JP3652932B2 - 固体電解質型燃料電池セル - Google Patents

固体電解質型燃料電池セル Download PDF

Info

Publication number
JP3652932B2
JP3652932B2 JP24450199A JP24450199A JP3652932B2 JP 3652932 B2 JP3652932 B2 JP 3652932B2 JP 24450199 A JP24450199 A JP 24450199A JP 24450199 A JP24450199 A JP 24450199A JP 3652932 B2 JP3652932 B2 JP 3652932B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel electrode
metal
grain boundary
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24450199A
Other languages
English (en)
Other versions
JP2001068130A (ja
Inventor
高志 重久
雅人 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP24450199A priority Critical patent/JP3652932B2/ja
Publication of JP2001068130A publication Critical patent/JP2001068130A/ja
Application granted granted Critical
Publication of JP3652932B2 publication Critical patent/JP3652932B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミックスからなる固体電解質の片面に空気極、他方の面に金属を主成分とする燃料極を形成してなる固体電解質型燃料電池セルに関するものである。
【0002】
【従来技術】
従来より、固体電解質型燃料電池はその作動温度が900〜1050℃と高温であるため発電効率が高く、第3世代の発電システムとして期待されている。
【0003】
一般に固体電解質型燃料電池セルには、円筒型と平板型が知られている。平板型燃料電池セルは、発電の単位体積当たり出力密度が高いという特徴を有するが、実用化に関してはガスシール不完全性やセル内の温度分布の不均一性などの問題がある。それに対して、円筒型燃料電池セルでは、出力密度は低いものの、セルの機械的強度が高く、またセル内の温度の均一性が保てるという特徴がある。両形状の固体電解質型燃料電池セルとも、それぞれの特徴を生かして積極的に研究開発が進められている。
【0004】
円筒型の固体電解質型燃料電池セルは、図4に示すように開気孔率30〜40%程度のLaMnO3 系材料からなる多孔性の空気極支持管2を形成し、その表面にY2 3 安定化ZrO2 からなる固体電解質3を被覆し、さらにこの表面に多孔性のNi−ジルコニアの燃料極4が設けられている。
【0005】
燃料電池のモジュールでは、各セルはLaCrO3 系の集電体(インターコネクタ)5を介して接続される。発電は、空気極支持管2内部に空気(酸素)6を、外部に燃料(水素)7を流し、1000〜1050℃の温度で行われる。
【0006】
上記のような燃料電池セルを製造する方法としては、例えば絶縁粉末を押出成形法などにより円筒状に成形後、これを焼成して円筒状支持管を作製し、この支持管の外周面に空気極、固体電解質、燃料極、集電体のスラリーを塗布してこれを順次焼成して積層するか、あるいは円筒状支持管の表面に電気化学的蒸着法(EVD法)やプラズマ溶射法などにより空気極、固体電解質、燃料極、集電体を順次形成することも行われている。
【0007】
近年ではセルの製造工程を簡略化し且つ製造コストを低減するために、各構成材料のうち少なくとも2つを同時焼成する、いわゆる共焼結法が提案されている。この共焼結法は、例えば、円筒状の空気極支持管の成形体に固体電解質成形体及び集電体成形体をロール状に巻き付けて同時焼成を行い、その後、固体電解質表面に燃料極を形成する方法である。この共焼結法は非常に簡単なプロセスで製造工程数も少なく、セルの製造時の歩留まり向上、コスト低減に有利である。
【0008】
固体電解質の表面に燃料極を形成するためには、一般的にNi粉末とZrO2 (Y2 3 含有)粉末、あるいはNiO粉末とZrO2 (Y2 3 含有)粉末の混合粉末を含有するペーストをスクリ−ン印刷法により固体電解質表面に塗布するか、あるいは上記混合粉末を含有する溶液中に浸漬した後、乾燥し燃料極として形成されていた。また、後者のNiO/ZrO2 (Y2 3 含有)混合粉末の場合は、1000〜1400℃の還元雰囲気で1〜5時間熱処理して形成されていた。
【0009】
【発明が解決しようとする課題】
しかしながら、これらの方法で作製された燃料極は、初期発電性能が低く、また長時間の発電においてNi(NiOは発電中に還元されNiとなる)の凝集や粒成長により、燃料極が固体電解質から剥離して界面の抵抗が増加し、これにより、熱サイクル印加時に発電性能が低下するという問題があった。
【0010】
本発明は、初期発電性能を向上することができるとともに、固体電解質に対する燃料極の付着強度を向上することができ、これにより良好な発電性能を長期間維持できる固体電解質型燃料電池セルを提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の固体電解質型燃料電池セルは、セラミックスからなる固体電解質の片面に空気極、他方の面に金属を主成分とする燃料極を形成してなる固体電解質型燃料電池セルにおいて、前記固体電解質の燃料極側表層部におけるセラミック粒子の2面間粒界に、前記固体電解質の燃料極側面から5〜30μmの深さに平均粒径10〜50nmの金属粒子を存在せしめ、該金属粒子を2面間粒界の粒界金属を介して前記燃料極に接続してなるものである。
【0012】
このような構成を採用することにより、固体電解質内に侵入した金属粒子および粒界金属の分だけ、固体電解質と燃料極の接触面積が増加し、電気化学的な反応サイトが増加するので、燃料極/固体電解質界面で生じる分極抵抗が減少し、このため、発電性能を向上できる。
【0013】
また、固体電解質のセラミック粒子の2面間粒界に金属粒子が存在しており、該金属粒子を2面間粒界の粒界金属を介して燃料極に接続したため、粒界金属に接続された金属粒子のアンカー効果により、固体電解質に対する燃料極の付着強度を向上することができ、起動、停止といった熱サイクルにおいて、固体電解質からの燃料極の剥離を有効に防止でき、良好な発電性能を長期間劣化することなく維持できる。
【0014】
また、金属粒子はセラミック粒子の2面間粒界に複数存在しており、2面間粒界の粒界金属により相互に接続されていることが望ましい。このような構成を採用することにより、金属粒子が電気的ち接続され、金属粒子と固体電解質間で電気的な反応がより多く生じ、発電特性をさらに向上できるとともに、固体電解質に対する燃料極の付着強度をさらに向上することができる。
【0015】
さらに、金属粒子は、固体電解質の燃料極側面から5〜30μmの深さに存在する。このような構成を採用することにより、固体電解質中の酸素イオンの伝導性を妨げることがなく、また、燃料極と固体電解質界面の接触面積が大きくなるため、界面での全体としての分極抵抗を小さくでき、発電性能をさらに向上できる。
【0016】
また、金属粒子の平均粒径は10〜50nmである。このような構成を採用することにより、金属粒子や粒界金属が燃料極として機能し、発電特性を向上できるとともに、耐久性および熱サイクル特性を向上できる。
【0017】
【発明の実施の形態】
本発明の固体電解質型燃料電池セルは、図1に示すように、円筒状の固体電解質31の内面に空気極32、外面に燃料極33を形成してセル本体34が構成されており、このセル本体34の外面に、空気極32と電気的に接続する集電体35が形成されている。
【0018】
即ち、固体電解質31の一部に切欠部36が形成され、固体電解質31の内面に形成されている空気極32の一部が露出しており、この露出面37および切欠部36近傍の固体電解質31の両端部表面が集電体35により被覆され、集電体35が、固体電解質31の両端部表面、および固体電解質31の切欠部36から露出した空気極32の表面に接合されている。
【0019】
空気極32と電気的に接続する集電体35はセル本体34の外面に形成され、ほぼ段差のない連続同一面39を覆うように形成されており、燃料極33とは電気的に接続されていない。この集電体35は、セル同士を接続する際に、他のセルの燃料極にNiフェルトを介して電気的に接続され、これにより燃料電池モジュールが構成される。連続同一面39は、固体電解質成形体の両端部と空気極成形体の一部とが連続したほぼ同一面となるまで、固体電解質成形体の両端部間を研摩することにより形成される。
【0020】
そして、本発明の固体電解質型燃料電池セルでは、図2および図3に示すように、固体電解質31の燃料極33側表層部におけるセラミック粒子41の2面間粒界に複数の金属粒子43が存在しており、これらの金属粒子43が2面間粒界の粒界金属45により相互に連結され、数珠状に形成されるとともに、その一端が燃料極33に接続されている。尚、燃料極33は金属粒子43が存在しているが、図2、図3については省略し、また固体電解質31にはセラミック粒子41が全体に存在しているが、図2では一部について記載した。
【0021】
金属粒子43は、図3に示すように、固体電解質31の燃料極33側面から1〜50μmの深さdに存在することが望ましく、また、金属粒子43の平均粒径は10〜100nmであることが望ましい。
【0022】
ここで、2面間粒界の金属粒子43の分布範囲を、固体電解質31の燃料極33側面(燃料極/固体電解質界面)から固体電解質側へ1〜50μmの深さdとしたのは、この範囲だと燃料極と固体電解質界面の分極抵抗が小さく、発電性能を向上できるとともに、固体電解質に対する燃料極の付着強度を大きくできるからである。
【0023】
一方、深さdが1μmより小さいと燃料極と固体電解質界面の接触面積が小さく、界面での全体としての分極抵抗が大きくなり、発電性能が低下し易くなるとともに、固体電解質に対する燃料極の付着強度が低下し易くなり、耐久性、熱サイクル特性が劣化し易くなるからである。
【0024】
また、深さdが50μmより大きいと固体電解質中の酸素イオンの伝導性を妨げ、発電性能が低下し易くなるからである。特に発電性能、耐久性、熱サイクル特性を向上するという観点から、深さdは5〜30μmの範囲が望ましい。
【0025】
金属粒子43の平均粒径を10〜100nmとしたのは、この範囲だと金属粒子43や粒界金属45が燃料極として機能し、発電特性を向上できるとともに、耐久性および熱サイクル特性を向上できるからである。
【0026】
一方、金属粒子43の平均粒径が10nmより小さいと電子のパスが無く、燃料極として機能しにくく、また、100nmより大きいと熱膨張差により固体電解質中に亀裂が生じ、耐久性や熱サイクル特性が低下し易いからである。特に、発電性能、耐久性、熱サイクル特性をすべて満足するという観点から、金属粒子43の平均粒径は10〜50nmの範囲が望ましい。
【0027】
燃料極としては、金属成分と、無機成分からなり、無機成分としては、ZrO2 またはCeO2 単体、あるいは(Zr、Ce)O2 固溶体であってもよいし、またはY、Yb、Sc、Er、Nd、Gd、Dy、Sm及びPrを3〜30モル%含有したZrO2 、CeO2 であっても使用できる。
【0028】
金属成分としては、Ni、Co、Ti、FeおよびRuの少なくとも一つを用いることができるが、使用する燃料ガスにもよるが、Ni金属と、ZrO2 (Y2 3 含有)あるいはCeO2 (Y2 3 含有)との組み合わせが、燃料ガスに対する汎用性と経済性の観点からは好ましい。
【0029】
これらの無機成分と金属成分との存在比率は、無機成分10〜50重量%、金属成分50〜90重量%が好ましい。無機成分の含有量が10重量%より少なくなると、即ち、金属成分が90重量%より多いと、Niの粒成長の抑制効果が小さくなる。また、無機成分の含有量が50重量%を越えると、即ち、金属成分が50重量%より少ないと、燃料極の電気伝導性が損なわれるからである。
【0030】
固体電解質31は、例えば3〜20モル%のY2 3 あるいはYb2 3 を含有した部分安定化あるいは安定化ZrO2 が用いられ、このうちでも3〜20モル%のY2 3 を含有した部分安定化あるいは安定化ZrO2 が望ましい。
【0031】
また、空気極32は、例えば、LaおよびMnを含有するペロブスカイト型複合酸化物を主成分とするもので、Caを酸化物換算で8〜10重量%、希土類元素のうち少なくとも一種を酸化物換算で10〜20重量%含有するものである。希土類元素としては、Y、Nd、Dy、Er、Yb等があり、このうちでもYが望ましい。
【0032】
集電体35は、例えば、金属元素としてLa、CrおよびMgを含有するぺロブスカイト型複合酸化物を主結晶とするものであり、希土類元素やアルカリ土類金属元素を含有するものであっても良い。集電体35には、さらにMgO結晶を含有することが、集電体35の熱膨張係数を高くして、固体電解質31や空気極32のそれと一致させることができるため望ましい。
【0033】
固体電解質31、空気極32、燃料極33、集電体35としては、上記例に限定されるものではなく、公知材料を用いても良い。
【0034】
本発明の固体電解質型燃料電池セルでは、例えば、開気孔率40%程度のY2 3 あるいはCaO安定化ZrO2 を支持管とし、その上にスラリーディップ法により多孔性の空気極としてLaをCa、Srで10〜20原子%置換したLaMnO2 系材料を塗布し、その表面に気相合成法(EVD)やあるいは溶射法により固体電解質であるY2 3 安定化ZrO2 膜あるいはY2 3 、Yb2 3 あるいはCaO含有するCeO2 を被覆し、さらにこの表面に多孔性の燃料極を形成しても良い。
【0035】
本発明の固体電解質型燃料電池セルは、例えば、以下のようにして作製される。先ず、例えば所定の調合組成に従いLa2 3 、Y2 3 、CaO、MnO2 の素原料を秤量、混合した後、1500℃程度の温度で2〜10時間仮焼し、その後4〜8μmの粒度に粉砕調製する。
【0036】
調製した粉体に、バインダーを混合、混練し押出成形法により円筒状の空気極成形体を作製し、さらに脱バインダー処理し、1200〜1250℃で仮焼を行うことで空気極仮焼体を作製する。
【0037】
固体電解質31用のシートとして、例えば3〜20モル%のY2 3 またはYb2 3 を含有した部分安定化あるいは安定化ZrO2 からなる粉末を0.1〜5μmの大きさに調製し、市販の溶媒、分散剤、バインダーを所定濃度添加しドクターブレード等の方法により50〜100μmの厚さのシートを作製する。
【0038】
集電体35用のシートとして、LaCrO3 系材料からなる粉末を用いてドクターブレード等の方法により50〜100μmの厚さのシートを作製する。
【0039】
そして、円筒状の空気極仮焼体の表面に、固体電解質シート、集電体シートをそれぞれ貼り付け、これを1200〜1600℃の温度で2〜10時間大気中焼成することにより得られる。
【0040】
燃料極は、燃料極材料を含むスラリーをシート状にして固体電解質表面に貼り付け、またはスラリーを塗布し、熱処理して焼き付けるか、あるいは未焼成の固体電解質シートにスラリーを塗布し、またはシートを積層し、固体電解質シートと共焼結することにより作製する。
【0041】
具体的には、例えば、所定の粒径からなるNiOとZrO2 原料粉末をそれぞれ所定の比率になるように調整した後、水などを溶媒としてボ−ルミルにて混合した後、スクリーン印刷にて固体電解質表面に塗布するか、水などを溶媒とした混合粉末溶液中に含侵する、いわゆるスラリーディップ法により固体電解質表面に塗布する。この後、大気中1100〜1700℃で1〜8時間熱処理して、燃料極を固体電解質表面に焼き付ける。
【0042】
また、他の方法として、空気極仮焼体の表面に形成された固体電解質シートに、上記のような方法によりスラリーを塗布し、1200〜1600℃で1〜8時間共焼成しても良い。
【0043】
金属粒子43の分布並びに大きさに影響を与える因子としては、焼成や燃料極焼き付け温度といった熱処理の温度や時間、焼成や熱処理温度からの冷却速度、あるいは燃料極が形成される固体電解質の密度、熱処理の状態、あるいは反対側の空気極の熱処理の条件や組成、拡散促進元素の添加などがある。
【0044】
即ち、燃料極中の金属成分の固体電解質の粒界への拡散量(深さd)は、焼成や熱処理の温度や焼成時間に大きく依存する。焼結した固体電解質に焼き付ける際は1100〜1700℃の熱処理が行われ、固体電解質が未焼成な場合には1200〜1600℃の熱処理(焼成)が行われる。どちらの場合も温度が高い程、焼成時間が長い程拡散量は多くなる。つまり、固体電解質の燃料極側面からの深さdが深くなる。未焼成の固体電解質シートと共焼結する方が、焼き付ける場合よりも拡散量が多くなる。
【0045】
また、熱処理条件以外で拡散量を制御する方法として、空気極側に拡散促進剤であるCa、Sr、Ba、Mg、Mn等を余剰に添加する方法もある。これら余剰の元素は固体電解質中に拡散しやすく、相互拡散の影響を受け、燃料極中の金属成分が固体電解質中に拡散しやすくなる。また、微量な拡散量の制御は1〜8時間の熱処理時間によって制御できる。
【0046】
また、拡散した燃料極の金属成分により形成される金属粒子43の大きさは、熱処理または焼成した後の3〜20時間の冷却過程により制御される。即ち、金属粒子43の大きさは、冷却速度に大きく依存し、冷却速度を100〜300℃/時とすることにより形成できる。また、この冷却速度で1〜5ステップ変化させることにより細かな制御が行える。
【0047】
尚、上記例では、円筒型固体電解質型燃料電池セルについて説明したが、本発明は、平板型の燃料電池セルについても適用できる。
【0048】
【実施例】
原料粉末として平均粒径が0.5〜3μmのZrO2 (3〜10モル%含有Y2 3 )粉末を作製し、外径20mm、厚み0.5mmで、1000〜1700℃で焼成して固体電解質円板を得た。
【0049】
また、市販の純度99.9%、平均粒径が1〜10μmのLa0.9 Sr0.1 MnO3 の空気極粉末を準備し、これにバイダーを添加して空気極ペーストを作製した。さらに平均粒径が0.1〜10μmのNiO粉末を準備し、これにバインダーを添加して燃料極ペーストを作製した。
【0050】
上記の固体電解質円板の一方の面に空気極ペーストを、他方の面に燃料極ペーストをそれぞれ熱処理後50μmになるように塗布した後、表1に示す条件で熱処理して、空気極および燃料極の焼き付けを行い、また固体電解質緻密化も行い、表1に示す条件で熱処理温度から冷却し、セルを作製した。
【0051】
この後、空気極側に酸素を燃料極側に水素を流し、1000℃で発電し、初期性能、1000時間後の出力密度の低下率(100時間後の出力密度に対する1000時間後の出力密度の低下率:耐久性)、1000〜600℃間の熱サイクルを20サイクル印加した後の出力密度の低下率(熱サイクルなしの出力密度に対する20サイクル後の出力密度の低下率:熱サイクル特性)を求めた。
【0052】
また、同ロットのサンプルを透過型電子顕微鏡(TEM)で観察して、固体電解質粒界の金属粒子の大きさを求め、X線マイクロアナリシス(EPMA)を用いて燃料極/空気極界面からの分布の距離を調査した。
【0053】
具体的には、金属粒子の分布状態の測定に関しては、熱処理後のサンプルを断面方向に研磨し、燃料極/固体電解質界面をEPMAを用いて分析した。燃料極/固体電解質界面付近を約100μm四方で捕らえ、金属成分のカウントをカラーマップ状にした。マップ状で燃料極中の金属成分の平均カウントを100とし、燃料極からもっとも離れている固体電解質の部分を0カウントとした。そのときに50カウント以下になる部分を界面とした。また分布の範囲は界面から垂直方向に10カウント以下になるまでの範囲とした。
【0054】
また、金属粒子41の平均粒径を、同じく燃料極/固体電解質界面を断面方向にスライスし、研磨した後、TEMを用いて測定した。固体電解質中の粒界の組織の違いと組成により、燃料極中の金属成分であることを確認し、その粒子の大きさの平均を金属粒子の平均粒径とした。その結果を表1に記載した。尚、試料No.2,7,12,13は参考試料を示す。
【0055】
【表1】
Figure 0003652932
【0056】
この表1より、比較例の試料No.1では、TEM観察により、固体電解質の燃料極側表層部のセラミック粒子の2面間粒界に粒界金属が存在するものの、金属粒子が存在おらず、このため、発電性能と熱サイクル特性が低かった。
【0057】
これに対して、本発明の試料では、初期の発電性能が良好であり、耐久性も熱サイクル特性も良好であった。特に、金属粒子の平均粒径が10〜50nmで、拡散深さdが5〜30μmの場合には、初期の発電性能が0.30W/cm2 以上であり、耐久性も3%以下、熱サイクル特性も3%以下と優れた特性を有していた。
【0058】
【発明の効果】
本発明の固体電解質型燃料電池セルは、固体電解質の燃料極側面におけるセラミック粒子の2面間粒界に金属粒子を存在せしめ、該金属粒子を2面間粒界の粒界金属を介して燃料極に接続したので、燃料極と固体電解質の接触面積が増大し、燃料極/固体電解質界面で生じる分極抵抗が減少し、発電性能を向上できるとともに、燃料極が固体電解質と強固に付着し、熱サイクル印加等において燃料極と固体電解質の剥離が無くなり、初期の発電性能を劣化させることなく高い状態で維持できる。
【図面の簡単な説明】
【図1】本発明の円筒型の固体電解質型燃料電池セルを示す断面図である。
【図2】図1の燃料極と固体電解質の界面付近を拡大して示す断面図である。
【図3】(a)は図2の固体電解質のセラミック粒子の2面間粒界に金属粒子が存在する状態を示す図であり、(b)は金属粒子が粒界金属により連結し、一端が燃料極に接続している状態を示す図である。
【図4】従来の円筒型の固体電解質型燃料電池セルを示す斜視図である。
【符号の説明】
31・・・固体電解質
32・・・空気極
33・・・燃料極
35・・・集電体
41・・・セラミック粒子
43・・・金属粒子
45・・・粒界金属

Claims (2)

  1. セラミックスからなる固体電解質の片面に空気極、他方の面に金属を主成分とする燃料極を形成してなる固体電解質型燃料電池セルにおいて、前記固体電解質の燃料極側表層部におけるセラミック粒子の2面間粒界に、前記固体電解質の燃料極側面から5〜30μmの深さに平均粒径10〜50nmの金属粒子を存在せしめ、該金属粒子を2面間粒界の粒界金属を介して前記燃料極に接続してなることを特徴とする固体電解質型燃料電池セル。
  2. 金属粒子はセラミック粒子の2面間粒界に複数存在しており、2面間粒界の粒界金属により相互に接続されていることを特徴とする請求項1記載の固体電解質型燃料電池セル。
JP24450199A 1999-08-31 1999-08-31 固体電解質型燃料電池セル Expired - Lifetime JP3652932B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24450199A JP3652932B2 (ja) 1999-08-31 1999-08-31 固体電解質型燃料電池セル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24450199A JP3652932B2 (ja) 1999-08-31 1999-08-31 固体電解質型燃料電池セル

Publications (2)

Publication Number Publication Date
JP2001068130A JP2001068130A (ja) 2001-03-16
JP3652932B2 true JP3652932B2 (ja) 2005-05-25

Family

ID=17119622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24450199A Expired - Lifetime JP3652932B2 (ja) 1999-08-31 1999-08-31 固体電解質型燃料電池セル

Country Status (1)

Country Link
JP (1) JP3652932B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8399147B2 (en) 2007-12-28 2013-03-19 Honda Motor Co., Ltd. Electrolyte-electrode assembly comprising an apatite-type oxide electrolyte and method for manufacturing the same
JP5127437B2 (ja) * 2007-12-28 2013-01-23 本田技研工業株式会社 電解質・電極接合体及びその製造方法

Also Published As

Publication number Publication date
JP2001068130A (ja) 2001-03-16

Similar Documents

Publication Publication Date Title
US5937264A (en) Electrode structure for solid state electrochemical devices
JP5489125B2 (ja) 全セラミックス固体酸化物形電池
JP3981418B2 (ja) 固体電気化学装置用の電極構造体
US8337939B2 (en) Method of processing a ceramic layer and related articles
JP4383092B2 (ja) 電気化学素子
US5672437A (en) Solid electrolyte for a fuel cell
JP4462727B2 (ja) 固体電解質形燃料電池セル
JP3339983B2 (ja) 固体電解質型燃料電池セルおよびその製造方法
JP2000030728A (ja) 緻密質焼結膜の作製方法及びそれを用いた固体電解質型燃料電池の製造方法
JP3652932B2 (ja) 固体電解質型燃料電池セル
JP3359413B2 (ja) 固体電解質型燃料電池セル
JP3725997B2 (ja) 固体電解質型燃料電池セルの製造方法
JPH0992294A (ja) 固体電解質型燃料電池セルおよびその製造方法
JP3730774B2 (ja) 固体電解質型燃料電池セル
JP3339998B2 (ja) 円筒型燃料電池セル
JP3342610B2 (ja) 固体電解質型燃料電池セル
JP3638489B2 (ja) 固体電解質型燃料電池セル
JP3336171B2 (ja) 固体電解質型燃料電池セル
JP2001118590A (ja) 高導電性固体電解質膜及びその製造方法
JP3725994B2 (ja) 固体電解質型燃料電池セル
JP4748863B2 (ja) 固体電解質型燃料電池セルおよび燃料電池
JP4562230B2 (ja) 固体電解質形燃料電池セルの製法
JP2002134132A (ja) 固体電解質型燃料電池セルおよびその製法
JP2003092113A (ja) 固体電解質型燃料電池燃料極膜およびその製造方法
JP2001126745A (ja) 固体電解質型燃料電池セル

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050224

R150 Certificate of patent or registration of utility model

Ref document number: 3652932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

EXPY Cancellation because of completion of term