresponding to the reflection wavelength of the grating, and the output is smaller than that without the grating element, but a 30 mW laser It was a characteristic. In addition, in order to evaluate the operating temperature range, a module was installed in a thermostat and the temperature dependence of the laser oscillation wavelength and output fluctuation were measured. As a result, the temperature coefficient of the oscillation wavelength was 0.03 nm / ° C., the temperature range where the output fluctuation due to the mode hop was large was 35 ° C., and the power output fluctuation within this temperature range was within 1% even when the mode hop occurred.
この場合、グレーティングにおいては、横モードがマルチモードになり実効屈折率の相違により基本モードの反射波長975nmに対し、971nmに1次モードによる反射波長が存在しており、上記の35℃の温度範囲を超えると基本モードから1次モードにモードホップしてパワーの変動が起きることがわかった。
In this case, in the grating, the transverse mode becomes multimode, and the reflection wavelength of the primary mode exists at 971 nm with respect to the reflection wavelength of 975 nm of the fundamental mode due to the difference in effective refractive index, and the above temperature range of 35 ° C. It was found that power fluctuations occurred when the mode was exceeded from the basic mode to the primary mode.
(実施例3)
図28、図30、図32に示す形態のグレーティング素子を作製した。
具体的には、石英からなる支持基板10にスパッタ装置にて下側クラッドとなるバッファ層16になるSiO2層を1μm成膜し、またその上にTa2O5を1.2μm成膜して光学材料層を形成した。 (Example 3)
A grating element having the form shown in FIGS. 28, 30, and 32 was produced.
Specifically, a SiO 2 layer to be abuffer layer 16 serving as a lower cladding is formed on a support substrate 10 made of quartz by a sputtering apparatus, and a Ta 2 O 5 film is formed thereon to a thickness of 1.2 μm. Thus, an optical material layer was formed.
図28、図30、図32に示す形態のグレーティング素子を作製した。
具体的には、石英からなる支持基板10にスパッタ装置にて下側クラッドとなるバッファ層16になるSiO2層を1μm成膜し、またその上にTa2O5を1.2μm成膜して光学材料層を形成した。 (Example 3)
A grating element having the form shown in FIGS. 28, 30, and 32 was produced.
Specifically, a SiO 2 layer to be a
次に、光学材料層上にTiを成膜して、EB描画装置によりグレーティングパターンを作製した。その後、Tiパターンをマスクにしてフッ素系の反応性イオンエッチングにより、ピッチ間隔Λ239nm、長さLb 100μmのブラッググレーティング12を形成した。グレーティング12の溝深さtdは40nmとした。
Next, Ti was formed on the optical material layer, and a grating pattern was produced by an EB drawing apparatus. Thereafter, a Bragg grating 12 having a pitch interval of Λ239 nm and a length of L b of 100 μm was formed by fluorine-based reactive ion etching using the Ti pattern as a mask. Groove depth t d of the grating 12 was set to 40 nm.
次に、図28に示す光導波路70は、上記と同じ方法で反応性イオンエッチングによって形成した。光源との結合部(入射部)70aの幅Winが3μmとなり、伝搬部70c、70e、湾曲部分70dにおける光導波路幅Wbが0.5μmとなり、グレーティング部12の幅については幅3μmとなるように、リッジ溝を形成した。
ここで、湾曲部70dにおいては、伝搬部70c、70eに対して、Offset1(80A)で+0.15μm、Offset2(80B)で0μm、Offset3(80C)で-0.15μmオフセットさせた。湾曲部70dの曲率半径Rは10μmとした。光導波路70の厚さTsは1.2μmである。 Next, theoptical waveguide 70 shown in FIG. 28 was formed by reactive ion etching in the same manner as described above. Width W in the coupling portion between the light source (incident portion) 70a is 3μm, and the propagation unit 70c, 70e, the optical waveguide width W b of the curved portion 70d becomes the width 3μm for 0.5μm, and the width of the grating section 12 Thus, a ridge groove was formed.
Here, in the bendingportion 70d, the propagation portions 70c and 70e are offset by +0.15 μm at Offset 1 (80A), 0 μm by Offset 2 (80B), and −0.15 μm by Offset 3 (80C). The curvature radius R of the curved portion 70d was 10 μm. The thickness T s of the optical waveguide 70 is 1.2 μm.
ここで、湾曲部70dにおいては、伝搬部70c、70eに対して、Offset1(80A)で+0.15μm、Offset2(80B)で0μm、Offset3(80C)で-0.15μmオフセットさせた。湾曲部70dの曲率半径Rは10μmとした。光導波路70の厚さTsは1.2μmである。 Next, the
Here, in the bending
最後に、上側クラッドとなるSiO2からなるバッファ層17を光導波路70を覆うように1μmスパッタにて形成した。
その後、ダイシング装置にてアセンブリをバー状に切断し、半導体レーザと波長変換素子を実装する端面を光学研磨し、この端面を光学研磨し、両端面に0.1%のARコートを形成し、最後にチップ切断を行いグレーティング素子を作製した。素子サイズは1mm×1mm角とした。また半導体レーザとグレーティングの出力端までの距離は800μmであった。 Finally, thebuffer layer 17 made of SiO 2 serving as the upper clad was formed by 1 μm sputtering so as to cover the optical waveguide 70.
