JP3650694B2 - Contactless power supply method - Google Patents

Contactless power supply method Download PDF

Info

Publication number
JP3650694B2
JP3650694B2 JP34856197A JP34856197A JP3650694B2 JP 3650694 B2 JP3650694 B2 JP 3650694B2 JP 34856197 A JP34856197 A JP 34856197A JP 34856197 A JP34856197 A JP 34856197A JP 3650694 B2 JP3650694 B2 JP 3650694B2
Authority
JP
Japan
Prior art keywords
load
voltage
inductor
pickup coil
threshold voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34856197A
Other languages
Japanese (ja)
Other versions
JPH11168843A (en
Inventor
孝夫 高橋
Original Assignee
日立機電工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立機電工業株式会社 filed Critical 日立機電工業株式会社
Priority to JP34856197A priority Critical patent/JP3650694B2/en
Publication of JPH11168843A publication Critical patent/JPH11168843A/en
Application granted granted Critical
Publication of JP3650694B2 publication Critical patent/JP3650694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非接触給電方法、特に、インダクタにおけるインダクタンス遷移が起きるスレショルド電圧を負荷電流の大きさにより定めて、回路系で得られる最大の負荷出力を確保するとともに負荷電流を大きく変えても負荷端子電圧の変動が少なくなるようにした非接触給電方法に関するものである。
【0002】
【従来の技術】
従来、半導体、液晶等の製造工程における部材あるいは部品の搬送においては、製品の高精度化を図るために設定された清浄環境のもとで行うことが求められる。搬送工程において、給電線から搬送台車への電力供給時、該給電線と集電子との接触による発塵がある。
これを防止するため、電源に接続された1次側導線(給電線)を搬送台車の走行路に沿って固定側に配置するとともに、該1次側導線に流れる電流に対し、搬送車側に非接触にて電力を給電されるための非接触給電装置を配設し、これにより電磁誘導現象を利用して発塵することなく所要の給電を搬送車側へ行える搬送システムが提案されている。
【0003】
このクリーン搬送システムにおいて、走行する搬送車に搭載されている非接触給電装置にて給電するには、図3に示すように、1次側導体1a,1bに流れる往復の電流が作る磁束を鉄心3に導く。1次電流は高周波交番電流であるから鉄心3に導かれた磁束は交番的に変化し、鉄心3に巻回されている2次側のピックアップコイルの巻線2には電磁誘導現象により電圧が誘起される。
ピックアップコイルは図4の回路図に示すように、ピックアップコイルの巻線のリアクタンスωLを補償するためにこれと直列にコンデンサCを接続し、その負のリアクタンス−1/(ωC)により共振に近い状態にしておき、コンデンサCの両端に所定の電圧を発生する。コンデンサCの両端に負荷8をつなぎ、この所定の電圧を利用して負荷8の電流を得る。
【0004】
該直列回路の合成リアクタンスXは
X=ωL−1/(ωC
で与えられ、X=0はいわゆる直列共振にあたる。このとき、僅かの入力で負荷の端子に大きな電圧を与え得るが、平衡点からずれたときの変動が大きいので、通常、直列共振に近いが、合成リアクタンスXを若干残したところで非接触給電を行う。
【0005】
【発明が解決しようとする課題】
従来の非接触給電方法、即ち、図4に示す回路にあっては、図2に示すように負荷の端子電圧が、負荷電流の増加と共に低下する特性がある。そのため、搬送車のモータ駆動等に伴う負荷電流の変化に対して負荷電圧の変動を許容の範囲に抑えるために、流し得る負荷電流を制約したり、ピックアップコイルにより得られた交流を直流に変換する直流電源に高価な電圧安定化機能を付加しなければならない問題があった。
【0006】
本発明は、上記従来の非接触給電方法の有する問題点を解決し、インダクタにおけるインダクタンス遷移が起きるスレショルド電圧を負荷電流の大きさにより定めて、回路系で得られる最大の負荷出力を確保するとともに、負荷電流を大きく変えても負荷端子電圧の変動が少ない非接触給電方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明の非接触給電方法は、電源に接続された給電線を1次側導体として、該1次側に流れる電流から、電磁誘導現象を利用して、2次側のピックアップコイルにより非接触的に電力を取り、かつピックアップコイルのリアクタンスを補償するように、該ピックアップコイルと接続したコンデンサの両端に負荷を接続した非接触給電方法において、該負荷の両端に、そのスレショルド電圧の大きさによりそのインダクタンスが非線形に変化するインダクタを接続し、該負荷の端子電圧が該スレショルド電圧よりも大きな電圧となるときに、該インダクタのインダクタンス遷移を利用して、共振点をずらし、負荷端子電圧の上昇を抑制するとともに、該インダクタのスレショルド電圧を、回路系より決まる負荷の最大出力となる負荷電流の値における負荷端子電圧と略等しくするようにしたことを特徴とする。
【0008】
上記の構成からなる本発明の非接触給電方法は、系が可能とする最大出力を確保し、且つ、より広い負荷電流の変化に対して、変動の少ない負荷電圧特性を提供するものである。
【0009】
また、同じ目的を達成するため、電源に接続された給電線を1次側導体として、該1次側に流れる電流から、電磁誘導現象を利用して、2次側のピックアップコイルにより非接触的に電力を取り、かつピックアップコイルのリアクタンスを補償するように、該ピックアップコイルと接続したコンデンサの両端に負荷を接続した非接触給電方法において、該負荷の両端に、そのスレショルド電圧の大きさによりそのインダクタンスが非線形に変化するインダクタを接続し、該負荷の端子電圧が該スレショルド電圧よりも大きな電圧となるときに、該インダクタのインダクタンス遷移を利用して、共振点をずらし、負荷端子電圧の上昇を抑制するとともに、該インダクタのスレショルド電圧を、回路系より決まる負荷短絡電流の70乃至75パーセントの負荷電流の値における負荷端子電圧と略等しくするようにしたことを特徴とする。
【0010】
上記の構成からなる本発明の非接触給電方法は、より簡便で直截な方法で実測並びに算定可能な負荷短絡電流の値のみを用いて、系が可能とする最大出力を確保し、且つ、より広い負荷電流の変化に対して、変動の少ない負荷電圧特性を提供するものである。
【0011】
【発明の実施の形態】
本発明の非接触給電方法の実施の形態を図面に基づいて説明する。
【0012】
本発明は、クリーン搬送システムにおいて、可動の搬送車に搭載されている非接触給電方法に係るものであり、図3に示すように、1次側導体1a,1bに流れる往復の電流が作る磁束を鉄心3に導く。高周波交番電流である1次電流による磁束を鉄心3に導びき、電磁誘導現象により、鉄心3に巻回されている2次側のピックアップコイルの巻線2に電圧を誘起する。ピックアップコイルはその回路図である図4に示すように、ピックアップコイルの巻線のリアクタンスωLを補償するためにこれと直列にコンデンサCを接続しその負のリアクタンス−1/(ωC)により共振に近い状態にしておき、コンデンサCの両端に所要の電圧を得る。コンデンサCの両端に負荷8をつなぎ、この所要の電圧を利用して負荷8の電流を得る。
【0013】
直列回路の合成リアクタンスXは次式
X=ωL−1/(ωC) ・・・・・・ (1)
で与えられ、X=0はいわゆる直列共振にあたる。このとき、僅かの入力で負荷の端子に大きな電圧を与え得るが、平衡点からずれたときの変動が大きいので、通常、直列共振に近いが、合成リアクタンスXを若干残したところで非接触給電を行う。
【0014】
図4に示す回路だけでは、図2に実線で示すように負荷電流と共に負荷の端子電圧が大きく降下する。負荷電圧特性を図2において点線で示すように負荷電流に対して変動を小さくするために、本発明では端子電圧が大きくなる負荷電流の小さいところでピックアップコイルとコンデンサCによる直列回路を共振条件から大きくずらす目的で、例えば、その回路図を図5に示すように、コンデンサC並びに負荷と並列に、電圧の大きさによりそのインダクタンスが非線形に変化するインダクタLtを接続する。
このインダクタには図6に示すように、所要のスレショルド電圧Ectよりも低い電圧の範囲で十分大きなインダクタンスを保持し、所要のスレショルド電圧Ectよりも高い電圧に対してはインダクタンスが急激に小さくなる非線形のインダクタンス特性をもたせる。このような非線形のインダクタンス特性を持つインダクタは、巻線をリング状鉄心に巻いた構造のものであり、鉄心の磁気飽和特性を利用して所望の非線形インダクタンス特性が実現される。
【0015】
負荷の端子電圧、従ってコンデンサC並びにこれらと並列に接続されているインダクタの端子電圧が上記したインダクタにおいてインダクタンスの値の遷移が起きるスレショルド電圧Ectよりも低いときには、図6に示すようにインダクタのインダクタンスは十分に大きいのでコンデンサCに対しては開放とみなせ、ピックアップコイルとコンデンサCによる合成リアクタンスXは、共振に近い、小さな負の値に維持される。
しかし、負荷電流が下がり、負荷の端子電圧が図2の実線のように上昇すると、負荷と並列に接続されたインダクタのインダクタンスが急激に小さくなり、ピックアップコイルから見たときのコンデンサのキャパシタンスCが見かけ小さくなり、共振に近く設定されていたピックアップコイルとコンデンサCによる合成リアクタンスXは、負の大きな値となって、共振から大きくずれ、コンデンサCに流れる電流を減じ、負荷の端子電圧は図2の点線のように抑制される。
【0016】
本発明は、インダクタにおけるインダクタンスの値の遷移が起きるスレショルド電圧Ectの決定法に関するものである。
本発明によるインダクタにおいてインダクタンスの値の遷移が起きるスレショルド電圧Ectの決め方を図1により示す。
図4に示すように非線形のインダクタンス特性を持つインダクタが負荷と並列にされていないとき、負荷端子電圧は図1において、1−3’−dと負荷電流とともに低下する。負荷出力は負荷電流が増えるにつれてo−a’−a−b−c−dと山形に変わり、負荷電流がIpmとなるとき、山形カーブ上の点bにおいて、負荷出力は最大値Pmaxをとる。
【0017】
本発明においては、図5に示すように、コンデンサ並びに負荷と並列に、電圧の大きさによりそのインダクタンスが非線形に変化するインダクタLxを接続し、且つ、図6に示したようにインダクタンスの値の遷移が起きるスレショルド電圧Ectを、回路系より決まる負荷が最大出力となる負荷電流の値における負荷端子電圧3’と略等しくする。図4に示すように非線形のインダクタンス特性を持つインダクタが負荷と並列に接続されていないとき、図1で示した負荷電流に対する負荷端子電圧並びに負荷出力特性は実測することにより回路系が定まれば特定できる。
【0018】
また、図4における回路定数が分かれば、複素数を用いた交流回路方程式を解くことによっても図1で示した負荷電流に対する負荷端子電圧並びに負荷出力特性は特定できる。従って、負荷と並列に接続されたインダクタにおいてインダクタンスの値の遷移が起きるスレショルド電圧Ectを、本発明のように、回路系より決まる負荷が最大出力となる負荷電流の値における負荷端子電圧3’と略等しくなるように選ぶことは実現可能である。
【0019】
また、実用的に使用される非接触給電装置に関する測定並びに計算解析の経験から、負荷が最大出力となる負荷電流の値は、負荷電圧が零となる負荷電流(図1における、Is)の70乃至75パーセントであることが判明している。そこで、本発明の別の実施例では回路系より決まる負荷短絡電流Isの70乃至75パーセントの負荷電流における負荷端子電圧と等しくする。この方法によれば、負荷電流変化の全域に亘る負荷出力特性は不要であり、負荷短絡電流Isだけから、負荷と並列に接続されたインダクタにおいてインダクタンスの値の遷移が起きるスレショルド電圧Ectを決めることができる。回路系より決まる負荷短絡電流の大きさはより簡便で直截な方法を用いて実測並びに計算により求め得る。
【0020】
スレショルド電圧Ectを、回路系より決まる負荷が最大出力となる負荷電流の値における負荷端子電圧と略等しくする理由を図7により明らかにする。
本発明では負荷と並列に接続されたインダクタにおいてインダクタンスの値の遷移が起きるスレショルド電圧Ectを、回路系より決まる負荷が最大出力となる負荷電流の値Ipmにおける負荷端子電圧3’と略等しくなるようにしている。
【0021】
従って、本発明では負荷電流の増加に対して、負荷端子電圧は3−3’−d、負荷出力はo−b−dとなり、負荷出力として回路系が可能とする最大出力Pmaxが得られる。しかし、インダクタにおけるスレショルド電圧Ectを4’とすると、平坦な負荷電圧範囲が4−4’と、本発明の場合の3−3’よりも広くなるが、負荷出力特性がo−c−dとなり、回路系が可能とする最大出力Pmaxに達せず、好ましくない。
また、スレショルド電圧Ectを2’とすると、負荷出力特性がo−a−b−dとなり回路系が可能とする最大出力Pmaxは確保されるが、平坦な負荷電圧範囲が2−2’と、本発明の場合の3−3’よりも狭くなり、好ましくない。
【0022】
【発明の効果】
本発明の非接触給電方法によれば、負荷と並列に接続されたインダクタにおいてインダクタンスの値の遷移が起きるスレショルド電圧を本発明のように決めることにより、回路系が可能とする最大出力を確保することができ、負荷電流の変化に対して変動の少ない平坦な負荷電圧範囲が広い非接触給電装置が提供できる。
【図面の簡単な説明】
【図1】 本発明の非接触給電方法の実施の形態を示し、インダクタのスレショルド電圧決定法の説明図である。
【図2】 従来の非接触給電装置における負荷の電流・電圧特性図である。
【図3】 非接触給電装置の正面断面図である。
【図4】 従来の非接触給電装置の回路図である。
【図5】 本発明の非接触給電方法の実施例で、非線形インダクタンス特性を有するインダクタを負荷と並列に接続した回路図である。
【図6】 図5におけるインダクタの非線形インダクタンス特性を示す特性図である。
【図7】 本発明の有効性を説明するための説明図である。
【符号の説明】
1次電源端子電圧
1次側導体に通流する電流
M 1次側導体と二次側ピックアップコイルとの間の相互インダクタンス
リアクタンスLと直列に接続したコンデンサのキャパシタンス
2次側ピックアップコイルのインダクタンス
Is 負荷短絡電流
Ipm 負荷出力が最大となる負荷電流
Pmax 最大負荷出力
1a 1次導体
1b 1次導体
2 ピックアップコイル
3 鉄心
5 ピックアップコイル
7 ピックアップコイルのリアクタンス補償用直列コンデンサ
8 負荷
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-contact power feeding method, in particular, a threshold voltage at which an inductance transition occurs in an inductor is determined by the magnitude of the load current to ensure the maximum load output obtained by the circuit system and the load current can be greatly changed. The present invention relates to a non-contact power feeding method in which fluctuations in terminal voltage are reduced.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a member or component in a manufacturing process of a semiconductor, liquid crystal, or the like is required to be performed in a clean environment set in order to increase the accuracy of a product. In the transport process, when power is supplied from the power supply line to the transport carriage, dust is generated due to contact between the power supply line and the current collector.
In order to prevent this, the primary side conductor (feeding line) connected to the power source is arranged on the fixed side along the traveling path of the transport carriage, and the current flowing through the primary side conductor is placed on the transport vehicle side. A conveyance system has been proposed in which a non-contact power supply device for supplying electric power in a non-contact manner is provided, and thereby, necessary power can be supplied to the conveyance vehicle side without generating dust using an electromagnetic induction phenomenon. .
[0003]
In this clean transfer system, in order to supply power with a non-contact power supply device mounted on a traveling transport vehicle, as shown in FIG. 3, a magnetic flux generated by a reciprocating current flowing through the primary side conductors 1a and 1b is used as an iron core. Lead to 3. Since the primary current is a high-frequency alternating current, the magnetic flux guided to the iron core 3 changes alternately, and a voltage is applied to the winding 2 of the secondary pickup coil wound around the iron core 3 due to an electromagnetic induction phenomenon. Induced.
As shown in the circuit diagram of FIG. 4, the pickup coil is connected in series with a capacitor C 2 to compensate for the reactance ωL 2 of the winding of the pickup coil, and the negative reactance-1 / (ωC 2 ) leave the state close to the resonance, to generate a predetermined voltage across the capacitor C 2. Connecting the load 8 at both ends of the capacitor C 2, to obtain a current of the load 8 by utilizing this predetermined voltage.
[0004]
The synthetic reactance X of the series circuit is X = ωL 2 −1 / (ωC 2 )
X = 0 corresponds to so-called series resonance. At this time, a large voltage can be applied to the terminal of the load with a small number of inputs, but since the fluctuation when deviating from the equilibrium point is large, it is usually close to series resonance, but contactless power feeding is performed with some synthetic reactance X remaining. Do.
[0005]
[Problems to be solved by the invention]
The conventional non-contact power feeding method, that is, the circuit shown in FIG. 4 has a characteristic that the terminal voltage of the load decreases as the load current increases as shown in FIG. Therefore, in order to keep load voltage fluctuations within an allowable range with respect to changes in load current caused by driving the motor of a transport vehicle, the load current that can be passed is restricted, or the alternating current obtained by the pickup coil is converted to direct current. However, there is a problem that an expensive voltage stabilization function must be added to the direct current power source.
[0006]
The present invention solves the problems of the conventional non-contact power feeding method described above, determines the threshold voltage at which the inductance transition in the inductor occurs based on the magnitude of the load current, and secures the maximum load output obtained in the circuit system. An object of the present invention is to provide a non-contact power feeding method in which fluctuation of the load terminal voltage is small even when the load current is greatly changed.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the non-contact power feeding method of the present invention uses a power feeding line connected to a power source as a primary side conductor, and uses the electromagnetic induction phenomenon from the current flowing in the primary side to the secondary side. In a non-contact power feeding method in which a load is connected to both ends of a capacitor connected to the pickup coil so as to take electric power in a non-contact manner by the pickup coil and compensate for the reactance of the pickup coil, When an inductor whose inductance changes nonlinearly according to the magnitude of the threshold voltage is connected, and the terminal voltage of the load becomes a voltage larger than the threshold voltage, the resonance point is shifted using the inductance transition of the inductor. , it is possible to suppress the increase of the load terminal voltage, maximum a threshold voltage of the inductor depends from the circuit system load Characterized in that as substantially equal to the load terminal voltage in the value of the load current as a force.
[0008]
The non-contact power feeding method of the present invention having the above configuration ensures the maximum output possible by the system and provides load voltage characteristics with less fluctuation with respect to a wider load current change.
[0009]
In order to achieve the same purpose, the feeder line connected to the power source is used as the primary conductor, and the current flowing through the primary side is used to make contactless by the secondary side pickup coil using the electromagnetic induction phenomenon. In a non-contact power feeding method in which a load is connected to both ends of a capacitor connected to the pickup coil so as to compensate for the reactance of the pickup coil, the magnitude of the threshold voltage is applied to both ends of the load. When an inductor whose inductance changes nonlinearly is connected and the terminal voltage of the load becomes a voltage larger than the threshold voltage, the inductance transition of the inductor is used to shift the resonance point and increase the load terminal voltage. In addition, the threshold voltage of the inductor is set to 70 to 75 percent of the load short-circuit current determined by the circuit system. Wherein the in the value of the load current of the cement was set to approximately equal to the load terminal voltage.
[0010]
The non-contact power feeding method of the present invention having the above-described configuration secures the maximum output possible by the system using only the value of the load short-circuit current that can be measured and calculated by a simpler and more straightforward method, and more The present invention provides load voltage characteristics with little fluctuation with respect to a wide load current change.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the non-contact power feeding method of the present invention will be described with reference to the drawings.
[0012]
The present invention relates to a non-contact power feeding method mounted on a movable transport vehicle in a clean transport system. As shown in FIG. 3, a magnetic flux generated by a reciprocating current flowing in primary conductors 1a and 1b. To the iron core 3. A magnetic flux generated by a primary current, which is a high-frequency alternating current, is guided to the iron core 3, and a voltage is induced in the winding 2 of the secondary pickup coil wound around the iron core 3 by an electromagnetic induction phenomenon. As shown in FIG. 4 which is a circuit diagram of the pickup coil, in order to compensate for the reactance ωL 2 of the winding of the pickup coil, a capacitor C 2 is connected in series with the pickup coil and its negative reactance−1 / (ωC 2 ). leave the state close to the resonance gives the required voltage across the capacitor C 2. Connecting the load 8 at both ends of the capacitor C 2, to obtain a current of the load 8 by utilizing this required voltage.
[0013]
The synthetic reactance X of the series circuit is given by the following formula: X = ωL 2 −1 / (ωC 2 ) (1)
X = 0 corresponds to so-called series resonance. At this time, a large voltage can be applied to the terminal of the load with a small number of inputs, but since the fluctuation when deviating from the equilibrium point is large, it is usually close to series resonance, but contactless power feeding is performed with some synthetic reactance X remaining. Do.
[0014]
In the circuit shown in FIG. 4 alone, as shown by the solid line in FIG. In order to reduce the variation of the load voltage characteristics for the load current, as shown by a dotted line in FIG. 2, the series circuit of the pickup coil and a capacitor C 2 at a small load current the terminal voltage increases in the present invention from the resonance condition in large shifting purposes, for example, the circuit diagram as shown in FIG. 5, in parallel with the capacitor C 2 and the load, connecting the inductor Lt whose inductance varies nonlinearly with the magnitude of the voltage.
As shown in FIG. 6, this inductor retains a sufficiently large inductance in a voltage range lower than the required threshold voltage Ect, and the non-linearity in which the inductance rapidly decreases with respect to a voltage higher than the required threshold voltage Ect. It has the inductance characteristic. An inductor having such a non-linear inductance characteristic has a structure in which a winding is wound around a ring-shaped iron core, and a desired non-linear inductance characteristic is realized using the magnetic saturation characteristic of the iron core.
[0015]
The terminal voltage of the load, thus when lower than the threshold voltage Ect the terminal voltage of the inductor connected in parallel with the capacitor C 2 and these transition inductance value in the inductor described above to occur, the inductor as shown in FIG. 6 the inductance is sufficiently large regarded as open with the capacitor C 2, synthetic reactance X by the pickup coil and a capacitor C 2 is close to the resonance is maintained at a small negative value.
However, when the load current decreases and the terminal voltage of the load increases as shown by the solid line in FIG. 2, the inductance of the inductor connected in parallel with the load decreases rapidly, and the capacitance C 2 of the capacitor as viewed from the pickup coil. , The combined reactance X by the pickup coil and the capacitor C 2 set close to the resonance becomes a large negative value, greatly deviates from the resonance, reduces the current flowing through the capacitor C 2 , and reduces the load terminal voltage. Is suppressed as shown by the dotted line in FIG.
[0016]
The present invention relates to a method for determining a threshold voltage Ect at which an inductance value transition occurs in an inductor.
FIG. 1 shows how to determine the threshold voltage Ect at which the transition of the inductance value occurs in the inductor according to the present invention.
As shown in FIG. 4, when an inductor having a nonlinear inductance characteristic is not in parallel with the load, the load terminal voltage decreases with 1-3′-d and the load current in FIG. As the load current increases, the load output changes to a mountain shape such as oa′-abcd, and when the load current becomes Ipm, the load output takes a maximum value Pmax at a point b on the mountain curve.
[0017]
In the present invention, as shown in FIG. 5, an inductor Lx whose inductance changes nonlinearly with the magnitude of the voltage is connected in parallel with the capacitor and the load, and the inductance value is changed as shown in FIG. The threshold voltage Ect at which the transition occurs is substantially equal to the load terminal voltage 3 ′ at the load current value at which the load determined by the circuit system is the maximum output. As shown in FIG. 4, when an inductor having a nonlinear inductance characteristic is not connected in parallel with the load, the load terminal voltage and the load output characteristic with respect to the load current shown in FIG. Can be identified.
[0018]
If the circuit constants in FIG. 4 are known, the load terminal voltage and the load output characteristic with respect to the load current shown in FIG. 1 can also be specified by solving an AC circuit equation using complex numbers. Therefore, the threshold voltage Ect at which the transition of the inductance value occurs in the inductor connected in parallel with the load is the load terminal voltage 3 ′ at the load current value at which the load determined by the circuit system is the maximum output as in the present invention. It is feasible to choose to be approximately equal.
[0019]
Further, based on the experience of measurement and calculation analysis on the non-contact power feeding device that is practically used, the load current value at which the load becomes the maximum output is 70 of the load current (Is in FIG. 1) at which the load voltage becomes zero. It has been found to be ~ 75 percent. Therefore, in another embodiment of the present invention, the load terminal voltage is set equal to 70 to 75% of the load short-circuit current Is determined by the circuit system. According to this method, the load output characteristic over the entire range of the load current change is unnecessary, and the threshold voltage Ect at which the transition of the inductance value occurs in the inductor connected in parallel with the load is determined only from the load short-circuit current Is. Can do. The magnitude of the load short-circuit current determined by the circuit system can be obtained by actual measurement and calculation using a simpler and more straightforward method.
[0020]
The reason why the threshold voltage Ect is substantially equal to the load terminal voltage at the load current value at which the load determined by the circuit system is the maximum output will be clarified with reference to FIG.
In the present invention, the threshold voltage Ect at which the inductance value transition occurs in the inductor connected in parallel with the load is substantially equal to the load terminal voltage 3 ′ at the load current value Ipm at which the load determined by the circuit system is the maximum output. I have to.
[0021]
Therefore, according to the present invention, the load terminal voltage is 3-3′-d and the load output is obd-d as the load current increases, and the maximum output Pmax that the circuit system can provide as the load output is obtained. However, if the threshold voltage Ect in the inductor is 4 ', the flat load voltage range is 4-4', which is wider than 3-3 'in the present invention, but the load output characteristic is oc-d. The maximum output Pmax allowed by the circuit system is not reached, which is not preferable.
Further, when the threshold voltage Ect is 2 ′, the load output characteristic is oa-b-d, and the maximum output Pmax that the circuit system can provide is secured, but the flat load voltage range is 2-2 ′. It becomes narrower than 3-3 ′ in the case of the present invention, which is not preferable.
[0022]
【The invention's effect】
According to the non-contact power feeding method of the present invention, the maximum output that the circuit system is capable of is ensured by determining the threshold voltage at which the inductance value transition occurs in the inductor connected in parallel with the load as in the present invention. Therefore, it is possible to provide a non-contact power feeding device having a wide flat load voltage range with little variation with respect to a change in load current.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a method for determining a threshold voltage of an inductor, showing an embodiment of a non-contact power feeding method of the present invention.
FIG. 2 is a current / voltage characteristic diagram of a load in a conventional non-contact power feeding device.
FIG. 3 is a front sectional view of the non-contact power feeding device.
FIG. 4 is a circuit diagram of a conventional non-contact power feeding device.
FIG. 5 is a circuit diagram in which an inductor having a nonlinear inductance characteristic is connected in parallel with a load in the embodiment of the non-contact power feeding method of the present invention.
6 is a characteristic diagram showing nonlinear inductance characteristics of the inductor in FIG. 5. FIG.
FIG. 7 is an explanatory diagram for explaining the effectiveness of the present invention.
[Explanation of symbols]
V 1 Primary power supply terminal voltage I 1 Current flowing through the primary side conductor M Mutual inductance between the primary side conductor and the secondary side pickup coil C 2 Capacitance of the capacitor connected in series with the reactance L 2 L 2 Inductance of secondary pickup coil Is Load short-circuit current Ipm Load current that maximizes load output Pmax Maximum load output 1a Primary conductor 1b Primary conductor 2 Pickup coil 3 Iron core 5 Pickup coil 7 Series capacitor for reactance compensation of pickup coil 8 load

Claims (2)

電源に接続された給電線を1次側導体として、該1次側に流れる電流から、電磁誘導現象を利用して、2次側のピックアップコイルにより非接触的に電力を取り、かつピックアップコイルのリアクタンスを補償するように、該ピックアップコイルと接続したコンデンサの両端に負荷を接続した非接触給電方法において、該負荷の両端に、そのスレショルド電圧の大きさによりそのインダクタンスが非線形に変化するインダクタを接続し、該負荷の端子電圧が該スレショルド電圧よりも大きな電圧となるときに、該インダクタのインダクタンス遷移を利用して、共振点をずらし、負荷端子電圧の上昇を抑制するとともに、該インダクタのスレショルド電圧を、回路系より決まる負荷の最大出力となる負荷電流の値における負荷端子電圧と略等しくするようにしたことを特徴とする非接触給電方法。Using the feeder connected to the power source as the primary conductor, the electric current is taken from the primary side using the electromagnetic induction phenomenon by the secondary side pickup coil in a non-contact manner, and the pickup coil In a non-contact power feeding method in which a load is connected to both ends of a capacitor connected to the pickup coil so as to compensate for reactance, an inductor whose inductance changes nonlinearly depending on the magnitude of the threshold voltage is connected to both ends of the load. When the terminal voltage of the load becomes a voltage larger than the threshold voltage, the inductance transition of the inductor is used to shift the resonance point , thereby suppressing the increase of the load terminal voltage and the threshold voltage of the inductor. Is approximately equal to the load terminal voltage at the load current value that is the maximum load output determined by the circuit system. Non-contact power feeding method is characterized in that so as to. 電源に接続された給電線を1次側導体として、該1次側に流れる電流から、電磁誘導現象を利用して、2次側のピックアップコイルにより非接触的に電力を取り、かつピックアップコイルのリアクタンスを補償するように、該ピックアップコイルと接続したコンデンサの両端に負荷を接続した非接触給電方法において、該負荷の両端に、そのスレショルド電圧の大きさによりそのインダクタンスが非線形に変化するインダクタを接続し、該負荷の端子電圧が該スレショルド電圧よりも大きな電圧となるときに、該インダクタのインダクタンス遷移を利用して、共振点をずらし、負荷端子電圧の上昇を抑制するとともに、該インダクタのスレショルド電圧を、回路系より決まる負荷短絡電流の70乃至75パーセントの負荷電流の値における負荷端子電圧と略等しくするようにしたことを特徴とする非接触給電方法。Using the feeder connected to the power source as the primary conductor, the electric current is taken from the primary side using the electromagnetic induction phenomenon by the secondary side pickup coil in a non-contact manner, and the pickup coil In a non-contact power feeding method in which a load is connected to both ends of a capacitor connected to the pickup coil so as to compensate for reactance, an inductor whose inductance changes nonlinearly depending on the magnitude of the threshold voltage is connected to both ends of the load. When the terminal voltage of the load becomes a voltage larger than the threshold voltage, the inductance transition of the inductor is used to shift the resonance point , thereby suppressing the increase of the load terminal voltage and the threshold voltage of the inductor. At a load current value of 70 to 75 percent of the load short-circuit current determined by the circuit system. Non-contact power feeding method is characterized in that so as to substantially equal to the terminal voltage.
JP34856197A 1997-12-02 1997-12-02 Contactless power supply method Expired - Fee Related JP3650694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34856197A JP3650694B2 (en) 1997-12-02 1997-12-02 Contactless power supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34856197A JP3650694B2 (en) 1997-12-02 1997-12-02 Contactless power supply method

Publications (2)

Publication Number Publication Date
JPH11168843A JPH11168843A (en) 1999-06-22
JP3650694B2 true JP3650694B2 (en) 2005-05-25

Family

ID=18397855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34856197A Expired - Fee Related JP3650694B2 (en) 1997-12-02 1997-12-02 Contactless power supply method

Country Status (1)

Country Link
JP (1) JP3650694B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107591900A (en) * 2017-09-21 2018-01-16 南阳理工学院 Radio energy transmission system based on non-linear topological structure

Also Published As

Publication number Publication date
JPH11168843A (en) 1999-06-22

Similar Documents

Publication Publication Date Title
KR101230211B1 (en) Non-contact power feeding apparatus of magnetic resonance method
EP1741113B1 (en) A device and method of non-contact energy transmission
CN102971939B (en) Voltage detector, abnormal detector, noncontact power transmitting device, noncontact current-collecting device and vehicle
KR100511583B1 (en) Control of inductive power transfer pickups
JP6817221B2 (en) Equipment and methods for wireless power transfer between DC voltage sources
EP2895350B1 (en) Circuit arrangement and method of operating a circuit arrangement
CN103270562B (en) The apparatus and method of the unidirectional magnetic flux in compensator transformer iron core
CN103210564B (en) Contactless electricity-supplying device
US20220320909A1 (en) Wireless power transfer apparatus
JP3650694B2 (en) Contactless power supply method
JP2012233718A (en) Current detection device
EP1559120A1 (en) Transformer
JP3647234B2 (en) Non-contact power supply device
JP4165523B2 (en) Contactless power supply
JP2000078776A (en) Capacitor having saturable capacitance characteristic and non-contact feeding device using the same
JP3442937B2 (en) Non-contact power supply device for ground moving objects
KR101131586B1 (en) Resonator for magnetic resonance power transmission device using current source input
JP2000184625A (en) Non-contact feeding method for transport cars in transporting system
JP2000125487A (en) Noncontact feeding device
CN115214394B (en) Dynamic wireless charging system of electric automobile and lateral offset power fluctuation suppression method
KR101369176B1 (en) High Power Charging And Pick-up Apparatus And Resonance Tuning Method for Same
JP2002354710A (en) Power feeder device for noncontacting feed
Deng et al. A Method Based on Vector-Summing of Reduce Output Power Fluctuation for EV-DWPT System with the Passive LC Network
JP2002272021A (en) Non-contact feeder device to be mounted on transport vehicle for transporting system
CN117977826A (en) CLC-S wireless power transmission system based on primary side variable inductance and voltage stabilizing strategy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees