JPH0127967B2 - - Google Patents

Info

Publication number
JPH0127967B2
JPH0127967B2 JP58199538A JP19953883A JPH0127967B2 JP H0127967 B2 JPH0127967 B2 JP H0127967B2 JP 58199538 A JP58199538 A JP 58199538A JP 19953883 A JP19953883 A JP 19953883A JP H0127967 B2 JPH0127967 B2 JP H0127967B2
Authority
JP
Japan
Prior art keywords
thermosetting resin
carbon
powder
molded body
impermeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58199538A
Other languages
Japanese (ja)
Other versions
JPS6090805A (en
Inventor
Hisaaki Yokota
Eiji Saura
Mitsunobu Nikaido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP58199538A priority Critical patent/JPS6090805A/en
Priority to US06/598,540 priority patent/US4582632A/en
Priority to DE19843413646 priority patent/DE3413646A1/en
Publication of JPS6090805A publication Critical patent/JPS6090805A/en
Publication of JPH0127967B2 publication Critical patent/JPH0127967B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 本発明は不透過性炭素成形体の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an impermeable carbon molded body.

気体及び液体の不透過性にすぐれる不透過性炭
素成形体は、この特性に加えて小さい電気抵抗と
すぐれた耐薬品性を有するところから、電子、原
子力、航空宇宙等の産業分野で幅広い利用が期待
されており、なかでも上記した諸特性のゆえに、
近年注目を集めているリン酸型燃料電池の分離板
として好適に用いることができる。
Impermeable carbon molded bodies, which are highly impermeable to gases and liquids, have low electrical resistance and excellent chemical resistance in addition to these properties, making them widely used in industrial fields such as electronics, nuclear power, and aerospace. Among these, due to the above-mentioned characteristics,
It can be suitably used as a separation plate for phosphoric acid fuel cells, which have been attracting attention in recent years.

リン酸型燃料電池は、例えば、電解質としての
リン酸を含浸させたマトリツクスを挟んで所要の
触媒を担持させた一対の多孔質電極板が配置さ
れ、更にその外側にそれぞれ分離板が配置されて
単位セルが形成され、これを多数積層して構成さ
れている。例えば、リブ付電極型と称される燃料
電池の場合には、上記各電極は分離板側にリブを
形成され、これらリブ間の溝に燃料気体又は酸化
剤気体が供給される。即ち、一方の電極の溝には
水素ガス等の気体燃料が供給され、他方の電極の
溝には空気、酸素等の気体酸化剤が供給されて、
電池反応が行なわれる。従つて、一つの分離板に
は、その一方の側には燃料が供給され、他方の側
には酸化剤が供給されるので、分離板はこれら気
体が混合しないように、気体不透過性にすぐれる
ことが必要であり、更に、上記したように単位セ
ルを積層して構成した燃料電池の集電体として機
能し得るために、高い導電性を有すると共に、薄
板状であつて大きい積層圧縮強度及び曲げ強度を
有することが必要である。
In a phosphoric acid fuel cell, for example, a pair of porous electrode plates carrying a required catalyst are arranged with a matrix impregnated with phosphoric acid as an electrolyte sandwiched between them, and a separating plate is arranged on the outside of each porous electrode plate. A unit cell is formed and a large number of unit cells are stacked. For example, in the case of a fuel cell called a ribbed electrode type, ribs are formed on the separation plate side of each of the electrodes, and fuel gas or oxidant gas is supplied to the grooves between these ribs. That is, a gaseous fuel such as hydrogen gas is supplied to the grooves of one electrode, and a gaseous oxidant such as air or oxygen is supplied to the grooves of the other electrode.
A battery reaction takes place. Therefore, since one separator plate is supplied with fuel on one side and oxidizer on the other side, the separator plate must be gas-impermeable to prevent these gases from mixing. In addition, in order to function as a current collector for a fuel cell constructed by stacking unit cells as described above, it is necessary to have high conductivity, and to have a thin plate shape with large stack compression. It is necessary to have strength and bending strength.

しかしながら、従来より知られている不透過性
炭素成形体は、いずれも上記した要求諸特性にお
いて不十分である。例えば、特開昭54−20991号
公報には、硬化フエノール系樹脂の微粉とフエノ
ール類・アルデヒド初期縮合物とを混練し、成形
硬化させた後、炭化焼成して、実質的にガラス質
炭素のみからなる炭素成形体を得る方法が開示さ
れている。しかし、このようにして得られる成形
体は、その焼成過程において樹脂が著しい体積収
縮を起こすため、成形体としての緻密性に欠け、
従つて、気体不透過性が十分ではなく、更に、実
際の分離板として好ましい厚み0.4〜1.5mm程度に
薄板化した場合に、強度に劣る。
However, all of the conventionally known impermeable carbon molded bodies are insufficient in the above-mentioned required properties. For example, in JP-A No. 54-20991, fine powder of a cured phenolic resin and an initial condensate of phenols and aldehydes are kneaded, molded and hardened, and then carbonized and fired to produce a mixture containing substantially only vitreous carbon. A method for obtaining a carbon molded body comprising: However, the molded product obtained in this way lacks compactness as a molded product because the resin undergoes significant volumetric shrinkage during the firing process.
Therefore, the gas impermeability is not sufficient, and furthermore, when the thickness is reduced to about 0.4 to 1.5 mm, which is preferable for an actual separation plate, the strength is poor.

一方、炭素質が黒鉛である不透過性炭素成形体
も既に種々のものが知られている。例えば、炭化
焼成により得た黒鉛よりなる成形体の空隙にピツ
チ、タール、樹脂等の含浸材を含浸させ、再度焼
成してこれら含浸材を炭化させることによつて不
透過性炭素成形体を得る方法が知られているが、
この方法によれば、黒鉛よりなる成形体と含浸材
との熱収縮率の相違により、得られる炭化焼成品
に微細な割れが生じることが多い。
On the other hand, various impermeable carbon molded bodies whose carbonaceous substance is graphite are already known. For example, an impermeable carbon molded body is obtained by impregnating the voids of a graphite molded body obtained by carbonization firing with an impregnating agent such as pitch, tar, or resin, and then firing it again to carbonize the impregnating material. Although the method is known,
According to this method, fine cracks often occur in the resulting carbonized and fired product due to the difference in thermal shrinkage rate between the graphite compact and the impregnated material.

また、特開昭57−72273号公報には、黒鉛粉末
をバインダーとしてのフエノール樹脂液にて成形
し、高温で焼成して、全体が実質的に黒鉛よりな
る不透過性炭素成形体を得る方法が開示されてい
るが、この方法による場合も上記と同様に成形体
中の黒鉛とバインダーとの熱収縮率の相違によつ
て焼成時に微細な割れが多発しやすく、更に、焼
成品に良好な気体不透過性を与えるためには、バ
インダーを繰返して含浸させる必要があり、工程
数が多くなつて、製造費用も高価となる。
Furthermore, JP-A No. 57-72273 discloses a method of molding graphite powder with a phenol resin liquid as a binder and firing it at a high temperature to obtain an impermeable carbon molded body made entirely of graphite. However, when this method is used, fine cracks tend to occur frequently during firing due to the difference in heat shrinkage rate between the graphite in the molded body and the binder, and furthermore, the fired product does not have good quality. In order to provide gas impermeability, it is necessary to impregnate the binder repeatedly, which increases the number of steps and increases the manufacturing cost.

更に、所定の形状の不透過性炭素成形体を得る
ために、上記公報には鋳込み法や押出成形による
ことが記載されているが、しかし、このようにし
て鋳込み成形体や押出成形体を得た場合は、例え
ば前記したような燃料電池用分離板に要求される
0.4〜1.5mm程度の厚さの広幅薄板状の成形体を得
るには、これら所定の寸法より大きい成形体を更
に切削することが必要であつて、加工費用を要す
ると共に、材料面からも不経済であり、これに加
えて所要の平面度を得るためには、全板面の精密
切削加工が必要である。このように、従来の方法
によれば、不透過性炭素成形体の製造において
は、その成形法を含め、種々の問題がある。
Furthermore, in order to obtain an impermeable carbon molded body with a predetermined shape, the above-mentioned publication describes that a casting method or an extrusion molding method is used. For example, if the separation plate for fuel cells as described above is
In order to obtain a wide thin plate-shaped molded product with a thickness of about 0.4 to 1.5 mm, it is necessary to further cut the molded product larger than the predetermined dimensions, which requires processing costs and is also costly from a material standpoint. In addition to being economical, precision cutting of the entire plate surface is required to obtain the required flatness. As described above, according to the conventional methods, there are various problems in manufacturing an impermeable carbon molded body, including the molding method.

本発明は上記した種々の問題を解決するために
なされたものであつて、気体及び液体の不透過性
にすぐれ、特に、広幅で薄板状の成形体を得るの
に好適な不透過性炭素成形体を製造する方法を提
供することを目的とする。
The present invention has been made in order to solve the various problems described above, and is an impermeable carbon molding having excellent gas and liquid impermeability and particularly suitable for obtaining a wide and thin plate-like molded product. The purpose is to provide a method for manufacturing the body.

本発明による不透過性炭素成形体の製造方法
は、熱硬化性樹脂を含有する混練組成物を平板状
に押出成形した後、ロール圧延し、次いで、乾燥
硬化させた後、非酸化性雰囲気で炭化焼成するこ
とを特徴とする。
The method for producing an impermeable carbon molded body according to the present invention involves extruding a kneaded composition containing a thermosetting resin into a flat plate, rolling it with rolls, drying it, and then curing it in a non-oxidizing atmosphere. It is characterized by being carbonized and fired.

本発明において、熱硬化性樹脂を含有する混練
組成物は、好ましくは熱硬化性樹脂液と、熱硬化
性樹脂粉末及び炭素粉末の両者から選ばれる少な
くとも1種とを含有する混練組成物であり、特に
好ましくは熱硬化性樹脂粉末100重量部と炭素粉
末0〜50重量部と熱硬化性樹脂液とを含有する。
更に好ましくは、本発明における混練組成物は、
後述するように上記熱硬化性樹脂液に可溶性であ
つて、且つ、混練組成物の硬化成形体の炭化焼成
時に分解揮散し得る有機増粘剤を混練組成物の1
〜20重量%の範囲で含有する組成物である。
In the present invention, the kneading composition containing a thermosetting resin is preferably a kneading composition containing a thermosetting resin liquid and at least one selected from both a thermosetting resin powder and a carbon powder. It particularly preferably contains 100 parts by weight of thermosetting resin powder, 0 to 50 parts by weight of carbon powder, and thermosetting resin liquid.
More preferably, the kneading composition in the present invention is
As will be described later, an organic thickener that is soluble in the thermosetting resin liquid and that can be decomposed and volatilized during carbonization and firing of the cured molded product of the kneaded composition is added to one part of the kneaded composition.
It is a composition containing in the range of ~20% by weight.

本発明において、熱硬化性樹脂液としては、例
えばフエノール系樹脂、キシレン系樹脂、メラミ
ン系樹脂、尿素系樹脂、エポキシ系樹脂、フラン
系樹脂等の水性又は油性の接着剤が用いられる。
尚、熱硬化性樹脂液には溶液のほか、乳濁液や懸
濁液を含む。本発明においては特に制限されるも
のではないが、乾燥の便宜上、水性の樹脂液が好
ましく用いられる。
In the present invention, as the thermosetting resin liquid, water-based or oil-based adhesives such as phenolic resins, xylene-based resins, melamine-based resins, urea-based resins, epoxy-based resins, and furan-based resins are used.
Note that the thermosetting resin liquid includes not only solutions but also emulsions and suspensions. In the present invention, although not particularly limited, an aqueous resin liquid is preferably used for convenience of drying.

また、本発明において、熱硬化性樹脂粉末と
は、非酸化性雰囲気中での800〜2000℃、好まし
くは1000〜1500℃の温度における炭化焼成によつ
てガラス質炭素に変化する熱硬化樹脂粉末をい
い、通常、フエノール系樹脂、フラン系樹脂、キ
シレン系樹脂、メラミン系樹脂、アニリン系樹脂
等の樹脂粉末が用いられるが、特に、フエノール
系樹脂の粉末が好ましく用いられる。
In the present invention, thermosetting resin powder refers to thermosetting resin powder that changes into vitreous carbon by carbonization firing at a temperature of 800 to 2000°C, preferably 1000 to 1500°C in a non-oxidizing atmosphere. Generally, resin powders such as phenolic resins, furan resins, xylene resins, melamine resins, and aniline resins are used, and powders of phenolic resins are particularly preferably used.

本発明においては、前記したように、混練組成
物は、熱硬化性樹脂液と共に熱硬化性樹脂粉末及
び/又は炭素粉末からなるが、上記した熱硬化性
樹脂液及び熱硬化性樹脂粉末はそれぞれ単独で、
又は2種以上の混合物として用いることができ
る。しかし、熱硬化性樹脂粉末と樹脂液中の樹脂
成分は同じ樹脂であることが望ましい。熱硬化性
樹脂液は、熱硬化性樹脂粉末や炭素粉末を含有す
る組成物の混練及び所要形状への成形を容易にす
ると共に、加熱硬化後は熱硬化性樹脂粉末と共に
焼成により非晶質のガラス質炭素を形成し、混練
組成物が炭素粉末を含有するときは、炭素粉末の
マトリツクスを形成する。
In the present invention, as described above, the kneading composition consists of a thermosetting resin powder and/or carbon powder together with a thermosetting resin liquid; Alone,
Or it can be used as a mixture of two or more types. However, it is desirable that the resin components in the thermosetting resin powder and the resin liquid are the same resin. The thermosetting resin liquid facilitates kneading and molding of the composition containing the thermosetting resin powder and carbon powder into a desired shape, and after heating and curing, it is baked together with the thermosetting resin powder to form an amorphous state. Vitreous carbon is formed, and when the kneading composition contains carbon powder, a matrix of carbon powder is formed.

炭素粉末は、得られる不透過性炭素成形体に高
い充填密度を与え、従つて、機械的強度、電気伝
導性、熱伝導性等の諸特性にすぐれる不透過性炭
素成形体を与える。ここに、炭素粉末とは結晶質
炭素粉末、例えば、黒鉛粉末、及び不定形炭素粉
末、例えば、カーボンブラツクを意味し、特に、
黒鉛粉末が好ましく用いられる。炭素粉末の配合
量は、熱硬化性樹脂粉末100重量部について50重
量部以下である。50重量部を越えて多量に配合す
るときは、混練組成物を成形し、炭化焼成する際
に微細な割れが発生しやすくなるので好ましくな
い。
The carbon powder provides a high packing density to the resulting impermeable carbon molded body, and therefore provides an impermeable carbon molded body with excellent properties such as mechanical strength, electrical conductivity, and thermal conductivity. Here, carbon powder means crystalline carbon powder, such as graphite powder, and amorphous carbon powder, such as carbon black, and in particular,
Graphite powder is preferably used. The amount of carbon powder blended is 50 parts by weight or less per 100 parts by weight of thermosetting resin powder. When blending in a large amount exceeding 50 parts by weight, fine cracks are likely to occur when the kneaded composition is molded and carbonized and fired, which is not preferable.

また、熱硬化性樹脂粉末及び炭素粉末はその粒
度が小さいほど、得られる成形体が気体や液体の
不透過性にすぐれる。従つて、本発明において
は、熱硬化性樹脂粉末はその平均粒子径が50μm
以下であり、且つ、炭素粉末はこの熱硬化性樹脂
粉末の平均粒子径の1/2以下の平均粒子径を有す
ることが好ましい。熱硬化性樹脂粉末の平均粒子
径が50μmを越えるときは、緻密で強度の大きい
成形体を得ることが困難である。炭素粉末の平均
粒子径が用いる熱硬化性樹脂粉末の平均粒子径の
1/2よりも大きい場合には、硬化熱硬化性樹脂と
樹脂液を炭化焼成したときに内部応力を生じ、同
様に得られる成形体の強度を低めることとなる。
Furthermore, the smaller the particle size of the thermosetting resin powder and carbon powder, the better the impermeability of the resulting molded product to gases and liquids. Therefore, in the present invention, the thermosetting resin powder has an average particle size of 50 μm.
or less, and the carbon powder preferably has an average particle size of 1/2 or less of the average particle size of the thermosetting resin powder. When the average particle size of the thermosetting resin powder exceeds 50 μm, it is difficult to obtain a dense and strong molded body. If the average particle size of the carbon powder is larger than 1/2 of the average particle size of the thermosetting resin powder used, internal stress will occur when the cured thermosetting resin and resin liquid are carbonized and fired, resulting in a similar problem. This will reduce the strength of the molded product.

本発明の方法においては、上記熱硬化性樹脂液
と共に好ましくは熱硬化性樹脂粉末と炭素粉末と
を含有する混練物の成形性、特に、押出成形時の
滑り性や保形性、また、ロール圧延時の延びを良
好にし、微細な割れの発生を防止し、かくして、
ガス不透過性にすぐれる薄板状の不透過性炭素成
形体を得るために、上記熱硬化性樹脂液に可溶性
であると共に、混練組成物の成形物の炭化焼成時
に分解揮散し得る有機増粘剤を混練組成物に配合
することが好ましい。この有機増粘剤は、熱硬化
性樹脂液として、前記したような水性の樹脂液が
用いられる場合には、水溶性であることが必要で
あり、従つて、好ましい増粘剤として、例えば、
メチルセルロース、カルボキシメチルセルロー
ス、カルボキシメチルスターチ、ヒドロキシエチ
ルセルロース、ヒドロキシプロピルセルロース、
リグニンスルホン酸ナトリウム、リグニンスルホ
ン酸カルシウム、ポリビニルアルコール、ポリア
クリル酸エステル、ポリメタクリル酸エステル、
グアーガム、アルギン酸塩等を挙げることができ
る。
In the method of the present invention, the moldability of the kneaded product containing preferably thermosetting resin powder and carbon powder together with the thermosetting resin liquid, particularly the slipperiness and shape retention during extrusion molding, and the roll Improves elongation during rolling, prevents the occurrence of minute cracks, and thus
In order to obtain a thin plate-like impermeable carbon molded body with excellent gas impermeability, an organic thickener that is soluble in the thermosetting resin liquid and that can be decomposed and volatilized during carbonization and firing of the molded composition of the kneaded composition is used. It is preferable to mix the agent into the kneading composition. This organic thickener needs to be water-soluble when an aqueous resin liquid as described above is used as the thermosetting resin liquid. Therefore, preferable thickeners include, for example,
Methyl cellulose, carboxymethyl cellulose, carboxymethyl starch, hydroxyethyl cellulose, hydroxypropyl cellulose,
Sodium ligninsulfonate, calcium ligninsulfonate, polyvinyl alcohol, polyacrylate, polymethacrylate,
Guar gum, alginates, etc. can be mentioned.

増粘剤が上記した効果を有するためには、増粘
剤は、混練組成物において、その少なくとも1重
量%含有されることが望ましいが、一方、20重量
%を越えて多量に含有されるときは、得られる成
形体の不透過性が低下すると共に、その強度も低
下するので好ましくない。
In order for the thickener to have the above-mentioned effects, it is desirable that the thickener be contained in the kneaded composition at least 1% by weight, but on the other hand, when it is contained in a large amount exceeding 20% by weight. This is not preferable because the impermeability of the resulting molded product is reduced and its strength is also reduced.

本発明の方法においては、上記混練組成物を押
出及び圧延成形して、所要の形状の成形物に成形
した後、乾燥して樹脂液の溶剤を揮散させ、次い
で加熱して樹脂を硬化させる。
In the method of the present invention, the kneaded composition is extruded and rolled to form a molded article of a desired shape, dried to volatilize the solvent of the resin liquid, and then heated to harden the resin.

熱硬化性樹脂液と、好ましくは熱硬化性樹脂粉
末及び/又は炭素粉末と、有機増粘剤とからなる
混合物を混練する方法は特に制限されるものでは
なく、従来より知られている通常の混練装置によ
ればよい。混練された組成物は、次いで、押出機
により所定の板状に押出成形される。この押出成
形にも従来より知られている通常の押出成形機、
例えば、スクリユー式押出成形機やプランジヤー
式押出成形機を用いることができる。尚、スクリ
ユー式押出成形機を用いる場合は、前記混練物の
調製をも同時に行なうことができる。
The method of kneading the mixture consisting of a thermosetting resin liquid, preferably a thermosetting resin powder and/or carbon powder, and an organic thickener is not particularly limited, and may be any conventionally known conventional method. Any kneading device may be used. The kneaded composition is then extruded into a predetermined plate shape using an extruder. For this extrusion molding, a conventional extrusion molding machine is used.
For example, a screw type extrusion molding machine or a plunger type extrusion molding machine can be used. In addition, when using a screw type extrusion molding machine, the preparation of the kneaded product can be performed at the same time.

押出成形物は、次いで、ロール圧延にて圧延さ
れるが、ここに、本発明の方法に従つて、一回の
圧延率を1/5以上として、少なくとも2回又はそ
れ以上の回数の圧延を行なうことが好ましい。一
時に所定の厚さまで圧延すると、成形物中に空気
を巻き込んだり、或いは樹脂粉末や炭素粉末が方
向性をもち、かくして不均一層が発生して、方向
性を有する微細な割れを生じやすいからである。
更に、本発明の方法においては、複数回のロール
圧延を行なうに際して、上記のような成形物にお
ける方向性を排除するために、押出方向と直交す
る方向に少なくとも1回ロール圧延することが好
ましい。
The extruded product is then rolled by roll rolling, and according to the method of the present invention, rolling is performed at least twice or more times at a rolling rate of 1/5 or more. It is preferable to do so. If rolled to a predetermined thickness at once, air may be drawn into the molded product, or the resin powder or carbon powder may have directionality, resulting in an uneven layer that tends to cause microscopic cracks with directionality. It is.
Furthermore, in the method of the present invention, when rolling is performed multiple times, it is preferable to perform roll rolling at least once in a direction perpendicular to the extrusion direction in order to eliminate the above-mentioned directionality in the molded product.

また、ロール圧延時には、熱硬化性樹脂液がロ
ール表面に付着し、圧延後に圧延板がロールより
離型し難くなる傾向がある。従つて、圧延すべき
押出板と圧延ロールとの間に離型シートを介在さ
せ、及び/又は予めロール表面に離型処理を施す
ことは、圧延板を円滑に得るために好ましい方法
である。特に、離型シートをポリテトラフルオロ
エチレンで形成し、また、ロールの離型処理をこ
の重合体で行なうことにより、圧延板を極めて円
滑に得ることができるのみならず、得られる不透
過性炭素成形体が平面度にもすぐれるので好まし
い。
Furthermore, during roll rolling, the thermosetting resin liquid tends to adhere to the roll surface, making it difficult for the rolled plate to release from the roll after rolling. Therefore, interposing a release sheet between the extrusion plate to be rolled and the roll and/or subjecting the roll surface to a release treatment in advance is a preferred method in order to smoothly obtain the rolled plate. In particular, by forming the release sheet from polytetrafluoroethylene and performing the roll release treatment using this polymer, it is possible not only to obtain a rolled plate extremely smoothly, but also to obtain an impermeable carbon material. This is preferable because the molded article has excellent flatness.

第1図は本発明の方法によるロール圧延の好ま
しい一例を示す。相対する圧延ロール1及び2に
近接してポリテトラフルオロエチレンからなる送
り込みベルト3及び送り出しベルト4が配設さ
れ、被圧延物5が上記送り込みベルトにより圧延
ロール間に送り込まれ、所定の厚さに圧延された
圧延板6が送り出しロールにより搬出される。圧
延ロールには上下共にこれに圧延板が付着するの
を防止するために、ポリテトラフルオロエチレン
シートからなる離型シート7及び8が適宜に支承
されて、圧延ロールに接触されつつ、圧延ロール
と同じ速度で走行せしめられる。
FIG. 1 shows a preferred example of roll rolling according to the method of the present invention. A feed belt 3 and a feed belt 4 made of polytetrafluoroethylene are disposed close to the opposing rolling rolls 1 and 2, and a workpiece 5 to be rolled is fed between the rolling rolls by the feeding belt and rolled to a predetermined thickness. The rolled plate 6 is transported out by a delivery roll. In order to prevent the rolling plate from adhering to the upper and lower rolls, release sheets 7 and 8 made of polytetrafluoroethylene sheets are appropriately supported, and while being in contact with the rolling rolls, release sheets 7 and 8 are appropriately supported. They are forced to travel at the same speed.

このようにしてロール圧延された圧延板は、次
いで、乾燥して熱硬化性樹脂液の溶剤を揮発させ
た後、加熱して熱硬化性樹脂を硬化させる。この
熱硬化性樹脂の硬化のための温度は用いる樹脂や
成形物の形状等に応じて適宜に選ばれるが、通
常、100〜180℃である。尚、熱硬化性樹脂を加熱
硬化させて、成形体を得た後、必要に応じて、こ
の成形体に更に樹脂液を含浸させ、乾燥、加熱硬
化させてもよい。
The rolled plate thus rolled is then dried to volatilize the solvent of the thermosetting resin liquid, and then heated to harden the thermosetting resin. The temperature for curing this thermosetting resin is appropriately selected depending on the resin used, the shape of the molded product, etc., but is usually 100 to 180°C. Incidentally, after the thermosetting resin is heat-cured to obtain a molded body, the molded body may be further impregnated with a resin liquid, dried, and heat-cured, if necessary.

このようにして形成された成形体は、次いで、
非酸化性雰囲気下で炭化焼成される。雰囲気とし
ては、通常、ヘリウム、アルゴン、窒素等が用い
られる。不透過性炭素成形体を得るための炭化焼
成のための加熱は、例えば、前記した特開昭57−
72273号公報にも記載されているように、約200℃
から約500℃乃至約700℃に至る間は数十℃/時程
度の遅い昇温速度で加熱するのが望ましい。この
後、上記範囲又はこれより大きい昇温速度にて所
定の炭化焼成温度まで加熱し、一定時間焼成する
ことにより、本発明の不透過性炭素成形体を得
る。炭化焼成温度は少なくとも800℃が必要であ
り、好ましくは1000〜1500℃の範囲で焼成する。
必要な焼成時間は成形体の形状、寸法にも依存
し、実質的にすべての熱硬化性樹脂が炭化して、
ガラス質炭素に変化するに足る時間焼成すればよ
いが、通常、数時間乃至数十時間である。この炭
化焼成時に前記有機増粘剤は分解揮散する。
The molded body thus formed is then
Carbonized and fired in a non-oxidizing atmosphere. As the atmosphere, helium, argon, nitrogen, etc. are usually used. Heating for carbonization and firing to obtain an impermeable carbon compact is described, for example, in the above-mentioned JP-A-57-
As stated in Publication No. 72273, approximately 200℃
From about 500°C to about 700°C, it is desirable to heat at a slow temperature increase rate of about several tens of degrees C/hour. Thereafter, the impermeable carbon molded body of the present invention is obtained by heating to a predetermined carbonization firing temperature at a heating rate within the above range or higher and firing for a certain period of time. The carbonization firing temperature is required to be at least 800°C, preferably in the range of 1000 to 1500°C.
The required firing time depends on the shape and dimensions of the molded product, and virtually all of the thermosetting resin is carbonized.
The firing time may be sufficient to change into vitreous carbon, but it is usually several hours to several tens of hours. During this carbonization firing, the organic thickener is decomposed and volatilized.

尚、本発明においては、得られる成形体の強度
を一層高めるために、成形体の炭素マトリツクス
に対して良好な結合性を有する物質、例えば、炭
化ケイ素や、炭化チタン、炭化タングステン等の
金属炭化物、炭素繊維等を熱硬化性樹脂粉末、炭
素粉末及び熱硬化性樹脂液からなる成形原料に適
宜量添加し、これを上記したように成形し、乾燥
し、焼成することができる。
In the present invention, in order to further increase the strength of the obtained molded product, a substance having good bonding properties to the carbon matrix of the molded product, for example, a metal carbide such as silicon carbide, titanium carbide, or tungsten carbide, is used. , carbon fiber, etc. can be added in appropriate amounts to a molding raw material consisting of thermosetting resin powder, carbon powder, and thermosetting resin liquid, and this can be molded, dried, and fired as described above.

以上のように、本発明によれば、混練組成物を
押出し、更にロール圧延するので、薄板状の不透
過性炭素成形体を簡単に得ることができ、特に、
混練組成物に有機増粘剤を添加することにより、
押出成形及びロール圧延における成形性が高めら
れるので、微細な割れ等の発生なしに薄板状の不
透過性炭素成形体を得ることができる。この場合
に、更に本発明に従つて、ロール圧延を複数回行
ない、且つ、好ましくは押出方向と直交する方向
に少なくとも1回ロール圧延を行なうことによ
り、微細な割れ発生が一層有効に防止される。か
くして、本発明の方法によれば、従来の方法と異
なり、焼成後の成形物を再度、所要厚さに切削し
たり、また、所要の平面度を得るために全面切削
する必要なしに、直ちに強度が大きく、均一であ
つて、且つ、板厚精度及び平面度にすぐれた板状
の不透過性炭素成形体を得ることができる。
As described above, according to the present invention, since the kneaded composition is extruded and further rolled, a thin plate-like impermeable carbon molded body can be easily obtained, and in particular,
By adding an organic thickener to the kneading composition,
Since the formability in extrusion molding and roll rolling is improved, a thin plate-like impermeable carbon molded body can be obtained without the occurrence of minute cracks. In this case, further according to the present invention, by performing roll rolling a plurality of times, and preferably at least once in a direction perpendicular to the extrusion direction, the occurrence of fine cracks can be more effectively prevented. . Thus, according to the method of the present invention, unlike conventional methods, it is not necessary to cut the molded product again to the required thickness after firing, or to cut the entire surface to obtain the required flatness. A plate-shaped impermeable carbon molded body having high strength, uniformity, and excellent plate thickness accuracy and flatness can be obtained.

更に、本発明の方法によつて、熱硬化性樹脂粉
末に対して所定量の有機増粘剤と炭素粉末を含有
する混練組成物を成形し、炭化焼成することによ
り、炭素粉末は熱硬化性樹脂の炭化焼成により形
成されたマトリツクスとしてのガラス質炭素中に
均一に分散され、割れを生じることなく緻密な炭
素成形体を与え、かくして得られる不透過性炭素
成形体は気体や液体の不透過性にすぐれるのみな
らず、積層圧縮強度や曲げ強度等の強度と導電性
にすぐれるのである。
Further, according to the method of the present invention, a kneaded composition containing a predetermined amount of an organic thickener and carbon powder is molded with respect to thermosetting resin powder, and carbonized and fired, thereby making the carbon powder thermosetting. It is uniformly dispersed in the glassy carbon matrix formed by carbonizing and firing the resin, giving a dense carbon molded body without cracking, and the impermeable carbon molded body thus obtained is impermeable to gases and liquids. Not only does it have excellent properties, but it also has excellent strength such as laminated compressive strength and bending strength, as well as electrical conductivity.

以下に実施例を挙げて本発明を説明するが、本
発明はこれら実施例により何ら限定されるもので
はない。尚、以下において部は重量部を意味す
る。
The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way. In addition, in the following, parts mean parts by weight.

実施例 1 平均粒子径39μmのフエノール・ホルムアルデ
ヒド樹脂粉末100部、固定炭素99%以上の平均粒
子径12μmの黒鉛粉末10部、水溶性有機増粘剤と
してのカルボキシメチルセルロース9部及びヒド
ロキシプロピルセルロース3部、及び水性フエノ
ール樹脂液(濃度50重量%)23部とを混練し、プ
ランジヤー式押出機にて幅500mm、厚さ20mmの断
面を有する板状に押出した。次いで、これを400
mm径2ロール圧延機を用いて、第1段は押出方向
と直交する方向に厚さを7.0mmに圧延し、第2段
は押出方向に厚さを3.2mmに圧延し、第3段とし
て押出方向と直交する方向に厚さを1.0mmに圧延
した。
Example 1 100 parts of phenol-formaldehyde resin powder with an average particle size of 39 μm, 10 parts of graphite powder with an average particle size of 12 μm with 99% or more of fixed carbon, 9 parts of carboxymethyl cellulose and 3 parts of hydroxypropyl cellulose as water-soluble organic thickeners. , and 23 parts of an aqueous phenolic resin liquid (concentration 50% by weight) were kneaded and extruded into a plate having a cross section of 500 mm in width and 20 mm in thickness using a plunger extruder. Then set this to 400
Using a 2-mm diameter rolling mill, the first stage rolls the product to a thickness of 7.0 mm in the direction perpendicular to the extrusion direction, the second stage rolls the product to a thickness of 3.2 mm in the extrusion direction, and the third stage rolls the product to a thickness of 3.2 mm. It was rolled to a thickness of 1.0 mm in a direction perpendicular to the extrusion direction.

次いで、この圧延板を40℃の保温槽内に8時間
置いた後、110℃の温度で12時間加熱して熱硬化
性樹脂を硬化させた。この後、焼成炉に装入し、
アルゴン雰囲気下で700℃の温度まで40℃/時の
昇温速度にて加熱し、次いで、130℃の温度まで
100℃/時の速度で加熱した後、この温度で2時
間保持して、厚み0.6mm、幅500mm、長さ500mmの
薄板状不透過性炭素成形体を得た。
Next, this rolled plate was placed in a heat insulating tank at 40°C for 8 hours, and then heated at a temperature of 110°C for 12 hours to harden the thermosetting resin. After that, charge it into the firing furnace,
Heating under argon atmosphere at a heating rate of 40°C/hour to a temperature of 700°C, then to a temperature of 130°C.
After heating at a rate of 100° C./hour, the mixture was maintained at this temperature for 2 hours to obtain a thin plate-like impermeable carbon molded body having a thickness of 0.6 mm, a width of 500 mm, and a length of 500 mm.

このようにして得た成形体は平面度±0.02以内
に納まつていた。また、窒素透過率は1Kg/cm2
差圧があるとき、4×10-4c.c./分・cm2、電気固有
抵抗3.5×10-3Ωcm、三点曲げ強度721Kg/cm2であ
つた。
The molded body thus obtained had a flatness within ±0.02. In addition, when there was a differential pressure of 1 Kg/cm 2 , the nitrogen permeability was 4×10 -4 cc/min·cm 2 , the electrical resistivity was 3.5×10 -3 Ωcm, and the three-point bending strength was 721 Kg/cm 2 . .

実施例 2 実施例1において、樹脂液としてフエノール樹
脂液に代えて、フラン樹脂液(48重量%)を用い
た以外は、実施例1と同様にして同じ寸法の不透
過性炭素成形体を得た。
Example 2 An impermeable carbon molded body with the same dimensions was obtained in the same manner as in Example 1, except that a furan resin liquid (48% by weight) was used instead of the phenol resin liquid as the resin liquid. Ta.

この成形体も平面度±0.02以内に納まつてい
た。また、窒素透過率は6×10-4c.c./分・cm2、電
気固有抵抗3.8×10-3Ωcm、三点曲げ強度704Kg/
cm2であつた。
This compact also had a flatness within ±0.02. In addition, the nitrogen permeability is 6×10 -4 cc/min・cm 2 , the electrical resistivity is 3.8×10 -3 Ωcm, and the three-point bending strength is 704 Kg/
It was warm in cm2 .

実施例 3 実施例1において、水溶性有機増粘剤としての
カルボキシメチルセルロース及びヒドロキシプロ
ピルセルロースからなる混合物の配合量を混練組
成物に対して種々に変えた以外は、実施例1と同
様にして不透過性炭素成形体を得た。このように
して得られた成形体のガス透過性を調べた。結果
を第2図に示す。増粘剤の配合量が混練組成物の
2重量%より少ないときは、ガス透過性が劣るの
みならず、成形体表面に多数の微細な割れが認め
られ、一方、増粘剤の配合量が混練組成物の20重
量%を越えると、得られる成形体の密度が小さ
く、多孔質状の欠陥が認められると共に、ガス透
過性も劣ることが確認された。
Example 3 The same procedure as in Example 1 was carried out except that the amount of the mixture of carboxymethyl cellulose and hydroxypropyl cellulose as a water-soluble organic thickener was varied in the kneaded composition. A transparent carbon molded body was obtained. The gas permeability of the molded body thus obtained was examined. The results are shown in Figure 2. When the amount of thickener blended is less than 2% by weight of the kneaded composition, not only the gas permeability is poor, but also many fine cracks are observed on the surface of the molded product. It was confirmed that when the amount exceeds 20% by weight of the kneaded composition, the density of the obtained molded product is low, porous defects are observed, and the gas permeability is also poor.

実施例 4 実施例1と同じフエノール・ホルムアルデヒド
樹脂粉末100部、カーボンブラツク23部、実施例
と同じ水性フエノール樹脂液及びメチルセルロー
ス8部とを実施例1と同様に混練し、この混練組
成物を実施例1と同じ方法により処理して不透過
性炭素成形体を得た。
Example 4 100 parts of the same phenol-formaldehyde resin powder as in Example 1, 23 parts of carbon black, the same aqueous phenol resin liquid as in Example and 8 parts of methylcellulose were kneaded in the same manner as in Example 1, and this kneaded composition was prepared. An impermeable carbon molded body was obtained by processing in the same manner as in Example 1.

この成形体の窒素透過率は10-4c.c./分・cm2、電
気固有抵抗7×10-3Ωcm、三点曲げ強度724Kg/
cm2であつた。
The nitrogen permeability of this molded body is 10 -4 cc/min.cm 2 , the electrical resistivity is 7×10 -3 Ωcm, and the three-point bending strength is 724 kg/cm 2 .
It was warm in cm2 .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するのに好適な圧
延装置の断面図、第2図は有機増粘剤と得られる
不透過性炭素成形体のガス透過性との関係を示す
グラフである。 1,2……圧延ロール、3……送り込みベル
ト、4……送り出しベルト、5……被圧延物、6
……圧延板、7……離型シート。
FIG. 1 is a cross-sectional view of a rolling apparatus suitable for carrying out the method of the present invention, and FIG. 2 is a graph showing the relationship between an organic thickener and the gas permeability of the impermeable carbon compact obtained. . 1, 2... Rolling roll, 3... Feeding belt, 4... Feeding belt, 5... Rolled object, 6
...Rolled plate, 7...Release sheet.

Claims (1)

【特許請求の範囲】 1 熱硬化性樹脂粉末及び炭素粉末から選ばれる
少なくとも1種と熱硬化性樹脂液とを含有する混
練組成物を平板状に押出成形した後、ロール圧延
するに際して、ロール圧延を2回以上行ない、且
つ、1回当りの圧延率を1/5以上とし、次いで、
乾燥硬化させた後、非酸化性雰囲気で炭化焼成す
ることを特徴とする不透過性炭素成形体の製造方
法。 2 混練組成物をロール圧延するに際して、押出
方向と直交する方向に少なくとも1回ロール圧延
することを特徴とする特許請求の範囲第1項記載
の不透過性炭素成形体の製造方法。
[Scope of Claims] 1. After extrusion molding a kneaded composition containing at least one selected from thermosetting resin powder and carbon powder and thermosetting resin liquid into a flat plate shape, roll rolling is performed. is carried out twice or more, and the rolling rate per time is 1/5 or more, and then,
1. A method for producing an impermeable carbon molded body, which comprises drying and hardening and then carbonizing and firing in a non-oxidizing atmosphere. 2. The method for producing an impermeable carbon molded body according to claim 1, wherein the kneaded composition is rolled at least once in a direction perpendicular to the extrusion direction.
JP58199538A 1983-04-11 1983-10-25 Manufacture of impermeable molded carbon body Granted JPS6090805A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58199538A JPS6090805A (en) 1983-10-25 1983-10-25 Manufacture of impermeable molded carbon body
US06/598,540 US4582632A (en) 1983-04-11 1984-04-10 Non-permeable carbonaceous formed bodies and method for producing same
DE19843413646 DE3413646A1 (en) 1983-04-11 1984-04-11 IMPERPERABLE, CARBONATED MOLDED BODIES AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58199538A JPS6090805A (en) 1983-10-25 1983-10-25 Manufacture of impermeable molded carbon body

Publications (2)

Publication Number Publication Date
JPS6090805A JPS6090805A (en) 1985-05-22
JPH0127967B2 true JPH0127967B2 (en) 1989-05-31

Family

ID=16409496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58199538A Granted JPS6090805A (en) 1983-04-11 1983-10-25 Manufacture of impermeable molded carbon body

Country Status (1)

Country Link
JP (1) JPS6090805A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385086A (en) * 1986-09-29 1988-04-15 Tokai Carbon Co Ltd Graphite crucible for pulling up si single crystal
JPH0197606A (en) * 1987-10-12 1989-04-17 Tokai Carbon Co Ltd Manufacture of carbon sheet
US20090081436A1 (en) * 2005-04-22 2009-03-26 Katsuhiro Yusa Coating layer for thermal insulator, laminated body for thermal insulator, coating agent for thermal insulator, and method of producing coating agent for thermal insulator
JP2019083243A (en) 2017-10-30 2019-05-30 株式会社東芝 Semiconductor device and manufacturing method of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420991A (en) * 1977-07-18 1979-02-16 Kanebo Ltd Production of impermeable carbon molded product
JPS5663811A (en) * 1979-10-25 1981-05-30 Hitachi Chem Co Ltd Manufacture of graphite composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420991A (en) * 1977-07-18 1979-02-16 Kanebo Ltd Production of impermeable carbon molded product
JPS5663811A (en) * 1979-10-25 1981-05-30 Hitachi Chem Co Ltd Manufacture of graphite composite material

Also Published As

Publication number Publication date
JPS6090805A (en) 1985-05-22

Similar Documents

Publication Publication Date Title
US4582632A (en) Non-permeable carbonaceous formed bodies and method for producing same
EP1195828B1 (en) Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
US20040131533A1 (en) Extrusion of graphite bodies
GB2117746A (en) Fuel cell electrode substrates
EP2395585A1 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and solid polymer-type fuel cell
JPH0449747B2 (en)
US4814307A (en) Process for producing an electrode substrate which is uniform in physical properties
EP0212965B2 (en) Process for producing a thin carbonaceous plate
JPH0127967B2 (en)
JPH0127969B2 (en)
JPH0131445B2 (en)
JPH0158623B2 (en)
JPS6090807A (en) Manufacture of impermeable molded carbon body
JP3342508B2 (en) Method for producing impermeable carbonaceous plate
JPS62278111A (en) Impermeable formed carbon and production thereof
JPS6259508A (en) Production of carbonaceous, thin plate
JPH0463806B2 (en)
JPS60264315A (en) Impermeable composite molded carbon article and production thereof
KR101959998B1 (en) High-content polymer-carbon masterbatch manufacturing method and bipolar plate for fuel cell using the same
JPS62154470A (en) Manufacture of carbon member for fuel cell
JPH06104591B2 (en) Method for manufacturing thin plate carbonaceous compact
JPS6355160A (en) Impermeability carbon formed body and manufacture
JPH0644978A (en) Manufacture of fuel cell electrode plate
JPH0140762B2 (en)
JPS62133674A (en) Manufacture of separator with rib for fuel cell