Thereafter, the assembly is cut into a bar shape by a dicing apparatus, the end face on which the semiconductor laser and the wavelength conversion element are mounted is optically polished, this end face is optically polished, and a 0.1% AR coating is formed on both end faces. Finally, the chip was cut to produce a grating element. The element size was 1 mm × 1 mm square. The distance between the semiconductor laser and the output end of the grating was 800 μm.
その後、ダイシング装置にてアセンブリをバー状に切断し、半導体レーザと波長変換素子を実装する端面を光学研磨し、この端面を光学研磨し、両端面に0.1%のARコートを形成し、最後にチップ切断を行いグレーティング素子を作製した。素子サイズは1mm×1mm角とした。また半導体レーザとグレーティングの出力端までの距離は800μmであった。 Finally, the
Thereafter, the assembly is cut into a bar shape by a dicing apparatus, the end face on which the semiconductor laser and the wavelength conversion element are mounted is optically polished, this end face is optically polished, and a 0.1% AR coating is formed on both end faces. Finally, the chip was cut to produce a grating element. The element size was 1 mm × 1 mm square. The distance between the semiconductor laser and the output end of the grating was 800 μm.
グレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子にTEモードの光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。測定したグレーティング素子の反射中心波長は、975nmであり、反射率は20%、半値全幅△λGは2nmの特性を得た。
Optical characteristics of the grating element are measured by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting TE mode light into the grating element and analyzing the output light with an optical spectrum analyzer. The reflection characteristics were evaluated from the characteristics. The reflection center wavelength of the measured grating element was 975 nm, the reflectance was 20%, and the full width at half maximum Δλ G was 2 nm.
次に、このグレーティング素子を使用した外部共振器型レーザの特性評価のために、図30に示すようにレーザモジュールを実装した。光源素子として単独で発振するGaAs系レーザを使用した。
光源素子仕様:
中心波長: 977nm
出力: 50mW
半値幅: 0.1nm
レーザ素子長 300μm
実装仕様:
Lg: 1μm Next, a laser module was mounted as shown in FIG. 30 in order to evaluate the characteristics of the external resonator type laser using this grating element. A GaAs laser that oscillates alone was used as the light source element.
Light source element specifications:
Center wavelength: 977nm
Output: 50mW
Half width: 0.1nm
Laser element length 300μm
Mounting specifications:
Lg: 1μm
光源素子仕様:
中心波長: 977nm
出力: 50mW
半値幅: 0.1nm
レーザ素子長 300μm
実装仕様:
Lg: 1μm Next, a laser module was mounted as shown in FIG. 30 in order to evaluate the characteristics of the external resonator type laser using this grating element. A GaAs laser that oscillates alone was used as the light source element.
Light source element specifications:
Center wavelength: 977nm
Output: 50mW
Half width: 0.1nm
Laser element length 300μm
Mounting specifications:
Lg: 1μm
モジュール実装後、ペルチェ素子を使用することなく電流制御(ACC)で駆動したところ、グレーティングの反射波長に対応した中心波長975nmで発振した。曲がりによる伝搬効率を評価するために曲がりがある場合とない場合で比較したところ曲がりがある場合には15%の光量ダウンに留まった。
After mounting the module, it was driven by current control (ACC) without using a Peltier device, and oscillated at a central wavelength of 975 nm corresponding to the reflection wavelength of the grating. In order to evaluate the propagation efficiency due to the bending, a comparison was made between the case where there was a bend and the case where there was a bend.
(参考例3)
実施例3と同じように、図28、図30、図32に示す素子を作製した。
ただし、オフセット80A、80B、80Cにおけるオフセット量はいずれもゼロとした。湾曲部70dの曲率半径Rは10μmとした。光導波路70の厚さTsは1.2μmである。 (Reference Example 3)
In the same manner as in Example 3, the elements shown in FIGS. 28, 30, and 32 were produced.
However, the offset amounts in the offsets 80A, 80B, and 80C are all zero. The curvature radius R of the curved portion 70d was 10 μm. The thickness T s of the optical waveguide 70 is 1.2 μm.
実施例3と同じように、図28、図30、図32に示す素子を作製した。
ただし、オフセット80A、80B、80Cにおけるオフセット量はいずれもゼロとした。湾曲部70dの曲率半径Rは10μmとした。光導波路70の厚さTsは1.2μmである。 (Reference Example 3)
In the same manner as in Example 3, the elements shown in FIGS. 28, 30, and 32 were produced.
However, the offset amounts in the
最後に、上側クラッドとなるSiO2からなるバッファ層を光導波路70を覆うように1μmスパッタにて形成した。
その後、ダイシング装置にてアセンブリをバー状に切断し、半導体レーザと波長変換素子を実装する端面を光学研磨し、この端面を光学研磨し、両端面に0.1%のARコートを形成し、最後にチップ切断を行いグレーティング素子を作製した。素子サイズは1mm×1mm角とした。また半導体レーザとグレーティングの出力端までの距離は800μmであった。 Finally, a buffer layer made of SiO 2 serving as the upper clad was formed by 1 μm sputtering so as to cover theoptical waveguide 70.
Thereafter, the assembly is cut into a bar shape by a dicing apparatus, the end face on which the semiconductor laser and the wavelength conversion element are mounted is optically polished, this end face is optically polished, and a 0.1% AR coating is formed on both end faces. Finally, the chip was cut to produce a grating element. The element size was 1 mm × 1 mm square. The distance between the semiconductor laser and the output end of the grating was 800 μm.
その後、ダイシング装置にてアセンブリをバー状に切断し、半導体レーザと波長変換素子を実装する端面を光学研磨し、この端面を光学研磨し、両端面に0.1%のARコートを形成し、最後にチップ切断を行いグレーティング素子を作製した。素子サイズは1mm×1mm角とした。また半導体レーザとグレーティングの出力端までの距離は800μmであった。 Finally, a buffer layer made of SiO 2 serving as the upper clad was formed by 1 μm sputtering so as to cover the
Thereafter, the assembly is cut into a bar shape by a dicing apparatus, the end face on which the semiconductor laser and the wavelength conversion element are mounted is optically polished, this end face is optically polished, and a 0.1% AR coating is formed on both end faces. Finally, the chip was cut to produce a grating element. The element size was 1 mm × 1 mm square. The distance between the semiconductor laser and the output end of the grating was 800 μm.
グレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子にTEモードの光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。測定したグレーティング素子の反射中心波長は、975nmであり、反射率は20%、半値全幅△λGは2nmの特性を得た。
Optical characteristics of the grating element are measured by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting TE mode light into the grating element and analyzing the output light with an optical spectrum analyzer. The reflection characteristics were evaluated from the characteristics. The reflection center wavelength of the measured grating element was 975 nm, the reflectance was 20%, and the full width at half maximum Δλ G was 2 nm.
次に、このグレーティング素子を使用した外部共振器型レーザの特性評価のために、図30に示すようにレーザモジュールを実装した。光源素子として単独で発振するGaAs系レーザを使用した。
光源素子仕様:
中心波長: 977nm
出力: 50mW
半値幅: 0.1nm
レーザ素子長 300μm
実装仕様:
Lg: 1μm Next, a laser module was mounted as shown in FIG. 30 in order to evaluate the characteristics of the external resonator type laser using this grating element. A GaAs laser that oscillates alone was used as the light source element.
Light source element specifications:
Center wavelength: 977nm
Output: 50mW
Half width: 0.1nm
Laser element length 300μm
Mounting specifications:
Lg: 1μm
光源素子仕様:
中心波長: 977nm
出力: 50mW
半値幅: 0.1nm
レーザ素子長 300μm
実装仕様:
Lg: 1μm Next, a laser module was mounted as shown in FIG. 30 in order to evaluate the characteristics of the external resonator type laser using this grating element. A GaAs laser that oscillates alone was used as the light source element.
Light source element specifications:
Center wavelength: 977nm
Output: 50mW
Half width: 0.1nm
Laser element length 300μm
Mounting specifications:
Lg: 1μm
モジュール実装後、ペルチェ素子を使用することなく電流制御(ACC)で駆動したところ、グレーティングの反射波長に対応した中心波長975nmで発振した。曲がりによる伝搬効率を評価するために曲がりがある場合とない場合で比較したところ曲がりがある場合には50%光量ダウンした。
After mounting the module, it was driven by current control (ACC) without using a Peltier device, and oscillated at a central wavelength of 975 nm corresponding to the reflection wavelength of the grating. In order to evaluate the propagation efficiency due to the bending, the amount of light was reduced by 50% when there was a bending as compared with the case where there was a bending.
(シミュレーション実験)
湾曲部分について最適な設計を行うためにシミュレーションを実施した。Simulated Bend法を使用したBPM(ビーム伝搬法)による3次元解析とFDTD(時間領域差分法)による2次元解析とを実施した。 (Simulation experiment)
A simulation was conducted to optimize the design of the curved part. Three-dimensional analysis by BPM (beam propagation method) using Simulated Bend method and two-dimensional analysis by FDTD (time domain difference method) were performed.
湾曲部分について最適な設計を行うためにシミュレーションを実施した。Simulated Bend法を使用したBPM(ビーム伝搬法)による3次元解析とFDTD(時間領域差分法)による2次元解析とを実施した。 (Simulation experiment)
A simulation was conducted to optimize the design of the curved part. Three-dimensional analysis by BPM (beam propagation method) using Simulated Bend method and two-dimensional analysis by FDTD (time domain difference method) were performed.
光導波路基板の断面構造は図32に示す構造とし、平面形状は図33に示す形状とした。ただし、図33においては、光導波路81は、幅の相対的に大きい入射側伝搬部81a、テーパ部81b、直線状伝搬部81c、湾曲部分81d、81e、直線状伝搬部81fを備えており、全体として90度湾曲している。伝搬部81cと湾曲部分81dとの間にオフセット80A(Offset1)があり、湾曲部分81dと81eとの間にオフセット80D(Offset2)があり、湾曲部分81eと直線状伝搬部81fとの間にオフセット80C(Offset3)がある。図面に矢印で示すオフセット方向を正としている。
The cross-sectional structure of the optical waveguide substrate was the structure shown in FIG. 32, and the planar shape was the shape shown in FIG. However, in FIG. 33, the optical waveguide 81 includes an incident-side propagation part 81a, a taper part 81b, a linear propagation part 81c, curved parts 81d and 81e, and a linear propagation part 81f having a relatively large width. The curve is 90 degrees as a whole. There is an offset 80A (Offset 1) between the propagation portion 81c and the curved portion 81d, an offset 80D (Offset 2) is between the curved portions 81d and 81e, and an offset between the curved portion 81e and the linear propagation portion 81f. There is 80C (Offset3). The offset direction indicated by the arrow in the drawing is positive.
