JP3651070B2 - Method for producing glassy carbon with excellent machinability - Google Patents

Method for producing glassy carbon with excellent machinability Download PDF

Info

Publication number
JP3651070B2
JP3651070B2 JP21214095A JP21214095A JP3651070B2 JP 3651070 B2 JP3651070 B2 JP 3651070B2 JP 21214095 A JP21214095 A JP 21214095A JP 21214095 A JP21214095 A JP 21214095A JP 3651070 B2 JP3651070 B2 JP 3651070B2
Authority
JP
Japan
Prior art keywords
resin
thermosetting resin
glassy carbon
impregnated
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21214095A
Other languages
Japanese (ja)
Other versions
JPH0959073A (en
Inventor
繁 村上
雄四郎 岩崎
正治 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP21214095A priority Critical patent/JP3651070B2/en
Publication of JPH0959073A publication Critical patent/JPH0959073A/en
Application granted granted Critical
Publication of JP3651070B2 publication Critical patent/JP3651070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、機械加工性に優れた肉厚ガラス状カーボン材の製造方法に関する。
【0002】
【従来の技術】
ガラス状カーボン材は、ガラス質の緻密な組織構造を有する異質な炭素材料であり、通常のカーボン材に比べてガス不透過性、耐摩耗性、耐食性、自己潤滑性、表面の平滑性および堅牢性などに優れることから、その特性を生かして電池用電極、電解用電極、半導体製造用坩堝ほか、多様の分野で各種工業部材に有用されている。近年では、組織から微小なパーティクルが離脱することのない非汚染性の材質性状に着目して、シリコンウエハーのプラズマエッチング用電極やイオン注入装置用部材など汚染を嫌う半導体分野での実用が図られている。
特にこのプラズマエッチング用電極、イオン注入装置用部材のターゲット板は、大型化、肉厚化し又形状的にも複雑化している。
【0003】
一般にガラス状カーボン材は、フラン系またはフェノール系など炭化残留率の高い熱硬化性樹脂を成形した前駆体を焼成炭化する方法によって製造される。このプロセスでの焼成炭化過程は固相で進行するため、前駆体樹脂の熱分解によって多量に発生する揮発成分を固相外に排出し、体積収縮しながら炭化物に転化する経過を辿る。ところが、前駆体樹脂が肉厚状態にあると熱分解ガスが円滑に固相内から排出されずに残留し、それが原因となってボイドの発生や膨れ、割れ等の材質欠陥を招くことになる。したがって、従来技術を用いて厚さ3mm以上のガラス状カーボン材を工業的に製造することは困難とされてきた。
【0004】
このような問題点を解消する手段として、例えば動物性繊維、植物性繊維、合成繊維のような炭化収率の低い繊維を熱硬化性樹脂と層状に配列して板を作り、これを炭化することによって肉厚3mm以上のガラス状カーボン板を製造する方法が提案されている(特開昭63−129070)。この方法によれば極めて肉厚のガラス状カーボン材を製造することが可能になるが、繊維層が熱分解するまでの低温度域で熱硬化性樹脂から発生する揮発ガス成分を排出することができないため、焼成炭化時の条件制御を余程厳密に調整しない限り欠陥組織の現出が避けられない欠点がある。
【0005】
さらにこのような欠点を解消するために、ガラス状カーボン剤の前駆体となる熱硬化性樹脂の半硬化成形板を、セルロース繊維を主体とする紙にガラス状カーボンの前駆体となる熱硬化性樹脂を含浸させて半硬化した多孔質シートと交互に配列積層し、熱圧プレスを施して樹脂成分を硬化したのち非酸化性雰囲気下で800℃以上の温度域で焼成処理するガラス状カーボン材の製造方法が提案されている(特開平4−170311)。
【0006】
【発明が解決しようとする課題】
しかしながら特開平4−170311号公報の方法は、欠陥が少なく効率よく厚肉板状のガラス状カーボン材を製造することができるが、かかる方法では樹脂板と樹脂を含浸した多孔質シートを交互に積層しているため板厚方向にセルロース繊維が炭化した層と樹脂板が炭化した層が存在する。そのため板厚方向の不均一性が発現し焼成炭化時の形状安定性が欠け、又樹脂板の炭化した硬いガラス状カーボンが層状に存在し、機械加工性を悪化させる欠点があった。
本発明の目的は、上記欠点を鑑み肉厚で、機械加工性に優れかつ複雑形状の製造容易なガラス状カーボン材の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
前記目的を達成するための本発明によるガラス状カーボン材の製造方法は、有機繊維を60〜95重量%配合されたスラリーを抄紙して得られるシートに、熱硬化性樹脂を含浸し、加熱、圧着したグリーン成形体に熱硬化性樹脂を再度含浸し、非酸化性雰囲気下で800℃以上の温度で炭化焼成することを特徴とする。
【0008】
本発明に使用する有機繊維としては、レーヨン繊維、ポリアクリロニトリル繊維、ピッチ繊維、フェノール繊維等炭素繊維を製造するのに通常用いられる有機繊維いずれでも良いが、これらの中では、レーヨン繊維、ポリアクリロニトリル繊維の使用が抄紙上好ましい。
さらにコスト的に低く、不融化処理のいらないレーヨン繊維単独あるいはレーヨン繊維とポリアクリロニトリル繊維との混合がより好ましい。
【0009】
有機繊維の太さとしては、2〜20デニール、繊維長としては、2〜20mmのものが使用されるが、原料の分散抄紙性、及び気孔率、気孔径からシートを粗にする太さ5〜20デニール、繊維長5〜10mmが好ましい。
抄紙用バインダーとしては、少量のポリビニールアルコール、ビニロン等のバインダーを使用し、好ましくはこれに木材パルプを加える。さらにシートの強度を増すためにエポキシ樹脂等を加えることもできる。
【0010】
この有機繊維シートは、有機繊維を60〜95重量%、パルプ3〜35重量%、抄紙用バインダー2〜20重量%の割合で混合し常法により抄紙する。
有機繊維が60重量%以下になると、抄紙したシートが緻密化し適性な気孔径、気孔率のシートが得られにくい。一方有機繊維が95重量%以上では抄紙の際良好なシート形成が難しい。
【0011】
この有機繊維シートに液状の熱硬化性樹脂溶液を含浸し、所定の厚みに積層し加熱、圧着しグリーン成形体を作製する。
【0012】
熱硬化性樹脂としては、液状のフェノール樹脂、フラン樹脂、カルジイミド樹脂等が用いられる。
有機繊維シートに含浸する熱硬化性樹脂の割合は、有機繊維シート100重量%に対し熱硬化性樹脂(固形分)50〜200重量%である。
熱硬化性樹脂が、50重量%以下であるとバインダー効果が劣り、200重量%以上であると目づまり等により気孔率、気孔径の調整が困難となる。
【0013】
生産性及びシート間の接着性を考慮し、加熱温度は150〜250℃程度で行う。圧着は金属板や黒鉛板等に挟んで5〜10kg/cm2 程度に加圧して行う。
【0014】
このグリーン成形体の強度は、曲げ強度で50kg/cm2 以上であることが好ましい。グリーン成形体の曲げ強度が50kg/cm2 以下であると有機繊維と熱硬化性樹脂の収縮挙動の差により炭化焼成中に変形し所定の形状の維持が困難となる。
【0015】
グリーン成形体の気孔率は30〜70%が好ましい。気孔率が30%以下では、樹脂含浸が困難な閉気孔の発生がし易くなり、一方気孔率が70%以上では所定の曲げ強度を得ることができない。
【0016】
気孔径は20μm以上、80μm以下が好ましい。
気孔径が20μm以下であると、閉気孔の発生がし易くなり、次工程における熱硬化性樹脂の含浸を十分に行うことができない。一方気孔径が80μm以上では、次工程における熱硬化性樹脂の含浸の際、含浸された樹脂が系外に漏れ出してしまう。
【0017】
次に、このグリーン成形体を液状の熱硬化性樹脂溶液に浸漬し、熱硬化性樹脂を含浸させる。
又、この時必要に応じて前記グリーン成形体を脱気後浸漬し、加圧、含浸させることも可能である。
【0018】
本発明に係るグリーン成形体は、気孔径が数十μmに調整されているため毛細管現象により、液状の熱硬化性樹脂の吸収力が高い。又同一系統である熱硬化性樹脂を用いて成形されているため充填される熱硬化性樹脂との濡れ性も良好である。従って、グリーン成形体を浸漬すれば成形体内部まで容易に樹脂が充填することが可能であり、熱硬化性樹脂溶液に対する粘度や固形分の特段の調整は不要である。
【0019】
グリーン成形体に含浸させる熱硬化性樹脂としては、室温硬化が可能なフラン樹脂、フェノール樹脂が好ましい。加熱硬化させる熱硬化性樹脂の場合は、加熱時に粘度が低下し、熱硬化性樹脂が系外に排出されることがあり好ましくない。
【0020】
焼成、炭化は、前記室温硬化した成形体を黒鉛板に挟んで800℃程度までは10℃/hr以下程度の昇温速度で加熱する。これによって有機繊維及び樹脂は炭化し均一な炭素体となる。さらに必要に応じて2000℃以上に加熱すると、この加熱処理により導電性の向上及び不純物の減少により高品質の炭素体の製造が可能となる。
【0021】
【作用】
本発明の製造法で得られた炭素体は、熱硬化性樹脂が炭化した硬いガラス状カーボンと有機繊維の炭化した加工容易なカーボンが均一に分散することにより機械加工性が向上する。又グリーン成形体の曲げ強度が50kg/cm2 以上あるため、熱硬化性樹脂と有機繊維の炭化時の収縮挙動の差による応力が内部歪又は微小なミクロ欠陥として内在し機械加工性の向上に寄与している。
【0022】
【実施例】
以下、実施例、比較例をあげて本発明を具体的に説明する。
太さ15デニール、繊維長8mmのレーヨン繊維、75重量%とカナディアンフリーネス650mlに叩解した木材パルプ(NBKP:商品名クロフトン)20重量%、ならびに繊維状バインダーとしてPVA繊維(クラレ社製VPB105、1デニール×4mm)5重量%の割合で混合分散した。次いで湿潤紙力剤としてエポキシ樹脂(商品名エピノックスP−201、ディックハーキュレス社製)を対繊維0.4重量%(固形分)の割合で添加し、水で希釈してレーヨン紙を抄造した。
このレーヨン紙にフェノール樹脂(昭和高分子(株)製BRL−120Z)を固形分換算で50重量%含浸した。含浸液を含浸したプリプレグシートを42枚積層し、230℃で30分加熱し、さらに圧力を調整しながら積層、圧着して所定の気孔率、気孔径のグリーン成形体を得た。
【0023】
表1に作製したグリーン成形体の特性値を示す。
【表1】

Figure 0003651070
(注1)気孔率:真比重、かさ密度より計算した値
(注2)気孔径:水銀圧入法により測定
【0024】
前記グリーン成形体を、硬化剤を調合したフラン樹脂溶液中に空気を内包せぬように徐々に浸漬し、一定時間(約5分)放置した。
放置後樹脂が含浸されたグリーン成形体を引き上げて表面に付着している樹脂を拭き取り一昼夜室温で放置し樹脂を硬化させた。
【0025】
樹脂含浸前後のグリーン成形体の重量測定結果、及び樹脂の含浸量を表2に示す。
【表2】
Figure 0003651070
(注3)樹脂含浸率:含浸樹脂量を含浸樹脂比重(1.2g/cm3 )、気孔率及び測定サンプル体積(400cm3 )で除した値
本発明の実施例の樹脂の含浸率は95〜97%で、開気孔のほとんど樹脂が含浸されていることが確認された。
【0026】
樹脂が硬化した後、前記樹脂が含浸されたグリーン成形体を黒鉛板に挟持し、5℃/hrの昇温速度で1200℃に焼成し炭素体とした。
得られた炭素体の破面は、ガラス状の光沢を呈していた。
【0027】
さらに比較例3として、フェノール樹脂(昭和高分子(株)製BRL−120Z)の粘度を調整し、離型剤を塗布したステンレス製バットに流し込み真空デシケーターに入れて10Torrで1時間真空引きして樹脂液内の低沸点分を除去した後80℃で20時間加熱し、次いで100℃で10時間加熱硬化し厚み5mmの樹脂成形板を作製した。
この樹脂成形板を黒鉛板で挟持し、実施例と同一の条件で加熱炭化を行った。
得られた炭素体の破面は実施例と同様にガラス状の光沢を呈していた。
【0028】
表3に得られた炭素体の特性値を示す。
【表3】
Figure 0003651070
(注4)電気比抵抗:4端子法により測定。
(注5)曲げ強さ :3点曲げ法により測定。
比較例1の物性測定はサンプルの切り出しに難があり、ショアー硬度の測定のみとした。
【0029】
表3に示したショアー硬度は機械加工性の難易度を示す指標に使われる。通常ショアー硬度と機械加工性は表4に示す関係を有する。
【表4】
Figure 0003651070
即ち、本発明で得られた実施例1〜3はショアー硬度は90以下でダイヤモンド工具等で容易に機械加工が可能である。比較例2はショアー硬度は低いものの破面はガラス状の光沢が認められない。
【0030】
次いでこれらの実施例、比較例を(株)ノリタケカンパニーリミテッド製カップ型ダイヤ砥石(粒度#150)で表面を砥石周速1250m/分、砥石送り速度1m/s、乾式で500μm研削を行い砥石寿命とパーティクルの発生程度を調べた。表5にその結果を示す。
【表5】
Figure 0003651070
(注6)砥石の加工刃が切れなくなるまでの加工ストローク長を測定した。
(注7)面加工したサンプルを超音波洗浄後、医療用ガーゼで加工面をこすり、汚れ具合を目視観察した。
以上の結果、本発明の実施例は機械加工性も良く、パーティクルの発生も少なく良好な結果を示した。
【0031】
【発明の効果】
本発明により機械加工性に優れた肉厚のガラス状カーボンの製造が可能となり、特にプラズマエッチング用電極や、イオン注入装置用部材のターゲット板の大型化、複雑化に対してコスト低減が図れる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a thick glassy carbon material having excellent machinability.
[0002]
[Prior art]
Glassy carbon material is a heterogeneous carbon material with a vitreous dense structure. It is gas-impermeable, wear-resistant, corrosion-resistant, self-lubricating, surface smooth and robust compared to ordinary carbon materials. Because of its excellent properties, it is used for various industrial members in various fields such as a battery electrode, an electrode for electrolysis, a crucible for manufacturing semiconductors, etc. by utilizing its characteristics. In recent years, focusing on the non-contaminating material properties that do not allow minute particles to leave the tissue, practical applications in the semiconductor field that resists contamination such as silicon wafer plasma etching electrodes and ion implanter components have been made. ing.
In particular, the plasma etching electrode and the target plate of the ion implantation member are made larger, thicker and more complicated in shape.
[0003]
Generally, a glassy carbon material is produced by a method in which a precursor obtained by molding a thermosetting resin having a high carbonization residual ratio such as furan or phenol is calcined and carbonized. Since the calcination carbonization process in this process proceeds in a solid phase, a large amount of volatile components generated by thermal decomposition of the precursor resin is discharged out of the solid phase, and the process of conversion into carbides is performed while volumetric shrinkage. However, when the precursor resin is in a thick state, the pyrolysis gas remains smoothly without being discharged from the solid phase, which causes the generation of voids, blisters, cracks and other material defects. Become. Therefore, it has been difficult to industrially manufacture a glassy carbon material having a thickness of 3 mm or more using conventional techniques.
[0004]
As a means to solve such problems, for example, fibers with low carbonization yield such as animal fibers, plant fibers, and synthetic fibers are arranged in layers with a thermosetting resin to make a plate and carbonize this. Thus, a method for producing a glassy carbon plate having a thickness of 3 mm or more has been proposed (Japanese Patent Laid-Open No. 63-129070). According to this method, it is possible to produce a very thick glassy carbon material, but it is possible to discharge volatile gas components generated from the thermosetting resin in a low temperature range until the fiber layer is thermally decomposed. Since this is not possible, there is a drawback that the appearance of a defective structure is inevitable unless the condition control during firing carbonization is adjusted so strictly.
[0005]
Furthermore, in order to eliminate such disadvantages, a thermosetting resin semi-cured molded plate serving as a precursor of a glassy carbon agent is applied to a paper mainly composed of cellulose fibers and a thermosetting resin serving as a glassy carbon precursor. Glassy carbon material that is alternately laminated and laminated with semi-cured porous sheets impregnated with resin, cured by hot pressing, and then baked in a temperature range of 800 ° C. or higher in a non-oxidizing atmosphere Has been proposed (Japanese Patent Laid-Open No. 4-70311).
[0006]
[Problems to be solved by the invention]
However, the method disclosed in JP-A-4-170311 can efficiently produce a thick plate-like glassy carbon material with few defects, but in this method, a resin sheet and a porous sheet impregnated with resin are alternately used. Since they are laminated, there are a layer in which the cellulose fibers are carbonized and a layer in which the resin plate is carbonized in the thickness direction. As a result, non-uniformity in the plate thickness direction appears, shape stability at the time of firing carbonization is lacking, and hard glassy carbon carbonized on the resin plate is present in a layered manner, resulting in deterioration of machinability.
An object of the present invention is to provide a method for producing a glassy carbon material which is thick in view of the above-described drawbacks, excellent in machinability and easy to produce a complex shape.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a glassy carbon material according to the present invention comprises impregnating a thermosetting resin into a sheet obtained by papermaking a slurry containing 60 to 95% by weight of organic fibers, heating, The green molded body that has been pressure-bonded is impregnated with a thermosetting resin again, and is carbonized and fired at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere.
[0008]
The organic fiber used in the present invention may be any organic fiber usually used for producing carbon fiber such as rayon fiber, polyacrylonitrile fiber, pitch fiber, phenol fiber, etc. Among them, rayon fiber, polyacrylonitrile The use of fibers is preferred for papermaking.
Further, it is more preferable to use rayon fiber alone or a mixture of rayon fiber and polyacrylonitrile fiber, which is low in cost and does not require infusibilization treatment.
[0009]
The thickness of the organic fiber is 2 to 20 denier, and the fiber length is 2 to 20 mm. The thickness is 5 to roughen the sheet from the dispersed paper-making properties of the raw material, the porosity, and the pore diameter. -20 deniers and fiber lengths of 5-10 mm are preferred.
As a papermaking binder, a small amount of a binder such as polyvinyl alcohol or vinylon is used, and wood pulp is preferably added thereto. Furthermore, an epoxy resin or the like can be added to increase the strength of the sheet.
[0010]
In this organic fiber sheet, organic fibers are mixed in a proportion of 60 to 95% by weight, pulp is 3 to 35% by weight, and papermaking binder is 2 to 20% by weight, and paper is made by a conventional method.
When the organic fiber is 60% by weight or less, the paper-made sheet becomes dense, and it is difficult to obtain a sheet having an appropriate pore diameter and porosity. On the other hand, when the organic fiber is 95% by weight or more, it is difficult to form a good sheet during papermaking.
[0011]
The organic fiber sheet is impregnated with a liquid thermosetting resin solution, laminated to a predetermined thickness, heated and pressed to produce a green molded body.
[0012]
As the thermosetting resin, a liquid phenol resin, furan resin, cardiimide resin, or the like is used.
The ratio of the thermosetting resin impregnated in the organic fiber sheet is 50 to 200% by weight of the thermosetting resin (solid content) with respect to 100% by weight of the organic fiber sheet.
When the thermosetting resin is 50% by weight or less, the binder effect is inferior, and when it is 200% by weight or more, it is difficult to adjust the porosity and the pore diameter due to clogging or the like.
[0013]
Considering productivity and adhesion between sheets, the heating temperature is about 150 to 250 ° C. The pressure bonding is performed by pressing between about 5 to 10 kg / cm 2 with a metal plate or a graphite plate.
[0014]
The green molded body preferably has a bending strength of 50 kg / cm 2 or more. When the green molded body has a bending strength of 50 kg / cm 2 or less, it becomes difficult to maintain a predetermined shape due to deformation during carbonization firing due to the difference in shrinkage behavior between the organic fiber and the thermosetting resin.
[0015]
The porosity of the green molded body is preferably 30 to 70%. If the porosity is 30% or less, closed pores that are difficult to impregnate with resin are likely to be generated. On the other hand, if the porosity is 70% or more, a predetermined bending strength cannot be obtained.
[0016]
The pore diameter is preferably 20 μm or more and 80 μm or less.
When the pore diameter is 20 μm or less, closed pores are easily generated, and the thermosetting resin cannot be sufficiently impregnated in the next step. On the other hand, when the pore diameter is 80 μm or more, the impregnated resin leaks out of the system when impregnated with the thermosetting resin in the next step.
[0017]
Next, this green molded body is immersed in a liquid thermosetting resin solution and impregnated with the thermosetting resin.
At this time, if necessary, the green molded body can be immersed after deaeration, and then pressurized and impregnated.
[0018]
Since the green molded body according to the present invention has a pore diameter adjusted to several tens of μm, the absorbability of the liquid thermosetting resin is high due to a capillary phenomenon. Moreover, since it is molded using a thermosetting resin of the same system, the wettability with the filled thermosetting resin is also good. Therefore, if the green molded body is immersed, the resin can be easily filled up to the inside of the molded body, and special adjustment of viscosity and solid content with respect to the thermosetting resin solution is unnecessary.
[0019]
The thermosetting resin impregnated in the green molded body is preferably a furan resin or a phenol resin that can be cured at room temperature. In the case of a thermosetting resin that is heat-cured, the viscosity decreases during heating, and the thermosetting resin may be discharged out of the system, which is not preferable.
[0020]
In the firing and carbonization, the room temperature-cured molded body is sandwiched between graphite plates and heated to a temperature of about 10 ° C./hr or less up to about 800 ° C. As a result, the organic fibers and the resin are carbonized to form a uniform carbon body. Furthermore, if it heats to 2000 degreeC or more as needed, manufacture of a high quality carbon body will be attained by an electroconductive improvement and the reduction | decrease of an impurity by this heat processing.
[0021]
[Action]
The carbon body obtained by the production method of the present invention is improved in machinability by uniformly dispersing hard glassy carbon obtained by carbonizing a thermosetting resin and carbon obtained by carbonizing an organic fiber and which is easily processed. In addition, since the green molded body has a bending strength of 50 kg / cm 2 or more, the stress due to the difference in shrinkage behavior between the thermosetting resin and the organic fiber during carbonization is inherent as internal strain or minute micro defects, which improves machinability. Has contributed.
[0022]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
15 denier in thickness, 8mm rayon fiber, 75% by weight and 20% by weight of wood pulp (NBKP: trade name Crofton) beaten to 650 ml of Canadian freeness, and PVA fiber (VPB105 made by Kuraray Co., Ltd., 1 denier) × 4 mm) 5% by weight was mixed and dispersed. Next, an epoxy resin (trade name Epinox P-201, manufactured by Dick Hercules Co., Ltd.) was added as a wet paper strength agent at a ratio of 0.4% by weight (solid content) to fiber, and diluted with water to make a rayon paper.
This rayon paper was impregnated with 50% by weight of a phenol resin (BRL-120Z manufactured by Showa Polymer Co., Ltd.) in terms of solid content. 42 prepreg sheets impregnated with the impregnating solution were laminated, heated at 230 ° C. for 30 minutes, and further laminated and pressure-bonded while adjusting the pressure to obtain a green molded body having a predetermined porosity and pore diameter.
[0023]
Table 1 shows the characteristic values of the green molded body produced.
[Table 1]
Figure 0003651070
(Note 1) Porosity: Value calculated from true specific gravity and bulk density (Note 2) Pore diameter: measured by mercury intrusion method
The green molded body was gradually immersed in a furan resin solution prepared with a curing agent so as not to enclose air, and was allowed to stand for a certain time (about 5 minutes).
After standing, the green molded body impregnated with the resin was pulled up, the resin adhering to the surface was wiped off, and allowed to stand at room temperature for 24 hours to cure the resin.
[0025]
Table 2 shows the weight measurement results of the green molded body before and after the resin impregnation and the resin impregnation amount.
[Table 2]
Figure 0003651070
(Note 3) Resin impregnation rate: Value obtained by dividing the amount of impregnated resin by impregnated resin specific gravity (1.2 g / cm 3 ), porosity and measurement sample volume (400 cm 3 ). It was confirmed that almost 97% of the open pores were impregnated with resin.
[0026]
After the resin was cured, the green molded body impregnated with the resin was sandwiched between graphite plates and fired at 1200 ° C. at a temperature rising rate of 5 ° C./hr to obtain a carbon body.
The fracture surface of the obtained carbon body had a glassy luster.
[0027]
Further, as Comparative Example 3, the viscosity of a phenol resin (BRL-120Z manufactured by Showa Polymer Co., Ltd.) was adjusted, poured into a stainless steel vat coated with a release agent, put into a vacuum desiccator, and evacuated at 10 Torr for 1 hour. After removing the low boiling point component in the resin liquid, it was heated at 80 ° C. for 20 hours, and then heated and cured at 100 ° C. for 10 hours to prepare a resin molded plate having a thickness of 5 mm.
This resin-molded plate was sandwiched between graphite plates and heated and carbonized under the same conditions as in the examples.
The fracture surface of the obtained carbon body had a glassy luster similar to the example.
[0028]
Table 3 shows the characteristic values of the carbon bodies obtained.
[Table 3]
Figure 0003651070
(Note 4) Electrical resistivity: Measured by the 4-terminal method.
(Note 5) Bending strength: Measured by a three-point bending method.
The physical properties of Comparative Example 1 were difficult to cut out the sample, and only the Shore hardness was measured.
[0029]
The Shore hardness shown in Table 3 is used as an index indicating the difficulty of machinability. Usually, Shore hardness and machinability have the relationship shown in Table 4.
[Table 4]
Figure 0003651070
That is, Examples 1 to 3 obtained in the present invention have a Shore hardness of 90 or less and can be easily machined with a diamond tool or the like. In Comparative Example 2, although the Shore hardness is low, no glassy gloss is observed on the fracture surface.
[0030]
Next, these examples and comparative examples were ground with a cup-type diamond grindstone (grain size # 150) manufactured by Noritake Co., Ltd. with a grinding wheel peripheral speed of 1250 m / min, a grindstone feed speed of 1 m / s, and a dry grinding of 500 μm. And the degree of generation of particles. Table 5 shows the results.
[Table 5]
Figure 0003651070
(Note 6) The processing stroke length until the processing blade of the grindstone could not be cut was measured.
(Note 7) The surface processed sample was subjected to ultrasonic cleaning, then the processed surface was rubbed with a medical gauze, and the degree of contamination was visually observed.
As a result, the examples of the present invention showed good results with good machinability and less generation of particles.
[0031]
【The invention's effect】
According to the present invention, it is possible to produce a thick glassy carbon excellent in machinability. In particular, it is possible to reduce the cost for the increase in size and complexity of the plasma etching electrode and the target plate of the ion implantation apparatus member.

Claims (2)

有機繊維を60〜95重量%含有する抄紙シートに、熱硬化性樹脂を含浸し、加熱、圧着したグリーン成形体に、熱硬化性樹脂を再度含浸し、非酸化性雰囲気下で800℃以上の温度で炭化焼成することを特徴とする機械加工性に優れた肉厚ガラス状カーボンの製造方法。A paper sheet containing 60 to 95% by weight of organic fiber is impregnated with a thermosetting resin, and the green molded body heated and pressed is re-impregnated with the thermosetting resin, and is 800 ° C. or higher in a non-oxidizing atmosphere. A method for producing thick glassy carbon excellent in machinability, characterized by being carbonized and fired at a temperature. グリーン成形体の気孔率が30〜70%、気孔径が20μm以上〜80μm以下である請求項1記載の機械加工性に優れた肉厚ガラス状カーボンの製造方法。The method for producing thick glassy carbon excellent in machinability according to claim 1, wherein the green molded body has a porosity of 30 to 70% and a pore diameter of 20 µm to 80 µm.
JP21214095A 1995-08-21 1995-08-21 Method for producing glassy carbon with excellent machinability Expired - Fee Related JP3651070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21214095A JP3651070B2 (en) 1995-08-21 1995-08-21 Method for producing glassy carbon with excellent machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21214095A JP3651070B2 (en) 1995-08-21 1995-08-21 Method for producing glassy carbon with excellent machinability

Publications (2)

Publication Number Publication Date
JPH0959073A JPH0959073A (en) 1997-03-04
JP3651070B2 true JP3651070B2 (en) 2005-05-25

Family

ID=16617560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21214095A Expired - Fee Related JP3651070B2 (en) 1995-08-21 1995-08-21 Method for producing glassy carbon with excellent machinability

Country Status (1)

Country Link
JP (1) JP3651070B2 (en)

Also Published As

Publication number Publication date
JPH0959073A (en) 1997-03-04

Similar Documents

Publication Publication Date Title
CN102515870A (en) Preparation method of C/SiC-ZrB2-ZrC ultrahigh-temperature ceramic-based composite material
CA2025265C (en) Method for preparing a ceramic-forming prepreg tape
JP4051714B2 (en) Electrode substrate for polymer electrolyte fuel cell and method for producing the same
JP3356534B2 (en) Electrolyte holding plate and method for manufacturing the same
EP0208629B1 (en) Process for manufacturing an inorganic membrane support for separation techniques
US4080413A (en) Porous carbon fuel cell substrates and method of manufacture
JP3651070B2 (en) Method for producing glassy carbon with excellent machinability
RU2415109C1 (en) Nanostructured ceramic matrix composite material and method of producing said material
CN114671699A (en) Preparation method of carbon fiber cylindrical high-temperature heat insulation material with integrated functions
JPH0816032B2 (en) High-strength carbon-carbon composite manufacturing method
JPH0660884A (en) Manufacture of porous carbon sheet for phosphoric acid fuel cell
JPH0520386B2 (en)
JP5691409B2 (en) C / C composite material and method for producing C / C composite material
JP2593108B2 (en) Carbon jig for glass molding
JPH07304019A (en) Manufacture of glassy carbon molding
JP3342515B2 (en) Method for producing thick glassy carbon material
JPH0211546B2 (en)
CN112647343B (en) Preparation method of carbon fiber paper for fuel cell
JP3131911B2 (en) Method for producing thick porous carbon material
JP3342508B2 (en) Method for producing impermeable carbonaceous plate
JP4002325B2 (en) Method for producing sintered silicon carbide
JP4080095B2 (en) Manufacturing method of thick porous carbon material
JPH09118566A (en) Production of silicon carbide fiber structure
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JPS63967A (en) Manufacture of electrode base plate for fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees