JPS6090805A - Manufacture of impermeable molded carbon body - Google Patents

Manufacture of impermeable molded carbon body

Info

Publication number
JPS6090805A
JPS6090805A JP58199538A JP19953883A JPS6090805A JP S6090805 A JPS6090805 A JP S6090805A JP 58199538 A JP58199538 A JP 58199538A JP 19953883 A JP19953883 A JP 19953883A JP S6090805 A JPS6090805 A JP S6090805A
Authority
JP
Japan
Prior art keywords
thermosetting resin
carbon
powder
plate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58199538A
Other languages
Japanese (ja)
Other versions
JPH0127967B2 (en
Inventor
Hisaaki Yokota
横田 久昭
Eiji Saura
佐浦 英二
Mitsunobu Nikaido
二階堂 光信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP58199538A priority Critical patent/JPS6090805A/en
Priority to US06/598,540 priority patent/US4582632A/en
Priority to DE19843413646 priority patent/DE3413646A1/en
Publication of JPS6090805A publication Critical patent/JPS6090805A/en
Publication of JPH0127967B2 publication Critical patent/JPH0127967B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To manufacture a molded carbon body having superior gas and liq. impermeability by extrusion-molding a kneaded composition contg. a thermosetting resin into a flat plate, rolling the plate with rolls, drying and curing it, and carrying out carbonization and calcination in a nonoxidizing atmosphere. CONSTITUTION:A kneaded composition is prepd. by kneading a soln. of a thermosetting resin such as phenolic resin, xylene resin or melamine resin with 100 pts.wt. powder of a thermosetting resin such as phenolic resin having <=50mum particle size, <=50pts.wt. carbon powder such as graphite powder and 1-20pts.wt. org. thickener such as methylcellulose. The kneaded composition is extruded into a plate with a plunger extruder or the like, and the plate is rolled to a prescribed thickness with rolls. It is dried to evaporate the solvent in the thermosetting resin soln., and calcination is carried out at 1,000-1,500 deg.C in a nonoxidizing atmosphere such as He or Ar to obtain a carbon sheet having superior gas and liq. impermeability and suitable for use as a separating plate for a fuel cell contg. phosphoric acid.

Description

【発明の詳細な説明】 本発明は不透過性炭素成形体の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing an impermeable carbon molded body.

気体及び液体の不透過性にすぐれる不透過性炭素成形体
は、この特性に加えて小さい電気抵抗とすぐれた耐薬品
性を有するところから、電子、原子力、航空宇宙等の産
業分野で幅広い利用が期待されており、なかでも上記し
た緒特性のゆえに、近年注目を集めているリン酸型燃料
電池の分離板として好適に用いることができる。
Impermeable carbon molded bodies, which are highly impermeable to gases and liquids, have low electrical resistance and excellent chemical resistance in addition to these properties, making them widely used in industrial fields such as electronics, nuclear power, and aerospace. Among them, because of the above-mentioned characteristics, it can be suitably used as a separator plate for phosphoric acid fuel cells, which have been attracting attention in recent years.

リン酸型燃料電池は、例えば、電解質としてのリン酸を
含浸させたマトリックスを挟んで所要の触媒を担持させ
た一対の多孔質電極板が配置され、更にその外側にそれ
ぞれ分離板が配置されて単位セルが形成され、こりを多
数積層して構成されている。例えば、リブ付電極型と称
される燃料電池の場合には、上記各電極は分離板側にリ
ブを形成され、これらリブ間の溝に燃料気体又は酸化剤
気体が供給される。即ち、一方の電極の溝には水素ガス
等の気体燃料が供給され、他方の電極の溝には空気、酸
素等の気体酸化ThJが供給されて、電池反応が行なわ
れる。従って、一つの分離板には、その一方の側には燃
料が供給され、他方の側には酸化剤が供給されるので、
分離板はこれら気体が混合しないように、気体不透過性
にすぐれることが必要であり、更に、上記したように単
位セルを積層して構成した燃料電池の集電体として機能
し得るために、高い導電性を有すると共に、薄板状であ
って大きい積層圧縮強度及び曲げ強度を有することが必
要である。
In a phosphoric acid fuel cell, for example, a pair of porous electrode plates carrying a required catalyst are arranged with a matrix impregnated with phosphoric acid as an electrolyte sandwiched between them, and a separating plate is arranged on the outside of each of the porous electrode plates. A unit cell is formed by stacking a large number of cells. For example, in the case of a fuel cell called a ribbed electrode type, ribs are formed on the separation plate side of each of the electrodes, and fuel gas or oxidant gas is supplied to the grooves between these ribs. That is, gaseous fuel such as hydrogen gas is supplied to the grooves of one electrode, and gaseous oxidation ThJ such as air or oxygen is supplied to the grooves of the other electrode, thereby carrying out a cell reaction. Thus, one separator plate is supplied with fuel on one side and oxidizer on the other side.
The separation plate needs to have excellent gas impermeability so that these gases do not mix, and furthermore, in order to function as a current collector for a fuel cell constructed by stacking unit cells as described above. In addition to having high conductivity, it is necessary to have a thin plate shape and high lamination compressive strength and bending strength.

しかしながら、従来より知られている不透過性炭素成形
体は、いずれも上記した要求緒特性において不十分であ
る。例えば、特開昭54−20991号公報には、硬化
フェノール系樹脂の微粉とフェノール類・アルデヒド初
期縮合物とを混練し、成形硬化させた後、炭化焼成して
、実質的にガラス質炭素のみからなる炭素成形体を得る
方法が開示されている。しかし、このようにして得られ
る成形体は、その焼成過程において樹脂が著しい体積収
縮を起こすため、成形体としての緻密性に欠け、従って
、気体不透過性が十分ではなく、更に、実際の分離板と
して好ましい厚み0.4〜l、 5 in程度に薄板化
した場合に、強度に劣る。
However, all of the conventionally known impermeable carbon molded bodies are insufficient in the above-mentioned required characteristics. For example, in JP-A-54-20991, fine powder of a cured phenolic resin and a phenol/aldehyde initial condensate are kneaded, molded and hardened, and then carbonized and fired to make only vitreous carbon. A method for obtaining a carbon molded body comprising: However, the molded product obtained in this way lacks compactness as a molded product because the resin undergoes significant volumetric shrinkage during the firing process, and therefore does not have sufficient gas impermeability. When thinned to a thickness of about 0.4 to 5 inches, which is preferable as a plate, the strength is poor.

一方、炭素質が黒鉛である不透過性炭素成形体も既に種
々のものが知られている。例えば、炭化焼成により得た
黒鉛よりなる成形体の空隙にピッチ、タール、樹脂等の
含浸材を含浸させ、再度焼成してこれら含浸材を炭化さ
せることによって不透過性炭素成形体を得る方法が知ら
れているが、この方法によれば、黒鉛よりなる成形体と
含浸材との熱収縮率の相違により、得られる炭化焼成品
に微細な割れが生じることが多い。
On the other hand, various impermeable carbon molded bodies whose carbonaceous substance is graphite are already known. For example, an impermeable carbon molded body can be obtained by impregnating the voids of a graphite molded body obtained by carbonization firing with an impregnating agent such as pitch, tar, or resin, and then firing it again to carbonize the impregnating material. Although it is known, according to this method, fine cracks often occur in the resulting carbonized and fired product due to the difference in thermal shrinkage rate between the graphite molded body and the impregnated material.

また、特開昭57−72273号公報には、黒鉛粉末を
バインダーとしてのフェノール樹脂液にて成形し、高温
で焼成して、全体が実質的に黒鉛よりなる不透過性炭素
成形体を得る方法が開示されているが、この方法による
場合も上記と同様に成形体中の黒鉛とバインダーとの熱
収縮率の相違によって焼成時に微細な割れが多発しやす
く、更に、焼成品に良好な気体不透過性を与えるために
は、バインダーを繰返して含浸させる或・要があり、工
程数が多くなって、製造費用も高価となる。
Furthermore, Japanese Patent Application Laid-open No. 57-72273 discloses a method of molding graphite powder with a phenol resin liquid as a binder and firing it at a high temperature to obtain an impermeable carbon molded body made entirely of graphite. However, when this method is used, fine cracks tend to occur frequently during firing due to the difference in thermal shrinkage rate between the graphite in the molded body and the binder, and furthermore, the fired product does not have a good gas impregnation. In order to provide permeability, it is necessary to repeatedly impregnate with a binder, which increases the number of steps and increases manufacturing costs.

更に、所定の形状の不透過性炭素成形体を得るために、
上記公報には鋳込み法や押出成形によることが記載され
ているが、しかし、このようにして鋳込み成形体や押出
成形体を得た場合は、例えば前記したような燃料電池用
分離板に要求される0、4〜1.5 w程度の厚さの広
幅薄板状の成形体を得るには、これら所定の寸法より大
きい成形体を更に切削することが必要であって、加工費
用を要すると共に、材料面からも不経済であり、これに
加えて所要の平面度を得るためには、全板面の精密切削
加工が今更である。このように、従来の方法によれば、
不透過性炭素成形体の製造においては、その成形法を含
め、種々の問題がある。
Furthermore, in order to obtain an impermeable carbon molded body with a predetermined shape,
The above publication describes the use of casting or extrusion molding, but if a cast molded body or an extrusion molded body is obtained in this way, for example, the above-mentioned separator plates for fuel cells will not meet the requirements. In order to obtain a wide thin plate shaped body having a thickness of about 0.4 to 1.5 w, it is necessary to further cut the formed body larger than the predetermined dimensions, which requires processing costs, It is also uneconomical from a material standpoint, and in addition to this, precision cutting of the entire plate surface is required to obtain the required flatness. In this way, according to the conventional method,
In the production of impermeable carbon molded bodies, there are various problems including the molding method.

本発明は上記した種々の問題を解決するためになされた
ものであって、気体及び液体の不透過性にすぐれ、特に
、広幅で薄板状の成形体を得るのに好適な不透過性炭素
成形体を製造する方法を提供することを目的とする。
The present invention has been made to solve the various problems described above, and is an impermeable carbon molding that has excellent gas and liquid impermeability and is particularly suitable for obtaining a wide and thin plate-like molded product. The purpose is to provide a method for manufacturing the body.

本発明による不透過性炭素成形体の製造方法は、熱硬化
性樹脂を含有する混線組成物を平板状に押出成形した後
、ロール圧延し、次いで、乾燥硬化させた後、非酸化性
雰囲気で炭化焼成することを特徴とする。
The method for producing an impermeable carbon molded article according to the present invention involves extruding a cross-wire composition containing a thermosetting resin into a flat plate, rolling it with rolls, drying and curing it, and then placing it in a non-oxidizing atmosphere. It is characterized by being carbonized and fired.

本発明において、熱硬化性樹脂を含有する混練組成物は
、好ましくは熱硬化性樹脂液と、熱硬化性樹脂粉末及び
炭素粉末の両者から選ばれる少なくとも11!とを含有
する混線組成物であり、特に好ましくは熱硬化性樹脂粉
末1oori量部と炭素粉末0〜50重量部と熱硬化性
樹脂液とを含有する。更に好ましくは、本発明における
混練組成物は、後述するように上記熱硬化性樹脂液に可
溶性であって、且つ、混線組成物の硬化成形体の炭化焼
成時に分解揮散し得る有機増粘剤を混線組成物の1〜2
0M量%の範囲で含有する組成物である。
In the present invention, the kneading composition containing a thermosetting resin is preferably at least 11% selected from both a thermosetting resin liquid, a thermosetting resin powder, and a carbon powder. It is a crosstalk composition containing, particularly preferably, 1 part by weight of thermosetting resin powder, 0 to 50 parts by weight of carbon powder, and thermosetting resin liquid. More preferably, the kneaded composition of the present invention contains an organic thickener that is soluble in the thermosetting resin liquid and that can be decomposed and volatilized during carbonization and firing of the cured molded body of the cross-wire composition, as described below. Crosstalk composition 1-2
It is a composition containing in the range of 0M amount %.

本発明において、熱硬化性樹脂液としては、例えばフェ
ノール系樹脂、キシレン系樹脂、メラミン系樹脂、尿素
系樹脂、エポキシ系樹脂、フラン系樹脂等の水性又は油
性の接着剤が用いられる。
In the present invention, water-based or oil-based adhesives such as phenol resins, xylene resins, melamine resins, urea resins, epoxy resins, and furan resins are used as the thermosetting resin liquid.

尚、熱硬化性樹脂液には溶液のほか、乳濁液や懸濁液を
含む。本発明においては特に制限されるものではないが
、乾燥の便宜上、水性の樹脂液が好ましく用いられる。
Note that the thermosetting resin liquid includes not only solutions but also emulsions and suspensions. In the present invention, although not particularly limited, an aqueous resin liquid is preferably used for convenience of drying.

また、本発明において、熱硬化性樹脂粉末とは、非酸化
性雰囲気中での800〜2000℃、好ましくは100
0〜1500℃の温度における炭化焼成によってガラス
質炭素に変化する熱硬化樹脂粉末をいい、通常、フェノ
ール系樹脂、フラン系樹脂、キシレン系樹脂、メラミン
系樹脂、アニリン系樹脂等の樹脂粉末が用いられるが、
特に、フェノール系樹脂の粉末が好ましく用いられる。
In addition, in the present invention, thermosetting resin powder is 800 to 2000°C in a non-oxidizing atmosphere, preferably 100°C.
It refers to thermosetting resin powder that changes into glassy carbon by carbonization firing at a temperature of 0 to 1500°C, and usually resin powders such as phenol resin, furan resin, xylene resin, melamine resin, aniline resin, etc. are used. However,
In particular, phenolic resin powder is preferably used.

本発明においては、前記したように、混練組成物は、熱
硬化性樹脂液と共に熱硬化性樹脂粉末及び/又は炭素粉
末からなるが、上記した熱硬化性樹脂液及び熱硬化性樹
脂粉末はそれぞれ単独で、又は2種以上の混合物として
用いることができる。
In the present invention, as described above, the kneading composition consists of a thermosetting resin powder and/or carbon powder together with a thermosetting resin liquid; It can be used alone or as a mixture of two or more.

しかし、熱硬化性樹脂粉末と樹脂液中の樹脂成分は同じ
樹脂であることが望ましい。熱硬化性樹脂液は、熱硬化
性樹脂粉末や炭素粉末を含有する組成物あ混練及び所要
形状への成形を容易にすると共に、加熱硬化後は熱硬化
性樹脂粉末と共に焼成により非晶質のガラス質炭素を形
成し、混練組成物が炭素粉末を含有するときは、炭素粉
末のマトリックスを形成する。
However, it is desirable that the resin components in the thermosetting resin powder and the resin liquid are the same resin. The thermosetting resin liquid makes it easy to knead and mold a composition containing thermosetting resin powder and carbon powder into a desired shape, and after heating and curing, it is baked together with the thermosetting resin powder to form an amorphous resin. Vitreous carbon is formed, and when the kneading composition contains carbon powder, a matrix of carbon powder is formed.

炭素粉末は、得られる不透過性炭素成形体に高い充填密
度を与え、従って、機械的強度、電気伝導性、熱伝導性
等の緒特性にすぐれる不透過性炭素成形体を与える。こ
こに、炭素粉末とは結晶質炭素粉末、例えば、黒鉛粉末
、及び不定形炭素粉末、例えば、カーボンブラックを意
味し、特に、黒鉛粉末が好ましく用いられる。炭素粉末
の配合量は、熱硬化性樹脂粉末100重量部について5
0重量部以下である。50重量部を越えて多量に配合す
るときは、混練組成物を成形し、炭化焼成する際に微細
な割れが発生しやすくなるので好ましくない。
The carbon powder provides a high packing density to the resulting impermeable carbon molded body, and therefore provides an impermeable carbon molded body with excellent properties such as mechanical strength, electrical conductivity, and thermal conductivity. Here, carbon powder means crystalline carbon powder, such as graphite powder, and amorphous carbon powder, such as carbon black, and graphite powder is particularly preferably used. The blending amount of carbon powder is 5 parts by weight per 100 parts by weight of thermosetting resin powder.
It is 0 parts by weight or less. When blending in a large amount exceeding 50 parts by weight, fine cracks are likely to occur when the kneaded composition is molded and carbonized and fired, which is not preferable.

また、熱硬化性樹脂粉末及び炭素粉末はその粒度が小さ
いほど、得られる成形体が気体や液体の不透過性にすぐ
れる。従って、本発明においては、熱硬化性樹脂粉末は
その平均粒子径が50μm以下であり、且つ、炭素粉末
はこの熱硬化性樹脂粉末の平均粒子径の1/2以下の平
均粒子径を有することが好ましい。熱硬化性樹脂粉末の
平均粒子径が50μmを越えるときは、緻密で強度の大
きい成形体を得ることが困難である。炭素粉末の平均粒
子径が用いる熱硬化性樹脂粉末の平均粒子径の1/2よ
りも大きい場合には、硬化熱硬化性樹脂と樹脂液を炭化
焼成したときに内部応力を生じ、同様に得られる成形体
の強度を低めることとなる。
Furthermore, the smaller the particle size of the thermosetting resin powder and carbon powder, the better the impermeability of the resulting molded product to gases and liquids. Therefore, in the present invention, the thermosetting resin powder must have an average particle size of 50 μm or less, and the carbon powder must have an average particle size of 1/2 or less of the average particle size of the thermosetting resin powder. is preferred. When the average particle diameter of the thermosetting resin powder exceeds 50 μm, it is difficult to obtain a compact and strong molded body. If the average particle size of the carbon powder is larger than 1/2 of the average particle size of the thermosetting resin powder used, internal stress will occur when the cured thermosetting resin and resin liquid are carbonized and fired, resulting in a similar problem. This will reduce the strength of the molded product.

本発明の方法においては、上記熱硬化性樹脂液と共に好
ましくは熱硬化性樹脂粉末と炭素粉末とを含有する混線
物の成形性、特に、押出成形時の滑り性や保形性、また
、ロール圧延時の延びを良好にし、微細な割れの発生を
防止し、かくして、ガス不透過性にすぐれる薄板状の不
透過性炭素成形体を得るために、上記熱硬化性樹脂液に
可溶性であると共に、混練組成物の成形物の炭化焼成時
に分解揮散し得る有機増粘剤を混練組成物に配合するこ
とが好ましい。この有機増粘剤は、熱硬化性樹脂液とし
て、前記したような水性の樹脂液が用いられる場合には
、水溶性であることが必要であり、従って、好ましい増
粘剤として、例えば、メチルセルロース、カルボキシメ
チルセルロース、カルボキシメチルスターチ、ヒドロキ
シエチルセルロース、ヒドロキシプロピルセルロース、
リグニンスルホン酸ナトリウム、リグニンスルホン酸カ
ルシウム、ポリビニルアルコール、ポリアクリル酸エス
テル、ポリメタクリル酸エステル、グアーガム、アルギ
ン酸塩等を挙げることができる。
In the method of the present invention, the moldability of the mixed material containing preferably thermosetting resin powder and carbon powder together with the thermosetting resin liquid, particularly the slipperiness and shape retention during extrusion molding, and the roll In order to obtain a thin plate-like impermeable carbon molded product that has good elongation during rolling, prevents the occurrence of minute cracks, and has excellent gas impermeability, it is soluble in the thermosetting resin liquid. In addition, it is preferable to mix into the kneaded composition an organic thickener that can be decomposed and volatilized during carbonization and firing of the molded product of the kneaded composition. This organic thickener needs to be water-soluble when the above-mentioned aqueous resin liquid is used as the thermosetting resin liquid. Therefore, as a preferable thickener, for example, methyl cellulose , carboxymethyl cellulose, carboxymethyl starch, hydroxyethyl cellulose, hydroxypropyl cellulose,
Examples include sodium ligninsulfonate, calcium ligninsulfonate, polyvinyl alcohol, polyacrylic acid ester, polymethacrylic acid ester, guar gum, and alginate.

増粘剤が上記した効果を有するためには、増粘剤は、混
線組成物において、その少なくとも1重量%含有される
ことが望ましいが、一方、20重量%を越えて多量に含
有されるときは、得られる成形体の不透過性が低下する
と共に、その強度も低下するので好ましくない。
In order for the thickener to have the above-mentioned effect, it is desirable that the thickener be contained in the crosstalk composition at least 1% by weight; on the other hand, when it is contained in a large amount exceeding 20% by weight. This is not preferable because the impermeability of the resulting molded product is reduced and its strength is also reduced.

本発明の方法においては、上記混線組成物を押出及び圧
延成形して、所要の形イ)Sの成形物に成形した後、乾
燥して樹脂液の溶剤を揮散させ、次いで加熱して樹脂を
硬化させる。
In the method of the present invention, the above-mentioned cross-wire composition is extruded and rolled to form a molded product of the required shape A) S, and then dried to volatilize the solvent of the resin liquid, and then heated to release the resin. Let it harden.

熱硬化性樹脂液と、好ましくは熱硬化性樹脂粉末及び/
又は炭素粉末と、有機増粘剤とからなる混合物を混練す
る方法は特に制限されるものではなく、従来より知られ
ている通常の混線装置によればよい。混練された組成物
は、次いで、押出機により所定の板状に押出成形される
。この押出成形にも従来より知られている通常の押出成
形機、例えば、スクリュ一式押出成形機やプランジャ一
式押出成形機を用いることができる。尚、スクリュ一式
押出成形機を用いる場合は、前記混練物の調製をも同時
に行なうことができる。
A thermosetting resin liquid, preferably a thermosetting resin powder and/or
Alternatively, the method of kneading the mixture consisting of carbon powder and an organic thickener is not particularly limited, and any conventional mixing device known in the art may be used. The kneaded composition is then extruded into a predetermined plate shape using an extruder. For this extrusion molding, a conventional extrusion molding machine, such as a screw extrusion machine or a plunger extrusion machine, can be used. In addition, when using a one-screw extrusion molding machine, the preparation of the kneaded product can be performed at the same time.

押出成形物は、次いで、ロール圧延にて圧延されるが、
ここに、本発明の方法に従って、−回の圧延率を115
以上として、少なくとも2回又はそれ以上の回数の圧延
を行なうことが好ましい。
The extruded product is then rolled by roll rolling,
Here, according to the method of the present invention, the rolling rate of - times is 115
As mentioned above, it is preferable to perform rolling at least twice or more times.

一時に所定の厚さまで圧延すると、成形物中に空気を巻
き込んだり、或いは樹脂粉末や炭素粉末が方向性をもち
、かくして不均一層が発生して、方向性を有する微細な
割れを生じやすいからである。
If rolled to a predetermined thickness at once, air may be drawn into the molded product, or the resin powder or carbon powder may have directionality, resulting in an uneven layer that tends to cause microscopic cracks with directionality. It is.

更に、本発明の方法においては、複数回のロール圧延を
行なうに際して、上記のよ・うな成形物における方向性
を排除するために、押出方向と直交する方向に少なくと
も1回ロール圧延することが好ましい。
Furthermore, in the method of the present invention, when roll rolling is performed multiple times, it is preferable to perform roll rolling at least once in a direction perpendicular to the extrusion direction in order to eliminate the above-mentioned directionality in the molded product. .

また、ロール圧延時には、熱硬化性樹脂液がロール表面
に付着し、圧延後に圧延板がロールより離型し難くなる
傾向がある。従って、圧延すべき押出板と圧延ロールと
の間に離型シートを介在させ、及び/又は予めロール表
面に離型処理を施すことは、圧延板を円滑に得るために
好ましい方法である。特に、離型シートをポリテトラフ
ルオロエチレンで形成し、また、ロールの離型処理をこ
の重合体で行なうことにより、圧延板を極めて円滑に得
ることができるのみならず、得られる不透過性炭素成形
体が平面度にもすぐれるので好ましい。
Furthermore, during roll rolling, the thermosetting resin liquid tends to adhere to the roll surface, making it difficult for the rolled plate to release from the roll after rolling. Therefore, interposing a release sheet between the extrusion plate to be rolled and the roll and/or subjecting the roll surface to a release treatment in advance is a preferred method in order to smoothly obtain the rolled plate. In particular, by forming the release sheet from polytetrafluoroethylene and performing the roll release treatment using this polymer, it is possible not only to obtain a rolled plate extremely smoothly, but also to obtain an impermeable carbon material. This is preferable because the molded article has excellent flatness.

第1図は本発明の方法によるロール圧延の好ましい一例
を示す。相対する圧延ロール1及び2に近接してポリテ
トラフルオロエチレンからなる送り込みベルト3及び送
り出しベルト4が配設され、被圧延物5が上記送り込み
ヘルドにより圧延ロール間に送り込まれ、所定の厚さに
圧延された圧延板6が送り出しロールにより搬出される
。圧延ロールには上下共にこれに圧延板が付着するのを
防止するために、ポリテトラフルオロエチレンシートか
らなる離型シート7及び8が適宜に支承されて、圧延ロ
ールに接触されつつ、圧延ロールと同じ速度で走行せし
められる。
FIG. 1 shows a preferred example of roll rolling according to the method of the present invention. A feed belt 3 and a feed belt 4 made of polytetrafluoroethylene are disposed adjacent to the opposing rolling rolls 1 and 2, and a workpiece 5 to be rolled is fed between the rolling rolls by the feeding heald and rolled to a predetermined thickness. The rolled plate 6 is transported out by a delivery roll. In order to prevent the rolling plate from adhering to the upper and lower sides of the rolling roll, release sheets 7 and 8 made of polytetrafluoroethylene sheets are appropriately supported, and while being in contact with the rolling roll, the release sheets 7 and 8 are appropriately supported. They are forced to travel at the same speed.

このようにして ロール圧延された圧延板は、次いで、
乾燥して熱硬化性樹脂液中の溶剤を揮発させた後、加熱
して熱硬化性樹脂を硬化させる。
The rolled plate rolled in this way is then
After drying to volatilize the solvent in the thermosetting resin liquid, the thermosetting resin is cured by heating.

この熱硬化性樹脂の硬化のための温度は用いる樹脂や成
形物の形状等に応じて適宜に選ばれるが、通常、100
〜180℃である。尚、熱硬化性樹脂を加熱硬化させて
、成形体を得た後、必要に応じて、この成形体に更に樹
脂液を含浸させ、乾燥、加熱硬化させてもよい。
The temperature for curing this thermosetting resin is appropriately selected depending on the resin used, the shape of the molded product, etc., but is usually 100°C.
~180°C. Incidentally, after the thermosetting resin is heat-cured to obtain a molded body, the molded body may be further impregnated with a resin liquid, dried, and heat-cured, if necessary.

−このようにして形成された成形体は、次いで、非酸化
性雰囲気下で炭化焼成される。雰囲気としては、通常、
ヘリウム、アルゴン、窒素等が用いられる。不一過性炭
素成形体を得るための炭化焼成のための加熱は、例えば
、前記した特開昭57−72273号公報にも記載され
ているように、約200℃から約500℃乃至約700
℃に至る間は数十℃/時程度の遅い昇温速度で加熱する
のが望ましい。この後、上記範囲又はこれより大きい昇
温速度にて所定の炭化焼成温度まで加熱し、一定時間焼
成することにより、本発明の不透過性炭素成形体を得る
。炭化焼成温度は少なくとも800℃が必要であり、好
ましくは1000〜1500℃の範囲で焼成する。必要
な焼成時間は成形体の形状、寸法にも依存し、実質的に
すべての熱硬化性樹脂が炭化して、ガラス質炭素に変化
するに足る時間焼成すればよいが、通常、数時間乃至数
十時間である。この炭化焼成時に前記有機増粘剤は分解
揮散する。
- The molded body thus formed is then carbonized and fired in a non-oxidizing atmosphere. The atmosphere is usually
Helium, argon, nitrogen, etc. are used. Heating for carbonization and firing to obtain a fugitive carbon molded body is performed at temperatures ranging from about 200°C to about 500°C to about 700°C, for example, as described in the above-mentioned Japanese Patent Application Laid-open No. 72273/1983.
It is desirable to heat at a slow temperature increase rate of about several tens of degrees Celsius/hour. Thereafter, the impermeable carbon molded body of the present invention is obtained by heating to a predetermined carbonization firing temperature at a heating rate within the above range or higher and firing for a certain period of time. The carbonization firing temperature is required to be at least 800°C, preferably in the range of 1000 to 1500°C. The required firing time depends on the shape and dimensions of the molded product, and it is sufficient to perform the firing for a time long enough to carbonize substantially all of the thermosetting resin and transform it into vitreous carbon, but it is usually several hours to a few hours. It's several dozen hours. During this carbonization firing, the organic thickener is decomposed and volatilized.

尚、本発明においては、得られる成形体の強度を一層高
めるために、成形体の炭素マトリックスに対して良好な
結合性を有する物質、例えば、炭化ケイ素や、炭化チタ
ン、炭化タングステン等の金属炭化物、炭素繊維等を熱
硬化性樹脂粉末、炭素粉末及び熱硬化性樹脂液からなる
成形原料に適宜量添加し、これを上記したように成形し
、乾燥し、焼成することができる。
In addition, in the present invention, in order to further increase the strength of the obtained molded product, a substance having good bonding properties to the carbon matrix of the molded product, for example, a metal carbide such as silicon carbide, titanium carbide, or tungsten carbide, is used. , carbon fiber, etc. can be added in appropriate amounts to a molding raw material consisting of thermosetting resin powder, carbon powder, and thermosetting resin liquid, and this can be molded, dried, and fired as described above.

以上のように、本発明によれば、混線組成物を押出し、
更にロール圧延するので、薄板状の不透過性炭素成形体
を簡単に得ることができ、特に、混練組成物に有機増粘
剤を添加することにより、押出成形及びロール圧延にお
ける成形性が高められるので、微細な割れ等の発生なし
に薄板状の不透過性炭素成形体を得ることができる。こ
の場合に、更に本発明に従って、ロール圧延を複数回行
ない、且つ、好ましくは押出方向と直交する方向に少な
くとも1回ロール圧延を行なうことにより、微細な割れ
発生が一層有効に防止される。かくして、本発明の方法
によれば、従来の方法と異なり、焼成後の成形物を再度
、所要厚さに切削したり、また、所要の平面度を得るた
めに全面切削する必要なしに、直ちに強度が大きく、均
一であって、且つ、板厚精度及び平面度にすぐれた板状
の不透過性炭素成形体を得ることができる。
As described above, according to the present invention, a cross-wire composition is extruded,
Furthermore, since roll rolling is performed, a thin plate-like impermeable carbon molded body can be easily obtained, and in particular, by adding an organic thickener to the kneaded composition, moldability in extrusion molding and roll rolling is improved. Therefore, a thin plate-like impermeable carbon molded body can be obtained without the occurrence of minute cracks or the like. In this case, further according to the present invention, the occurrence of fine cracks can be more effectively prevented by performing roll rolling a plurality of times, preferably at least once in a direction perpendicular to the extrusion direction. Thus, according to the method of the present invention, unlike conventional methods, it is not necessary to cut the molded product again to the required thickness after firing, or to cut the entire surface to obtain the required flatness. A plate-shaped impermeable carbon molded body having high strength, uniformity, and excellent plate thickness accuracy and flatness can be obtained.

更に、本発明の方法によって、熱硬化性樹脂粉末に対し
て所定量の有機増粘剤と炭素粉末を含有する混練組成物
を成形し、炭化焼成することにより、炭素粉末は熱硬化
性樹脂の炭化焼成により形成されたマトリックスとして
のガラス質炭素中に均一に分散され、割れを生じること
なく緻密な炭素成形体を与え、かくして得られる不透過
性炭素成形体は気体や液体の不透過性にすぐれるのみな
らず、積層圧縮強度や曲げ強度等の強度と導電性にすぐ
れるのである。
Further, according to the method of the present invention, a kneaded composition containing a predetermined amount of an organic thickener and carbon powder is molded into a thermosetting resin powder, and carbonized and fired, whereby the carbon powder becomes a thermosetting resin. It is uniformly dispersed in the vitreous carbon matrix formed by carbonization firing, giving a dense carbon molded body without cracking, and the impermeable carbon molded body thus obtained is impermeable to gases and liquids. Not only is it excellent, but it also has excellent strength such as laminated compressive strength and bending strength, and conductivity.

以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。尚、以
下において部は重量部を意味する。
The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way. In addition, in the following, parts mean parts by weight.

実施例1 平均粒子径39μmのフェノール・ホルムアルデヒド樹
脂粉末100部、固定炭素99%以上の平均粒子径12
μmの黒鉛粉末10部、水溶性有機増粘剤としてのカル
ボキシメチルセルロース9部及びヒドロキシプロピルセ
ルロース3部、及び水性フェノール樹脂液(濃度50重
量%)23部とを混練し、プランジャ一式押出機にて幅
500mm、厚さ20mの断面を有する板状に押出した
Example 1 100 parts of phenol formaldehyde resin powder with an average particle size of 39 μm, an average particle size of 12 with 99% or more of fixed carbon
10 parts of µm graphite powder, 9 parts of carboxymethyl cellulose and 3 parts of hydroxypropyl cellulose as water-soluble organic thickeners, and 23 parts of aqueous phenol resin liquid (concentration 50% by weight) were kneaded using an extruder with a plunger. It was extruded into a plate shape having a cross section of 500 mm width and 20 m thickness.

次いで、これを400w径20−ル圧延機を用いて、第
1段は押出方向と直交する方向に厚さを7゜Q++mに
圧延し、第2段は押出方向に厚さを3.2 vmに圧延
し、第3段として押出方向と直交する方向に厚さを1.
Onに圧延した。
Next, using a 400w diameter 20-mill rolling mill, the first stage rolled it to a thickness of 7°Q++m in the direction perpendicular to the extrusion direction, and the second stage rolled it to a thickness of 3.2vm in the extrusion direction. As the third stage, the thickness is reduced to 1.5 mm in the direction perpendicular to the extrusion direction.
Rolled on.

次いで、この圧延板を40℃の保温槽内に8時装置いた
後、110℃の温度で12時間加熱して熱硬化性樹脂を
硬化させた。この後、焼成炉に装入し、アルゴン雰囲気
下で700 ”cの温度まで40℃/時の昇温速度にて
加熱し、次いで、1300℃の温度まで100℃/時の
速度で加熱した後、この温度で2時間保持して、厚み0
.6 m、幅5゜Ol、長さ500flの薄板状不透過
性炭素成形体を得た。
Next, this rolled plate was placed in a heat insulating tank at 40° C. for 8 o'clock, and then heated at a temperature of 110° C. for 12 hours to harden the thermosetting resin. After this, it was charged into a calcining furnace and heated under an argon atmosphere at a heating rate of 40°C/hour to a temperature of 700"C, and then heated at a rate of 100°C/hour to a temperature of 1300"C. , keep it at this temperature for 2 hours and reduce the thickness to 0.
.. A thin plate-like impermeable carbon molded body having a length of 6 m, a width of 5°Ol, and a length of 500fl was obtained.

このようにして得た成形体は平面度±0.02以内に納
まっていた。また、窒素透過率は1kg/c++!の差
圧があるとき、4X10cc/分・d、電気固有抵抗3
.5X10 Ω国、三点曲げ強度721kg/eraで
あった。
The molded body thus obtained had a flatness within ±0.02. Also, the nitrogen permeability is 1kg/c++! When there is a differential pressure of 4X10cc/min・d, electrical resistivity is 3
.. 5×10 Ω country, three-point bending strength was 721 kg/era.

実施例2 実施例1において、樹脂液としてフェノール樹脂液に代
えて、フラン樹脂液(48重量%)を用いた以外は、実
施例1と同様にして同じ寸法の不透過性炭素成形体を得
た。
Example 2 An impermeable carbon molded body with the same dimensions was obtained in the same manner as in Example 1, except that a furan resin liquid (48% by weight) was used instead of the phenol resin liquid as the resin liquid. Ta.

この成形体も平面度±0.02以内に納まっていた。ま
た、窒素透過率は6 X 10−4cc/分・d、電気
固有抵抗3.8 X 10−3Ω国、三点曲げ強度70
4kg/a(であった。
This molded body also had a flatness within ±0.02. In addition, the nitrogen permeability is 6 x 10-4 cc/min・d, the electrical resistivity is 3.8 x 10-3 Ω, and the three-point bending strength is 70.
4 kg/a (was.

実施例3 実施例1において、水溶性有機増粘剤としてのカルボキ
シメチルセルロース及びヒドロキシプロピルセルロース
からなる混合物の配合量を混線組成物に対して種々に変
えた以外は、実施例1と同様にして不透過性炭素成形体
を得た。このようにして得られた成形体のガス透過性を
調べた。結果を第2図に示す。増粘剤の配合量が混練組
成物の2重量%よりも少ないときは、ガス透過性が劣る
のみならず、成形体表面に多数の微細な割れが認められ
、一方、増粘剤の配合量が混線組成物の20重量%を越
えると、得られる成形体の密度が小さく、多孔質状の欠
陥が認められると共に、ガス透過性も劣ることが確認さ
れた。
Example 3 The same procedure as in Example 1 was carried out except that the amount of the mixture of carboxymethyl cellulose and hydroxypropyl cellulose as a water-soluble organic thickener was varied in the crosstalk composition. A transparent carbon molded body was obtained. The gas permeability of the molded body thus obtained was examined. The results are shown in Figure 2. When the amount of thickener blended is less than 2% by weight of the kneaded composition, not only the gas permeability is poor, but also many fine cracks are observed on the surface of the molded product; It has been confirmed that when the amount exceeds 20% by weight of the crosstalk composition, the density of the obtained molded product is low, porous defects are observed, and the gas permeability is also poor.

実施例4 実施例1と同じフェライト・ホルムアルデヒド樹脂粉末
100部、カーボンブラック23部、実施例と同じ水性
フェノール樹脂液及びメチルセルロース8部とを実施例
1と同様に混練し、この混練組成物を実施例1と同じ方
法により処理して不透過性炭素成形体を得た。
Example 4 100 parts of the same ferrite/formaldehyde resin powder as in Example 1, 23 parts of carbon black, the same aqueous phenol resin liquid as in Example and 8 parts of methylcellulose were kneaded in the same manner as in Example 1, and this kneaded composition was prepared. An impermeable carbon molded body was obtained by processing in the same manner as in Example 1.

この成形体の窒素透過率は1O−4cc/分・−1電気
固有抵抗7×10−3Ω国、三点曲げ強度724賭/c
iであった。
The nitrogen permeability of this molded body is 1O-4cc/min・-1 electrical resistivity 7×10-3Ω country, three-point bending strength 724mm/c
It was i.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するのに好適な圧延装置の
断面図、第2図は有機増粘剤と得られる不透過性炭素成
形体のガス透過性との関係を示すグラフである。 1.2・・・圧延ロール、3・・・送り込みベルト、4
・・・送り出しベルト、5・・・被圧延物、6・・・圧
延板、7・・・離型シート。 手続補正書(自発) 昭和59年 6月28日 特許庁長官 殿 1、事件の表示 不透過性炭素成形体の製造方法 3、補正をする者 事件との関係 特許出願人 住 所 神戸市中央区脇浜町1丁目3番18号名 称 
株式会社神戸製鋼所 代表者 牧 冬 彦 4、代理人 住 所 大阪市西区新町1丁目8番3号5、補正命令の
日付 昭和 年 月 日補正の内容 +11 明細書第19頁4行の1フエライト」を「フェ
ノール」と補正する。 以上
FIG. 1 is a cross-sectional view of a rolling apparatus suitable for carrying out the method of the present invention, and FIG. 2 is a graph showing the relationship between an organic thickener and the gas permeability of the impermeable carbon compact obtained. . 1.2... Rolling roll, 3... Feed belt, 4
...Feeding belt, 5... Rolled object, 6... Rolled plate, 7... Release sheet. Procedural amendment (voluntary) June 28, 1980 Commissioner of the Japan Patent Office 1. Method for producing display-impermeable carbon molded bodies in the case 3. Person making the amendment Relationship to the case Patent applicant address Chuo-ku, Kobe City Wakihamacho 1-3-18 Name
Kobe Steel Co., Ltd. Representative: Fuyuhiko Maki 4, Agent address: 1-8-3-5 Shinmachi, Nishi-ku, Osaka Date of amendment order: Showa Year, month, day Contents of amendment + 11 Ferrite, page 19, line 4, 1 of the specification ' is corrected to 'phenol'. that's all

Claims (1)

【特許請求の範囲】 (11熱硬化性樹脂を含有する混線組成物を平板状に押
出成形した後、ロール圧延し、次いで、乾燥硬化させた
後、非酸化性雰囲気で炭化焼成することを特徴とする不
透過性炭素成形体の製造方法。 (2)混線組成物をロール圧延するに際して、ロール圧
延を2回屋上行ない、且つ、1回当りの圧延率を115
以上とすることを特徴とする特許請求の範囲第1項記載
の不透過性炭素成形体の製造方法。 (3)混練組成物をロール圧延するに際して、押出方向
と直交する方向に少なくとも1回ロール圧延することを
特徴とする特許請求の範囲第2項記載の不透過性炭素成
形体の製造方法。
[Claims] (11) The cross-wire composition containing the thermosetting resin is extruded into a flat plate shape, rolled, then dried and hardened, and then carbonized and fired in a non-oxidizing atmosphere. A method for manufacturing an impermeable carbon molded article. (2) When rolling the mixed wire composition, roll rolling is performed twice on the roof, and the rolling rate per roll is 115.
A method for manufacturing an impermeable carbon molded body according to claim 1, characterized in that the above is performed. (3) The method for producing an impermeable carbon molded body according to claim 2, wherein the kneaded composition is rolled at least once in a direction perpendicular to the extrusion direction.
JP58199538A 1983-04-11 1983-10-25 Manufacture of impermeable molded carbon body Granted JPS6090805A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58199538A JPS6090805A (en) 1983-10-25 1983-10-25 Manufacture of impermeable molded carbon body
US06/598,540 US4582632A (en) 1983-04-11 1984-04-10 Non-permeable carbonaceous formed bodies and method for producing same
DE19843413646 DE3413646A1 (en) 1983-04-11 1984-04-11 IMPERPERABLE, CARBONATED MOLDED BODIES AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58199538A JPS6090805A (en) 1983-10-25 1983-10-25 Manufacture of impermeable molded carbon body

Publications (2)

Publication Number Publication Date
JPS6090805A true JPS6090805A (en) 1985-05-22
JPH0127967B2 JPH0127967B2 (en) 1989-05-31

Family

ID=16409496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58199538A Granted JPS6090805A (en) 1983-04-11 1983-10-25 Manufacture of impermeable molded carbon body

Country Status (1)

Country Link
JP (1) JPS6090805A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385086A (en) * 1986-09-29 1988-04-15 Tokai Carbon Co Ltd Graphite crucible for pulling up si single crystal
JPH0197606A (en) * 1987-10-12 1989-04-17 Tokai Carbon Co Ltd Manufacture of carbon sheet
JP4883805B2 (en) * 2005-04-22 2012-02-22 株式会社クレハ Thermal insulation coating layer, thermal insulation laminate, thermal insulation coating agent, and method for producing thermal insulation coating agent
US10381441B2 (en) 2017-10-30 2019-08-13 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420991A (en) * 1977-07-18 1979-02-16 Kanebo Ltd Production of impermeable carbon molded product
JPS5663811A (en) * 1979-10-25 1981-05-30 Hitachi Chem Co Ltd Manufacture of graphite composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420991A (en) * 1977-07-18 1979-02-16 Kanebo Ltd Production of impermeable carbon molded product
JPS5663811A (en) * 1979-10-25 1981-05-30 Hitachi Chem Co Ltd Manufacture of graphite composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385086A (en) * 1986-09-29 1988-04-15 Tokai Carbon Co Ltd Graphite crucible for pulling up si single crystal
JPH0577640B2 (en) * 1986-09-29 1993-10-27 Tokai Carbon Kk
JPH0197606A (en) * 1987-10-12 1989-04-17 Tokai Carbon Co Ltd Manufacture of carbon sheet
JP4883805B2 (en) * 2005-04-22 2012-02-22 株式会社クレハ Thermal insulation coating layer, thermal insulation laminate, thermal insulation coating agent, and method for producing thermal insulation coating agent
US10381441B2 (en) 2017-10-30 2019-08-13 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0127967B2 (en) 1989-05-31

Similar Documents

Publication Publication Date Title
US4582632A (en) Non-permeable carbonaceous formed bodies and method for producing same
KR101642539B1 (en) Process for production of aluminum complex comprising sintered porous aluminum body
EP2415543B1 (en) Process for producing porous sintered aluminum, and porous sintered aluminum
EP2415542A1 (en) Process for producing porous sintered aluminum, and porous sintered aluminum
GB2117746A (en) Fuel cell electrode substrates
GB2095656A (en) Shaped articles of porous carbon
JP4219325B2 (en) Method for producing porous titanium material article
JPS6090805A (en) Manufacture of impermeable molded carbon body
JPS6090806A (en) Impermeable molded carbon body and its manufacture
JPH11130558A (en) Porous silicon carbide sintered product and its production
JPH0131445B2 (en)
JPS6090807A (en) Manufacture of impermeable molded carbon body
JP3243506B2 (en) Method for producing porous ceramics having through holes
JPH0359033B2 (en)
JPS62278111A (en) Impermeable formed carbon and production thereof
JP2001143719A (en) Separator in fuel cell and method of manufacturing the same
JPS6259508A (en) Production of carbonaceous, thin plate
JPS60264315A (en) Impermeable composite molded carbon article and production thereof
JPS6355160A (en) Impermeability carbon formed body and manufacture
JPH10242010A (en) Manufacture of active carbon electrode
JPH0463806B2 (en)
JP2011044321A (en) Manufacturing method of separator with gas diffusion layer for fuel cell
JPH06104591B2 (en) Method for manufacturing thin plate carbonaceous compact
JP3543980B2 (en) Method for producing glassy carbon material
JPS62133674A (en) Manufacture of separator with rib for fuel cell