Simulated Bend法を使用したBPMによる3次元解析は、図32に示す導波路構造において、コアをTa2O5(屈折率2.14)、厚みを1.2μm、クラッド層をSiO2(1.45)とし、リッジ角度は70°とした。また、図33において、リッジ線幅Wb、各オフセット量をパラメータとして計算を行った。
In the three-dimensional analysis by BPM using the simulated bend method, in the waveguide structure shown in FIG. 32, the core is Ta 2 O 5 (refractive index 2.14), the thickness is 1.2 μm, and the cladding layer is SiO 2 (1. 45), and the ridge angle was 70 °. In FIG. 33, the calculation was performed using the ridge line width W b and each offset amount as parameters.
(実施例4)
図34はWb:0.5μmの場合の曲がり半径10μmから100μmとした場合の波長800nmにおける導波路伝搬効率である。この計算では、コアの屈折率は2.15に固定して、クラッドの屈折率Ncを1.45から2.05まで0.1間隔で変化させた。オフセット量は、Offset1からOffset3についてすべて0μm(オフセットなし)に設定した。この結果、クラッドの屈折率Ncが1.85(Nc185)以下において、半径15μm以上で曲がり伝搬効率80%以上を得ることができる。 Example 4
FIG. 34 shows the waveguide propagation efficiency at a wavelength of 800 nm when the bending radius is 10 μm to 100 μm when W b is 0.5 μm. In this calculation, the refractive index of the core was fixed at 2.15, and the refractive index Nc of the cladding was changed from 1.45 to 2.05 at 0.1 intervals. The offset amount was set to 0 μm (no offset) for Offset1 to Offset3. As a result, when the refractive index Nc of the cladding is 1.85 (Nc185) or less, a bending propagation efficiency of 80% or more can be obtained with a radius of 15 μm or more.
図34はWb:0.5μmの場合の曲がり半径10μmから100μmとした場合の波長800nmにおける導波路伝搬効率である。この計算では、コアの屈折率は2.15に固定して、クラッドの屈折率Ncを1.45から2.05まで0.1間隔で変化させた。オフセット量は、Offset1からOffset3についてすべて0μm(オフセットなし)に設定した。この結果、クラッドの屈折率Ncが1.85(Nc185)以下において、半径15μm以上で曲がり伝搬効率80%以上を得ることができる。 Example 4
FIG. 34 shows the waveguide propagation efficiency at a wavelength of 800 nm when the bending radius is 10 μm to 100 μm when W b is 0.5 μm. In this calculation, the refractive index of the core was fixed at 2.15, and the refractive index Nc of the cladding was changed from 1.45 to 2.05 at 0.1 intervals. The offset amount was set to 0 μm (no offset) for Offset1 to Offset3. As a result, when the refractive index Nc of the cladding is 1.85 (Nc185) or less, a bending propagation efficiency of 80% or more can be obtained with a radius of 15 μm or more.
(実施例5)
図35、図36、図37は、Wb:0.5μmについてOffset1、Offset2、Offset3のオフセット量を可変して計算した伝搬効率である。この結果、Offset1についてはオフセットが正側、Offset2についてはオフセットが零付近、Offset3については負側に設定することにより曲がり伝搬効率が向上することがわかる。 (Example 5)
35, 36, and 37 show propagation efficiencies calculated by varying the offset amounts of Offset1, Offset2, and Offset3 with respect to W b : 0.5 μm. As a result, it is understood that the bending propagation efficiency is improved by setting the offset to the positive side for Offset1, the offset to near zero for Offset2, and the negative side for Offset3.
図35、図36、図37は、Wb:0.5μmについてOffset1、Offset2、Offset3のオフセット量を可変して計算した伝搬効率である。この結果、Offset1についてはオフセットが正側、Offset2についてはオフセットが零付近、Offset3については負側に設定することにより曲がり伝搬効率が向上することがわかる。 (Example 5)
35, 36, and 37 show propagation efficiencies calculated by varying the offset amounts of Offset1, Offset2, and Offset3 with respect to W b : 0.5 μm. As a result, it is understood that the bending propagation efficiency is improved by setting the offset to the positive side for Offset1, the offset to near zero for Offset2, and the negative side for Offset3.
(実施例6)
次に、Wb:0.5μmについてオフセット量をOffset1:0.15μm、Offset2:0μm、Offset3:-0.15μmに設定した場合の曲がり半径10μmから100μmにおける導波路伝搬効率を計算した。その結果を表2に示す。この結果、半径10μmにおいても効率80%以上で伝搬することができ、50μmまでの領域において効率80%以上で伝搬することができる。 (Example 6)
Next, the waveguide propagation efficiency was calculated at a bending radius of 10 μm to 100 μm when the offset amount was set to Offset 1: 0.15 μm, Offset 2: 0 μm, and Offset 3: −0.15 μm for W b : 0.5 μm. The results are shown in Table 2. As a result, it is possible to propagate with an efficiency of 80% or more even at a radius of 10 μm, and to propagate with an efficiency of 80% or more in a region up to 50 μm.
次に、Wb:0.5μmについてオフセット量をOffset1:0.15μm、Offset2:0μm、Offset3:-0.15μmに設定した場合の曲がり半径10μmから100μmにおける導波路伝搬効率を計算した。その結果を表2に示す。この結果、半径10μmにおいても効率80%以上で伝搬することができ、50μmまでの領域において効率80%以上で伝搬することができる。 (Example 6)
Next, the waveguide propagation efficiency was calculated at a bending radius of 10 μm to 100 μm when the offset amount was set to Offset 1: 0.15 μm, Offset 2: 0 μm, and Offset 3: −0.15 μm for W b : 0.5 μm. The results are shown in Table 2. As a result, it is possible to propagate with an efficiency of 80% or more even at a radius of 10 μm, and to propagate with an efficiency of 80% or more in a region up to 50 μm.
オフセットは、曲がりにより光電界が外周方向にシフトすることによる伝搬損失の低減を抑止に効果がある。このためオフセットなしで効率が低下する最小曲がり半径付近において効率が向上し、曲がり半径をさらに小さくすることが可能となる。
しかし、光軸をずらすことによる結合損失増も伴うために、オフセット量を大きくしすぎると逆効果になる。 The offset is effective in suppressing a reduction in propagation loss due to the optical electric field shifting in the outer peripheral direction due to bending. For this reason, the efficiency is improved in the vicinity of the minimum bend radius where the efficiency is reduced without offset, and the bend radius can be further reduced.
However, since the coupling loss is increased by shifting the optical axis, if the offset amount is increased too much, an adverse effect is obtained.
しかし、光軸をずらすことによる結合損失増も伴うために、オフセット量を大きくしすぎると逆効果になる。 The offset is effective in suppressing a reduction in propagation loss due to the optical electric field shifting in the outer peripheral direction due to bending. For this reason, the efficiency is improved in the vicinity of the minimum bend radius where the efficiency is reduced without offset, and the bend radius can be further reduced.
However, since the coupling loss is increased by shifting the optical axis, if the offset amount is increased too much, an adverse effect is obtained.
(実施例7)
実施例6において、湾曲部分70dにおける光導波路幅Wbを1.0μmとした。他は実施例3と同様にして実験したところ、曲がり半径10μmから100μmにおける導波路伝搬効率について、表3に示す結果を得た。 (Example 7)
In Example 6, the optical waveguide width W b of thecurved portion 70d was 1.0 .mu.m. Other than that, the experiment was conducted in the same manner as in Example 3. As a result, the results shown in Table 3 were obtained for the waveguide propagation efficiency at a bending radius of 10 μm to 100 μm.
実施例6において、湾曲部分70dにおける光導波路幅Wbを1.0μmとした。他は実施例3と同様にして実験したところ、曲がり半径10μmから100μmにおける導波路伝搬効率について、表3に示す結果を得た。 (Example 7)
In Example 6, the optical waveguide width W b of the
(実施例8)
実施例6において、湾曲部分70dにおける光導波路幅Wbを1.5μmとした。他は実施例3と同様にして実験したところ、曲がり半径10μmから100μmにおける導波路伝搬効率について、表4の結果を得た。 (Example 8)
In Example 6, the optical waveguide width W b of thecurved portion 70d was 1.5 [mu] m. The others were tested in the same manner as in Example 3. As a result, the results shown in Table 4 were obtained for the waveguide propagation efficiency at a bending radius of 10 μm to 100 μm.
実施例6において、湾曲部分70dにおける光導波路幅Wbを1.5μmとした。他は実施例3と同様にして実験したところ、曲がり半径10μmから100μmにおける導波路伝搬効率について、表4の結果を得た。 (Example 8)
In Example 6, the optical waveguide width W b of the
(参考例4)
実施例6において、湾曲部分70dにおける光導波路幅Wbを2.0μmとした。他は実施例3と同様にして実験したところ、曲がり半径10μmから100μmにおける導波路伝搬効率について、表5に示す結果を得た。 (Reference Example 4)
In Example 6, the optical waveguide width W b of thecurved portion 70d was 2.0 .mu.m. Other than that, the experiment was conducted in the same manner as in Example 3. As a result, the results shown in Table 5 were obtained for the waveguide propagation efficiency at a bending radius of 10 μm to 100 μm.
実施例6において、湾曲部分70dにおける光導波路幅Wbを2.0μmとした。他は実施例3と同様にして実験したところ、曲がり半径10μmから100μmにおける導波路伝搬効率について、表5に示す結果を得た。 (Reference Example 4)
In Example 6, the optical waveguide width W b of the
(参考例5)
図38のハイメサ構造60Aを用いてシミュレーションを行った。この構造60Aにおいては、支持基板61の上に下側バッファ層70を形成する。下側バッファ層70は、支持基板61の表面を被覆する下地層70aと、突起70bとからなる。突起70b上に光学材料層64を形成し、その上に上側バッファ層65を形成している。下側バッファ層の突起70bの幅よりも上側バッファ層65の幅を狭くしている。 (Reference Example 5)
A simulation was performed using thehigh mesa structure 60A of FIG. In this structure 60 </ b> A, the lower buffer layer 70 is formed on the support substrate 61. The lower buffer layer 70 includes a base layer 70 a that covers the surface of the support substrate 61, and a protrusion 70 b. An optical material layer 64 is formed on the protrusion 70b, and an upper buffer layer 65 is formed thereon. The width of the upper buffer layer 65 is narrower than the width of the protrusion 70b of the lower buffer layer.
図38のハイメサ構造60Aを用いてシミュレーションを行った。この構造60Aにおいては、支持基板61の上に下側バッファ層70を形成する。下側バッファ層70は、支持基板61の表面を被覆する下地層70aと、突起70bとからなる。突起70b上に光学材料層64を形成し、その上に上側バッファ層65を形成している。下側バッファ層の突起70bの幅よりも上側バッファ層65の幅を狭くしている。 (Reference Example 5)
A simulation was performed using the
コア部64の屈折率を1.5とし、側面側のクラッド層は空気(屈折率1)としている。両者の屈折率差は0.5である。支持基板とコア間の材料、およびコア直上の材料の屈折率は1.4とした。この導波路において、Wb:0.5μmの場合の曲がり半径10μmから100μmとした場合の波長800nmにおける導波路伝搬効率を計算した結果を図39に示す。オフセット量は、Offset1からOffset3についてすべて0μm(オフセットなし)に設定した。
この結果、半径40μm以上でないとで曲がり伝搬効率80%以上を得ることができないことがわかった。この伝搬効率は、図34に示す本発明例の伝搬効率に比べて顕著に劣っている。 The refractive index of thecore part 64 is 1.5, and the side cladding layer is air (refractive index 1). The refractive index difference between the two is 0.5. The refractive index of the material between the support substrate and the core and the material immediately above the core was 1.4. FIG. 39 shows the result of calculating the waveguide propagation efficiency at a wavelength of 800 nm when the bending radius is 10 μm to 100 μm when W b is 0.5 μm in this waveguide. The offset amount was set to 0 μm (no offset) for Offset1 to Offset3.
As a result, it was found that the bending propagation efficiency of 80% or more cannot be obtained unless the radius is 40 μm or more. This propagation efficiency is significantly inferior to the propagation efficiency of the example of the present invention shown in FIG.
この結果、半径40μm以上でないとで曲がり伝搬効率80%以上を得ることができないことがわかった。この伝搬効率は、図34に示す本発明例の伝搬効率に比べて顕著に劣っている。 The refractive index of the
As a result, it was found that the bending propagation efficiency of 80% or more cannot be obtained unless the radius is 40 μm or more. This propagation efficiency is significantly inferior to the propagation efficiency of the example of the present invention shown in FIG.
(実施例9)
実施例4において、コアの屈折率は1.7とし、クラッドの屈折率Ncを1.4とした。両者の屈折率差は0.3である。この導波路において、Wb:0.5μmの場合の曲がり半径10μmから100μmとした場合の波長800nmにおける導波路伝搬効率を計算した結果を図40に示す。オフセット量は、Offset1からOffset3についてすべて0μm(オフセットなし)に設定した。この結果、半径15μm以上で曲がり伝搬効率80%以上を得ることができることがわかった。
Example 9
In Example 4, the refractive index of the core was 1.7, and the refractive index Nc of the cladding was 1.4. The refractive index difference between the two is 0.3. FIG. 40 shows the result of calculating the waveguide propagation efficiency at a wavelength of 800 nm when the bending radius is 10 μm to 100 μm when Wb is 0.5 μm in this waveguide. The offset amount was set to 0 μm (no offset) for Offset1 to Offset3. As a result, it was found that a bending propagation efficiency of 80% or more can be obtained with a radius of 15 μm or more.
実施例4において、コアの屈折率は1.7とし、クラッドの屈折率Ncを1.4とした。両者の屈折率差は0.3である。この導波路において、Wb:0.5μmの場合の曲がり半径10μmから100μmとした場合の波長800nmにおける導波路伝搬効率を計算した結果を図40に示す。オフセット量は、Offset1からOffset3についてすべて0μm(オフセットなし)に設定した。この結果、半径15μm以上で曲がり伝搬効率80%以上を得ることができることがわかった。
Example 9
In Example 4, the refractive index of the core was 1.7, and the refractive index Nc of the cladding was 1.4. The refractive index difference between the two is 0.3. FIG. 40 shows the result of calculating the waveguide propagation efficiency at a wavelength of 800 nm when the bending radius is 10 μm to 100 μm when Wb is 0.5 μm in this waveguide. The offset amount was set to 0 μm (no offset) for Offset1 to Offset3. As a result, it was found that a bending propagation efficiency of 80% or more can be obtained with a radius of 15 μm or more.
Claims (16)
- 半導体レーザ光を発振する光源、およびこの光源と外部共振器を構成するグレーティング素子を備える外部共振器型発光装置であって、
前記光源が、前記半導体レーザ光を発振する活性層を備えており、
前記グレーティング素子が、前記半導体レーザ光が入射する入射部と所望波長の出射光を出射する出射部を有する光導波路、この光導波路内に形成されたブラッググレーティング、前記入射部と前記ブラッググレーティングとの間に設けられている伝搬部、および前記グレーティング素子内で前記半導体レーザ光の光路を曲げる光路変更部を備えており、下記式(1)~式(4)の関係が満足されることを特徴とする、外部共振器型発光装置。
ΔλG ≧0.8nm ・・・(1)
Lb ≦500μm ・・・(2)
La ≦500μm ・・・(3)
nb ≧1.8 ・・・(4)
(式(1)において、ΔλGは、ブラッグ反射率のピークにおける半値全幅である。
式(2)において、Lbは、前記ブラッググレーティングの長さである。
式(3)において、Laは、前記活性層の長さである。
式(4)において、nbは、前記ブラッググレーティングを構成する材質の屈折率である。)
A light source that oscillates a semiconductor laser light, and an external resonator type light emitting device including a grating element that constitutes the light source and an external resonator,
The light source includes an active layer that oscillates the semiconductor laser light;
The grating element includes an optical waveguide having an incident portion where the semiconductor laser light is incident and an output portion that emits outgoing light of a desired wavelength, a Bragg grating formed in the optical waveguide, and the incident portion and the Bragg grating. An optical path changing unit that bends the optical path of the semiconductor laser light in the grating element, and satisfies the relations of the following formulas (1) to (4): An external resonator type light emitting device.
Δλ G ≧ 0.8 nm (1)
L b ≦ 500 μm (2)
L a ≦ 500 μm (3)
n b ≧ 1.8 (4)
(In formula (1), Δλ G is the full width at half maximum at the peak of the Bragg reflectivity.
In Expression (2), L b is the length of the Bragg grating.
In the formula (3), L a is the length of the active layer.
In the formula (4), n b is the refractive index of the material constituting the Bragg grating. )
- 前記出射部が前記光導波路の端面であることを特徴とする、請求項1記載の装置。 2. The apparatus according to claim 1, wherein the emitting portion is an end face of the optical waveguide.
- 前記入射部と前記出射部とが前記グレーティング素子の相対向する側面に設けられていないことを特徴とする、請求項1または2記載の装置。 3. The apparatus according to claim 1, wherein the incident portion and the emission portion are not provided on opposite side surfaces of the grating element.
- 前記ブラッググレーティングが、前記光路変更部と前記出射部との間に設けられていることを特徴とする、請求項1~3のいずれか一つの請求項に記載の装置。 The device according to any one of claims 1 to 3, wherein the Bragg grating is provided between the optical path changing unit and the emitting unit.
- 前記出射部の下流側に前記光路変更部および光路変更後の前記出射光を前記装置の外部に出射する外部出射部を備えていることを特徴とする、請求項1または2記載の装置。 3. The apparatus according to claim 1, further comprising: an external emission unit that emits the optical path changing unit and the emitted light after the optical path change to the outside of the apparatus on the downstream side of the emission unit.
- 前記光源と前記グレーティング素子が直接光学的に接続されており、前記活性層の出射面と反対側の外側端面と前記ブラッググレーティングとの間で前記外部共振器を形成しており、前記活性層の前記外側端面と前記ブラッググレーティングの出射側終点との間の長
さが900μm以下であることを特徴とする、請求項1~5のいずれか一つの請求項に記載の装置。 The light source and the grating element are directly optically connected, and the external resonator is formed between the outer end surface opposite to the emission surface of the active layer and the Bragg grating, and the active layer The apparatus according to any one of claims 1 to 5, wherein a length between the outer end face and an exit end point of the Bragg grating is 900 袖 m or less. - 前記光導波路が、リッジ部と、このリッジ部を成形する少なくとも一対のリッジ溝からなることを特徴とする、請求項1~6のいずれか一つの請求項に記載の装置。 The apparatus according to any one of claims 1 to 6, wherein the optical waveguide includes a ridge portion and at least a pair of ridge grooves forming the ridge portion.
- 前記光導波路が細長いコアからなり、前記コアの横断面が凸図形をなしており、前記コアに接するクラッドを備えていることを特徴とする、請求項1~6のいずれか一つの請求項に記載の装置。 The invention according to any one of claims 1 to 6, wherein the optical waveguide is composed of an elongated core, the cross section of the core has a convex shape, and a clad in contact with the core is provided. The device described.
- 前記ブラッググレーティングの前記材質が、ガリウム砒素、ニオブ酸リチウム単結晶、酸化タンタル、酸化亜鉛およびアルミナからなる群より選択されることを特徴とする、請求項1~8のいずれか一つの請求項に記載の装置。 The material according to any one of claims 1 to 8, wherein the material of the Bragg grating is selected from the group consisting of gallium arsenide, lithium niobate single crystal, tantalum oxide, zinc oxide, and alumina. The device described.
- 下記式(5)の関係が満足されることを特徴とする、請求項1~9のいずれか一つの請求項に記載の装置。
The apparatus according to any one of claims 1 to 9, wherein the relationship of the following formula (5) is satisfied.
- 前記光導波路上に設けられたバッファ層を有することを特徴とする、請求項1~10のいずれか一つの請求項に記載の装置。 The device according to any one of claims 1 to 10, further comprising a buffer layer provided on the optical waveguide.
- 前記グレーティング素子を主面から見たときに前記光導波路が湾曲する湾曲部分を含んでおり、前記コアの屈折率が1.7以上、かつ3.5以下であり、前記コアの屈折率と前記クラッドの屈折率との差△nが0.3以上であり、前記コアの幅が1.5μm以下であり、前記コアの厚さが0.8μm以上、2.0μm以下であり、前記湾曲部分の曲率半径が100μm以下であることを特徴とする、請求項8~11のいずれか一つの請求項に記載の装置。 The optical waveguide includes a curved portion that is curved when the grating element is viewed from the main surface, the refractive index of the core is 1.7 or more and 3.5 or less, and the refractive index of the core and the core The difference Δn from the refractive index of the cladding is 0.3 or more, the width of the core is 1.5 μm or less, the thickness of the core is 0.8 μm or more and 2.0 μm or less, and the curved portion The device according to any one of claims 8 to 11, characterized in that the radius of curvature of is not more than 100 袖 m.
- 前記コアの材質が、ガリウム砒素、ニオブ酸リチウム単結晶、酸化タンタル、酸化亜鉛およびアルミナからなる群より選択されることを特徴とする、請求項8~12のいずれか一つの請求項に記載の装置。 The material according to any one of claims 8 to 12, wherein the material of the core is selected from the group consisting of gallium arsenide, lithium niobate single crystal, tantalum oxide, zinc oxide, and alumina. apparatus.
- 光を伝搬する細長いコアと、このコアに接するクラッドとを有するチャネル型光導波路を備える光導波路基板であって、
前記光導波路基板の主面から見たときに前記コアが湾曲する湾曲部分を含み、前記コアの横断面が凸図形をなしており、コアの屈折率が1.7以上、かつ3.5以下であり、前記コアの屈折率と前記クラッドの屈折率との差△nが0.3以上であり、前記コアの幅が1.5μm以下であり、前記コアの厚さが0.8μm以上、2.0μm以下であり、前記湾曲部分の曲率半径が100μm以下であることを特徴とする、光導波路基板。 An optical waveguide substrate comprising a channel-type optical waveguide having an elongated core for propagating light and a clad in contact with the core,
The core includes a curved portion that is bent when viewed from the main surface of the optical waveguide substrate, the core has a convex cross section, and the refractive index of the core is 1.7 or more and 3.5 or less. The difference Δn between the refractive index of the core and the refractive index of the cladding is 0.3 or more, the width of the core is 1.5 μm or less, the thickness of the core is 0.8 μm or more, An optical waveguide substrate having a curvature radius of 2.0 μm or less and a radius of curvature of the curved portion of 100 μm or less. - 前記コアおよび前記クラッドを支持する支持基板を備えていることを特徴とする、請求項14記載の光導波路基板。 The optical waveguide substrate according to claim 14, further comprising a support substrate that supports the core and the clad.
- 前記コアの材質が、ガリウム砒素、ニオブ酸リチウム単結晶、酸化タンタル、酸化亜鉛およびアルミナからなる群より選択されることを特徴とする、請求項14または15記載の光導波路基板。
16. The optical waveguide substrate according to claim 14, wherein a material of the core is selected from the group consisting of gallium arsenide, lithium niobate single crystal, tantalum oxide, zinc oxide, and alumina.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-250002 | 2014-12-10 | ||
JP2014250002 | 2014-12-10 | ||
JP2015021044 | 2015-02-05 | ||
JP2015-021044 | 2015-02-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016093187A1 true WO2016093187A1 (en) | 2016-06-16 |
Family
ID=56107371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/084242 WO2016093187A1 (en) | 2014-12-10 | 2015-12-07 | External resonator type light-emitting device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016093187A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018018059A (en) * | 2016-07-13 | 2018-02-01 | 学校法人法政大学 | Dielectric optical waveguide with flexure portion |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6223188A (en) * | 1985-07-23 | 1987-01-31 | Nec Corp | Integrated semiconductor laser |
JP2009117539A (en) * | 2007-11-05 | 2009-05-28 | Furukawa Electric Co Ltd:The | Optical semiconductor element, and manufacturing method of optical semiconductor element |
JP2010171252A (en) * | 2009-01-23 | 2010-08-05 | Fujitsu Ltd | Optical transmission device |
US20140119695A1 (en) * | 2012-07-13 | 2014-05-01 | Centre National De La Recherche Scientifique | Optical signal emission system |
-
2015
- 2015-12-07 WO PCT/JP2015/084242 patent/WO2016093187A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6223188A (en) * | 1985-07-23 | 1987-01-31 | Nec Corp | Integrated semiconductor laser |
JP2009117539A (en) * | 2007-11-05 | 2009-05-28 | Furukawa Electric Co Ltd:The | Optical semiconductor element, and manufacturing method of optical semiconductor element |
JP2010171252A (en) * | 2009-01-23 | 2010-08-05 | Fujitsu Ltd | Optical transmission device |
US20140119695A1 (en) * | 2012-07-13 | 2014-05-01 | Centre National De La Recherche Scientifique | Optical signal emission system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018018059A (en) * | 2016-07-13 | 2018-02-01 | 学校法人法政大学 | Dielectric optical waveguide with flexure portion |
JP7002092B2 (en) | 2016-07-13 | 2022-02-04 | 学校法人法政大学 | Dielectric optical waveguide with bends |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6125631B2 (en) | External resonator type light emitting device | |
JP5936771B2 (en) | External resonator type light emitting device | |
JP6554035B2 (en) | Grating element and external resonator type light emitting device | |
WO2015107960A1 (en) | External resonator type light emitting device | |
JP5641631B1 (en) | External resonator type light emitting device | |
US9915794B2 (en) | Optical device, and optical-device production method | |
JP5936777B2 (en) | Grating element and external resonator type light emitting device | |
JP6629194B2 (en) | External cavity type light emitting device | |
WO2016093187A1 (en) | External resonator type light-emitting device | |
WO2015190385A1 (en) | External resonator-type light-emitting device | |
JP2016171219A (en) | External resonator type light emitting device | |
JP2015039011A (en) | External resonator light-emitting device | |
WO2015108197A1 (en) | External resonator type light emitting device | |
JP2017126625A (en) | External resonator type light-emitting device | |
WO2016125746A1 (en) | Optical waveguide element and optical device | |
WO2017043222A1 (en) | Optical device | |
WO2015087914A1 (en) | External-resonator-type light-emitting device | |
WO2016152730A1 (en) | External resonator type light-emitting device | |
JP2015115457A (en) | External resonator light-emitting device | |
JP2015103732A (en) | Grating element and external resonator light-emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15866897 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15866897 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |