WO2015190385A1 - External resonator-type light-emitting device - Google Patents

External resonator-type light-emitting device Download PDF

Info

Publication number
WO2015190385A1
WO2015190385A1 PCT/JP2015/066177 JP2015066177W WO2015190385A1 WO 2015190385 A1 WO2015190385 A1 WO 2015190385A1 JP 2015066177 W JP2015066177 W JP 2015066177W WO 2015190385 A1 WO2015190385 A1 WO 2015190385A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
grating
width
bragg grating
wavelength
Prior art date
Application number
PCT/JP2015/066177
Other languages
French (fr)
Japanese (ja)
Inventor
近藤 順悟
山口 省一郎
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2015190385A1 publication Critical patent/WO2015190385A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers

Definitions

  • the present invention relates to an external resonator type light emitting device using a grating element.
  • a Fabry-Perot (FP) type is generally used in which an optical resonator is sandwiched between mirrors formed on both end faces of an active layer.
  • FP Fabry-Perot
  • Examples of DBR lasers and DFB lasers that have a monolithic grating in the semiconductor laser and external cavity lasers that have a fiber grating (FBG) attached outside the laser are examples of the realization of wavelength-stable semiconductor lasers. it can. These are the principles of realizing wavelength stable operation by feeding back part of the laser light to the laser by a wavelength selective mirror using Bragg reflection.
  • FBG fiber grating
  • the DBR laser realizes a resonator by forming irregularities on the waveguide surface on the extension of the waveguide of the active layer to form a mirror by Bragg reflection (Patent Document 1 (Japanese Patent Laid-Open No. 49-128689): Patent) Document 2 (Japanese Patent Laid-Open No. 56-148880). Since this laser is provided with diffraction gratings at both ends of the optical waveguide layer, the light emitted from the active layer propagates through the optical waveguide layer, a part of which is reflected by this diffraction grating, returns to the current injection part, and is amplified. Is done. Since only the light of a specific wavelength reflects in the direction determined from the diffraction grating, the wavelength of the laser light is constant.
  • an external resonator type semiconductor laser in which a diffraction grating is a component different from a semiconductor and a resonator is formed externally.
  • This type of laser is a laser with good wavelength stability, temperature stability, and controllability.
  • the external resonator includes a fiber Bragg grating (FBG) (Non-patent Document 1) and a volume hologram grating (VHG) (Non-patent Document 2). Since the diffraction grating is composed of a separate member from the semiconductor laser, it has the feature that the reflectance and resonator length can be individually designed, and it is not affected by the temperature rise due to heat generation due to current injection. Can be better. Further, since the temperature change of the refractive index of the semiconductor is different, the temperature stability can be improved by designing it together with the resonator length.
  • Patent Document 6 Japanese Patent Laid-Open No. 2002-134833 discloses an external resonator type laser using a grating formed in a quartz glass waveguide. This is to provide a frequency stabilized laser that can be used in an environment where the room temperature changes greatly (for example, 30 ° C. or more) without a temperature controller. Further, it is described that a temperature-independent laser in which mode hopping is suppressed and the oscillation frequency is not temperature-dependent is provided.
  • Non-Patent Document 1 mentions a mode hop mechanism that impairs the wavelength stability associated with a temperature rise, and an improvement measure thereof.
  • the wavelength variation ⁇ s of the external cavity laser due to the temperature is the change in refractive index ⁇ na of the active layer region of the semiconductor, the length La of the active layer, the refractive index variation ⁇ nf of the FBG region, the length Lf, and the temperature variation ⁇ Ta.
  • ⁇ Tf is expressed by the following equation from the standing wave condition.
  • ⁇ 0 represents the grating reflection wavelength in the initial state.
  • ⁇ G the change ⁇ G in the grating reflection wavelength is expressed by the following equation.
  • the longitudinal mode interval ⁇ is approximately expressed by the following equation.
  • Mathematical formula 5 is established from mathematical formulas 3 and 4.
  • Mode hop is a phenomenon in which the oscillation mode (longitudinal mode) in the resonator changes from one mode to another.
  • the gain and resonator conditions change, the laser oscillation wavelength changes, and the problem arises that optical power fluctuates, which is called kink. Therefore, in the case of an FP type GaAs semiconductor laser, the wavelength usually changes with a temperature coefficient of 0.3 nm / ° C., but when a mode hop occurs, a larger fluctuation occurs. At the same time, the output fluctuates by 5% or more.
  • Patent Document 6 in order to make the temperature independent, the conventional resonator structure is left as it is, and stress is applied to the optical waveguide layer to compensate for the temperature coefficient due to thermal expansion, thereby realizing temperature independence. is doing. For this reason, a metal plate is attached to the element, and a layer for adjusting the temperature coefficient is added to the waveguide. For this reason, there exists a problem that a resonator structure becomes still larger.
  • the present inventor has disclosed an external resonator type laser structure using an optical waveguide grating element in Patent Document 7.
  • optical confinement is strengthened by forming an optical material layer on a support substrate, and the refractive index difference formed by the concave and convex grooves is increased. This makes it possible to obtain a desired Bragg reflectivity at a short distance, to realize an external cavity laser with a short cavity length, and when the full width at half maximum ⁇ G of the reflection characteristic of the grating element satisfies a specific formula
  • laser oscillation with high wavelength stability and no power fluctuation is possible without temperature control.
  • Patent Document 8 the present inventor disclosed in Patent Document 8 that the excitation of the higher-order mode is suppressed by changing the width of the optical waveguide on the exit surface with respect to the width of the optical waveguide in the Bragg grating.
  • An object of the present invention is to suppress excitation of a higher-order mode between a Bragg grating and an emission surface when thermal stress is applied to the grating element in an external resonator type laser using a grating element. is there.
  • the present invention is a semiconductor laser light source, and an external resonator type light emitting device comprising a grating element that constitutes the semiconductor laser light source and an external resonator,
  • the semiconductor laser light source includes an active layer that oscillates semiconductor laser light
  • the grating element is an optical waveguide having an incident surface on which the semiconductor laser light is incident and an emission surface that emits outgoing light of a desired wavelength, and an optical waveguide having a convex cross section in the optical waveguide.
  • a Bragg grating composed of the formed irregularities, and an emission-side propagation portion provided between the Bragg grating and the emission surface, and lasing in the wavelength range reflected by the Bragg grating, and the Bragg grating in the Bragg grating
  • the width of the optical waveguide is different from the width of the optical waveguide at the exit surface.
  • the present inventor examined the reason why a higher-order mode is excited between the Bragg grating and the exit surface when thermal stress is applied to the grating element. As a result, the near-field pattern of the laser is greatly deformed in the vicinity of the emission surface of the device, and this has been found to cause high-order mode excitation and a reduction in the coupling efficiency of the emitted light.
  • the width of the optical waveguide in the Bragg grating is set to be equal to the near-field pattern of the laser in order to increase the coupling efficiency with the semiconductor laser element.
  • the horizontal size of the near field of the semiconductor laser may be 2 ⁇ m to 7 ⁇ m, for example.
  • the width of the optical waveguide of the grating element is set to 2 ⁇ m to 7 ⁇ m.
  • the propagation constant is different between the fundamental mode and the higher order mode, so Bragg reflection occurs at different wavelengths.
  • laser oscillation can be selectively performed in the reflection wavelength band in the fundamental mode or the reflection wavelength band in the higher-order mode. That is, laser oscillation in the fundamental mode is possible by matching the gain curve to the reflection wavelength band of the fundamental mode.
  • the inventor suppresses deformation of the near-field pattern on the exit surface by changing the width of the optical waveguide on the exit surface relative to the width of the optical waveguide on the Bragg grating, thereby increasing the higher order.
  • mode excitation can be suppressed.
  • it is possible to reduce the light propagation loss by narrowing the width of the optical waveguide at the exit surface.
  • FIG. 1 is a schematic diagram of an external resonator type light emitting device 1.
  • FIG. 1 is a plan view schematically showing an external resonator type light emitting device 1.
  • FIG. It is a schematic diagram of another external resonator type light emitting device 1A.
  • 3 is a perspective view schematically showing a grating element 9.
  • FIG. (A), (b) is a schematic diagram which respectively shows the cross-sectional shape of a grating element.
  • (A), (b), (c) is a schematic diagram which respectively shows the cross-sectional shape of a grating element.
  • (A), (b) is a schematic diagram which respectively shows the cross-sectional shape of a grating element.
  • It is a figure explaining the form of the mode hop by a prior art example. It is a figure explaining the form of the mode hop by a prior art example.
  • 4 illustrates an example discrete phase condition in a preferred embodiment. It is a figure explaining laser oscillation conditions.
  • An external resonator type light emitting device 1 schematically shown in FIG. 1 includes a light source 2 that oscillates a semiconductor laser beam and a grating element 9.
  • the light source 2 and the grating element 9 are mounted on the common substrate 3.
  • the light source 2 includes an active layer 5 that oscillates semiconductor laser light.
  • the active layer 5 is provided on the substrate 4.
  • a reflective film 6 is provided on the outer end face of the substrate 4, and a non-reflective layer 7 A is formed on the end face of the active layer 5 on the grating element side.
  • the grating element 9 is provided with an optical waveguide 11 having an incident surface 11a on which the semiconductor laser light A is incident and an output surface 11b that emits an outgoing light B having a desired wavelength. C is reflected light.
  • a Bragg grating 12 is formed in the optical waveguide 11. Between the incident surface 11 a of the optical waveguide 11 and the Bragg grating 12, an incident-side propagation part 13 without a diffraction grating is provided, and the incident-side propagation part 13 faces the active layer 5 with a gap 14 therebetween.
  • Reference numeral 7B denotes an antireflective film provided on the incident surface side of the optical waveguide 11
  • reference numeral 7C denotes an antireflective film provided on the output surface side of the optical waveguide 11.
  • the grating reflectivity is greater than the reflectivity at the exit end face of the active layer, greater than the reflectivity at the entrance end face of the optical waveguide, and greater than the reflectivity at the exit end face of the optical waveguide. large. From this point of view, it is preferable that the reflectivity at the exit end face of the active layer, the reflectivity at the entrance end face of the optical waveguide, and the reflectivity at the exit end face of the optical waveguide are each 0.1% or less.
  • the reflectance of the non-reflective layers 7A, 7B, and 7C may be a value smaller than the grating reflectance, and is preferably 0.1% or less. However, as long as the reflectance at the end face is smaller than the grating reflectance, the non-reflective layer may be omitted and a reflective film may be used.
  • the optical waveguide is composed of a core made of an optical material, and a clad surrounds the core.
  • the cross section of the core (cross section in the direction perpendicular to the light propagation direction) is a convex figure.
  • the convex figure means that a line segment connecting any two points of the outer contour line of the core cross section is located inside the outer contour line of the core cross section.
  • a convex figure is a general geometric term. Examples of such figures include triangles, quadrangles, hexagons, octagons, and other polygons, circles, ellipses, and the like.
  • a quadrangle having an upper side, a lower side, and a pair of side surfaces is particularly preferable, and a trapezoid is particularly preferable.
  • an optical waveguide 11 made of a core made of an optical material is formed on a substrate 10 via an adhesive layer 30 and a lower buffer layer 16.
  • a lower buffer layer functioning as a clad exists under the optical waveguide 11.
  • An upper buffer layer 23 that also functions as a cladding is formed on the side surface and the upper surface of the optical waveguide 11 to cover the optical waveguide 11.
  • the cross-sectional shape of the optical waveguide 11 is a trapezoid, and the upper surface 11a is narrower than the lower surface 11b.
  • the upper buffer layer 23 includes a side surface covering portion 23 b that covers the side surface of the optical waveguide 11 and an upper surface covering portion 23 a that covers the upper surface.
  • the optical waveguide 11A made of a core made of an optical material is formed on the substrate 10 via the adhesive layer 30 and the lower buffer layer 16.
  • the cross-sectional shape of the optical waveguide 11A is trapezoidal and the lower surface is narrower than the upper surface.
  • the upper cladding layer 23 includes a side surface covering portion 23 b that covers the side surface of the optical waveguide 11 and an upper surface covering portion 23 a that covers the upper surface.
  • the optical waveguide 11 made of a core made of an optical material is formed on the substrate 10 via the lower buffer layer 16, and is separated from the lower buffer layer. There is no adhesive layer. Further, the upper buffer layer is not provided on the side surface and the upper surface of the optical waveguide 11. For this reason, the side surface and the upper surface of the optical waveguide 11 are exposed to the atmosphere, and the atmosphere functions as a cladding.
  • the buffer layer 22 is provided on the substrate 10, and the optical waveguide 11 made of a core made of an optical material is embedded in the buffer layer 22.
  • the buffer layer 22 has an upper surface covering portion 22b that covers the upper surface of the optical waveguide, a side surface covering portion 22c that covers the side surface of the optical waveguide, and a bottom surface coating diagram 22a that covers the bottom surface of the optical waveguide.
  • the buffer layer 22 is provided on the substrate 10, and an optical waveguide 11A made of a core made of an optical material is embedded in the buffer layer 22.
  • the buffer layer 22 has an upper surface covering portion 22b that covers the upper surface of the optical waveguide, a side surface covering portion 22c that covers the side surface of the optical waveguide, and a bottom surface coating diagram 22a that covers the bottom surface of the optical waveguide.
  • an optical waveguide 11 made of a core made of an optical material is formed on a substrate 10 with a lower buffer layer 16 interposed therebetween.
  • An upper buffer layer 23 that also functions as a cladding is formed on the side surface and the upper surface of the optical waveguide 11 to cover the optical waveguide 11.
  • an adhesive layer separate from the lower buffer layer 16 is not provided.
  • an optical waveguide 11A made of a core made of an optical material is formed on the substrate 10 via the lower buffer layer 16.
  • An upper buffer layer 23 that also functions as a cladding is formed on the side surface and the upper surface of the optical waveguide 11A to cover the optical waveguide 11A.
  • an adhesive layer separate from the lower buffer layer 16 is not provided.
  • the Bragg grating may be formed on the upper surface 11a side of the optical waveguide, or may be formed on the lower surface 11b side of the optical waveguide.
  • the difference in refractive index can be increased without the presence of a grating groove, and the reflectance can be increased with a short grating length.
  • the upper buffer layer and the lower buffer layer may be made of the same material or different materials.
  • the buffer layer can function as a clad.
  • the buffer layer preferably has a refractive index smaller than that of the material of the core portion.
  • the refractive index difference between the core part and the clad part is preferably 0.2 or more, and more preferably 0.4 or more.
  • suitable materials for forming the cladding include silicon oxide, alumina, tantalum oxide, titanium oxide, and oxidation.
  • FIG. 3 shows an apparatus 1A according to another embodiment. Most of the apparatus 1A is the same as the apparatus 1 of FIG.
  • the light source 2 includes an active layer 5 that oscillates laser light. However, the antireflection layer 7A is not provided on the end surface of the active layer 5 on the grating element 9 side, and a reflective film 25 is formed instead. This is a form of a normal semiconductor laser.
  • the oscillation wavelength of the laser light is determined by the wavelength reflected by the grating. If the reflected light from the grating and the reflected light from the end face of the active layer 5 on the grating element side exceed the laser gain threshold, the oscillation condition is satisfied. Thereby, a laser beam with high wavelength stability can be obtained.
  • the feedback amount from the grating may be increased.
  • the reflectance of the grating is preferably larger than the reflectance at the end face of the active layer 5.
  • the gain obtained by the resonator using the grating becomes larger than the gain obtained by the resonator of the original semiconductor laser, and stable laser oscillation can be performed by the resonator using the grating.
  • an incident-side propagation portion 13 is provided between the incident surface 11 a and the Bragg grating 12, and the Bragg grating 12 and the exit surface are provided.
  • the output side propagation part 20 is provided between 11b.
  • the output-side propagation unit 20 includes a connecting part 20a continuous from the end of the Bragg grating 12, an output part 20c continuous to the output surface 11b of the optical waveguide, and a taper provided between the connecting part and the output part.
  • a portion 20b is provided.
  • the width W out of the optical waveguide at the exit surface 11 b is smaller than the width W m of the optical waveguide at the Bragg grating 12.
  • the width W t of the optical waveguide comprises a small tapered portion 20b toward to the exit surface side from the Bragg grating side.
  • the width W m of the optical waveguide in the connecting portion 20a is constant, and the width W out of the optical waveguide in the emitting portion is also constant. Further, W t becomes the maximum value W m at the boundary with the connecting portion 20a, and becomes the minimum value W out at the boundary with the emitting portion 20c.
  • the width W m of the optical waveguide means the minimum value of the width of the optical waveguide in the cross section. If the shape of the optical waveguides of the upper surface is narrow trapezoid, the width Wm of the optical waveguide is the width of the upper surface, when the shape of the optical waveguides of the lower surface is narrow trapezoid, the width W m of the optical waveguide lower surface of the width (See FIGS. 5 to 7). This also applies to W out , W t and the like.
  • the width W m of the optical waveguide in the Bragg grating is set to be equal to the near-field pattern of the laser in order to increase the coupling efficiency with the semiconductor laser element 2.
  • the horizontal size of the near field of the semiconductor laser may be 2 ⁇ m to 7 ⁇ m, for example.
  • the width Wm of the optical waveguide is set from 2 ⁇ m to 7 ⁇ m. In the optical waveguide structure of the present Therefore, the horizontal size of the width W m and the near field of the optical waveguide becomes substantially the same value.
  • the propagation constant is different between the fundamental mode and the higher order mode, so Bragg reflection occurs at different wavelengths.
  • the gain curve with the reflection wavelength band of the fundamental mode, laser oscillation in the fundamental mode is possible.
  • a higher-order mode is excited in the outgoing side propagation part between the Bragg grating 12 and the outgoing face 11b. .
  • This phenomenon becomes more conspicuous as the ratio of the horizontal size of the near field to the vertical direction (flatness) increases.
  • the width W out of the optical waveguide on the exit surface smaller than W m , it is possible to suppress flattening of the near field pattern on the exit surface, thereby exciting higher-order modes. Can be suppressed.
  • a laser with a highly reliable GaAs-based or InP-based material is suitable.
  • a GaAs laser that oscillates near a wavelength of 1064 nm is used. Since GaAs-based and InP-based lasers have high reliability, a light source such as a one-dimensionally arranged laser array can be realized. It may be a super luminescence diode or a semiconductor optical amplifier (SOA).
  • SOA semiconductor optical amplifier
  • the material and wavelength of the active layer can be selected as appropriate.
  • Non-Patent Document 3 Furukawa Electric Times, January 2000, No. 105, p24-29
  • the optical waveguide can be obtained by, for example, physically processing and molding the optical material layer by cutting with an outer peripheral blade or laser ablation.
  • the Bragg grating can be formed by physical or chemical etching as follows.
  • a metal film such as Ni or Ti is formed on the optical material layer, and windows are periodically formed by photolithography to form an etching mask. Thereafter, periodic grating grooves are formed by a dry etching apparatus such as reactive ion etching. Finally, it can be formed by removing the metal mask.
  • one or more metal elements selected from the group consisting of magnesium (Mg), zinc (Zn), scandium (Sc), and indium (In) are provided in order to further improve the optical damage resistance of the optical waveguide.
  • magnesium is particularly preferable.
  • the crystal can contain a rare earth element as a doping component.
  • the rare earth element Nd, Er, Tm, Ho, Dy, and Pr are particularly preferable.
  • the material of the adhesive layer may be an inorganic adhesive, an organic adhesive, or a combination of an inorganic adhesive and an organic adhesive.
  • the optical material layer may be formed by forming a film on the support substrate by a thin film forming method.
  • a thin film forming method include sputtering, vapor deposition, and CVD.
  • the optical material layer is formed directly on the support substrate, and the above-described adhesive layer does not exist.
  • the specific material of the support substrate is not particularly limited, and examples thereof include glass such as lithium niobate, lithium tantalate, and quartz glass, quartz, and Si.
  • the reflectance of the non-reflective layer needs to be less than or equal to the grating reflectivity, and the film material to be formed on the non-reflective layer is laminated with an oxide such as silicon dioxide, tantalum pentoxide, magnesium fluoride, calcium fluoride, etc. Films and metals can also be used.
  • each end face of the light source element and the grating element may be cut obliquely in order to suppress the end face reflection.
  • the grating element and the support substrate are bonded and fixed in the example of FIG. 5, but may be directly bonded.
  • the core constituting the optical waveguide and the cladding surrounding the core are separated from each other in material, and the shape of the near field can be changed by changing the width of the core portion. Can be changed. Further, since there is no coupling to the substrate mode (slab mode), it is possible to suppress a reduction in light propagation loss by narrowing the width of the core portion.
  • the waveguide of the present application since the waveguide of the present application has a large refractive index difference between the core and the clad, it has a strong optical confinement structure, so that the waveguide dimension for making a single mode becomes fine.
  • the width W out of the optical waveguide on the emission surface is preferably 3.5 ⁇ m or less, and from the viewpoint of suppressing flattening of the near field pattern, The width W out of the optical waveguide is more preferably 2 ⁇ m or less, and most preferably 1 ⁇ m or less.
  • the width W out of the optical waveguide at the exit surface is preferably 0.1 ⁇ m or more, and more preferably 0.5 ⁇ m or more.
  • the width W m of the optical waveguide in the Bragg grating is preferably at least 2 [mu] m, further preferably not less than 2.5 [mu] m.
  • the width W m of the optical waveguide in the Bragg grating is preferably 7 ⁇ m or less, and more preferably 6.5 ⁇ m or less.
  • the ratio W out / W m between W out and W m is preferably 1/50 or more, and more preferably 1/10 or more. Moreover, 2/3 or less is preferable and 1/2 or less is more preferable.
  • the emission side propagation part 20 is provided with the tapered part 20b, the constant width connecting part 20a, and the constant width emission part 20c.
  • the output side propagation part 20 may be composed of a combination of a tapered part 20b and a constant width connecting part 20a. In this case, the output surface is located at the output side end of the tapered part 20b.
  • the output-side propagation unit 20 may include a tapered part 20b and a fixed-width output part 20c. In this case, the output-side end of the Bragg grating 12 and the incident-side end of the tapered part 20b are continuous. .
  • the horizontal width of the near field at the entrance surface of the grating element is larger than the horizontal width of the near field at the exit surface of the grating element.
  • the width of the optical waveguide at the entrance surface of the grating element is larger than the width of the optical waveguide at the exit surface of the grating element.
  • the horizontal width of the near field on the incident surface / the horizontal width of the near field on the output surface is set to 10. It is preferable to set it as follows, and it is more preferable to set it as 5 or less.
  • the horizontal width of the near-field of the laser beam is measured as follows. Measure the light intensity distribution of the laser beam and measure the width where the intensity distribution is 1 / e 2 (e is the base of natural logarithm: 2.71828) with respect to the maximum value (usually equivalent to the center of the core). This is generally defined as the horizontal width of the near field.
  • the mode field is defined because the size differs between the horizontal direction and the vertical direction of the laser element.
  • it is concentric like an optical fiber, it is defined as a diameter.
  • the measurement of the light intensity distribution it is possible to obtain the light intensity distribution of the spot of the laser light by measuring the beam profile using a near infrared camera or measuring the light intensity with a knife edge.
  • grating element generally, when a fiber grating is used, quartz has a small temperature coefficient of refractive index, so d ⁇ G / dT is small and
  • DELTA temperature range
  • a material having a refractive index of 1.7 or more is used for the optical waveguide in which the grating is formed.
  • the temperature coefficient of the refractive index can be increased and d ⁇ G / dT can be increased. Therefore,
  • the full width at half maximum ⁇ G at the peak of the Bragg reflectivity is set to be large, contrary to the common sense of those skilled in the art.
  • the wavelength interval (longitudinal mode interval) that satisfies the phase condition. Therefore, it is necessary to shorten the cavity length, the length L b of the Bragg grating has been shortened to 300 ⁇ m or less.
  • ⁇ G can be set to 0.8 nm or more and 6 nm or less.
  • the number of longitudinal modes can be adjusted to 2-5. That is, the wavelengths satisfying the phase condition are discrete, and when the number of longitudinal modes in ⁇ G is 2 or more and 5 or less, mode hops are repeated in ⁇ G , and It will not come off. For this reason, since a large mode hop does not occur, wavelength stability can be increased and fluctuations in optical power can be suppressed.
  • the oscillation condition of the semiconductor laser is determined by gain condition ⁇ phase condition as shown in the following equation.
  • ⁇ a, ⁇ g, ⁇ wg, ⁇ gr are the active layer, the gap between the semiconductor laser and the waveguide, the unprocessed waveguide portion on the input side, and the loss factor of the grating portion, respectively
  • L a , L g , L m L gr is the length of the active layer, the gap between the semiconductor laser and the waveguide, the unprocessed waveguide section of the grating on the input side, and the length of the grating section
  • r1 and r2 are the mirror reflectivities (r2 is the grating reflectivity)
  • C out is a coupling loss between the grating element and the light source
  • ⁇ t g th is a gain threshold of the laser medium
  • ⁇ 1 is a phase change amount by the laser side reflection mirror
  • the gain condition is determined by the grating. For this reason, the gain condition can be considered only by the grating.
  • phase condition is expressed by the following equation from the equation (2-1). However, ⁇ 1 is zero.
  • the external resonator type laser a product using a quartz glass waveguide or FBG as an external resonator has been commercialized.
  • the length of the grating portion is 1 mm.
  • the phase condition, the wavelength which satisfies become discrete, in ⁇ lambda G, are designed to be (2-3) equation points 2-3. For this reason, the thing with a long active layer length of a laser medium is needed, and the thing of 1 mm or more is used.
  • the external cavity laser has a feature of high wavelength stability.
  • ⁇ G TM is a wavelength interval (longitudinal mode interval) that satisfies the phase condition of the external cavity laser.
  • T mh is about 5 ° C. For this reason, mode hops are likely to occur. Therefore, when a mode hop occurs, the power fluctuates based on the reflection characteristics of the grating and fluctuates by 5% or more.
  • the conventional external cavity laser using the glass waveguide or FBG performs temperature control using the Peltier element.
  • a grating element having a small denominator of the equation (2-4) is used as a precondition.
  • the denominator of formula (2-4) is preferably 0.03 nm / ° C. or less.
  • Specific optical materials include gallium arsenide (GaAs), lithium niobate (LN), lithium tantalate (LT), oxidation Tantalum (Ta 2 O 5 ), zinc oxide (ZnO), alumina oxide (Al 2 O 3 ), and titanium oxide (TiO 2 ) are preferable.
  • ⁇ lambda grating length in order to increase the G L b is a 100 ⁇ m example
  • ⁇ G TM to be increased L a is a 250 ⁇ m example.
  • FIG. 6 The present application presupposes that the temperature coefficient of the grating wavelength and the temperature coefficient of the gain curve of the semiconductor are close to each other. For this reason, a material having a refractive index of 1.7 or more is used. Further grating groove depth t d of 20nm or more, and 250nm or more, the reflectance of 3% or more, 60% or less, and 0.8nm over the full width at half maximum ⁇ lambda G, is set to 250nm or less. As a result, the resonator structure can be made compact and temperature-independence can be realized without any additional components.
  • each parameter is described as follows, and each is in the category of the prior art.
  • L b 3mm
  • the refractive index n b of the material constituting the optical waveguide is set to 1.7 or more.
  • a material having a lower refractive index such as quartz
  • the refractive index of the material constituting the Bragg grating is increased. This is because a material with a large refractive index has a large temperature change in the refractive index, so that T mh in equation (2-4) can be increased, and the temperature coefficient d ⁇ G / dT of the grating as described above. It is because it can enlarge.
  • the n b is 1.8 or more, and more preferably 1.9 or more.
  • the upper limit of n b is not particularly preferably 4 or less since the formed grating pitch becomes too small it is difficult.
  • the full width at half maximum ⁇ G at the peak of the Bragg reflectivity is set to 0.8 nm or more (Formula 1).
  • ⁇ G is the Bragg wavelength. That is, as shown in FIG. 8 and FIG. 9, when the reflection wavelength by the Bragg grating is taken on the horizontal axis and the reflectance is taken on the vertical axis, the wavelength at which the reflectance becomes maximum is taken as the Bragg wavelength. In the peak centered on the Bragg wavelength, the difference between the two wavelengths at which the reflectance is half of the peak is defined as the full width at half maximum ⁇ G.
  • the full width at half maximum ⁇ G at the peak of the Bragg reflectance is set to 0.8 nm or more (formula (1)). This is to make the reflectance peak broad. From this viewpoint, the full width at half maximum ⁇ G is preferably set to 1.2 nm or more, and more preferably set to 1.5 nm or more. The full width at half maximum ⁇ G is 6 nm or less, more preferably 3 nm or less, and preferably 2 nm or less.
  • the length L b of the Bragg grating to 300 ⁇ m or less (equation 2).
  • the length L b of the Bragg grating is a grating length in the direction of the optical axis of the light propagating through the optical waveguide. Be shorter than the Bragg grating length L b below the conventional 300 ⁇ m is a premise of the design concept of the present embodiment. That is, it is necessary to increase the wavelength interval (longitudinal mode interval) that satisfies the phase condition in order to make mode hopping difficult. For this purpose, it is necessary to shorten the resonator length, and to shorten the length of the grating element. From this viewpoint, it is more preferable that the Bragg grating length L b and 200 ⁇ m or less.
  • Reducing the length of the grating element reduces the loss and can reduce the laser oscillation threshold. As a result, driving with low current, low heat generation, and low energy is possible.
  • the length L b of the grating, in order to obtain a reflectance of 3% or more is preferably at least 5 [mu] m, in order to obtain a reflectance of 5% or more, more preferably more than 10 [mu] m.
  • t d is the depth of the irregularities constituting the Bragg grating.
  • ⁇ G can be set to 0.8 nm or more and 6 nm or less, and the number of longitudinal modes can be adjusted to 2 or more and 5 or less in ⁇ G. .
  • td is more preferably 30 nm or more, and further preferably 200 nm or less.
  • 150 nm or less is preferable.
  • the reflectance of the grating element is preferably set to 3% or more and 40% or less in order to promote laser oscillation. This reflectivity is more preferably 5% or more in order to further stabilize the output power, and more preferably 25% or less in order to increase the output power.
  • the laser oscillation condition is established from a gain condition and a phase condition. Wavelengths that satisfy the phase condition are discrete and are shown, for example, in FIG. That is, in this structure, the oscillation wavelength can be fixed within ⁇ G by bringing the temperature coefficient of the gain curve (0.3 nm / ° C. in the case of GaAs) close to the temperature coefficient d ⁇ G / dT of the grating.
  • ⁇ lambda G number of longitudinal modes are two or more in, when present 5 or less, the oscillation wavelength repeats mode hopping in the ⁇ lambda G, large because it can reduce the probability of laser oscillation outside the ⁇ lambda G There is no mode hop, the wavelength is stable, and the output power can operate stably.
  • length L a of the active layer also to 500 ⁇ m or less length L a of the active layer. From this viewpoint, it is more preferable to set the length L a of the active layer and 300 ⁇ m or less.
  • the length L a of the active layer with a view to increasing the output of the laser it is preferable that the 150 ⁇ m or more.
  • d ⁇ G / dT is the temperature coefficient of the Bragg wavelength.
  • D ⁇ TM / dT is a temperature coefficient of the wavelength that satisfies the phase condition of the external cavity laser.
  • ⁇ TM is a wavelength that satisfies the phase condition of the external cavity laser, that is, a wavelength that satisfies the above-described phase condition of (Equation 2.3). This is called “vertical mode” in this specification.
  • 2 ⁇ n eff / ⁇ , where n eff is the effective refractive index of the portion, and ⁇ satisfying this is ⁇ TM .
  • ⁇ 2 is the phase change of the Bragg grating.
  • ⁇ G TM is a wavelength interval (longitudinal mode interval) that satisfies the phase condition of the external cavity laser.
  • the numerical value of the formula (6) is more preferably 0.025 or less.
  • the length L WG grating element also to 600 ⁇ m or less.
  • LWG is preferably 400 ⁇ m or less, and more preferably 300 ⁇ m or less. Further, LWG is preferably 50 ⁇ m or more.
  • the distance L g between the light exit surface of the light source and the light entrance surface of the optical waveguide may be zero.
  • L g is set to 1 ⁇ m or more and 10 ⁇ m or less. As a result, stable oscillation is possible.
  • the length L m of the entrance-side propagation unit it is preferable as short as possible from the viewpoint of shortening the resonator length.
  • the thickness is set to 20 ⁇ m or more and 100 ⁇ m or less. However, it is not necessary to provide the incident side propagation part.
  • L is preferably 900 ⁇ m or less, more preferably 800 ⁇ m or less, and most preferably 600 ⁇ m or less.
  • Example 1 An apparatus as shown in FIGS. 1, 2, 4 and 7A was produced.
  • An optical material layer was formed by depositing 0.5 ⁇ m of a lower buffer layer 16 made of SiO 2 and 1.2 ⁇ m of Ta 2 O 5 on the lower buffer layer 16 made of SiO 2 that functions as a clad by a sputtering apparatus on a support substrate 10 made of quartz.
  • Ti was formed on the optical material layer made of Ta 2 O 5, and a grating pattern was produced by a photolithography technique (EB drawing apparatus).
  • the Bragg grating 12 having a pitch interval of ⁇ 238.5 nm and a length of L b of 100 ⁇ m was formed by fluorine-based reactive ion etching using the Ti pattern as a mask. Groove depth t d of the grating 12 was set to 40 nm.
  • the optical waveguide width W m of the Bragg grating 12 was set to 3 [mu] m.
  • a connecting portion 20a having a constant width, a tapered portion 20b, and an emitting portion 20c having a constant width are provided.
  • the dimensions in each part were as follows. Core part width in the connecting part 20a: 3 ⁇ m Core part width W out at the emitting part 20c: 0.5 ⁇ m Core part width W t at the taper part 20b: 0.5 to 3 ⁇ m
  • an SiO 2 layer serving as an upper cladding layer was formed by 2 ⁇ m sputtering so as to cover the waveguide. Then, it cut
  • the element size was 1 mm wide and L wg 500 ⁇ m long.
  • the optical characteristics of the grating element are obtained by using a super luminescence diode (SLD), which is a broadband wavelength light source, to input light into the grating element and analyzing the output light with an optical spectrum analyzer.
  • SLD super luminescence diode
  • the reflection characteristics were evaluated.
  • a center wavelength of 975 nm, a maximum reflectance of 20%, and a full width at half maximum ⁇ G of 2 nm were obtained.
  • the light source element was a normal GaAs laser, and the exit end face was not coated with AR.
  • the shape of the near field pattern on the output side end face of the grating element was 0.5 ⁇ m in the horizontal direction and 1 ⁇ m in the vertical direction, and was almost a perfect circle. The single mode was maintained even when the temperature was changed from 20 ° C to 70 ° C.
  • Example 1 In Example 1, over the entire length of the optical waveguide 11, the optical waveguide width is constant and 3 [mu] m, a height T s was constant at 0.5 [mu] m. Thereafter, a grating element was produced by the same method.
  • the optical characteristics of the grating element are obtained by using a super luminescence diode (SLD), which is a broadband wavelength light source, to input light into the grating element and analyzing the output light with an optical spectrum analyzer.
  • SLD super luminescence diode
  • the reflection characteristics were evaluated.
  • a center wavelength of 975 nm, a maximum reflectance of 20%, and a full width at half maximum ⁇ G of 2 nm were obtained.
  • the light source element was a normal GaAs laser, and the exit end face was not coated with AR.
  • the shape of the near field pattern on the output side end face of the grating element was a flat waveguide having an aspect ratio of 3 with a horizontal direction of 3 ⁇ m and a vertical direction of 1 ⁇ m. Further, when the temperature was changed from 20 ° C. to 70 ° C., multimode was excited at around 70 ° C.

Abstract

[Problem] To suppress, in an external resonator-type laser derived from a grating element, excitation of a higher-order mode between a Bragg grating and a light-emitting surface when heat stress is applied to the grating element. [Solution] An external resonator-type light-emitting device (1) is provided with a semiconductor diode laser light source (2) and a grating element (9) composed of the light source and an external resonator. The light source (2) is provided with an active layer (5) for causing a semiconductor diode laser beam to oscillate. The grating element (9) is provided with: an optical waveguide (11) having an incident-light surface (11a) on which a semiconductor diode laser beam impinges and a light-emitting surface (11b) from which light of a desired wavelength is emitted, the optical waveguide (11) describing a convex shape in cross-section; a Bragg grating (12) comprising projections and recesses formed in the optical waveguide; and an emission-side transport part (20) provided between the Bragg grating (12) and the light-emitting surface (11b). The Bragg grating causes the laser to oscillate in a reflection wavelength region, and a difference exists between the width Wm of the optical waveguide on the Bragg grating side and the width Wout of the optical waveguide on the light-emitting surface side.

Description

外部共振器型発光装置External resonator type light emitting device
 本発明は、グレーティング素子を用いた外部共振器型発光装置に関するものである。 The present invention relates to an external resonator type light emitting device using a grating element.
 半導体レーザは、一般的に、活性層の両端面に形成したミラーで挟まれた光共振器を構成した、ファブリ-ペロー(FP)型が利用されている。しかしながら、このFP型レーザは、定在波条件が成立する波長で発振するために、縦モードが多モードになりやすく、とくに電流や温度が変化すると発振波長が変化し、それにより光強度が変化する。 As a semiconductor laser, a Fabry-Perot (FP) type is generally used in which an optical resonator is sandwiched between mirrors formed on both end faces of an active layer. However, since this FP type laser oscillates at a wavelength that satisfies the standing wave condition, the longitudinal mode tends to become multimode, and the oscillation wavelength changes when the current or temperature changes, thereby changing the light intensity. To do.
 このため、光通信やガスセンシングなどの目的では、波長安定性の高い単一モード発振のレーザが必要である。このため、分布帰還型(DFB)レーザや分布反射型(DBR)レーザが開発された。これらのレーザは、半導体中に回折格子を設け、その波長依存性を利用して特定の波長のみを発振させるものである。 Therefore, for the purpose of optical communication and gas sensing, a single mode oscillation laser with high wavelength stability is required. For this reason, distributed feedback (DFB) lasers and distributed reflection (DBR) lasers have been developed. In these lasers, a diffraction grating is provided in a semiconductor, and only a specific wavelength is oscillated by utilizing the wavelength dependency thereof.
 波長安定性のある半導体レーザを実現するために、グレーティングを半導体レーザの中にモノリシックに形成したDBRレーザやDFBレーザ、またファイバーグレーティング(FBG)をレーザの外部に取り付けた外部共振器型レーザが例示できる。これらは、ブラッグ反射を利用した波長選択性のあるミラーによりレーザ光の一部をレーザに帰還して波長安定動作を実現する原理である。 Examples of DBR lasers and DFB lasers that have a monolithic grating in the semiconductor laser and external cavity lasers that have a fiber grating (FBG) attached outside the laser are examples of the realization of wavelength-stable semiconductor lasers. it can. These are the principles of realizing wavelength stable operation by feeding back part of the laser light to the laser by a wavelength selective mirror using Bragg reflection.
 DBRレーザは、活性層の導波路の延長上の導波路面に凹凸を形成しブラッグ反射によるミラーを構成し、共振器を実現している(特許文献1(特開昭49-128689):特許文献2(特開昭56-148880))。このレーザは、光導波層の両端に回折格子が設けられているので、活性層で発光した光は光導波層を伝搬し、この回折格子で一部が反射され、電流注入部に戻り、増幅される。回折格子から決められた方向に反射するのは、特定の波長の光だけであるので、レーザ光の波長は一定になる。 The DBR laser realizes a resonator by forming irregularities on the waveguide surface on the extension of the waveguide of the active layer to form a mirror by Bragg reflection (Patent Document 1 (Japanese Patent Laid-Open No. 49-128689): Patent) Document 2 (Japanese Patent Laid-Open No. 56-148880). Since this laser is provided with diffraction gratings at both ends of the optical waveguide layer, the light emitted from the active layer propagates through the optical waveguide layer, a part of which is reflected by this diffraction grating, returns to the current injection part, and is amplified. Is done. Since only the light of a specific wavelength reflects in the direction determined from the diffraction grating, the wavelength of the laser light is constant.
 また、この応用として、回折格子を、半導体とは異なる部品とし、外部で共振器を形成する、外部共振器型半導体レーザが開発されている。このタイプのレーザは、波長安定性、温度安定性、制御性がよいレーザとなる。外部共振器は、ファイバ・ブラッグ・グレーティング(FBG)(非特許文献1)や、ボリューム・ホログラム・グレーティング(VHG)(非特許文献2)がある。回折格子を、半導体レーザとは別部材で構成するので、反射率、共振器長を個別に設計できるという特徴があり、電流注入による発熱による温度上昇の影響を受けないので、波長安定性をさらに良くすることができる。また、半導体の屈折率の温度変化が異なるので、共振器長と合わせて設計することにより、温度安定性を高めることができる。 Also, as this application, an external resonator type semiconductor laser has been developed in which a diffraction grating is a component different from a semiconductor and a resonator is formed externally. This type of laser is a laser with good wavelength stability, temperature stability, and controllability. The external resonator includes a fiber Bragg grating (FBG) (Non-patent Document 1) and a volume hologram grating (VHG) (Non-patent Document 2). Since the diffraction grating is composed of a separate member from the semiconductor laser, it has the feature that the reflectance and resonator length can be individually designed, and it is not affected by the temperature rise due to heat generation due to current injection. Can be better. Further, since the temperature change of the refractive index of the semiconductor is different, the temperature stability can be improved by designing it together with the resonator length.
 特許文献6(特開2002-134833)には、石英ガラス導波路に形成したグレーティングを利用した外部共振器型レーザが開示されている。これは温度コントローラなしで室温が大きく(例えば30℃以上)変化する環境で使える、周波数安定化レーザを提供しようとするものである。また、モードホッピングが抑圧され、かつ発振周波数の温度依存性がない温度無依存レーザを提供することが記載されている。 Patent Document 6 (Japanese Patent Laid-Open No. 2002-134833) discloses an external resonator type laser using a grating formed in a quartz glass waveguide. This is to provide a frequency stabilized laser that can be used in an environment where the room temperature changes greatly (for example, 30 ° C. or more) without a temperature controller. Further, it is described that a temperature-independent laser in which mode hopping is suppressed and the oscillation frequency is not temperature-dependent is provided.
特開昭49-128689JP 49-128689 特開昭56-148880JP 56-148880 WO2013/034813WO2013 / 034813 特開2000-082864JP2000-082864 特開2006-222399JP 2006-222399 特開2002-134833JP2002-134833 特願2013-120999Japanese Patent Application No. 2013-120999 特願2014-004240Japanese Patent Application 2014-004240 特開2011-75917JP2011-75917A
 非特許文献1には、温度上昇に伴う波長安定性を損なうモードホップのメカニズムと、その改善策について言及している。温度による外部共振器レーザの波長変化量δλsは、半導体の活性層領域の屈折率変化△na、活性層の長さLa、FBG領域の屈折率変化△nf、長さLf、それぞれの温度変化δTa、δTfに対して、定在波条件より下式により表される。 Non-Patent Document 1 mentions a mode hop mechanism that impairs the wavelength stability associated with a temperature rise, and an improvement measure thereof. The wavelength variation δλs of the external cavity laser due to the temperature is the change in refractive index Δna of the active layer region of the semiconductor, the length La of the active layer, the refractive index variation Δnf of the FBG region, the length Lf, and the temperature variation δTa. , ΔTf is expressed by the following equation from the standing wave condition.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、λ0は初期状態でのグレーティング反射波長を表す。
 また、グレーティング反射波長の変化δλGは、下式で表される。
Here, λ0 represents the grating reflection wavelength in the initial state.
Further, the change ΔλG in the grating reflection wavelength is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 モードホップは、外部共振器の縦モード間隔△λが波長変化量δλsとグレーティング反射波長の変化量δλGの差に等しくなったときに発生するので、次式が成立する。
Figure JPOXMLDOC01-appb-M000004
Since the mode hop occurs when the longitudinal mode interval Δλ of the external resonator becomes equal to the difference between the wavelength variation Δλs and the grating reflection wavelength variation ΔλG, the following equation is established.
Figure JPOXMLDOC01-appb-M000004
 縦モード間隔△λは、近似的に下式となる。 The longitudinal mode interval Δλ is approximately expressed by the following equation.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 数式3と数式4より、数式5が成立する。 Mathematical formula 5 is established from mathematical formulas 3 and 4.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 モードホップを抑制するためには、△Tall以下の温度内で使用する必要があり、ペルチェ素子にて温度制御している。数式5では、活性層とグレーティング層の屈折率変化が同じ場合(△na/na=△nf/nf)、分母が零になり、モードホップが生じる温度が無限大になり、モードホップがなくなることを示している。しかしながら、モノリシックDBRレーザでは、レーザ発振させるために、活性層は電流注入がなされるために、活性層とグレーティング層の屈折率変化は一致させることができないので、モードホップが生じてしまう。 In order to suppress the mode hop, it is necessary to use within a temperature of △ Tall or less, and the temperature is controlled by a Peltier device. In Equation 5, when the refractive index changes of the active layer and the grating layer are the same (Δna / na = Δnf / nf), the denominator becomes zero, the temperature at which the mode hop occurs becomes infinite, and the mode hop disappears. Is shown. However, in the monolithic DBR laser, since current is injected into the active layer in order to oscillate the laser, the refractive index change between the active layer and the grating layer cannot be matched, resulting in a mode hop.
 モードホップは、共振器内の発振モード(縦モード)が、あるモードから違うモードに移る現象である。温度や注入電流が変化すると、ゲインや共振器の条件が異なり、レーザ発振波長が変化し、キンクといわれる、光パワーが変動するという問題を生じる。したがって、FP型のGaAs半導体レーザの場合、通常、波長が0.3nm/℃の温度係数で変化するが、モードホップが生じると、これよりも大きな変動が起こる。それと同時に、出力が5%以上変動する。 Mode hop is a phenomenon in which the oscillation mode (longitudinal mode) in the resonator changes from one mode to another. When the temperature and injection current change, the gain and resonator conditions change, the laser oscillation wavelength changes, and the problem arises that optical power fluctuates, which is called kink. Therefore, in the case of an FP type GaAs semiconductor laser, the wavelength usually changes with a temperature coefficient of 0.3 nm / ° C., but when a mode hop occurs, a larger fluctuation occurs. At the same time, the output fluctuates by 5% or more.
 このため、モードホップを抑制するために、ペルチェ素子を用いて温度制御している。しかし、このために部品点数が増え、モジュールが大きくなり、コストが高くなる。 For this reason, in order to suppress mode hops, temperature control is performed using a Peltier element. However, this increases the number of parts, increases the size of the module, and increases the cost.
 特許文献6では、温度無依存にするために、従来の共振器構造はそのままで光導波路層に応力を与えることで、熱膨張に起因する温度係数を補償することにより、温度無依存性を実現している。このため、素子に金属板を貼りつけ、さらに導波路中に温度係数を調整する層を付加させている。このため共振器構造が、さらに大きくなるという問題がある。 In Patent Document 6, in order to make the temperature independent, the conventional resonator structure is left as it is, and stress is applied to the optical waveguide layer to compensate for the temperature coefficient due to thermal expansion, thereby realizing temperature independence. is doing. For this reason, a metal plate is attached to the element, and a layer for adjusting the temperature coefficient is added to the waveguide. For this reason, there exists a problem that a resonator structure becomes still larger.
 本発明者は、光導波路型グレーティング素子を用いた外部共振器型のレーザ構造を、特許文献7において開示した。この出願では、支持基板の上に光学材料層を形成することにより光の閉じ込めを強くし、凹凸溝で形成される屈折率差を大きくしている。これにより短い距離にて所望のブラッグ反射率を得ることができ、共振器長の短い外部共振器型レーザを実現でき、グレーティング素子の反射特性の半値全幅△λGが特定の式を満足する場合に、温度コントロールなしで波長安定性が高くパワー変動のないレーザ発振が可能としている。 The present inventor has disclosed an external resonator type laser structure using an optical waveguide grating element in Patent Document 7. In this application, optical confinement is strengthened by forming an optical material layer on a support substrate, and the refractive index difference formed by the concave and convex grooves is increased. This makes it possible to obtain a desired Bragg reflectivity at a short distance, to realize an external cavity laser with a short cavity length, and when the full width at half maximum Δλ G of the reflection characteristic of the grating element satisfies a specific formula In addition, laser oscillation with high wavelength stability and no power fluctuation is possible without temperature control.
 本発明者が検討を進めたところ、以下の問題点が生ずることが判明してきた。すなわち、環境温度が変化してグレーティング素子に熱応力が加わったときに、ブラッググレーティングから出射面の間で高次モードが励振されてしまうことがあった。 As a result of investigation by the present inventor, it has been found that the following problems occur. That is, when the environmental temperature changes and thermal stress is applied to the grating element, a higher-order mode may be excited between the Bragg grating and the exit surface.
 これは、この構造が支持基板、光学材料層、バッファ層が異なる熱膨張係数、弾性率であることから、反りによる変形が起因していると考えられる。 This is considered to be due to deformation due to warping because this structure has a different thermal expansion coefficient and elastic modulus in the support substrate, the optical material layer, and the buffer layer.
 これに対して本発明者は、特許文献8において出射面における光導波路の幅を、ブラッググレーティングにおける光導波路の幅に対して変更することによって、高次モードの励振を抑制することを開示した。 On the other hand, the present inventor disclosed in Patent Document 8 that the excitation of the higher-order mode is suppressed by changing the width of the optical waveguide on the exit surface with respect to the width of the optical waveguide in the Bragg grating.
 しかし、特許文献7、8の実施例記載のリッジ型導波路においては、特許文献9記載のように光導波モードから基板モード(スラブ導波モード)への結合がしやすく放射しやすい。このため出射面における光導波路の幅を狭くした場合に閉じ込めが弱くなり基板方向に光電界が漏れ出し、基板モードへの結合が顕著になり、光伝搬損失が大きくなるという問題が生じた。 However, in the ridge-type waveguides described in the examples of Patent Documents 7 and 8, as described in Patent Document 9, coupling from the optical waveguide mode to the substrate mode (slab waveguide mode) is easy and radiation is easy. For this reason, when the width of the optical waveguide on the exit surface is narrowed, confinement is weakened, the optical electric field leaks in the direction of the substrate, coupling to the substrate mode becomes remarkable, and light propagation loss increases.
 本発明の課題は、グレーティング素子による外部共振器型のレーザにおいて、グレーティング素子に熱応力が加わったときに、ブラッググレーティングと出射面との間で高次モードが励振されるのを抑制することである。 An object of the present invention is to suppress excitation of a higher-order mode between a Bragg grating and an emission surface when thermal stress is applied to the grating element in an external resonator type laser using a grating element. is there.
 本発明は、半導体レーザ光源、およびこの半導体レーザ光源と外部共振器を構成するグレーティング素子を備える外部共振器型発光装置であって、
 前記半導体レーザ光源が、半導体レーザ光を発振する活性層を備えており、
 前記グレーティング素子が、前記半導体レーザ光が入射する入射面と所望波長の出射光を出射する出射面を有する光導波路であって、横断面が凸図形をなしている光導波路、前記光導波路内に形成された凹凸からなるブラッググレーティング、および前記ブラッググレーティングと前記出射面との間に設けられた出射側伝搬部を備えており、前記ブラッググレーティングによる反射波長域でレーザ発振し、前記ブラッググレーティングにおける前記光導波路の幅と前記出射面における前記光導波路の幅とが異なることを特徴とする。
The present invention is a semiconductor laser light source, and an external resonator type light emitting device comprising a grating element that constitutes the semiconductor laser light source and an external resonator,
The semiconductor laser light source includes an active layer that oscillates semiconductor laser light,
The grating element is an optical waveguide having an incident surface on which the semiconductor laser light is incident and an emission surface that emits outgoing light of a desired wavelength, and an optical waveguide having a convex cross section in the optical waveguide. A Bragg grating composed of the formed irregularities, and an emission-side propagation portion provided between the Bragg grating and the emission surface, and lasing in the wavelength range reflected by the Bragg grating, and the Bragg grating in the Bragg grating The width of the optical waveguide is different from the width of the optical waveguide at the exit surface.
 本発明者は、グレーティング素子に熱応力が加わったときに、ブラッググレーティングと出射面との間で高次モードが励振される理由を検討した。この結果、素子の出射面付近において、レーザのニアフィールドパターンの変形が大きくなっており、これが高次モードの励振や出射光の結合効率の低下をもたらしていることを見いだした。 The present inventor examined the reason why a higher-order mode is excited between the Bragg grating and the exit surface when thermal stress is applied to the grating element. As a result, the near-field pattern of the laser is greatly deformed in the vicinity of the emission surface of the device, and this has been found to cause high-order mode excitation and a reduction in the coupling efficiency of the emitted light.
 すなわち、ブラッググレーティングにおける光導波路の幅は、半導体レーザ素子との結合効率を高めるために、レーザのニアフィールドパターンと同等になるように設定する。半導体レーザのニアフィールドの水平方向の大きさは、例えば2μmから7μmになっていることがある。この場合、グレーティング素子の光導波路の幅は2μmから7μmに設定している。 That is, the width of the optical waveguide in the Bragg grating is set to be equal to the near-field pattern of the laser in order to increase the coupling efficiency with the semiconductor laser element. The horizontal size of the near field of the semiconductor laser may be 2 μm to 7 μm, for example. In this case, the width of the optical waveguide of the grating element is set to 2 μm to 7 μm.
 しかし、例えば、光学材料からなる薄層中に光導波路を形成した場合には、光学材料からなる薄層の厚みが例えば0.5μmから3μmと薄い場合に、特許文献8と同じようにマルチモード導波路化し、さらにニアフィールドパターンの大きさが水平方向と垂直方向で異なり、扁平化する問題が生じる。 However, for example, when an optical waveguide is formed in a thin layer made of an optical material, when the thickness of the thin layer made of the optical material is as thin as 0.5 μm to 3 μm, for example, the multimode is the same as in Patent Document 8. Further, there is a problem that a waveguide is formed, and the size of the near field pattern is different between the horizontal direction and the vertical direction, resulting in flattening.
 ブラッググレーティングにおける光導波路がマルチモード化している場合、基本モードと高次モードでは伝搬定数が異なるため、異なる波長でブラッグ反射が起こることになる。しかし、レーザのゲイン特性とグレーティングの反射特性を合わせることにより、基本モードにおける反射波長帯あるいは高次モードにおける反射波長帯で、選択的にレーザ発振が可能となる。つまり、基本モードの反射波長帯にゲインカーブを合わせることにより、基本モードでのレーザ発振が可能となる。 When the optical waveguide in the Bragg grating is in a multimode, the propagation constant is different between the fundamental mode and the higher order mode, so Bragg reflection occurs at different wavelengths. However, by combining the gain characteristics of the laser and the reflection characteristics of the grating, laser oscillation can be selectively performed in the reflection wavelength band in the fundamental mode or the reflection wavelength band in the higher-order mode. That is, laser oscillation in the fundamental mode is possible by matching the gain curve to the reflection wavelength band of the fundamental mode.
 この場合には、環境温度が変化してグレーティング素子に熱応力が加わると、ブラッググレーティングと出射面の間で高次モードが励振されてしまうことがわかった。グレーティング部では凹凸によって光電界分布(横モード形状)が乱される。通常、出射部がマルチモードであっても、基本モードが励振される。しかし、環境温度変化により導波路部に収縮や曲げ応力が加わると、高次モードが励振されて、マルチモード化する。また端面からの反射がある場合にも、このような現象がおこる。この現象はニアフィールドパターンの水平方向と垂直方向の大きさの比(扁平率)が大きいほど顕著である。 In this case, it was found that when the environmental temperature changes and thermal stress is applied to the grating element, a higher-order mode is excited between the Bragg grating and the exit surface. In the grating part, the optical electric field distribution (transverse mode shape) is disturbed by the unevenness. Usually, even if the emitting part is in multimode, the fundamental mode is excited. However, when shrinkage or bending stress is applied to the waveguide portion due to environmental temperature change, the higher-order mode is excited and becomes multimode. This phenomenon also occurs when there is reflection from the end face. This phenomenon becomes more conspicuous as the ratio of the horizontal field size to the vertical direction (flatness) of the near field pattern increases.
 本発明者は、こうした発見に基づき、出射面における光導波路の幅を、ブラッググレーティングにおける光導波路の幅に対して変更することによって、出射面におけるニアフィールドパターンの変形を抑制し、これによって高次モードの励振を抑制することができることを見いだした。更に、出射面における光導波路の幅を狭くすることによる光伝搬損失を低減することも可能である。 Based on these findings, the inventor suppresses deformation of the near-field pattern on the exit surface by changing the width of the optical waveguide on the exit surface relative to the width of the optical waveguide on the Bragg grating, thereby increasing the higher order. We found that mode excitation can be suppressed. Furthermore, it is possible to reduce the light propagation loss by narrowing the width of the optical waveguide at the exit surface.
外部共振器型発光装置1の模式図である。1 is a schematic diagram of an external resonator type light emitting device 1. FIG. 外部共振器型発光装置1を模式的に示す平面図である。1 is a plan view schematically showing an external resonator type light emitting device 1. FIG. 他の外部共振器型発光装置1Aの模式図である。It is a schematic diagram of another external resonator type light emitting device 1A. グレーティング素子9を模式的に示す斜視図である。3 is a perspective view schematically showing a grating element 9. FIG. (a)、(b)は、それぞれ、グレーティング素子の横断面形状を示す模式図である。(A), (b) is a schematic diagram which respectively shows the cross-sectional shape of a grating element. (a)、(b)、(c)は、それぞれ、グレーティング素子の横断面形状を示す模式図である。(A), (b), (c) is a schematic diagram which respectively shows the cross-sectional shape of a grating element. (a)、(b)は、それぞれ、グレーティング素子の横断面形状を示す模式図である。(A), (b) is a schematic diagram which respectively shows the cross-sectional shape of a grating element. 従来例によるモードホップの形態を説明する図である。It is a figure explaining the form of the mode hop by a prior art example. 従来例によるモードホップの形態を説明する図である。It is a figure explaining the form of the mode hop by a prior art example. 好適な実施形態における、離散的な位相条件例を示す。4 illustrates an example discrete phase condition in a preferred embodiment. レーザ発振条件を説明する図である。It is a figure explaining laser oscillation conditions.
 図1に模式的に示す外部共振器型発光装置1は、半導体レーザ光を発振する光源2と、グレーティング素子9とを備えている。光源2とグレーティング素子9とは、共通基板3上にマウントされている。 An external resonator type light emitting device 1 schematically shown in FIG. 1 includes a light source 2 that oscillates a semiconductor laser beam and a grating element 9. The light source 2 and the grating element 9 are mounted on the common substrate 3.
 光源2は、半導体レーザ光を発振する活性層5を備えている。本実施形態では、活性層5は基体4に設けられている。基体4の外側端面には反射膜6が設けられており、活性層5のグレーティング素子側の端面には無反射層7Aが形成されている。 The light source 2 includes an active layer 5 that oscillates semiconductor laser light. In the present embodiment, the active layer 5 is provided on the substrate 4. A reflective film 6 is provided on the outer end face of the substrate 4, and a non-reflective layer 7 A is formed on the end face of the active layer 5 on the grating element side.
 図1、図4に示すように、グレーティング素子9には、半導体レーザ光Aが入射する入射面11aと所望波長の出射光Bを出射する出射面11bを有する光導波路11が設けられている。Cは反射光である。光導波路11内には、ブラッググレーティング12が形成されている。光導波路11の入射面11aとブラッググレーティング12との間には、回折格子のない入射側伝搬部13が設けられており、入射側伝搬部13が活性層5と間隙14を介して対向している。7Bは、光導波路11の入射面側に設けられた無反射膜であり、7Cは、光導波路11の出射面側に設けられた無反射膜である。 As shown in FIGS. 1 and 4, the grating element 9 is provided with an optical waveguide 11 having an incident surface 11a on which the semiconductor laser light A is incident and an output surface 11b that emits an outgoing light B having a desired wavelength. C is reflected light. A Bragg grating 12 is formed in the optical waveguide 11. Between the incident surface 11 a of the optical waveguide 11 and the Bragg grating 12, an incident-side propagation part 13 without a diffraction grating is provided, and the incident-side propagation part 13 faces the active layer 5 with a gap 14 therebetween. Yes. Reference numeral 7B denotes an antireflective film provided on the incident surface side of the optical waveguide 11, and reference numeral 7C denotes an antireflective film provided on the output surface side of the optical waveguide 11.
 好適な実施形態においては、グレーティング反射率が、活性層の出射側端面における反射率よりも大きく、光導波路の入射側端面における反射率よりも大きく、かつ光導波路の出射側端面における反射率よりも大きい。この観点からは、活性層の出射側端面における反射率、光導波路の入射側端面における反射率、光導波路の出射側端面における反射率は、それぞれ、0.1%以下が好ましい。 In a preferred embodiment, the grating reflectivity is greater than the reflectivity at the exit end face of the active layer, greater than the reflectivity at the entrance end face of the optical waveguide, and greater than the reflectivity at the exit end face of the optical waveguide. large. From this point of view, it is preferable that the reflectivity at the exit end face of the active layer, the reflectivity at the entrance end face of the optical waveguide, and the reflectivity at the exit end face of the optical waveguide are each 0.1% or less.
 無反射層7A、7B、7Cの反射率は、グレーティング反射率よりも小さい値であればよく、さらに0.1%以下が好ましい。しかし、端面における反射率がグレーティング反射率よりも小さい値であれば、無反射層はなくてもよく、反射膜であってもよい。 The reflectance of the non-reflective layers 7A, 7B, and 7C may be a value smaller than the grating reflectance, and is preferably 0.1% or less. However, as long as the reflectance at the end face is smaller than the grating reflectance, the non-reflective layer may be omitted and a reflective film may be used.
 本発明では、光導波路が、光学材料からなるコアからなり、コアの周りをクラッドが包囲している。このコアの横断面(光の伝搬方向と垂直な方向の断面)形状は凸図形となるようにする。 In the present invention, the optical waveguide is composed of a core made of an optical material, and a clad surrounds the core. The cross section of the core (cross section in the direction perpendicular to the light propagation direction) is a convex figure.
 凸図形とは、コアの横断面の外側輪郭線の任意の二点を結ぶ線分が、コアの横断面の外側輪郭線の内側に位置することを意味する。凸図形は、一般的な幾何学用語である。このような図形としては、三角形、四角形、六角形、八角形などの多角形、円形、楕円形などを例示できる。四角形としては、特に、上辺と下辺と一対の側面を有する四角形が好ましく、台形が特に好ましい。 The convex figure means that a line segment connecting any two points of the outer contour line of the core cross section is located inside the outer contour line of the core cross section. A convex figure is a general geometric term. Examples of such figures include triangles, quadrangles, hexagons, octagons, and other polygons, circles, ellipses, and the like. As the quadrangle, a quadrangle having an upper side, a lower side, and a pair of side surfaces is particularly preferable, and a trapezoid is particularly preferable.
 好適な実施形態においては、図5(a)に示すように、基板10上に接着層30、下側バッファ層16を介して、光学材料よりなるコアからなる光導波路11が形成されている。この光導波路11の下側には、クラッドとして機能する下側バッファ層が存在している。光導波路11の側面および上面には、やはりクラッドとして機能する上側バッファ層23が形成され、光導波路11を被覆している。光導波路11の横断面形状は台形であり、上面11aが下面11bよりも狭い。上側バッファ層23は、光導波路11の側面を被覆する側面被覆部23bおよび上面を被覆する上面被覆部23aを有する。 In a preferred embodiment, as shown in FIG. 5A, an optical waveguide 11 made of a core made of an optical material is formed on a substrate 10 via an adhesive layer 30 and a lower buffer layer 16. A lower buffer layer functioning as a clad exists under the optical waveguide 11. An upper buffer layer 23 that also functions as a cladding is formed on the side surface and the upper surface of the optical waveguide 11 to cover the optical waveguide 11. The cross-sectional shape of the optical waveguide 11 is a trapezoid, and the upper surface 11a is narrower than the lower surface 11b. The upper buffer layer 23 includes a side surface covering portion 23 b that covers the side surface of the optical waveguide 11 and an upper surface covering portion 23 a that covers the upper surface.
 また、図5(b)に示す素子9Aでは、基板10上に接着層30、下側バッファ層16を介して、光学材料よりなるコアからなる光導波路11Aが形成されている。光導波路11Aの横断面形状は台形であり、下面が上面よりも狭い。上側クラッド層23は、光導波路11の側面を被覆する側面被覆部23bおよび上面を被覆する上面被覆部23aを有する。 Further, in the element 9A shown in FIG. 5B, the optical waveguide 11A made of a core made of an optical material is formed on the substrate 10 via the adhesive layer 30 and the lower buffer layer 16. The cross-sectional shape of the optical waveguide 11A is trapezoidal and the lower surface is narrower than the upper surface. The upper cladding layer 23 includes a side surface covering portion 23 b that covers the side surface of the optical waveguide 11 and an upper surface covering portion 23 a that covers the upper surface.
 また、図6(a)に示す素子9Bでは、基板10上に下側バッファ層16を介して、光学材料よりなるコアからなる光導波路11が形成されており、下側バッファ層と別体の接着層がない。また、光導波路11の側面および上面には上側バッファ層が設けられていない。このため、光導波路11の側面および上面は雰囲気に露出しており、雰囲気がクラッドとして機能する。 In the element 9B shown in FIG. 6A, the optical waveguide 11 made of a core made of an optical material is formed on the substrate 10 via the lower buffer layer 16, and is separated from the lower buffer layer. There is no adhesive layer. Further, the upper buffer layer is not provided on the side surface and the upper surface of the optical waveguide 11. For this reason, the side surface and the upper surface of the optical waveguide 11 are exposed to the atmosphere, and the atmosphere functions as a cladding.
 図6(b)に示す素子9Cでは、基板10上にバッファ層22内か設けられており、バッファ層22内に、光学材料よりなるコアからなる光導波路11が埋設されている。バッファ層22は、光導波路の上面を被覆する上面被覆部22b、光導波路の側面を被覆する側面被覆部22cおよび光導波路の底面を被覆する底面被覆図22aを有する。 In the element 9 </ b> C shown in FIG. 6B, the buffer layer 22 is provided on the substrate 10, and the optical waveguide 11 made of a core made of an optical material is embedded in the buffer layer 22. The buffer layer 22 has an upper surface covering portion 22b that covers the upper surface of the optical waveguide, a side surface covering portion 22c that covers the side surface of the optical waveguide, and a bottom surface coating diagram 22a that covers the bottom surface of the optical waveguide.
 図6(c)に示す素子9Dでは、基板10上にバッファ層22内か設けられており、バッファ層22内に、光学材料よりなるコアからなる光導波路11Aが埋設されている。バッファ層22は、光導波路の上面を被覆する上面被覆部22b、光導波路の側面を被覆する側面被覆部22cおよび光導波路の底面を被覆する底面被覆図22aを有する。 In the element 9D shown in FIG. 6C, the buffer layer 22 is provided on the substrate 10, and an optical waveguide 11A made of a core made of an optical material is embedded in the buffer layer 22. The buffer layer 22 has an upper surface covering portion 22b that covers the upper surface of the optical waveguide, a side surface covering portion 22c that covers the side surface of the optical waveguide, and a bottom surface coating diagram 22a that covers the bottom surface of the optical waveguide.
 図7(a)に示す素子9Eでは、基板10上に下側バッファ層16を介して、光学材料よりなるコアからなる光導波路11が形成されている。光導波路11の側面および上面には、やはりクラッドとして機能する上側バッファ層23が形成され、光導波路11を被覆している。本例では、下側バッファ層16とは別体の接着層を設けていない。 7A, an optical waveguide 11 made of a core made of an optical material is formed on a substrate 10 with a lower buffer layer 16 interposed therebetween. An upper buffer layer 23 that also functions as a cladding is formed on the side surface and the upper surface of the optical waveguide 11 to cover the optical waveguide 11. In this example, an adhesive layer separate from the lower buffer layer 16 is not provided.
 図7(b)に示す素子9Fでは、基板10上に下側バッファ層16を介して、光学材料よりなるコアからなる光導波路11Aが形成されている。光導波路11Aの側面および上面には、やはりクラッドとして機能する上側バッファ層23が形成され、光導波路11Aを被覆している。本例では、下側バッファ層16とは別体の接着層を設けていない。 In the element 9F shown in FIG. 7B, an optical waveguide 11A made of a core made of an optical material is formed on the substrate 10 via the lower buffer layer 16. An upper buffer layer 23 that also functions as a cladding is formed on the side surface and the upper surface of the optical waveguide 11A to cover the optical waveguide 11A. In this example, an adhesive layer separate from the lower buffer layer 16 is not provided.
 本発明においては、ブラッググレーティングは、光導波路の上面11a側に形成していてもよく、光導波路の下面11b側に形成していてもよい。 In the present invention, the Bragg grating may be formed on the upper surface 11a side of the optical waveguide, or may be formed on the lower surface 11b side of the optical waveguide.
 空気層が直接グレーティングに接する場合には、グレーティング溝が有る無しで屈折率差を大きくすることができ、短いグレーティング長で反射率を大きくすることができる。また、上側バッファ層と下側バッファ層とは、同じ材料であってもよく、異なる材料であってもよい。 When the air layer is in direct contact with the grating, the difference in refractive index can be increased without the presence of a grating groove, and the reflectance can be increased with a short grating length. Further, the upper buffer layer and the lower buffer layer may be made of the same material or different materials.
 バッファ層は、クラッドとして機能することができ、この観点ではバッファ層は、コア部の材料よりも屈折率が小さいことが好ましい。このためコア部とクラッド部の屈折率差は0.2以上が好ましく、さらに0.4以上が好ましい。クラッドを形成する好適な材料として、酸化ケイ素、酸化アルミナ、酸化タンタル、酸化チタン、酸化にオブが例示できる。 The buffer layer can function as a clad. From this viewpoint, the buffer layer preferably has a refractive index smaller than that of the material of the core portion. For this reason, the refractive index difference between the core part and the clad part is preferably 0.2 or more, and more preferably 0.4 or more. Examples of suitable materials for forming the cladding include silicon oxide, alumina, tantalum oxide, titanium oxide, and oxidation.
 図3は、他の実施形態に係る装置1Aを示す。本装置1Aの大部分は図1の装置1と同様のものである。光源2は、レーザ光を発振する活性層5を備えているが、活性層5のグレーティング素子9側の端面に無反射層7Aを設けず、その代わりに反射膜25が形成されている。これは通常の半導体レーザの形態である。 FIG. 3 shows an apparatus 1A according to another embodiment. Most of the apparatus 1A is the same as the apparatus 1 of FIG. The light source 2 includes an active layer 5 that oscillates laser light. However, the antireflection layer 7A is not provided on the end surface of the active layer 5 on the grating element 9 side, and a reflective film 25 is formed instead. This is a form of a normal semiconductor laser.
 レーザ光の発振波長は、グレーティングにより反射される波長で決定される。グレーティングによる反射光と活性層5のグレーティング素子側の端面からの反射光がレーザのゲイン閾値を上回れば、発振条件を満足する。これにより波長安定性の高いレーザ光を得ることができる。 The oscillation wavelength of the laser light is determined by the wavelength reflected by the grating. If the reflected light from the grating and the reflected light from the end face of the active layer 5 on the grating element side exceed the laser gain threshold, the oscillation condition is satisfied. Thereby, a laser beam with high wavelength stability can be obtained.
 波長安定性をより高くするには、グレーティングからの帰還量を大きくすればよく、この観点からグレーティングの反射率は活性層5の端面における反射率よりも大きくする方が好ましい。これによりもともとの半導体レーザの共振器で得られるゲインよりもグレーティングによる共振器で得られるゲインの方が大きくなり、グレーティングによる共振器で安定なレーザ発振が可能となる。 In order to further improve the wavelength stability, the feedback amount from the grating may be increased. From this viewpoint, the reflectance of the grating is preferably larger than the reflectance at the end face of the active layer 5. As a result, the gain obtained by the resonator using the grating becomes larger than the gain obtained by the resonator of the original semiconductor laser, and stable laser oscillation can be performed by the resonator using the grating.
 ここで、本実施形態においては、特に図2、図4に示すように、入射面11aとブラッググレーティング12との間に入射側伝搬部13が設けられており、また、ブラッググレーティング12と出射面11bとの間に出射側伝搬部20が設けられている。本例では、出射側伝搬部20は、ブラッググレーティング12の末端から連続する連結部20a、光導波路の出射面11bに連続する出射部20c、および連結部と出射部との間に設けられたテーパ部20bを備えている。 Here, in the present embodiment, as shown particularly in FIGS. 2 and 4, an incident-side propagation portion 13 is provided between the incident surface 11 a and the Bragg grating 12, and the Bragg grating 12 and the exit surface are provided. The output side propagation part 20 is provided between 11b. In this example, the output-side propagation unit 20 includes a connecting part 20a continuous from the end of the Bragg grating 12, an output part 20c continuous to the output surface 11b of the optical waveguide, and a taper provided between the connecting part and the output part. A portion 20b is provided.
 本例では、出射面11bにおける光導波路の幅Woutがブラッググレーティング12における光導波路の幅Wよりも小さくなっている。また、出射側伝搬部20が、光導波路の幅Wがブラッググレーティング側から出射面側へと向かって小さくなるテーパ部20bを含む。なお、本例では、連結部20aにおける光導波路の幅Wが一定であり、出射部における光導波路の幅Woutも一定である。また、Wは、連結部20aとの境界で最大値Wとなり、出射部20cとの境界で最小値Woutとなる。 In this example, the width W out of the optical waveguide at the exit surface 11 b is smaller than the width W m of the optical waveguide at the Bragg grating 12. Also, exit side propagating portion 20, the width W t of the optical waveguide comprises a small tapered portion 20b toward to the exit surface side from the Bragg grating side. In this example, the width W m of the optical waveguide in the connecting portion 20a is constant, and the width W out of the optical waveguide in the emitting portion is also constant. Further, W t becomes the maximum value W m at the boundary with the connecting portion 20a, and becomes the minimum value W out at the boundary with the emitting portion 20c.
 なお、光導波路の幅Wは、横断面において光導波路の幅の最小値を意味する。光導波路の形状が上面が狭い台形の場合には、光導波路の幅Wmは上面の幅であり、光導波路の形状が下面が狭い台形の場合には、光導波路の幅Wは下面の幅である(図5~図7参照)。なお、これはWout、Wなどの場合も同様である。 The width W m of the optical waveguide means the minimum value of the width of the optical waveguide in the cross section. If the shape of the optical waveguides of the upper surface is narrow trapezoid, the width Wm of the optical waveguide is the width of the upper surface, when the shape of the optical waveguides of the lower surface is narrow trapezoid, the width W m of the optical waveguide lower surface of the width (See FIGS. 5 to 7). This also applies to W out , W t and the like.
 ブラッググレーティングにおける光導波路の幅Wは、半導体レーザ素子2との結合効率を高めるために、レーザのニアフィールドパターンと同等になるように設定する。半導体レーザのニアフィールドの水平方向の大きさは、例えば2μmから7μmになっていることがある。この場合、光導波路の幅Wmは2μmから7μmに設定している。
このことから本願の光導波路構造においては、光導波路の幅Wとニアフィールドの水平方向の大きさはほぼ同じ値になる。
The width W m of the optical waveguide in the Bragg grating is set to be equal to the near-field pattern of the laser in order to increase the coupling efficiency with the semiconductor laser element 2. The horizontal size of the near field of the semiconductor laser may be 2 μm to 7 μm, for example. In this case, the width Wm of the optical waveguide is set from 2 μm to 7 μm.
In the optical waveguide structure of the present Therefore, the horizontal size of the width W m and the near field of the optical waveguide becomes substantially the same value.
 ブラッググレーティングにおける光導波路がマルチモード化している場合、基本モードと高次モードでは伝搬定数が異なるため、異なる波長でブラッグ反射が起こることになる。しかし、基本モードの反射波長帯にゲインカーブを合わせることにより、基本モードでのレーザ発振が可能となる。しかし、この場合には、環境温度が変化してグレーティング素子9に熱応力が加わると、ブラッググレーティング12と出射面11bの間の出射側伝搬部内で高次モードが励振されてしまうことがわかった。この現象はニアフィールドの水平方向と垂直方向の大きさの比(扁平率)が大きいほど顕著である。 When the optical waveguide in the Bragg grating is in a multimode, the propagation constant is different between the fundamental mode and the higher order mode, so Bragg reflection occurs at different wavelengths. However, by matching the gain curve with the reflection wavelength band of the fundamental mode, laser oscillation in the fundamental mode is possible. However, in this case, it was found that when the environmental temperature changes and thermal stress is applied to the grating element 9, a higher-order mode is excited in the outgoing side propagation part between the Bragg grating 12 and the outgoing face 11b. . This phenomenon becomes more conspicuous as the ratio of the horizontal size of the near field to the vertical direction (flatness) increases.
 ここで、本実施形態では、出射面における光導波路の幅WoutをWよりも小さくすることで、出射面におけるニアフィールドパターンの偏平化を抑制することができ、これによって高次モードの励振を抑制できる。 Here, in the present embodiment, by making the width W out of the optical waveguide on the exit surface smaller than W m , it is possible to suppress flattening of the near field pattern on the exit surface, thereby exciting higher-order modes. Can be suppressed.
 光源としては、高い信頼性を有するGaAs系やInP系材料によるレーザが好適である。本願構造の応用として、例えば、非線形光学素子を利用して第2高調波である緑色レーザを発振させる場合は、波長1064nm付近で発振するGaAs系のレーザを用いることになる。GaAs系やInP系のレーザは信頼性が高いため、一次元状に配列したレーザアレイ等の光源も実現可能である。スーパールミネッセンスダイオードや半導体光アンプ(SOA)であってもよい。また、活性層の材質や波長も適宜選択できる。 As the light source, a laser with a highly reliable GaAs-based or InP-based material is suitable. As an application of the structure of the present application, for example, when a green laser that is the second harmonic is oscillated using a nonlinear optical element, a GaAs laser that oscillates near a wavelength of 1064 nm is used. Since GaAs-based and InP-based lasers have high reliability, a light source such as a one-dimensionally arranged laser array can be realized. It may be a super luminescence diode or a semiconductor optical amplifier (SOA). In addition, the material and wavelength of the active layer can be selected as appropriate.
 なお、半導体レーザとグレーティング素子との組み合わせでパワー安定化を行う方法は、下記に開示されている。
(非特許文献3: 古河電工時報 平成12年1月 第105号 p24-29)
Note that a method for stabilizing power by a combination of a semiconductor laser and a grating element is disclosed below.
(Non-Patent Document 3: Furukawa Electric Times, January 2000, No. 105, p24-29)
 光導波路は、例えば外周刃による切削加工やレーザアブレーション加工することによって光学材料層を物理的に加工し、成形することによって得られる。 The optical waveguide can be obtained by, for example, physically processing and molding the optical material layer by cutting with an outer peripheral blade or laser ablation.
 ブラッググレーティングは以下のようにして物理的、あるいは化学的なエッチングにより形成することができる。
 具体例として、Ni、Tiなどの金属膜を光学材料層上に成膜し、フォトリソグラフィーにより周期的に窓を形成しエッチング用マスクを形成する。その後、反応性イオンエッチングなどのドライエッチング装置で周期的なグレーティング溝を形成する。最後に金属マスクを除去することにより形成できる。
The Bragg grating can be formed by physical or chemical etching as follows.
As a specific example, a metal film such as Ni or Ti is formed on the optical material layer, and windows are periodically formed by photolithography to form an etching mask. Thereafter, periodic grating grooves are formed by a dry etching apparatus such as reactive ion etching. Finally, it can be formed by removing the metal mask.
 光導波路中には、光導波路の耐光損傷性を更に向上させるために、マグネシウム(Mg)、亜鉛(Zn)、スカンジウム(Sc)及びインジウム(In)からなる群より選ばれる1種以上の金属元素を含有させてもよく、この場合、マグネシウムが特に好ましい。また結晶中には、ドープ成分として、希土類元素を含有させることができる。希土類元素としては、特にNd、Er、Tm、Ho、Dy、Prが好ましい。 In the optical waveguide, one or more metal elements selected from the group consisting of magnesium (Mg), zinc (Zn), scandium (Sc), and indium (In) are provided in order to further improve the optical damage resistance of the optical waveguide. In this case, magnesium is particularly preferable. The crystal can contain a rare earth element as a doping component. As the rare earth element, Nd, Er, Tm, Ho, Dy, and Pr are particularly preferable.
 接着層の材質は、無機接着剤であってよく、有機接着剤であってよく、無機接着剤と有機接着剤との組み合わせであってよい。 The material of the adhesive layer may be an inorganic adhesive, an organic adhesive, or a combination of an inorganic adhesive and an organic adhesive.
 また、光学材料層は、支持基体上に薄膜形成法によって成膜して形成してもよい。こうした薄膜形成法としては、スパッタ、蒸着、CVDを例示できる。この場合には、光学材料層は支持基体に直接形成されており、上述した接着層は存在しない。 Further, the optical material layer may be formed by forming a film on the support substrate by a thin film forming method. Examples of such a thin film forming method include sputtering, vapor deposition, and CVD. In this case, the optical material layer is formed directly on the support substrate, and the above-described adhesive layer does not exist.
 支持基体の具体的材質は特に限定されず,ニオブ酸リチウム、タンタル酸リチウム、石英ガラスなどのガラスや水晶、Siなどを例示することができる。 The specific material of the support substrate is not particularly limited, and examples thereof include glass such as lithium niobate, lithium tantalate, and quartz glass, quartz, and Si.
 無反射層の反射率は、グレーティング反射率以下である必要があり、無反射層に成膜する膜材としては、二酸化珪素、五酸化タンタル、フッ化マグネシウム、フッ化カルシウムなどの酸化物で積層した膜や、金属類も使用可能である。 The reflectance of the non-reflective layer needs to be less than or equal to the grating reflectivity, and the film material to be formed on the non-reflective layer is laminated with an oxide such as silicon dioxide, tantalum pentoxide, magnesium fluoride, calcium fluoride, etc. Films and metals can also be used.
 また、光源素子、グレーティング素子の各端面は、それぞれ、端面反射を抑制するために斜めカットしていてもよい。また、グレーティング素子と支持基板の接合は、図5の例では接着固定であるが、直接接合でもよい。 Further, each end face of the light source element and the grating element may be cut obliquely in order to suppress the end face reflection. The grating element and the support substrate are bonded and fixed in the example of FIG. 5, but may be directly bonded.
 本発明で採用する光導波路の場合は、光導波路を構成するコアとそれを包囲するクラッドとが、材料的に分離した構造になっており、コア部の幅を変えることよりニアフィールドの形状を変えることができる。さらに基板モード(スラブモード)への結合はないのでコア部の幅を狭くすることによる光伝搬損失の低減を抑制することが可能である。 In the case of the optical waveguide employed in the present invention, the core constituting the optical waveguide and the cladding surrounding the core are separated from each other in material, and the shape of the near field can be changed by changing the width of the core portion. Can be changed. Further, since there is no coupling to the substrate mode (slab mode), it is possible to suppress a reduction in light propagation loss by narrowing the width of the core portion.
 しかし、本願導波路はコアとクラッドの屈折率差が大きいことから、光閉じ込めが強い構造となるためにシングルモード化するための導波路寸法が微細になる。 However, since the waveguide of the present application has a large refractive index difference between the core and the clad, it has a strong optical confinement structure, so that the waveguide dimension for making a single mode becomes fine.
 出射側の伝播光をシングルモード化するという観点からは、出射面における光導波路の幅Woutは、3.5μm以下が好ましく、更にニアフィールドパターンの扁平化を抑制するという観点からは、出射面における光導波路の幅Woutは、2μm以下が更に好ましく、1μm以下が最も好ましい。 From the viewpoint of making the propagation light on the emission side into a single mode, the width W out of the optical waveguide on the emission surface is preferably 3.5 μm or less, and from the viewpoint of suppressing flattening of the near field pattern, The width W out of the optical waveguide is more preferably 2 μm or less, and most preferably 1 μm or less.
 一方、出射側伝搬部における光の伝播損失の低下を抑制するという観点からは、出射面における光導波路の幅Woutは、0.1μm以上が好ましく、0.5μm以上が更に好ましい。
 また、半導体レーザとの結合の観点からは、ブラッググレーティングにおける光導波路の幅Wは、2μm以上が好ましく、2.5μm以上が更に好ましい。また、同様の理由から、ブラッググレーティングにおける光導波路の幅Wは、7μm以下が好ましく、6.5μm以下が更に好ましい。
On the other hand, from the viewpoint of suppressing a reduction in light propagation loss at the exit-side propagation portion, the width W out of the optical waveguide at the exit surface is preferably 0.1 μm or more, and more preferably 0.5 μm or more.
In view of the coupling between the semiconductor laser, the width W m of the optical waveguide in the Bragg grating is preferably at least 2 [mu] m, further preferably not less than 2.5 [mu] m. For the same reason, the width W m of the optical waveguide in the Bragg grating is preferably 7 μm or less, and more preferably 6.5 μm or less.
 本発明の効果の観点からは、WoutとWとの比Wout/Wは、1/50以上が好ましく、さらに1/10以上が好ましい。また、2/3以下が好ましく、さらに1/2以下が好ましい。 From the viewpoint of the effect of the present invention, the ratio W out / W m between W out and W m is preferably 1/50 or more, and more preferably 1/10 or more. Moreover, 2/3 or less is preferable and 1/2 or less is more preferable.
 また、上述の実施形態では、出射側伝搬部20に、テーパ部20b、幅一定の連結部20aおよび幅一定の出射部20cを設けた。しかし、出射側伝搬部20は、テーパ部20bおよび幅一定の連結部20aの組み合わせからなっていてよく、この場合にはテーパ部20bの出射側末端に出射面が位置する。あるいは、出射側伝搬部20は、テーパ部20bおよび幅一定の出射部20cからなっていてよく、この場合にはブラッググレーティング12の出射側末端とテーパ部20bの入射側末端とが連続している。 Further, in the above-described embodiment, the emission side propagation part 20 is provided with the tapered part 20b, the constant width connecting part 20a, and the constant width emission part 20c. However, the output side propagation part 20 may be composed of a combination of a tapered part 20b and a constant width connecting part 20a. In this case, the output surface is located at the output side end of the tapered part 20b. Alternatively, the output-side propagation unit 20 may include a tapered part 20b and a fixed-width output part 20c. In this case, the output-side end of the Bragg grating 12 and the incident-side end of the tapered part 20b are continuous. .
 好適な実施形態においては、グレーティング素子の入射面におけるニアフィールドの水平方向の幅が、グレーティング素子の出射面におけるニアフィールドの水平方向の幅よりも大きい。あるいは、グレーティング素子の入射面における光導波路の幅が、グレーティング素子の出射面における光導波路の幅よりも大きい。これによって、光源との結合効率を高く保持しつつ、前述した出射側伝搬部におけるマルチモード励振を抑制できる。
 こうした観点からは、(前記入射面におけるニアフィールドの水平方向の幅/出射面におけるニアフィールドの水平方向の幅)を1.3以上とすることが好ましく、1.5以上とすることが更に好ましい。また、これが大きくなり過ぎると、光導波路における幅の変化が大きくなって設計が難しくなるので、(前記入射面におけるニアフィールドの水平方向の幅/出射面におけるニアフィールドの水平方向の幅)を10以下とすることが好ましく、5以下とすることが更に好ましい。
 レーザ光のニアフィルードの水平方向の幅は、以下のようにして測定する。
レーザ光の光強度分布を測定して、その強度分布が最大値(通常はコアの中心部分に相当)に対して1/e2(eは自然対数の底: 2.71828)になるところの幅のことを、一般的に、ニアフィルードの水平方向の幅と定義する。レーザ光の場合、モードフィールドはレーザ素子の水平方向と垂直方向で大きさが異なるために、それぞれ定義する。光ファイバのように同心円である場合には直径として定義される。
 光強度分布の測定は、一般的に近赤外カメラを利用したビームプロファイル測定やナイフエッジによる光強度測定により、レーザ光のスポットの光強度分布を得ることができる。
In a preferred embodiment, the horizontal width of the near field at the entrance surface of the grating element is larger than the horizontal width of the near field at the exit surface of the grating element. Alternatively, the width of the optical waveguide at the entrance surface of the grating element is larger than the width of the optical waveguide at the exit surface of the grating element. As a result, it is possible to suppress the multi-mode excitation in the exit-side propagation unit described above while maintaining high coupling efficiency with the light source.
From this point of view, (the horizontal width of the near field on the entrance surface / the horizontal width of the near field on the exit surface) is preferably 1.3 or more, and more preferably 1.5 or more. . If this becomes too large, the change in the width of the optical waveguide becomes large and the design becomes difficult. Therefore, (the horizontal width of the near field on the incident surface / the horizontal width of the near field on the output surface) is set to 10. It is preferable to set it as follows, and it is more preferable to set it as 5 or less.
The horizontal width of the near-field of the laser beam is measured as follows.
Measure the light intensity distribution of the laser beam and measure the width where the intensity distribution is 1 / e 2 (e is the base of natural logarithm: 2.71828) with respect to the maximum value (usually equivalent to the center of the core). This is generally defined as the horizontal width of the near field. In the case of laser light, the mode field is defined because the size differs between the horizontal direction and the vertical direction of the laser element. When it is concentric like an optical fiber, it is defined as a diameter.
In the measurement of the light intensity distribution, it is possible to obtain the light intensity distribution of the spot of the laser light by measuring the beam profile using a near infrared camera or measuring the light intensity with a knife edge.
 以下、本発明装置の好適な実施形態について更に述べる。
 グレーティング素子に関して、一般的に、ファイバグレーティングを使用する場合に、石英は屈折率の温度係数が小さいのでdλG/dTが小さく、|dλG/dT―dλTM/dT|が大きくなる。このためモードホップがおこる温度域△Tが小さくなってしまう傾向がある。
Hereinafter, preferred embodiments of the apparatus of the present invention will be further described.
Regarding the grating element, generally, when a fiber grating is used, quartz has a small temperature coefficient of refractive index, so dλ G / dT is small and | dλ G / dT−dλ TM / dT | is large. For this reason, there exists a tendency for temperature range (DELTA) T in which a mode hop occurs to become small.
 このため、好適な実施形態においては、グレーティングが形成される光導波路の屈折率が1.7以上の材料を使用する。これにより屈折率の温度係数を大きくでき、dλG/dTが大きくできるので、|dλG/dT―dλTM/dT|を小さくでき、モードホップがおこる温度域△Tを大きくできる。 For this reason, in a preferred embodiment, a material having a refractive index of 1.7 or more is used for the optical waveguide in which the grating is formed. As a result, the temperature coefficient of the refractive index can be increased and dλ G / dT can be increased. Therefore, | dλ G / dT−dλ TM / dT | can be decreased, and the temperature range ΔT in which the mode hop occurs can be increased.
 そして、好適な実施形態においては、これを前提として、当業者の常識に反して、ブラッグ反射率のピークにおける半値全幅△λGを大きめに設定する。その上で、モードホップが起こりにくいようにするために、位相条件を満足する波長間隔(縦モード間隔)を大きくする必要がある。このため、共振器長を短くする必要があるので、ブラッググレーティングの長さLを300μm以下と短くした。 In the preferred embodiment, on the premise of this, the full width at half maximum Δλ G at the peak of the Bragg reflectivity is set to be large, contrary to the common sense of those skilled in the art. In addition, in order to prevent mode hops from occurring, it is necessary to increase the wavelength interval (longitudinal mode interval) that satisfies the phase condition. Therefore, it is necessary to shorten the cavity length, the length L b of the Bragg grating has been shortened to 300μm or less.
 その上で、ブラッググレーティングを構成する凹凸の深さtを20nm以上、250nm以下の範囲内で調節することによって、△λGを0.8nm以上、6nm以下にすることができ、この△λGの範囲内に縦モードの数を2~5に調節できる。すなわち、位相条件を満足する波長は離散的であり、△λGの中に縦モードの数が2以上、5以下存在しているときには、△λGの中でモードホップを繰り返し、この外にはずれることはない。このため大きなモードホップが起きないので、波長安定性を高くし、光パワー変動を抑制できる。 In addition, by adjusting the depth t d of the unevenness constituting the Bragg grating within a range of 20 nm or more and 250 nm or less, Δλ G can be set to 0.8 nm or more and 6 nm or less. Within the range of G , the number of longitudinal modes can be adjusted to 2-5. That is, the wavelengths satisfying the phase condition are discrete, and when the number of longitudinal modes in Δλ G is 2 or more and 5 or less, mode hops are repeated in Δλ G , and It will not come off. For this reason, since a large mode hop does not occur, wavelength stability can be increased and fluctuations in optical power can be suppressed.
 以下、図11に示すような構成において、本実施形態の条件の意味について更に述べる。
 ただし、数式は抽象的で理解しにくいので、最初に、従来技術の典型的な形態と本実施形態とを端的に比較し、本実施形態の特徴を述べる。次いで、本実施形態の各条件について述べていくこととする。
Hereinafter, the meaning of the conditions of the present embodiment in the configuration as shown in FIG. 11 will be further described.
However, since the mathematical formula is abstract and difficult to understand, first, a typical form of the prior art and this embodiment will be compared briefly to describe the features of this embodiment. Next, each condition of the present embodiment will be described.
 まず、半導体レーザの発振条件は、下式のようにゲイン条件×位相条件で決まる。 First, the oscillation condition of the semiconductor laser is determined by gain condition × phase condition as shown in the following equation.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ゲイン条件は、(2-1)式より下式となる。
Figure JPOXMLDOC01-appb-M000008
The gain condition is given by the following equation from equation (2-1).
Figure JPOXMLDOC01-appb-M000008
 ただし、αa、αg、αwg、αgrは、それぞれ、活性層、半導体レーザと導波路間のギャップ、入力側のグレーティング未加工導波路部、グレーティング部の損失係数であり、La、Lg、Lm Lgrは、それぞれ、活性層、半導体レーザと導波路間のギャップ、入力側のグレーティング未加工導波路部、グレーティング部の長さであり、r1、r2は、ミラー反射率(r2はグレーティングの反射率)であり、Coutは、グレーティング素子と光源との結合損失であり、ζgthは、レーザ媒体のゲイン閾値であり、φ1は、レーザ側反射ミラーによる位相変化量であり、φ2は、グレーティング部での位相変化量である。 Where αa, αg, αwg, αgr are the active layer, the gap between the semiconductor laser and the waveguide, the unprocessed waveguide portion on the input side, and the loss factor of the grating portion, respectively, L a , L g , L m L gr is the length of the active layer, the gap between the semiconductor laser and the waveguide, the unprocessed waveguide section of the grating on the input side, and the length of the grating section, and r1 and r2 are the mirror reflectivities (r2 is the grating reflectivity) C out is a coupling loss between the grating element and the light source, ζ t g th is a gain threshold of the laser medium, φ 1 is a phase change amount by the laser side reflection mirror, φ 2 Is a phase change amount in the grating portion.
 (2-2)式より、レーザ媒体のゲインζgth(ゲイン閾値)が損失を上回れば、レーザ発振することを表す。レーザ媒体のゲインカーブ(波長依存性)は、半値全幅は50nm以上あり、ブロードな特性をもっている。また、損失部(右辺)は、グレーティングの反射率以外はほとんど波長依存性がないので、ゲイン条件はグレーティングにより決まる。このため、ゲイン条件はグレーティングのみで考えることができる。 From the equation (2-2), if the gain ζ t g th (gain threshold value) of the laser medium exceeds the loss, it indicates that laser oscillation occurs. The gain curve (wavelength dependence) of the laser medium has a full width at half maximum of 50 nm or more and has broad characteristics. Further, since the loss part (right side) has almost no wavelength dependence other than the reflectance of the grating, the gain condition is determined by the grating. For this reason, the gain condition can be considered only by the grating.
 一方、位相条件は(2-1)式から、下式のようになる。ただし、φ1については零となる。
Figure JPOXMLDOC01-appb-M000009
On the other hand, the phase condition is expressed by the following equation from the equation (2-1). However, φ1 is zero.
Figure JPOXMLDOC01-appb-M000009
 外部共振器型レーザは、外部共振器として、石英系ガラス導波路、FBGを用いたものが製品化されている。従来の設計コンセプトは、図8と図9に示すように、グレーティングの反射特性は△λG=0.2nm程度、反射率10%となっている。このことから、グレーティング部の長さは1mmとなっている。一方、位相条件については、満足する波長は離散的になり、△λG内に、(2-3)式が2~3点あるように設計されている。このため、レーザ媒体の活性層長さが長いものが必要になり、1mm以上のものが使用されている。 As the external resonator type laser, a product using a quartz glass waveguide or FBG as an external resonator has been commercialized. In the conventional design concept, as shown in FIGS. 8 and 9, the reflection characteristic of the grating is about Δλ G = 0.2 nm and the reflectance is 10%. For this reason, the length of the grating portion is 1 mm. On the other hand, the phase condition, the wavelength which satisfies become discrete, in △ lambda G, are designed to be (2-3) equation points 2-3. For this reason, the thing with a long active layer length of a laser medium is needed, and the thing of 1 mm or more is used.
 ガラス導波路やFBGの場合、λgの温度依存性は非常に小さく、dλG/dT=0.01nm/℃程度となる。このことから、外部共振器型レーザは、波長安定性が高いという特徴をもつ。 In the case of a glass waveguide or FBG, the temperature dependence of λg is very small, and dλ G / dT = about 0.01 nm / ° C. For this reason, the external cavity laser has a feature of high wavelength stability.
 しかし、位相条件を満足する波長の温度依存性は、これに比してdλs/dT=0.05nm/℃と大きく、その差は0.04nm/℃となる。 However, the temperature dependence of the wavelength satisfying the phase condition is as large as dλ s /dT=0.05 nm / ° C., and the difference is 0.04 nm / ° C.
 一般的に、モードホップが起こる温度Tmhは、非特許文献1より下式のように考えることができる(Ta=Tfとして考える)。
 ΔGTMは、外部共振器レーザの位相条件を満足する波長間隔(縦モード間隔)である。
In general, the temperature T mh at which the mode hop occurs can be considered as the following equation from Non-Patent Document 1 (considered as Ta = Tf).
ΔG TM is a wavelength interval (longitudinal mode interval) that satisfies the phase condition of the external cavity laser.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 これより従来の場合、Tmhは5℃程度となる。このためモードホップが起こりやすい。したがって、モードホップが起こってしまうと、グレーティングの反射特性に基づきパワーが変動し、5%以上変動することになる。 Thus, in the conventional case, T mh is about 5 ° C. For this reason, mode hops are likely to occur. Therefore, when a mode hop occurs, the power fluctuates based on the reflection characteristics of the grating and fluctuates by 5% or more.
 以上から、実動作において、従来のガラス導波路やFBGを利用した外部共振器型レーザは、ペルチェ素子を利用して温度制御を行っていた。 From the above, in actual operation, the conventional external cavity laser using the glass waveguide or FBG performs temperature control using the Peltier element.
 これに対し、本実施形態では、前提条件として(2-4)式の分母が小さくなるグレーティング素子を使用するものである。(2-4)式の分母は、0.03nm/℃以下にすることが好ましく、具体的な光学材料としては、ガリウム砒素(GaAs)、ニオブ酸リチウム(LN)、タンタル酸リチウム(LT)、酸化タンタル(Ta2O5)、酸化亜鉛(ZnO)、酸化アルミナ(Al2O3)、酸化チタン(TiO2)が好ましい。 On the other hand, in this embodiment, a grating element having a small denominator of the equation (2-4) is used as a precondition. The denominator of formula (2-4) is preferably 0.03 nm / ° C. or less. Specific optical materials include gallium arsenide (GaAs), lithium niobate (LN), lithium tantalate (LT), oxidation Tantalum (Ta 2 O 5 ), zinc oxide (ZnO), alumina oxide (Al 2 O 3 ), and titanium oxide (TiO 2 ) are preferable.
 位相条件を満足する波長は、△λG内に5点以下存在していれば、モードホップが起こったとしても、安定なレーザ発振条件で動作が可能であることがわかった。 It has been found that if there are 5 or less wavelengths satisfying the phase condition within Δλ G , operation is possible under stable laser oscillation conditions even if mode hopping occurs.
 すなわち、本実施形態では、例えば、ニオブ酸リチウムのz軸の偏光を使用する場合に温度変化に対して、発振波長はグレーティングの温度特性に基づき0.1nm/℃で変化するが、モードホップは起こしてもパワー変動が起こりにくくすることが可能である。本願構造は、△λGを大きくするためにグレーティング長Lbは例えば100μmとし、△GTMを大きくするためにLaは例えば250μmとしている。 That is, in this embodiment, for example, when using z-axis polarized light of lithium niobate, the oscillation wavelength changes at 0.1 nm / ° C. based on the temperature characteristics of the grating with respect to the temperature change. Even if it occurs, it is possible to make it difficult for power fluctuations to occur. The present structure, △ lambda grating length in order to increase the G L b is a 100μm example, △ G TM to be increased L a is a 250μm example.
 なお、特許文献6との相違についても補足する。
 本願は、グレーティング波長の温度係数と半導体のゲインカーブの温度係数を近づけることを前提としている。このことから屈折率が1.7以上の材料を使用することとしている。さらにグレーティングの溝深さtを20nm以上、250nm以上とし、反射率を3%以上、60%以下で、かつその半値全幅△λGを0.8nm以上、250nm以下としている。これらにより共振器構造をコンパクトにでき、かつ付加するものをなくして温度無依存性が実現できる。特許文献6では、各パラメータは以下のように記載されており、いずれも従来技術の範疇となっている。
 △λG=0.4nm
 縦モード間隔△GTM=0.2nm
 グレーティング長Lb=3mm
 LD活性層長さLa=600μm
 伝搬部の長さ=1.5mm
In addition, it supplements about the difference with patent document 6. FIG.
The present application presupposes that the temperature coefficient of the grating wavelength and the temperature coefficient of the gain curve of the semiconductor are close to each other. For this reason, a material having a refractive index of 1.7 or more is used. Further grating groove depth t d of 20nm or more, and 250nm or more, the reflectance of 3% or more, 60% or less, and 0.8nm over the full width at half maximum △ lambda G, is set to 250nm or less. As a result, the resonator structure can be made compact and temperature-independence can be realized without any additional components. In patent document 6, each parameter is described as follows, and each is in the category of the prior art.
△ λ G = 0.4nm
Vertical mode interval △ G TM = 0.2nm
Grating length L b = 3mm
LD active layer length L a = 600 μm
Propagation length = 1.5mm
 以下各条件について更に具体的に述べる。
 0.8nm≦△λG≦6.0nm・・・(1)
10μm≦L≦300μm  ・・・(2)
20nm≦t≦250nm  ・・・(3)
≧1.7         ・・・(4)
Each condition will be described more specifically below.
0.8 nm ≦ Δλ G ≦ 6.0 nm (1)
10 μm ≦ L b ≦ 300 μm (2)
20 nm ≦ t d ≦ 250 nm (3)
n b ≧ 1.7 (4)
 式(4)において、光導波路を構成する材質の屈折率nは1.7以上とする。
 従来は石英などの、より屈折率の低い材料が一般的であったが、本発明の思想では、ブラッググレーティングを構成する材質の屈折率を高くする。この理由は、屈折率が大きい材料は屈折率の温度変化が大きいからであり、(2-4)式のTmhを大きくすることができ、さらに前述のようにグレーティングの温度係数dλG/dTを大きくできるからである。この観点からは、nは1.8以上であることが好ましく、1.9以上であることが更に好ましい。また、nの上限は特にないが、グレーティングピッチが小さくなりすぎて形成が困難になることから4以下が好ましい。
In the formula (4), the refractive index n b of the material constituting the optical waveguide is set to 1.7 or more.
Conventionally, a material having a lower refractive index, such as quartz, has been generally used. However, in the concept of the present invention, the refractive index of the material constituting the Bragg grating is increased. This is because a material with a large refractive index has a large temperature change in the refractive index, so that T mh in equation (2-4) can be increased, and the temperature coefficient dλ G / dT of the grating as described above. It is because it can enlarge. From this viewpoint, it is preferred that the n b is 1.8 or more, and more preferably 1.9 or more. The upper limit of n b is not particularly preferably 4 or less since the formed grating pitch becomes too small it is difficult.
 ブラッグ反射率のピークにおける半値全幅△λGを0.8nm以上とする(式1)。λはブラッグ波長である。すなわち、図8、図9に示すように、横軸にブラッググレーティングによる反射波長をとり、縦軸に反射率をとったとき、反射率が最大となる波長をブラッグ波長とする。またブラッグ波長を中心とするピークにおいて、反射率がピークの半分になる二つの波長の差を半値全幅△λGとする。 The full width at half maximum Δλ G at the peak of the Bragg reflectivity is set to 0.8 nm or more (Formula 1). λ G is the Bragg wavelength. That is, as shown in FIG. 8 and FIG. 9, when the reflection wavelength by the Bragg grating is taken on the horizontal axis and the reflectance is taken on the vertical axis, the wavelength at which the reflectance becomes maximum is taken as the Bragg wavelength. In the peak centered on the Bragg wavelength, the difference between the two wavelengths at which the reflectance is half of the peak is defined as the full width at half maximum Δλ G.
 ブラッグ反射率のピークにおける半値全幅△λGを0.8nm以上とする(式(1))。これは、反射率ピークをブロードにするためである。この観点からは、半値全幅△λGを1.2nm以上とすることが好ましく、1.5nm以上とすることが更に好ましい。また、半値全幅△λGを6nm以下とするが、3nm以下とすることが更に好ましく、2nm以下とすることが好ましい。 The full width at half maximum Δλ G at the peak of the Bragg reflectance is set to 0.8 nm or more (formula (1)). This is to make the reflectance peak broad. From this viewpoint, the full width at half maximum Δλ G is preferably set to 1.2 nm or more, and more preferably set to 1.5 nm or more. The full width at half maximum Δλ G is 6 nm or less, more preferably 3 nm or less, and preferably 2 nm or less.
 ブラッググレーティングの長さLは300μm以下とする(式2)。ブラッググレーティングの長さLは、光導波路を伝搬する光の光軸の方向におけるグレーティング長である。ブラッググレーティングの長さLを300μm以下と従来に比べて短くすることは、本実施形態における設計思想の前提となる。すなわち、モードホップをしにくくするために位相条件を満足する波長間隔(縦モード間隔)を大きくする必要がある。このためには、共振器長を短くする必要がありグレーティング素子の長さを短くする。この観点からは、ブラッググレーティングの長さLを200μm以下とすることがいっそう好ましい。 The length L b of the Bragg grating to 300μm or less (equation 2). The length L b of the Bragg grating is a grating length in the direction of the optical axis of the light propagating through the optical waveguide. Be shorter than the Bragg grating length L b below the conventional 300μm is a premise of the design concept of the present embodiment. That is, it is necessary to increase the wavelength interval (longitudinal mode interval) that satisfies the phase condition in order to make mode hopping difficult. For this purpose, it is necessary to shorten the resonator length, and to shorten the length of the grating element. From this viewpoint, it is more preferable that the Bragg grating length L b and 200μm or less.
 グレーティング素子の長さを短くすることは、損失を小さくすることになりレーザ発振の閾値を低減できる。この結果、低電流、低発熱、低エネルギーで駆動が可能となる。 Reducing the length of the grating element reduces the loss and can reduce the laser oscillation threshold. As a result, driving with low current, low heat generation, and low energy is possible.
 また、グレーティングの長さLは、3%以上の反射率を得るためには、5μm以上が好ましく、5%以上の反射率を得るためには、10μm以上が更に好ましい。 The length L b of the grating, in order to obtain a reflectance of 3% or more is preferably at least 5 [mu] m, in order to obtain a reflectance of 5% or more, more preferably more than 10 [mu] m.
 式(3)において、tは、前記ブラッググレーティングを構成する凹凸の深さである。20nm≦t≦250nmとすることで、△λGを0.8nm以上、6nm以下とすることができ、縦モードの数を△λGの中に2以上、5以下に調整することができる。こうした観点からは、tdは、30nm以上が更に好ましく、また、200nm以下が更に好ましい。半値全幅を3nm以下とするには150nm以下が好ましい。 In the formula (3), t d is the depth of the irregularities constituting the Bragg grating. By setting 20 nm ≦ t d ≦ 250 nm, Δλ G can be set to 0.8 nm or more and 6 nm or less, and the number of longitudinal modes can be adjusted to 2 or more and 5 or less in Δλ G. . From such a viewpoint, td is more preferably 30 nm or more, and further preferably 200 nm or less. In order to set the full width at half maximum to 3 nm or less, 150 nm or less is preferable.
 好適な実施形態においては、レーザ発振を促進するために、グレーティング素子の反射率は3%以上、40%以下に設定することが好ましい。この反射率は、より出力パワーを安定させるために5%以上が更に好ましく、また、出力パワーを大きくするためには25%以下が更に好ましい。 In a preferred embodiment, the reflectance of the grating element is preferably set to 3% or more and 40% or less in order to promote laser oscillation. This reflectivity is more preferably 5% or more in order to further stabilize the output power, and more preferably 25% or less in order to increase the output power.
 レーザ発振条件は、図11に示すように、ゲイン条件と位相条件から成立する。位相条件を満足する波長は離散的であり、たとえば図10に示される。すなわち、本構造ではゲインカーブの温度係数(GaAsの場合0.3nm/℃)とグレーティングの温度係数dλG/dTを近づけることにより、発振波長を△λGの中に固定することができる。さらに△λGの中に縦モードの数が2以上、5以下存在するときには、発振波長は△λGの中でモードホップを繰り返し、△λGの外でレーザ発振する確率を低減できることから大きなモードホップが起こることがなく、さらに波長が安定で、出力パワーが安定に動作できる。 As shown in FIG. 11, the laser oscillation condition is established from a gain condition and a phase condition. Wavelengths that satisfy the phase condition are discrete and are shown, for example, in FIG. That is, in this structure, the oscillation wavelength can be fixed within Δλ G by bringing the temperature coefficient of the gain curve (0.3 nm / ° C. in the case of GaAs) close to the temperature coefficient dλ G / dT of the grating. Further △ lambda G number of longitudinal modes are two or more in, when present 5 or less, the oscillation wavelength repeats mode hopping in the △ lambda G, large because it can reduce the probability of laser oscillation outside the △ lambda G There is no mode hop, the wavelength is stable, and the output power can operate stably.
 好適な実施形態においては、活性層の長さLも500μm以下とする。この観点からは、活性層の長さLを300μm以下とすることが更に好ましい。また、レーザの出力を大きくするという観点では活性層の長さLは、150μm以上とすることが好ましい。 In a preferred embodiment, also to 500μm or less length L a of the active layer. From this viewpoint, it is more preferable to set the length L a of the active layer and 300μm or less. The length L a of the active layer with a view to increasing the output of the laser, it is preferable that the 150μm or more.
Figure JPOXMLDOC01-appb-M000011
 式(6)において、dλG/dTは、ブラッグ波長の温度係数である。
 また、dλTM/dTは、外部共振器レーザの位相条件を満足する波長の温度係数である。
 ここで、λTMは、外部共振器レーザの位相条件を満足する波長であり、つまり前述した(2.3式)の位相条件を満足する波長である。これを本明細書では「縦モード」と呼ぶ。
Figure JPOXMLDOC01-appb-M000011
In equation (6), dλ G / dT is the temperature coefficient of the Bragg wavelength.
TM / dT is a temperature coefficient of the wavelength that satisfies the phase condition of the external cavity laser.
Here, λ TM is a wavelength that satisfies the phase condition of the external cavity laser, that is, a wavelength that satisfies the above-described phase condition of (Equation 2.3). This is called “vertical mode” in this specification.
 以下、縦モードについて補足する。
 (2.3)式の中のβ=2πneff/λであり、neffはその部の実効屈折率であり、これを満足するλがλTMとなる。φ2は、ブラッググレーティングの位相変化である。
The following supplements the vertical mode.
In the formula (2.3), β = 2πn eff / λ, where n eff is the effective refractive index of the portion, and λ satisfying this is λ TM . φ2 is the phase change of the Bragg grating.
 △GTMは、外部共振器レーザの位相条件を満足する波長間隔(縦モード間隔)である。λTMは、複数存在するので、複数のλTMの差を意味する。 ΔG TM is a wavelength interval (longitudinal mode interval) that satisfies the phase condition of the external cavity laser. lambda TM Since the plurality of, means the difference of a plurality of lambda TM.
 したがって、式(6)を満足することで、モードホップが起こる温度を高くし、事実上モードホップを抑制することができる。式(6)の数値は、0.025以下とすることが更に好ましい。 Therefore, satisfying the equation (6) makes it possible to increase the temperature at which mode hops occur and to effectively suppress mode hops. The numerical value of the formula (6) is more preferably 0.025 or less.
 好適な実施形態においては、グレーティング素子の長さLWGも600μm以下とする。LWGは400μm以下が好ましく、300μm以下が更に好ましい。また、LWGは50μm以上が好ましい。 In a preferred embodiment, the length L WG grating element also to 600μm or less. LWG is preferably 400 μm or less, and more preferably 300 μm or less. Further, LWG is preferably 50 μm or more.
 好適な実施形態においては、外部共振器型レーザとして機能させる場合には、光源の出射面と光導波路の入射面との距離Lは、零であってよい。しかし、環境温度変化に対する耐久性を考慮するとLは1μm以上、10μm以下とする。これによって安定した発振が可能となる。 In a preferred embodiment, when functioning as an external cavity laser, the distance L g between the light exit surface of the light source and the light entrance surface of the optical waveguide may be zero. However, considering durability against environmental temperature changes, L g is set to 1 μm or more and 10 μm or less. As a result, stable oscillation is possible.
 入射側伝搬部の長さLは、共振器長を短くするという観点でできるだけ短い方が好ましい。しかし、光源から光導波路に結合できない非伝搬光の光電界成分を除去するために20μm以上、100μm以下とする。ただし、入射側伝搬部は設けなくとも良い。 The length L m of the entrance-side propagation unit, it is preferable as short as possible from the viewpoint of shortening the resonator length. However, in order to remove the optical electric field component of the non-propagating light that cannot be coupled from the light source to the optical waveguide, the thickness is set to 20 μm or more and 100 μm or less. However, it is not necessary to provide the incident side propagation part.
 温度安定性を確保するためには、半導体レーザの出力側とは反対側の高反射端面とグレーティングの出射側終点部との距離L(図1、図3)を短くする必要があり、この距離Lは900μm以下が好ましく、さらに800μ以下が好ましく、600μm以下が最も好ましい。 In order to ensure temperature stability, it is necessary to shorten the distance L (FIGS. 1 and 3) between the highly reflective end face opposite to the output side of the semiconductor laser and the exit end point of the grating. L is preferably 900 μm or less, more preferably 800 μm or less, and most preferably 600 μm or less.
(実施例1)
 図1、図2、図4および図7(a)に示すような装置を作製した。
 石英からなる支持基板10にスパッタ装置にてクラッドとして機能する、SiO2からなる下側バッファ層16を0.5μm、またその上にTa2O5を1.2μm成膜して光学材料層を形成した。次に、Ta2O5からなる光学材料層上にTiを成膜して、フォトリソグラフィー技術(EB描画装置)によりグレーティングパターンを作製した。その後、Tiパターンをマスクにしてフッ素系の反応性イオンエッチングにより、ピッチ間隔Λ238.5nm、長さLb 100μmのブラッググレーティング12を形成した。グレーティング12の溝深さtは40nmとした。
Example 1
An apparatus as shown in FIGS. 1, 2, 4 and 7A was produced.
An optical material layer was formed by depositing 0.5 μm of a lower buffer layer 16 made of SiO 2 and 1.2 μm of Ta 2 O 5 on the lower buffer layer 16 made of SiO 2 that functions as a clad by a sputtering apparatus on a support substrate 10 made of quartz. Next, Ti was formed on the optical material layer made of Ta 2 O 5, and a grating pattern was produced by a photolithography technique (EB drawing apparatus). Thereafter, the Bragg grating 12 having a pitch interval of Λ238.5 nm and a length of L b of 100 μm was formed by fluorine-based reactive ion etching using the Ti pattern as a mask. Groove depth t d of the grating 12 was set to 40 nm.
 さらに光導波路を形成するために、上記と同様な方法で反応性イオンエッチングし、幅Wm3μm、両サイドは光学材料層を1.2μm完全切り込むようにエッチングした形状を形成した。
 ここで、ブラッググレーティング12における光導波路幅Wを3μmとした。これと共に、図1、2、4に示すように、幅一定の連結部20a、テーパ部20bおよび幅一定の出射部20cを設けた。各部分における寸法は以下のとおりとした。
 連結部20aにおけるコア部幅:    3μm
 出射部20cにおけるコア部幅Wout:    0.5μm
 テーパ部20bにおけるコア部幅W: 0.5~3μm
Further, in order to form an optical waveguide, reactive ion etching was carried out in the same manner as described above, and a width W m of 3 μm and both sides were etched so that the optical material layer was completely cut by 1.2 μm.
Here, the optical waveguide width W m of the Bragg grating 12 was set to 3 [mu] m. At the same time, as shown in FIGS. 1, 2, and 4, a connecting portion 20a having a constant width, a tapered portion 20b, and an emitting portion 20c having a constant width are provided. The dimensions in each part were as follows.
Core part width in the connecting part 20a: 3 μm
Core part width W out at the emitting part 20c: 0.5 μm
Core part width W t at the taper part 20b: 0.5 to 3 μm
 最後に上側クラッド層となるSiO2層を導波路に覆うように2μmスパッタにて形成した。
 その後、ダイシング装置にてバー状に切断し、両端面を光学研磨し、両端面を0.1%のARコートを形成し、最後にチップ切断を行いグレーティング素子を作製した。素子サイズは幅1mm、長さLwg 500μmとした。
Finally, an SiO 2 layer serving as an upper cladding layer was formed by 2 μm sputtering so as to cover the waveguide.
Then, it cut | disconnected in bar shape with the dicing apparatus, both ends were optically polished, both ends were formed with a 0.1% AR coat, and finally the chip was cut to produce a grating element. The element size was 1 mm wide and L wg 500 μm long.
 次にグレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子に光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。その結果、TEモードに対して中心波長975nm、最大反射率は20%で、半値全幅△λGは2nmの特性を得た。 Next, the optical characteristics of the grating element are obtained by using a super luminescence diode (SLD), which is a broadband wavelength light source, to input light into the grating element and analyzing the output light with an optical spectrum analyzer. The reflection characteristics were evaluated. As a result, with respect to the TE mode, a center wavelength of 975 nm, a maximum reflectance of 20%, and a full width at half maximum Δλ G of 2 nm were obtained.
 次に、図1、図2に示すようにレーザモジュールを実装した。光源素子は通常のGaAs系レーザで出射端面にはARコートなしとした。
光源素子仕様:
 中心波長:   977nm
 出力:     40mW
 半値幅:    0.1nm
 レーザ素子長  250μm
実装仕様:
 Lg:      1μm
 Lm:     20μm
Next, a laser module was mounted as shown in FIGS. The light source element was a normal GaAs laser, and the exit end face was not coated with AR.
Light source element specifications:
Center wavelength: 977nm
Output: 40mW
Half width: 0.1nm
Laser element length 250μm
Mounting specifications:
L g : 1 μm
L m : 20μm
 モジュール実装後、ペルチェ素子を使用することなく、モニター用フォトダイオードを使用することなく、電流制御(ACC)で半導体レーザを駆動したところ、グレーティングの反射波長に対応した中心波長975nmで発振し、出力はグレーティング素子がない場合よりも小さくなるが、35mWのレーザ特性であった。 After mounting the module, when a semiconductor laser was driven by current control (ACC) without using a Peltier element, without using a monitoring photodiode, it oscillated at a center wavelength of 975 nm corresponding to the reflected wavelength of the grating, and output Was smaller than that without the grating element, but the laser characteristic was 35 mW.
 グレーティング素子の出射側端面のニアフィールドパターンの形状は、水平方向が0.5μm、垂直方向が1μmとなり、ほぼ真円状であった。また温度を20℃から70℃に変化してもシングルモードを維持した。 The shape of the near field pattern on the output side end face of the grating element was 0.5 μm in the horizontal direction and 1 μm in the vertical direction, and was almost a perfect circle. The single mode was maintained even when the temperature was changed from 20 ° C to 70 ° C.
(比較例)
 実施例1において、光導波路11の全長にわたって、光導波路幅を3μmと一定とし、高さTを0.5μmで一定とした。その後、同様な方法でグレーティング素子を作製した。
(Comparative example)
In Example 1, over the entire length of the optical waveguide 11, the optical waveguide width is constant and 3 [mu] m, a height T s was constant at 0.5 [mu] m. Thereafter, a grating element was produced by the same method.
 次にグレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子に光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。その結果、TEモードに対して中心波長975nm、最大反射率は20%で、半値全幅△λGは2nmの特性を得た。 Next, the optical characteristics of the grating element are obtained by using a super luminescence diode (SLD), which is a broadband wavelength light source, to input light into the grating element and analyzing the output light with an optical spectrum analyzer. The reflection characteristics were evaluated. As a result, with respect to the TE mode, a center wavelength of 975 nm, a maximum reflectance of 20%, and a full width at half maximum Δλ G of 2 nm were obtained.
 次に、図1、図2に示すようにレーザモジュールを実装した。光源素子は通常のGaAs系レーザで出射端面にはARコートなしとした。
光源素子仕様:
 中心波長:   977nm
 出力:     40mW
 半値幅:    0.1nm
 レーザ素子長  250μm
実装仕様:
 Lg:      1μm
 Lm:     20μm
Next, a laser module was mounted as shown in FIGS. The light source element was a normal GaAs laser, and the exit end face was not coated with AR.
Light source element specifications:
Center wavelength: 977nm
Output: 40mW
Half width: 0.1nm
Laser element length 250μm
Mounting specifications:
L g : 1 μm
L m : 20μm
 モジュール実装後、ペルチェ素子を使用することなく、モニター用フォトダイオードを使用することなく、電流制御(ACC)で半導体レーザーを駆動したところ、グレーティングの反射波長に対応した中心波長975nmで発振し、出力はグレーティング素子がない場合よりも小さくなるが30mWのレーザ特性であった。 After mounting the module, when a semiconductor laser is driven by current control (ACC) without using a Peltier element, without using a monitor photodiode, it oscillates at a center wavelength of 975 nm corresponding to the reflected wavelength of the grating, and outputs. Was smaller than that without the grating element, but the laser characteristic was 30 mW.
 グレーティング素子の出射側端面のニアフィールドパターンの形状は、水平方向が3μm、垂直方向が1μmとなり、アスペクト比3の扁平導波路であった。また温度を20℃から70℃に変化した場合に70℃付近でマルチモードが励振された。

 
The shape of the near field pattern on the output side end face of the grating element was a flat waveguide having an aspect ratio of 3 with a horizontal direction of 3 μm and a vertical direction of 1 μm. Further, when the temperature was changed from 20 ° C. to 70 ° C., multimode was excited at around 70 ° C.

Claims (12)

  1.  半導体レーザ光源、およびこの半導体レーザ光源と外部共振器を構成するグレーティング素子を備える外部共振器型発光装置であって、
     前記半導体レーザ光源が、半導体レーザ光を発振する活性層を備えており、
     前記グレーティング素子が、前記半導体レーザ光が入射する入射面と所望波長の出射光を出射する出射面を有する光導波路であって、横断面が凸図形をなしている光導波路、前記光導波路内に形成された凹凸からなるブラッググレーティング、および前記ブラッググレーティングと前記出射面との間に設けられた出射側伝搬部を備えており、前記ブラッググレーティングによる反射波長域でレーザ発振し、前記ブラッググレーティングにおける前記光導波路の幅と前記出射面における前記光導波路の幅とが異なることを特徴とする、外部共振器型発光装置。
    An external resonator type light emitting device comprising a semiconductor laser light source and a grating element constituting the semiconductor laser light source and an external resonator,
    The semiconductor laser light source includes an active layer that oscillates semiconductor laser light,
    The grating element is an optical waveguide having an incident surface on which the semiconductor laser light is incident and an emission surface that emits outgoing light of a desired wavelength, and an optical waveguide having a convex cross section in the optical waveguide. A Bragg grating composed of the formed irregularities, and an emission-side propagation portion provided between the Bragg grating and the emission surface, and lasing in the wavelength range reflected by the Bragg grating, and the Bragg grating in the Bragg grating An external resonator type light emitting device, wherein the width of the optical waveguide is different from the width of the optical waveguide at the exit surface.
  2.  前記出射面における前記光導波路の幅が前記ブラッググレーティングにおける前記光導波路の幅よりも小さいことを特徴とする、請求項1記載の装置。 The apparatus according to claim 1, wherein the width of the optical waveguide at the exit surface is smaller than the width of the optical waveguide at the Bragg grating.
  3.  前記グレーティング素子の前記入射面におけるニアフィールドの水平方向の幅が前記出射面におけるニアフィールドの水平方向の幅よりも大きいことを特徴とする、請求項2記載の装置。 3. The apparatus according to claim 2, wherein the horizontal width of the near field at the entrance surface of the grating element is larger than the horizontal width of the near field at the exit surface.
  4.  前記出射側伝搬部が、前記光導波路の幅が前記ブラッググレーティング側から前記出射面側へと向かって小さくなるテーパ部を備えていることを特徴とする、請求項1~3のいずれか一つの請求項に記載の装置。 4. The output side propagation part includes a taper part in which the width of the optical waveguide decreases from the Bragg grating side toward the output surface side. A device according to claim.
  5.  前記グレーティング素子が更に支持基板を備えており、前記支持基板上に前記光導波路が設けられており、前記光導波路の厚さが0.5μm以上、3.0μm以下であることを特徴とする、請求項1~4のいずれか一つの請求項に記載の装置。 The grating element further includes a support substrate, the optical waveguide is provided on the support substrate, and the thickness of the optical waveguide is 0.5 μm or more and 3.0 μm or less, The device according to any one of claims 1 to 4.
  6.  前記光導波路を構成する材質が、ガリウム砒素、ニオブ酸リチウム、酸化タンタル、酸化亜鉛、酸化アルミナ、タンタル酸リチウムおよび酸化チタンからなる群より選択されることを特徴とする、請求項1~5のいずれか一つの請求項に記載の装置。 6. The material constituting the optical waveguide is selected from the group consisting of gallium arsenide, lithium niobate, tantalum oxide, zinc oxide, alumina oxide, lithium tantalate, and titanium oxide. Apparatus according to any one of the claims.
  7.  下記式(1)および式(2)の関係が満足されることを特徴とする、請求項1~6のいずれか一つの請求項に記載の装置。
     
    10μm≦L≦300μm  ・・・(1)
    20nm≦td≦250nm  ・・・(2)
     
     (式(1)において、Lは、前記ブラッググレーティングの長さである。
     式(2)において、tdは、前記ブラッググレーティングを構成する凹凸の深さである。)
    The device according to any one of claims 1 to 6, wherein a relationship of the following formulas (1) and (2) is satisfied.

    10 μm ≦ L b ≦ 300 μm (1)
    20 nm ≦ td ≦ 250 nm (2)

    In (Equation (1), L b is the length of the Bragg grating.
    In Formula (2), td is the depth of the unevenness constituting the Bragg grating. )
  8.  前記半導体レーザの前記活性層の出射側と反対側の端面と前記ブラッググレーティングの出射側終点部との距離が900μm以下であることを特徴とする、請求項1~7のいずれか一つの請求項に記載の装置。 The distance between the end surface opposite to the emission side of the active layer of the semiconductor laser and the emission side end point of the Bragg grating is 900 μm or less. The device described in 1.
  9.  下記式(3)および式(4)の関係が満足されることを特徴とする、請求項1~8のいずれか一つの請求項に記載の装置。
     
    0.8nm≦△λG≦6.0nm・・・(3)
    ≧1.7         ・・・(4)
     
    (式(3)において、△λGは、ブラッグ反射率のピークにおける半値全幅である。
     式(4)において、nは、前記光導波路を構成する材質の屈折率である。)
    The device according to any one of claims 1 to 8, wherein a relationship of the following formulas (3) and (4) is satisfied.

    0.8 nm ≦ Δλ G ≦ 6.0 nm (3)
    n b ≧ 1.7 (4)

    (In formula (3), Δλ G is the full width at half maximum at the peak of the Bragg reflectivity.
    In the formula (4), n b is the refractive index of the material constituting the optical waveguide. )
  10.  下記式(5)の関係が満足されることを特徴とする、請求項1~9のいずれか一つの請求項に記載の装置。
     
     LWG ≦500μm    ・・・(5)
     
    (式(5)において、LWGは、前記グレーティング素子の長さである。)
    The apparatus according to any one of claims 1 to 9, wherein the relationship of the following formula (5) is satisfied.

    L WG ≦ 500 μm (5)

    (In Formula (5), LWG is the length of the grating element.)
  11.  前記半値全幅△λGの中に、レーザ発振の位相条件が満足可能な波長が2以上、5以下存在することを特徴とする、請求項9または10記載の装置。 The apparatus according to claim 9 or 10, wherein the full width at half maximum Δλ G includes wavelengths that can satisfy a phase condition of laser oscillation of 2 to 5 inclusive.
  12.  下記式(6)の関係が満足されることを特徴とする、請求項1~11のいずれか一つの請求項に記載の装置。
    Figure JPOXMLDOC01-appb-M000001
    (式(6)において、dλG/dTは、ブラッグ波長の温度係数である。
     dλTM/dTは、外部共振器レーザの位相条件を満足する波長の温度係数である。)
    The apparatus according to any one of claims 1 to 11, wherein a relationship of the following formula (6) is satisfied.
    Figure JPOXMLDOC01-appb-M000001
    (In formula (6), dλ G / dT is a temperature coefficient of the Bragg wavelength.
    TM / dT is the temperature coefficient of the wavelength that satisfies the phase condition of the external cavity laser. )
PCT/JP2015/066177 2014-06-12 2015-06-04 External resonator-type light-emitting device WO2015190385A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014121443 2014-06-12
JP2014-121443 2014-06-12

Publications (1)

Publication Number Publication Date
WO2015190385A1 true WO2015190385A1 (en) 2015-12-17

Family

ID=54833478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066177 WO2015190385A1 (en) 2014-06-12 2015-06-04 External resonator-type light-emitting device

Country Status (1)

Country Link
WO (1) WO2015190385A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154426A (en) * 2016-06-30 2016-11-23 派尼尔科技(天津)有限公司 A kind of coupled modes for LiNbO_3 film waveguide and its implementation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154476A (en) * 1988-12-06 1990-06-13 Fujitsu Ltd Semiconductor optical device
JPH1098230A (en) * 1996-09-25 1998-04-14 Nippon Telegr & Teleph Corp <Ntt> Frequency stabilized laser
JP2002031730A (en) * 2000-07-17 2002-01-31 Fuji Photo Film Co Ltd Optical waveguide element and light emitting device
US20020110328A1 (en) * 2001-02-14 2002-08-15 Bischel William K. Multi-channel laser pump source for optical amplifiers
WO2005031930A1 (en) * 2003-09-26 2005-04-07 The Furukawa Electric Co., Ltd. Semiconductor laser
JP3667209B2 (en) * 2000-08-01 2005-07-06 住友電気工業株式会社 Semiconductor laser
JP2010171252A (en) * 2009-01-23 2010-08-05 Fujitsu Ltd Optical transmission device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154476A (en) * 1988-12-06 1990-06-13 Fujitsu Ltd Semiconductor optical device
JPH1098230A (en) * 1996-09-25 1998-04-14 Nippon Telegr & Teleph Corp <Ntt> Frequency stabilized laser
JP2002031730A (en) * 2000-07-17 2002-01-31 Fuji Photo Film Co Ltd Optical waveguide element and light emitting device
JP3667209B2 (en) * 2000-08-01 2005-07-06 住友電気工業株式会社 Semiconductor laser
US20020110328A1 (en) * 2001-02-14 2002-08-15 Bischel William K. Multi-channel laser pump source for optical amplifiers
WO2005031930A1 (en) * 2003-09-26 2005-04-07 The Furukawa Electric Co., Ltd. Semiconductor laser
JP2010171252A (en) * 2009-01-23 2010-08-05 Fujitsu Ltd Optical transmission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154426A (en) * 2016-06-30 2016-11-23 派尼尔科技(天津)有限公司 A kind of coupled modes for LiNbO_3 film waveguide and its implementation

Similar Documents

Publication Publication Date Title
JP6125631B2 (en) External resonator type light emitting device
JP5936771B2 (en) External resonator type light emitting device
JP6554035B2 (en) Grating element and external resonator type light emitting device
WO2015107960A1 (en) External resonator type light emitting device
JP5641631B1 (en) External resonator type light emitting device
US9915794B2 (en) Optical device, and optical-device production method
JP5936777B2 (en) Grating element and external resonator type light emitting device
WO2015190569A1 (en) External-resonator-type light-emission device
WO2015190385A1 (en) External resonator-type light-emitting device
WO2016093187A1 (en) External resonator type light-emitting device
JP2017126625A (en) External resonator type light-emitting device
JP2015039011A (en) External resonator light-emitting device
WO2016167071A1 (en) Grating element and external resonator-type light emitting device
WO2015108197A1 (en) External resonator type light emitting device
WO2017043222A1 (en) Optical device
WO2015087914A1 (en) External-resonator-type light-emitting device
JP2015115457A (en) External resonator light-emitting device
JP2016171219A (en) External resonator type light emitting device
JP2015103732A (en) Grating element and external resonator light-emitting device
WO2016125746A1 (en) Optical waveguide element and optical device
WO2016152730A1 (en) External resonator type light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15807187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP