JPH07304019A - Manufacture of glassy carbon molding - Google Patents

Manufacture of glassy carbon molding

Info

Publication number
JPH07304019A
JPH07304019A JP6124648A JP12464894A JPH07304019A JP H07304019 A JPH07304019 A JP H07304019A JP 6124648 A JP6124648 A JP 6124648A JP 12464894 A JP12464894 A JP 12464894A JP H07304019 A JPH07304019 A JP H07304019A
Authority
JP
Japan
Prior art keywords
glassy carbon
mold
molding die
carbon molded
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6124648A
Other languages
Japanese (ja)
Inventor
Hisayuki Hamashima
久幸 浜島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP6124648A priority Critical patent/JPH07304019A/en
Publication of JPH07304019A publication Critical patent/JPH07304019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds, Cores, Or Mandrels (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To manufacture glassy carbon molding, which as extremely few pores and homogeneous and dense constitutional structure, at favorable production yield. CONSTITUTION:In the manufacturing method of glassy carbon molding, in which thermosetting resin solution is put in a mold for forming and hardening and, after that, fired and carbonized at 800 deg.C or higher under non-oxidizing atmosphere, the mold is made of porous fluoroplastic having the air permeability of 0.05-1.0cm/seccmAq and the average pore diameter of 5-60mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、均質緻密で、特に内部
ポアの極めて少ない組織構造を備えるガラス状カーボン
成形体を、製品歩留りよく、高い生産性で製造する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a glassy carbon molded body which is homogeneous and dense, and particularly has a structural structure having extremely few internal pores, with a good product yield and high productivity.

【0002】[0002]

【従来の技術】ガラス状カーボン材はガラス質の緻密な
組織構造を有する異質な炭素材料で、一般の炭素材に比
べてガス不透過性、耐摩耗性、耐食性、自己潤滑性、表
面の平滑性および堅牢性などに優れることから、その特
性を生かして電池用電極、電解用電極、半導体製造用坩
堝ほか、多様の分野で各種工業部材に有用されている。
近年では、組織から微小なパーティクルが離脱すること
のない非汚染性の材質性状に注目して、シリコンウエハ
ーのプラズマエッチング用電極やイオン注入装置用部材
など汚染を嫌う半導体分野での実用が図られている。
2. Description of the Related Art A glassy carbon material is a heterogeneous carbon material having a glassy dense structure, and is gas impermeable, wear resistant, corrosion resistant, self-lubricating, and has a smooth surface as compared with general carbon materials. Because of its excellent properties and fastness, it is utilized for various industrial members in various fields, such as battery electrodes, electrolysis electrodes, semiconductor manufacturing crucibles, by taking advantage of its characteristics.
In recent years, attention has been paid to the non-contaminating material properties in which minute particles do not separate from the tissue, and practical application in the semiconductor field, such as electrodes for plasma etching of silicon wafers and members for ion implantation equipment, where contamination is averse ing.

【0003】通常、ガラス状カーボン成形体はフェノー
ル系および/またはフラン系などの炭化残留率の高い熱
硬化性樹脂液を成形型に入れて成形し、硬化したのち非
酸化性雰囲気下で焼成炭化する方法により製造されてい
る。このプロセスでの熱硬化性樹脂の硬化反応は、熱硬
化性樹脂初期縮合物の重縮合反応により架橋構造を形成
して進行するが、この際発生する縮合水や分解ガスを排
出除去しないと、引き続く焼成炭化過程において結合水
や分解ガスが組織内に残留してガラス状カーボン成形体
中にポアを発生させる原因となり、更には膨れ、割れ等
の材質欠陥を招くことになる。この傾向は、成形体の厚
さが増すにしたがって顕著となる。
Usually, a glassy carbon molded product is molded by putting a thermosetting resin liquid having a high carbonization residual ratio such as phenol-based and / or furan-based into a molding die, and after hardening, firing and carbonization in a non-oxidizing atmosphere. It is manufactured by the method. The curing reaction of the thermosetting resin in this process proceeds by forming a cross-linked structure by the polycondensation reaction of the thermosetting resin initial condensate, but the condensation water and decomposition gas generated at this time must be discharged and removed, In the subsequent calcination and carbonization process, bound water and decomposed gas remain in the structure and cause pores to be generated in the glassy carbon molded body, which further causes material defects such as swelling and cracking. This tendency becomes remarkable as the thickness of the molded body increases.

【0004】このような問題点を解消する手段として、
例えば特開昭60−131816号公報には熱硬化性樹
脂を型枠に入れて硬化する際に、型枠の熱硬化性樹脂に
接触する面には、臨界表面エネルギーが70dyn/cm以下
の材料を使用するガラス状カーボン材料の製造方法が提
案されている。しかしながら、この方法は臨界表面エネ
ルギーの小さい、すなわち撥水性の材料を使用すること
により樹脂内に縮合水等の溜りをなくし、分散した状態
で熱硬化性樹脂を硬化させるものであり、積極的に縮合
水等の排出除去を意図したものではない。
As a means for solving such a problem,
For example, in JP-A-60-131816, when a thermosetting resin is placed in a mold and cured, a material having a critical surface energy of 70 dyn / cm or less is formed on the surface of the mold that contacts the thermosetting resin. There has been proposed a method for producing a glassy carbon material by using. However, this method eliminates the pool of condensation water and the like in the resin by using a material having a small critical surface energy, that is, a water-repellent material, and cures the thermosetting resin in a dispersed state. It is not intended to remove condensed water and the like by discharge.

【0005】また、本出願人は、硬化反応を緩徐かつ均
一に進行させるために熱硬化性樹脂初期縮合物に、硬化
剤として酸性度(PKa) が0〜1の酸触媒を添加して常
温、減圧下に一次硬化し、次いで加熱して二次硬化する
方法を提案した(特公平4−55122 号公報)。この方法
によれば、硬化反応の進行につれて生成する縮合水や分
解ガスが硬化過程を通じて減圧脱気して除去されるの
で、ポアの少ないガラス状カーボンを得ることができ
る。
The applicant of the present invention also added an acid catalyst having an acidity (PKa) of 0 to 1 as a curing agent to the thermosetting resin initial condensate in order to allow the curing reaction to proceed slowly and uniformly. A method of primary curing under reduced pressure and then secondary curing by heating was proposed (Japanese Patent Publication No. 4-55122). According to this method, the condensed water and the decomposition gas generated as the curing reaction proceeds are removed by degassing under reduced pressure during the curing process, so that glassy carbon with few pores can be obtained.

【0006】更に、本出願人はフェノール系樹脂を主体
とする組成の熱硬化性樹脂液を成形し、加熱硬化したの
ち、非酸化性雰囲気下で800℃以上の温度により焼成
炭化する方法において、熱硬化性樹脂液の成形から加熱
硬化の工程を酸素濃度が10〜70%の酸化性雰囲気中
でおこなう方法を開発した(特願平5−174834号)。こ
の方法によれば、酸素雰囲気下で加熱硬化することによ
り、熱硬化性樹脂の重縮合反応は樹脂の硬化過程の比較
的初期の段階で進行し、縮合水や発生ガスは円滑に揮散
除去されて組織内部におけるポア発生を防止できる。
Further, the applicant of the present invention, in a method of molding a thermosetting resin liquid having a composition mainly composed of a phenolic resin, heating and curing it, and then firing and carbonizing it at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere, A method has been developed in which the steps from molding of a thermosetting resin liquid to heat curing are performed in an oxidizing atmosphere with an oxygen concentration of 10 to 70% (Japanese Patent Application No. 5-174834). According to this method, by heat-curing in an oxygen atmosphere, the polycondensation reaction of the thermosetting resin proceeds at a relatively early stage of the resin curing process, and the condensed water and the generated gas are smoothly volatilized and removed. It is possible to prevent the generation of pores inside the tissue.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
先行技術では、熱硬化性樹脂と成形型内面との界面部に
おける縮合水の排出に関しては考慮が払われていないた
め、硬化反応の進行につれて生成する縮合水が、成形型
内面と接する側面部および底面部において系外へ円滑に
排出除去され難く、往々にして内外部の硬化反応が不均
一になり易い難点があった。このため、硬化度に差があ
るところでは硬化および焼成炭化工程において成形体の
内面と外面との収縮量が異なり、反りや形状歪あるいは
割れの原因となっている。
However, in the above-mentioned prior art, no consideration is given to the discharge of the condensed water at the interface between the thermosetting resin and the inner surface of the mold, so that it is generated as the curing reaction proceeds. It is difficult for the condensed water to be smoothly discharged and removed to the outside of the system at the side surface portion and the bottom surface portion which are in contact with the inner surface of the mold, and the curing reaction inside and outside is often uneven. Therefore, where there is a difference in the degree of curing, the amount of shrinkage between the inner surface and the outer surface of the molded body is different in the curing and firing carbonization steps, which causes warpage, shape distortion, or cracking.

【0008】本発明の目的は、このような問題点の解消
を図り、硬化時の縮合水を円滑に除去して常に均質緻密
で内部ポアの少ない組織構造のガラス状カーボン成形体
を、製品歩留りよく高い生産性で製造するための製造方
法を提供することにある。
The object of the present invention is to solve the above problems, to smoothly remove condensed water during curing, and to obtain a glassy carbon molded product having a structure structure which is always homogeneous and dense and has few internal pores. It is to provide a manufacturing method for manufacturing with good and high productivity.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるガラス状カーボン成形体の製造方法
は、熱硬化性樹脂液を成形型に入れて成形、硬化したの
ち、非酸化性雰囲気下で800℃以上の温度により焼成
炭化するガラス状カーボン成形体の製造方法において、
成形型を空気の透過度0.05〜1.0cm/sec cmAq、
平均気孔径5〜60μm の多孔性状を有するフッ素系樹
脂により構成することを特徴とする。
In order to achieve the above-mentioned object, a method for producing a glassy carbon molded article according to the present invention comprises a thermosetting resin liquid, which is molded into a molding die and cured, and then a non-oxidizing agent. In a method for producing a glassy carbon molded article that is calcined and carbonized at a temperature of 800 ° C. or higher in an atmosphere,
Air permeability of the mold is 0.05-1.0 cm / sec cmAq,
It is characterized in that it is made of a fluororesin having a porosity with an average pore diameter of 5 to 60 μm.

【0010】熱硬化性樹脂液としては、非酸化性雰囲気
中で加熱することにより炭化して、ガラス状カーボンに
転化する炭化残留率の高い樹脂、例えばフェノール系樹
脂、フラン系樹脂、またはこれらの混合樹脂の初期縮合
物等が用いられる。これらの熱硬化性樹脂液を所望形状
の成形型に入れて成形したのち、加熱して硬化する。
The thermosetting resin liquid is a resin having a high carbonization residual ratio, such as a phenol resin, a furan resin, or the like, which is carbonized by heating in a non-oxidizing atmosphere and converted into glassy carbon. An initial condensate of a mixed resin or the like is used. These thermosetting resin liquids are put into a molding die having a desired shape and molded, and then heated and cured.

【0011】本発明は、この成形型を通気性を有し、か
つ樹脂成形体との離型性にも優れたフッ素系樹脂で構成
するところに要点がある。フッ素系樹脂としては、ポリ
テトラフルオロエチレン、ポリトリフルオロエチレン、
ポリ弗化ビニリデン等を挙げることができ、これらのフ
ッ素系樹脂は適度の剪断力もしくは圧縮力を加えること
により微細繊維状に転化する性質がある。本発明で使用
される多孔性状を有する成形型は、この性質を利用して
作製される。
The present invention has a key point in that the molding die is made of a fluorine-based resin having air permeability and excellent releasability from the resin molding. As the fluorine-based resin, polytetrafluoroethylene, polytrifluoroethylene,
Polyvinylidene fluoride and the like can be mentioned. These fluororesins have the property of being converted into fine fibrous form by applying an appropriate shearing force or compressing force. The mold having the porosity used in the present invention is produced by utilizing this property.

【0012】すなわち、本発明の成形型は、繊維化可能
なポリテトラフルオロエチレン、ポリトリフルオロエチ
レン、ポリ弗化ビニリデン等のフッ素系樹脂に剪断力を
加えて微細繊維化したのちシート化し、該シートを所定
形状に成形することにより形成される。具体的には、前
記のフッ素系樹脂に例えばグリセリン、ソルベントナフ
サ、低粘度エポキシ樹脂等の混練助剤を添加して、回転
翼ニーダーのような剪断力がかかる混練機に入れ、充分
に混練して繊維化する。混練物はロール圧延などにより
シート化し、次いで適宜な溶媒中で洗浄することにより
混練助剤成分を除去し、乾燥する。このようにして得ら
れたシートを用い、例えば円筒状あるいは角形状など所
望の容器形状に成形加工して成形型を得る。この際、フ
ッ素系樹脂の粉末粒度、混練助剤の添加量、混練時の剪
断力および時間を制御し、繊維径の太さ、長さおよび繊
維の絡まり状態を変えることにより、当該樹脂成形体の
空気の透過度が0.05〜1.0cm/sec cmAq、平均気
孔径が5〜60μm の範囲の多孔性状に調整する。
That is, the molding die of the present invention is made into a sheet by forming a fine fiber by applying a shearing force to a fluororesin such as fibrous polytetrafluoroethylene, polytrifluoroethylene, polyvinylidene fluoride, etc. It is formed by molding the sheet into a predetermined shape. Specifically, for example, glycerin, solvent naphtha, a low-viscosity epoxy resin and other kneading aids are added to the above-mentioned fluororesin, and the kneading machine is subjected to shearing force such as a rotary blade kneader and sufficiently kneaded. To fiberize. The kneaded product is formed into a sheet by roll rolling or the like, and then washed in an appropriate solvent to remove the kneading aid component and dried. Using the sheet thus obtained, a forming die is obtained by forming into a desired container shape such as a cylindrical shape or a square shape. At this time, by controlling the powder particle size of the fluororesin, the addition amount of the kneading aid, the shearing force and the time during kneading, and changing the thickness of the fiber diameter, the length and the entangled state of the fibers, the resin molding The air permeability is adjusted to 0.05 to 1.0 cm / sec cmAq and the average pore diameter is adjusted to 5 to 60 μm.

【0013】成形型の気孔性状は、縮合水や分解ガス等
の排出路として機能するものであるが、空気の透過度が
0.05cm/sec cmAqを下回り、平均気孔径が5μm 未
満であると縮合水等が円滑に排出されず、他方、空気の
透過度が1.0cm/sec cmAqを越え、平均気孔径が60
μm を上回るとシートが脆弱化して成形型の作製が困難
となる。したがって、前記気孔特性を前記範囲に設定す
ることにより、樹脂のような高粘度の液体は通さず気体
のみ通過することができるので、縮合水の蒸気や分解ガ
スは容易に系外に排出され、硬化反応を均一に進行させ
ることが可能となる。
The porosity of the molding die functions as a discharge passage for condensed water, decomposed gas, etc., but if the air permeability is below 0.05 cm / sec cmAq and the average pore diameter is less than 5 μm. Condensed water, etc. are not discharged smoothly, while the air permeability exceeds 1.0 cm / sec cmAq and the average pore diameter is 60.
If it exceeds μm, the sheet becomes brittle and it becomes difficult to make a mold. Therefore, by setting the pore characteristics in the above range, it is possible to pass only a gas without passing a high-viscosity liquid such as a resin, so that vapor of condensed water and decomposition gas are easily discharged out of the system, It becomes possible to uniformly proceed the curing reaction.

【0014】成形型の組織は、縮合水の排出路となる微
細な気孔のみでなく吸水性を有していれば、より効果的
となる。フッ素樹脂は本来的に優れた撥水性と離型性が
あるため、吸水性を有する濾紙を上記成形型の外面に展
着することにより、縮合水の排出除去をさらに円滑に促
進することができる。成形型に濾紙を展着する手段とし
ては、フッ素系樹脂の繊維化シートに濾紙を積層し、圧
着しながら成形型に成形する方法、あるいは予め成形し
た成形型の外面に湿潤させた濾紙を密着被包したのち乾
燥する方法などが適用される。
The structure of the mold is more effective as long as it has water absorption as well as fine pores that serve as discharge channels for condensed water. Since the fluororesin inherently has excellent water repellency and releasability, by spreading a filter paper having water absorbability on the outer surface of the above-mentioned molding die, it is possible to further facilitate the discharge and removal of the condensed water. . As a means for spreading the filter paper on the molding die, a method of laminating the filter paper on a fibrous sheet of fluororesin and molding it into the molding die under pressure bonding, or adhering a moistened filter paper to the outer surface of the preformed molding die A method of encapsulating and then drying is applied.

【0015】このようにして作製した成形型へ熱硬化性
樹脂液を注入したのち、350℃以下の温度域で加熱硬
化する。加熱温度が350℃を上廻ると硬化反応が急速
に進行して、成形体の組織に歪みが生じて焼成炭化時に
亀裂や破損を発生させる原因となる。好ましい硬化温度
は100〜200℃であるが、成形型の外面に濾紙を展
着する場合には100℃近辺の温度域で硬化する必要が
ある。
After the thermosetting resin liquid is injected into the mold thus produced, it is heat-cured in a temperature range of 350 ° C. or lower. If the heating temperature is higher than 350 ° C., the curing reaction will proceed rapidly, causing distortion in the structure of the molded body and causing cracks or damage during firing and carbonization. The preferable curing temperature is 100 to 200 ° C., but when the filter paper is spread on the outer surface of the mold, it is necessary to cure in a temperature range around 100 ° C.

【0016】加熱硬化した樹脂成形体は、非酸化性雰囲
気に保持された加熱炉に詰め、800℃以上の温度、好
ましくは900〜1200℃の温度域で焼成炭化処理す
る。焼成炭化後の材料は、必要に応じ非酸化性雰囲気下
で2000℃以上の温度により黒鉛化処理を施してガラ
ス状カーボン成形体を得る。
The heat-cured resin molded product is packed in a heating furnace maintained in a non-oxidizing atmosphere and subjected to firing carbonization treatment at a temperature of 800 ° C. or higher, preferably 900 to 1200 ° C. The material after firing and carbonization is subjected to graphitization treatment at a temperature of 2000 ° C. or higher in a non-oxidizing atmosphere, if necessary, to obtain a glassy carbon molded body.

【0017】[0017]

【作用】一般に熱硬化性樹脂の硬化反応は、初期の低温
領域ではメチロール基、ジメチレンエーテル結合等の分
解縮合反応が生じ、次いでヒドロキシル基、メチレン結
合等が熱分解する過程を経るが、これら縮合反応の殆ど
が縮合水の発生を伴い、また分解ガスを発生させながら
進行する。本発明によれば、成形型を特定の多孔性状を
有するフッ素系樹脂で構成することにより、この硬化反
応時に発生する縮合水や分解ガスを、成形型の気孔を通
して樹脂成形体の全ての面から均等かつ円滑に排出する
ことができる。とくに、硬化反応の初期段階で発生する
縮合水や分解ガスのほか、低沸点成分、未反応成分等の
比較的多量のガス成分を円滑に排出除去することが可能
となる。また、フッ素系樹脂は熱硬化性樹脂の離型性に
も優れており、成形体を成形型から取り出す際に良好は
離型作用も発揮される。
[Function] Generally, in the curing reaction of a thermosetting resin, a decomposition condensation reaction of a methylol group, a dimethylene ether bond, etc. occurs in an initial low temperature region, and then a hydroxyl group, a methylene bond, etc. are thermally decomposed. Most of the condensation reaction proceeds with the generation of condensed water and while generating decomposition gas. According to the present invention, by forming the molding die with a fluororesin having a specific porosity, condensed water and decomposition gas generated during this curing reaction are passed through the pores of the molding die from all sides of the resin molding. It can be discharged evenly and smoothly. In particular, it is possible to smoothly discharge and remove a relatively large amount of gas components such as low boiling point components and unreacted components in addition to condensed water and decomposition gas generated in the initial stage of the curing reaction. Further, the fluorine-based resin is also excellent in the releasing property of the thermosetting resin, and when the molded product is taken out from the molding die, the releasing action is exhibited well.

【0018】更に、成形型の外面に濾紙を展着した場合
には、成形型の気孔を通過した縮合水が外面の濾紙に吸
収されるので、硬化反応は促進されてより一層ポアの少
ない均質なガラス状カーボン成形体を得ることができ
る。
Further, when the filter paper is spread on the outer surface of the mold, the condensed water that has passed through the pores of the mold is absorbed by the filter paper on the outer surface, so that the curing reaction is accelerated and the pores are evenly distributed. It is possible to obtain a vitreous carbon molded body.

【0019】このように、樹脂成形体は成形型の内面に
接する全ての面から均等かつ円滑に縮合水や分解ガスが
排出される作用により、最終的に組織欠陥のないガラス
状カーボン成形体を能率的に製造することが可能とな
る。
As described above, the resin molded product finally becomes a glassy carbon molded product having no tissue defect due to the action of uniformly and smoothly discharging condensed water and decomposed gas from all the surfaces in contact with the inner surface of the molding die. It becomes possible to manufacture efficiently.

【0020】[0020]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples.

【0021】実施例1〜4、比較例1〜3 減圧蒸留により精製したフェノールとホルマリンをアン
モニア存在下で付加縮合反応させてフェノール樹脂初期
縮合物を調整し、次いでフルフリルアルコールを添加混
合して粘度を70センチポイズ(25℃)に調整した。
Examples 1 to 4 and Comparative Examples 1 to 3 Phenol purified by vacuum distillation and formalin are subjected to an addition condensation reaction in the presence of ammonia to prepare a phenol resin initial condensation product, and then furfuryl alcohol is added and mixed. The viscosity was adjusted to 70 centipoise (25 ° C).

【0022】粒度調整したポリテトラフルオロエチレン
(PTFE)〔三井デュポンフロロケミカル(株)製、
K10−J〕100部に混練助剤としてグリセリン10
部を加え、ブラストミル混練機により温度100℃で回
転速度、混練時間を変えて混練した。次いで、混練物を
ロール間を通して厚さ0.2mmにシート化し、成形した
シートを60℃の温水中に浸してグリセリンを除去した
のち乾燥した。このようにして得られた気孔特性の異な
るシートを圧縮成形して、直径80mm、高さ350mmの
円筒状の成形型を作製した。なお、成形型の空気透過度
はJIS K7126A法により測定した。
Particle size-adjusted polytetrafluoroethylene (PTFE) [manufactured by Mitsui DuPont Fluorochemicals,
K10-J] 100 parts with glycerin 10 as a kneading aid
Parts were added and kneading was carried out at a temperature of 100 ° C. with a blast mill kneading machine while changing the rotation speed and kneading time. Next, the kneaded product was passed through rolls to form a sheet having a thickness of 0.2 mm, and the formed sheet was immersed in warm water at 60 ° C. to remove glycerin and then dried. The sheets thus obtained having different pore characteristics were compression-molded to prepare a cylindrical molding die having a diameter of 80 mm and a height of 350 mm. The air permeability of the mold was measured according to JIS K7126A method.

【0023】この成形型にフェノール樹脂初期縮合物を
流し込み、10torrの減圧下に1時間脱気処理したの
ち、清浄な電気オーブンに移し、100℃の温度で48
時間硬化処理して直径80mm、高さ300mmの円柱状の
樹脂硬化成形体を得た。成形型から樹脂硬化成形体を取
り出し、ダイヤモンドカッターで、厚さ1.2mmの円板
状にスライスした。
Phenol resin initial condensate was poured into this mold, deaerated under a reduced pressure of 10 torr for 1 hour, and then transferred to a clean electric oven at a temperature of 100 ° C. for 48 hours.
After time-curing, a cylindrical resin-cured molded product having a diameter of 80 mm and a height of 300 mm was obtained. The resin-cured molded body was taken out from the molding die and sliced into a disk shape having a thickness of 1.2 mm with a diamond cutter.

【0024】ついで、円板状樹脂硬化成形体20枚を、
不純物5 ppm未満の高純度黒鉛板〔東海カーボン(株)
製、G347SS〕で交互に挟み付け、高純度黒鉛ヒータ
を装備したパッキングレスの高温加熱炉〔東海高熱工業
(株)製、TP150〕にセットし、炉内雰囲気を不純
物10 ppm未満の高純度アルゴンガスに保持しながら1
200℃まで加熱して焼成炭化処理をおこなった。得ら
れたガラス状カーボン成形体は直径60mm、厚さ1mmで
あった。
Then, 20 disk-shaped resin-cured moldings were
High-purity graphite plate with impurities less than 5 ppm [Tokai Carbon Co., Ltd.
Manufactured by G347SS] and set in a packingless high-temperature heating furnace equipped with a high-purity graphite heater [TP150 manufactured by Tokai High-Temperature Industry Co., Ltd.], and the atmosphere in the furnace is high-purity argon containing less than 10 ppm of impurities. While holding in gas 1
The mixture was heated to 200 ° C. to be carbonized by firing. The obtained glassy carbon molded product had a diameter of 60 mm and a thickness of 1 mm.

【0025】このようにして得られた各ガラス状カーボ
ン成形体の各種特性を測定し成形型の気孔特性と対比さ
せて表1に示した。比較のために、気体不透過性のポリ
プロピレン製の円筒状容器を用いて、実施例と同一の条
件で成形、硬化、焼成処理した例を表1に併載した(比
較例3)。なお、ポア数は、ガラス状カーボンの表面を
研磨した後、研磨面の組織を光学顕微鏡で観察し、視野
2mm内に観察された最大ポアサイズごとのガラス状カー
ボン成形体の枚数である。
Various characteristics of each glassy carbon molded body thus obtained were measured and shown in Table 1 in comparison with the pore characteristics of the molding die. For comparison, an example in which a cylindrical container made of a gas impermeable polypropylene was used, and molding, curing and baking were performed under the same conditions as those of the examples is also shown in Table 1 (Comparative Example 3). The number of pores is the number of glassy carbon moldings for each maximum pore size observed within a field of view of 2 mm by observing the texture of the polished surface with an optical microscope after polishing the surface of glassy carbon.

【0026】[0026]

【表1】 [Table 1]

【0027】表1の結果から、本発明の要件を満たす実
施例で製造された各ガラス状カーボン成形体は、本発明
の要件を外れる比較例に比べてポアが極めて少なく、と
くに5μm 以上の大きなポアは殆ど存在しない均質緻密
な組織構造を有していることが明らかに認められる。更
に、焼成炭化歩留りも高く、強度特性も優れている。ま
た、気孔を有しないポリプロピレン製の成形型を使用し
た比較例3と対比すると、本発明の効果はより一層明ら
かである。
From the results shown in Table 1, the glass-like carbon moldings produced in the examples satisfying the requirements of the present invention have extremely few pores as compared with the comparative examples which deviate from the requirements of the present invention, and particularly, large pores of 5 μm or more. It is clearly recognized that the pores have a homogeneous and dense tissue structure that is rarely present. Further, the yield of calcination and carbonization is high, and the strength characteristics are excellent. Further, the effect of the present invention is more apparent when compared with Comparative Example 3 in which a polypropylene mold having no pores is used.

【0028】実施例5 実施例1と同一条件で作製したシートの外面に相当する
面に厚さ0.1mmの濾紙を積層し、圧縮成形して実施例
1と同形状の成形型を作製した。この成形型を用い実施
例1と同一の条件でガラス状カーボン成形体を製造し
た。得られたガラス状カーボン成形体の特性は、嵩密度
1.50 g/cm3、曲げ強度1150 kgf/cm3、また焼成
歩留りは95%(良品枚数19枚)、ポアは19枚とも
観察されなかった。また、外観も平滑なガラス質を示
し、凹凸は全く認められなかった。
Example 5 A filter paper having a thickness of 0.1 mm was laminated on the surface corresponding to the outer surface of a sheet prepared under the same conditions as in Example 1 and compression-molded to prepare a mold having the same shape as in Example 1. . Using this mold, a glassy carbon molded body was manufactured under the same conditions as in Example 1. The properties of the obtained glassy carbon molded product were as follows: bulk density 1.50 g / cm 3 , bending strength 1150 kgf / cm 3 , firing yield 95% (19 non-defective products), and 19 pores There wasn't. In addition, the appearance also showed a smooth glassy quality, and no irregularities were observed.

【0029】[0029]

【発明の効果】以上のとおり、本発明によれば特定の多
孔性状を有するフッ素系樹脂で構成した成形型を用いる
ことにより、硬化反応時に生成する縮合水等を円滑に系
外へ排出除去し、焼成炭化時に残留した縮合水等による
ポア発生を極めて少なくすることが可能となる。また、
硬化反応が促進されて均一に硬化するのでガラス状カー
ボン成形体の組織構造も均質緻密化して強度特性や製品
歩留り、生産性の向上も図られる。したがって、半導体
分野をはじめ各種用途分野における工業用部材を対象と
するガラス状カーボン成形体の製造方法として極めて有
用である。
As described above, according to the present invention, by using a molding die made of a fluororesin having a specific porosity, condensed water and the like produced during the curing reaction can be smoothly discharged and removed from the system. In addition, it becomes possible to extremely reduce the generation of pores due to the condensed water remaining during the firing and carbonization. Also,
Since the curing reaction is accelerated and the composition is uniformly cured, the structural structure of the glassy carbon molded body is homogenized and densified, and the strength characteristics, product yield, and productivity are improved. Therefore, it is extremely useful as a method for producing a glassy carbon molded article for industrial members in various fields including the semiconductor field.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂液を成形型に入れて成形、
硬化したのち、非酸化性雰囲気下で800℃以上の温度
により焼成炭化するガラス状カーボン成形体の製造方法
において、成形型を空気の透過度0.05〜1.0cm/
sec cmAq、平均気孔径5〜60μm の多孔性状を有する
フッ素系樹脂により構成することを特徴とするガラス状
カーボン成形体の製造方法。
1. A thermosetting resin liquid is placed in a molding die for molding.
In the method for producing a glass-like carbon molded product which is hardened and then fired and carbonized at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere, the mold has an air permeability of 0.05 to 1.0 cm /
A method for producing a glass-like carbon molded article, characterized by comprising a fluorocarbon resin having a sec cmAq and an average pore diameter of 5 to 60 μm.
【請求項2】 成形型の外面に濾紙を展着する請求項1
記載のガラス状カーボン成形体の製造方法。
2. A filter paper is spread on the outer surface of the mold.
A method for producing the glass-like carbon molded article described.
【請求項3】 成形型が、繊維化可能なポリテトラフル
オロエチレン、ポリトリフルオロエチレンまたはポリ弗
化ビニリデンに剪断力を加えて微細繊維化したのちシー
ト化し、該シートを処理形状に成形して得られたもので
ある請求項1又は2記載のガラス状カーボン成形体の製
造方法。
3. A molding die is made into fine fibers by applying shearing force to polytetrafluoroethylene, polytrifluoroethylene or polyvinylidene fluoride capable of being formed into fibers, and then formed into a sheet, and the sheet is formed into a processed shape. The method for producing a glassy carbon molded article according to claim 1 or 2, which is obtained.
JP6124648A 1994-05-13 1994-05-13 Manufacture of glassy carbon molding Pending JPH07304019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6124648A JPH07304019A (en) 1994-05-13 1994-05-13 Manufacture of glassy carbon molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6124648A JPH07304019A (en) 1994-05-13 1994-05-13 Manufacture of glassy carbon molding

Publications (1)

Publication Number Publication Date
JPH07304019A true JPH07304019A (en) 1995-11-21

Family

ID=14890614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6124648A Pending JPH07304019A (en) 1994-05-13 1994-05-13 Manufacture of glassy carbon molding

Country Status (1)

Country Link
JP (1) JPH07304019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269348A (en) * 2008-05-09 2009-11-19 Kurashiki Kako Co Ltd Core for molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269348A (en) * 2008-05-09 2009-11-19 Kurashiki Kako Co Ltd Core for molding

Similar Documents

Publication Publication Date Title
JP4086936B2 (en) Dummy wafer
JPS6042213A (en) Manufacture of carbon sheet
KR20000009035A (en) Ceramic-contained carbon-carbon composite material and process for producing the same
JPH1017382A (en) Production of silicon carbide formed body
JPH07304019A (en) Manufacture of glassy carbon molding
CN115231923A (en) Structure function integrated ceramic matrix composite and preparation method thereof
US20060240287A1 (en) Dummy wafer and method for manufacturing thereof
JPH05319928A (en) Production of highly functional carbon/ceramic composite material
JP3342515B2 (en) Method for producing thick glassy carbon material
JPH0520386B2 (en)
JP3651070B2 (en) Method for producing glassy carbon with excellent machinability
JPH07300307A (en) Production of glassy carbon material
JP3198120B2 (en) Method for producing glassy carbon plate
JP5691409B2 (en) C / C composite material and method for producing C / C composite material
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JP3342508B2 (en) Method for producing impermeable carbonaceous plate
JP3434538B2 (en) Method for producing glassy carbon material
JPS6090805A (en) Manufacture of impermeable molded carbon body
JPH04362062A (en) Production of glassy carbon material
JP3543980B2 (en) Method for producing glassy carbon material
JPH10182232A (en) Production of silicon carbide formed body
JPS6259508A (en) Production of carbonaceous, thin plate
KR100355350B1 (en) Manufacturing method of near-net-shaped reaction-bonded silicon carbide
JPH04219332A (en) Carbon jig for glass forming
JPH07300362A (en) Production of gas-impermeable carbonaceous material