JP2002272021A - Non-contact feeder device to be mounted on transport vehicle for transporting system - Google Patents

Non-contact feeder device to be mounted on transport vehicle for transporting system

Info

Publication number
JP2002272021A
JP2002272021A JP2001069609A JP2001069609A JP2002272021A JP 2002272021 A JP2002272021 A JP 2002272021A JP 2001069609 A JP2001069609 A JP 2001069609A JP 2001069609 A JP2001069609 A JP 2001069609A JP 2002272021 A JP2002272021 A JP 2002272021A
Authority
JP
Japan
Prior art keywords
pickup coil
load
power supply
winding
transport vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001069609A
Other languages
Japanese (ja)
Inventor
Takao Takahashi
孝夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kiden Kogyo Ltd
Original Assignee
Hitachi Kiden Kogyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kiden Kogyo Ltd filed Critical Hitachi Kiden Kogyo Ltd
Priority to JP2001069609A priority Critical patent/JP2002272021A/en
Publication of JP2002272021A publication Critical patent/JP2002272021A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact feeder device, which is mounted on a transport vehicle for a transporting system, that is capable of autonomously and logically adjusting the current that flows in windings of a secondary pickup coil, according to the size of a load and is also capable of preventing overheating of the wirings with a light load. SOLUTION: A load and a resonance capacitor C2 are connected in series with both terminals 'a', 'b' of the secondary pickup coil mounted on the car, in the non-contact feeder device that is mounted on the vehicle for a transport system, in which by using a conductor connected to a power supply E as a primary side and by utilizing electromagnetic phenomenon, power is obtained from a current 11 flowing in the primary side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、搬送システム用搬
送車に搭載する非接触給電装置に関し、特に、負荷の大
小に応じて2次側ピックアップコイルの巻線に流れる電
流を、自律的、かつ合理的に加減できるようにするとと
もに、軽負荷時における巻線の過熱を未然に防止するよ
うにした搬送システム用搬送車に搭載する非接触給電装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact power supply device mounted on a transport vehicle for a transport system, and more particularly, to an autonomous and independent current source that flows through a winding of a secondary pickup coil according to the magnitude of a load. The present invention relates to a non-contact power supply device mounted on a transport vehicle for a transport system, which can be rationally adjusted and prevents overheating of a winding under a light load.

【0002】[0002]

【従来の技術】従来、半導体、液晶等を製造する工程に
おける搬送においては、これらの工程におけるクリーン
な環境を汚染することを避ける必要がある。そこで、接
触による発挨を回避するために、これらの搬送を行う搬
送車への電力供給について、電源に接続された導線を1
次側として固定的に配置し、この1次側に流れる電流に
対し、電磁誘導現象を利用して、非接触的に電力を得る
ようにした非接触給電装置を備えた可動の搬送車からな
る搬送システムが採用されている。この非接触給電装置
において、従来は、図3に示すように、少ない巻回数の
2次側ピックアップコイルにより1次側に流れる電流か
ら所要の負荷電圧を得るために、負荷と共振用コンデン
サC2を並列接続してなる支路回路を2次側ピックアッ
プコイルの両端子に接続していた。かかる状態で、装置
の小形化を図るため、並びに電磁ノイズ抑制に配慮し
て、周波数の上限を抑えた、数キロヘルツから数十キロ
ヘルツの高周波電流に対する2次側ピックアップコイル
のインダクタンスL2と共振用コンデンサC2の静電容
量との間における共振現象を利用して、共振用コンデン
サC2の両端子に得られる高電圧により所要の負荷電圧
を得るようにしていた。
2. Description of the Related Art Conventionally, in the transport of semiconductors, liquid crystals, and the like, it is necessary to avoid contaminating a clean environment in these processes. Therefore, in order to avoid greetings caused by contact, the power supply to the transport vehicle that carries out these transports requires one conductor connected to the power supply.
A movable carrier equipped with a non-contact power supply device which is fixedly disposed as a secondary side and which non-contactly supplies electric power to the current flowing through the primary side by utilizing an electromagnetic induction phenomenon. A transport system is employed. Conventionally, in this contactless power supply device, as shown in FIG. 3, in order to obtain a required load voltage from a current flowing to the primary side by a secondary side pickup coil having a small number of turns, a load and a resonance capacitor C2 are connected. The branch circuits connected in parallel are connected to both terminals of the secondary side pickup coil. In such a state, the inductance L2 of the secondary side pickup coil and the resonance capacitor for a high frequency current of several kilohertz to several tens of kilohertz, in which the upper limit of the frequency is suppressed in order to reduce the size of the device and to suppress electromagnetic noise, A required load voltage is obtained by a high voltage obtained at both terminals of the resonance capacitor C2 by utilizing a resonance phenomenon between the capacitance of C2 and the capacitance.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
方法では、負荷の大小にかかわらず2次側ピックアップ
コイルのインダクタンスL2と共振用コンデンサC2の
静電容量との間において、常時、共振に近い状態が維持
される結果、特に軽負荷時において2次側ピックアップ
コイルの巻線に大きな電流が流れ、巻線が過熱するとい
う問題があった。この軽負荷時における巻線の過熱を回
避・軽減するために、軽負荷時に非共振回路をスイッチ
ング投入する方法(特表平8−501435号公報参
照)や、可飽和リアクトルを負荷と並列に接続し、2次
側ピックアップコイルの端子電圧の上昇を抑えたり、イ
ンピーダンス反転回路を負荷と並列に接続し、軽負荷時
における2次側ピックアップコイルの巻線の電流を抑制
する方法(特開平8−308150号公報参照)等が採
用されていた。しかしながら、いずれの方法も、余分の
回路及び制御を必要とするため、装置が複雑化し、コス
トアップとなるという問題があった。
However, according to the conventional method, regardless of the magnitude of the load, the resonance between the inductance L2 of the secondary side pickup coil and the capacitance of the resonance capacitor C2 is always close to resonance. As a result, there is a problem that a large current flows through the winding of the secondary-side pickup coil particularly under a light load, and the winding is overheated. In order to avoid or reduce overheating of the winding at light load, a method of switching on a non-resonant circuit at light load (see Japanese Patent Application Laid-Open No. 8-501435), or connecting a saturable reactor in parallel with the load And a method of suppressing a rise in terminal voltage of the secondary-side pickup coil or connecting an impedance inverting circuit in parallel with the load to suppress the current of the winding of the secondary-side pickup coil at light load. 308150) and the like. However, each of these methods requires an extra circuit and control, so that there has been a problem that the apparatus is complicated and the cost is increased.

【0004】本発明は、上記従来の搬送システム用搬送
車に搭載する非接触給電装置の有する問題点に鑑み、負
荷の大小に応じて2次側ピックアップコイルの巻線に流
れる電流を、自律的、かつ合理的に加減できるようにす
るとともに、軽負荷時における巻線の過熱を未然に防止
することができるようにした搬送システム用搬送車に搭
載する非接触給電装置を提供することを目的とする。
[0004] In view of the problems of the non-contact power supply device mounted on the conventional transport vehicle for a transport system, the present invention autonomously controls the current flowing through the winding of the secondary pickup coil according to the magnitude of the load. And to provide a non-contact power supply device to be mounted on a transport vehicle for a transport system, which is capable of reasonably adjusting and reducing the overheating of the windings at a light load. I do.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明の搬送システム用搬送車に搭載する非接触給
電装置は、電源に接続された導線を1次側として、1次
側に流れる電流から、電磁誘導現象を利用して、2次側
ピックアップコイルにより非接触的に電力を得るように
した搬送システム用搬送車に搭載する非接触給電装置に
おいて、搬送車上に搭載された2次側ピックアップコイ
ルの両端子に、負荷と共振用コンデンサを直列に結線し
てなる支路回路を接続したことを特徴とする。
To achieve the above object, a contactless power supply device mounted on a carrier for a carrier system according to the present invention uses a lead wire connected to a power supply as a primary side and flows to the primary side. In a non-contact power supply device mounted on a transport vehicle for a transport system in which electric power is obtained from an electric current by a secondary-side pickup coil using an electromagnetic induction phenomenon in a non-contact manner, a secondary mounted on the transport vehicle A branch circuit having a load and a resonance capacitor connected in series is connected to both terminals of the side pickup coil.

【0006】この搬送システム用搬送車に搭載する非接
触給電装置は、2次側ピックアップコイルの両端子に、
負荷と共振用コンデンサを直列に結線してなる支路回路
を接続しているため、負荷の大小に応じて2次側ピック
アップコイルの巻線に流れる電流を自律的、かつ合理的
に加減できるとともに、高価な回路並びに制御回路を付
加することなく、軽負荷時における2次側ピックアップ
コイルの巻線の過熱の問題を回避することができる。ま
た、2次側ピックアップコイルの巻回数が多いので、各
車に搭載された2次側ピックアップコイルのインダクタ
ンスを可能な限り同一値に近づけてコイルを製作するこ
とが、容易であり、多数の搬送車に安定して、非接触的
に電力が供給できる。
[0006] The non-contact power supply device mounted on the carrier for the carrier system has two terminals of a secondary side pickup coil.
Since the branch circuit is connected by connecting the load and the capacitor for resonance in series, the current flowing through the winding of the secondary pickup coil can be autonomously and rationally adjusted according to the size of the load, and It is possible to avoid the problem of overheating of the winding of the secondary pickup coil at light load without adding an expensive circuit and a control circuit. In addition, since the number of turns of the secondary pickup coil is large, it is easy to manufacture the coil with the inductance of the secondary pickup coil mounted on each vehicle as close to the same value as possible, and it is easy to carry out a large number of conveyances. Power can be supplied stably and contactlessly to vehicles.

【0007】[0007]

【発明の実施の形態】以下、本発明の搬送システム用搬
送車に搭載する非接触給電装置の実施の形態を図面に基
づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a non-contact power supply device mounted on a carrier for a carrier system according to the present invention will be described below with reference to the drawings.

【0008】図1〜図2に、本発明の搬送システム用搬
送車に搭載する非接触給電装置の一実施例を示す。この
非接触給電装置は、電源Eに接続された導線を1次側と
して、1次側に流れる電流I1から、電磁誘導現象を利
用して、2次側ピックアップコイルにより非接触的に電
力を得るようにした搬送システム用搬送車に搭載する非
接触給電装置において、車上に搭載された2次側ピック
アップコイルの両端子a,bに、負荷と共振用コンデン
サC2を直列に結線してなる支路回路を接続して構成さ
れている。
FIGS. 1 and 2 show an embodiment of a non-contact power supply device mounted on a carrier for a carrier system according to the present invention. This non-contact power supply device uses a conductor connected to a power supply E as a primary side and non-contactly obtains power from a current I1 flowing through the primary side by a secondary side pickup coil using an electromagnetic induction phenomenon. In the non-contact power supply device mounted on the transport vehicle for a transport system, a load and a resonance capacitor C2 are connected in series to both terminals a and b of a secondary pickup coil mounted on the vehicle. Circuit circuits are connected.

【0009】図2は、可動の搬送車に搭載された非接触
給電装置の2次側ピックアップコイルの正面断面図を示
す。この2次側ピックアップコイルは、E形コア13の
中央脚に2次側ピックアップコイルの巻線12を回巻し
て構成される。そして電源に接続され、かつ軌道側に固
定的に配置された往復導体よりなる導線11a,11b
を1次側として、この1次側に流れる電流の作る磁束
を、E形コア13の中央脚に導き入れ、電磁誘導現象を
利用して、2次側ピックアップコイルの巻線12の端子
間に誘導電圧を得るようにする。この誘導電圧を増倍す
るのに2次側ピックアップコイルのインダクタンスL2
と2次側ピックアップコイルの外部に接続した共振用コ
ンデンサC2の静電容量との間における共振現象により
発生する高電圧により所要の負荷電圧を得ることができ
る。
FIG. 2 is a front sectional view of a secondary pickup coil of a non-contact power feeding device mounted on a movable carrier. The secondary pickup coil is configured by winding the winding 12 of the secondary pickup coil around the center leg of the E-shaped core 13. The conductors 11a and 11b are connected to a power source and are made of reciprocating conductors fixedly arranged on the track side.
Is the primary side, the magnetic flux generated by the current flowing through the primary side is introduced into the central leg of the E-shaped core 13, and the electromagnetic induction phenomenon is used between the terminals of the winding 12 of the secondary side pickup coil. Try to get an induced voltage. To multiply this induced voltage, the inductance L2 of the secondary side pickup coil is used.
A required load voltage can be obtained by a high voltage generated due to a resonance phenomenon between the capacitance of the resonance capacitor C2 connected to the outside of the secondary side pickup coil.

【0010】ところで、従来の非接触給電装置は、図3
に示すように、搬送車上に搭載された2次側ピックアッ
プコイルの両端子a,b間に接続している支路回路は、
負荷と共振用コンデンサC2とを並列に接続して構成し
ている。このため、2次側ピックアップコイルのインダ
クタンスL2と共振用コンデンサC2の静電容量との間
における共振現象を利用して、共振用コンデンサC2の
両端子に得られる共振高電圧により所要の負荷電圧を得
ることができるので、比較的少ない巻回数の2次側ピッ
クアップコイルを用いて1次側に流れる電流から所要の
負荷電圧を得ることができる。
[0010] A conventional wireless power transfer device is shown in FIG.
As shown in the figure, the branch circuit connected between the terminals a and b of the secondary side pickup coil mounted on the carrier is
The load and the resonance capacitor C2 are connected in parallel. For this reason, by utilizing the resonance phenomenon between the inductance L2 of the secondary side pickup coil and the capacitance of the resonance capacitor C2, the required load voltage is reduced by the resonance high voltage obtained at both terminals of the resonance capacitor C2. Therefore, a required load voltage can be obtained from the current flowing to the primary side using the secondary side pickup coil having a relatively small number of turns.

【0011】しかし、負荷の大小にかかわらず2次側ピ
ックアップコイルのインダクタンスL2と共振用コンデ
ンサC2の静電容量とは並列に接続され、常時、共振に
近い状態が維持される結果、特に軽負荷時において2次
側ピックアップコイルの巻線12に大きな電流が流れ、
巻線12が過熱するという問題があった。この軽負荷時
における巻線12過熱を回避・軽減する方法としては、
軽負荷時に非共振回路をスイッチング投入したり、可飽
和リアクトルを負荷と並列に接続し、2次側ピックアッ
プコイルの端子電圧の上昇を抑えたり、インピーダンス
反転回路を負荷と並列に接続し、軽負荷時における2次
側ピックアップコイルの巻線12の電流を抑制する等が
行われているため、必要以上の回路並びに制御を必要と
し、構成が複雑となり、コストアップをさけることがで
きなかった。
However, regardless of the magnitude of the load, the inductance L2 of the secondary side pickup coil and the capacitance of the resonance capacitor C2 are connected in parallel, and a state close to resonance is always maintained. At the time, a large current flows through the winding 12 of the secondary pickup coil,
There was a problem that the winding 12 was overheated. As a method of avoiding or reducing overheating of the winding 12 at the time of light load,
Switching of non-resonant circuit at light load, connection of saturable reactor in parallel with load, suppression of increase in terminal voltage of secondary side pickup coil, connection of impedance inverting circuit in parallel with load, light load At this time, the current of the winding 12 of the secondary side pickup coil is suppressed, so that more circuits and controls than necessary are required, the configuration becomes complicated, and cost increase cannot be avoided.

【0012】しかしながら、本実施例においては、負荷
と共振用コンデンサC2を直列に結線してなる支路回路
を、搬送車上に搭載された2次側ピックアップコイルの
両端子間a,bに接続されているので、負荷の大小に応
じて2次側ピックアップコイルの巻線12に流れる電流
が自律的に変わるようになる。例えば、軽負荷のリミッ
トは負荷端開放であるが、負荷が開放されると2次側ピ
ックアップコイルの巻線12に流れる電流は零となり、
従来の方式で問題となった軽負荷時における2次側ピッ
クアップコイルの巻線12に大きな電流が流れず、した
がって、巻線12が過熱する問題を未然に防止すること
ができる。
However, in this embodiment, a branch circuit formed by connecting the load and the resonance capacitor C2 in series is connected between the terminals a and b of the secondary pickup coil mounted on the carrier. Therefore, the current flowing through the winding 12 of the secondary pickup coil changes autonomously according to the magnitude of the load. For example, the light load limit is the load end open, but when the load is released, the current flowing through the winding 12 of the secondary pickup coil becomes zero,
A large current does not flow through the winding 12 of the secondary side pickup coil at the time of light load, which is a problem in the conventional method, and therefore, the problem of overheating of the winding 12 can be prevented.

【0013】また、負荷開放時においても所要の負荷端
子電圧を維持する必要があるため、2次側ピックアップ
コイルの巻回数を従来法よりも数倍大きくするようにす
る。これにより、2次側ピックアップコイルの巻線12
に流れる所要電流は、巻数に比例して小さくなり、細い
線を用いることができるので、2次側ピックアップコイ
ルの巻線12の正味の重量に関して本発明が従来法と比
べて不利とはならない。
Since it is necessary to maintain a required load terminal voltage even when the load is released, the number of turns of the secondary pickup coil is set to be several times larger than that of the conventional method. Thereby, the winding 12 of the secondary side pickup coil
The current required to flow through the secondary winding becomes smaller in proportion to the number of turns, and a thinner wire can be used, so that the present invention is not disadvantageous in comparison with the conventional method with respect to the net weight of the winding 12 of the secondary pickup coil.

【0014】また、搬送システムにおいては、同一周波
数電流の流れる1次導体から同一仕様の非接触給電装置
を搭載した複数台の搬送車が受電する場合があり、共振
条件を同じくするために各搬送車に搭載された2次側ピ
ックアップコイルのインダクタンスL2を可能な限り同
一値に近づける必要がある。かかる場合には、本発明の
ように巻回数の多い方が、従来の方式のように巻回数が
少ない場合よりインダクタンス値の近いコイルを製作し
易い利点がある。
In a transfer system, a plurality of transfer vehicles equipped with a non-contact power supply device of the same specification may receive power from a primary conductor through which a current of the same frequency flows. It is necessary to make the inductance L2 of the secondary side pickup coil mounted on the vehicle as close to the same value as possible. In such a case, a coil having a large number of turns as in the present invention has an advantage that it is easier to manufacture a coil having a smaller inductance value than a coil having a small number of turns as in a conventional method.

【0015】本発明においては、2次側ピックアップコ
イルと共振用コンデンサC2の端子電圧の差電圧が負荷
電圧となるから、従来の方式に比べて2次側ピックアッ
プコイル並びに共振用コンデンサC2に印加される電圧
は高くなるが、通常の搬送システムにおいてはその電圧
は1.5kV以下に抑えることができ、高価な絶縁技術
は不要となり、コストアップをさけることができる。
In the present invention, since the voltage difference between the terminal voltages of the secondary pickup coil and the resonance capacitor C2 becomes the load voltage, it is applied to the secondary pickup coil and the resonance capacitor C2 as compared with the conventional system. Although the voltage increases, the voltage can be suppressed to 1.5 kV or less in a normal transport system, so that an expensive insulation technique is not required and cost can be avoided.

【0016】[0016]

【発明の効果】本発明の搬送システム用搬送車に搭載す
る非接触給電装置によれば、負荷の大小に応じて2次側
ピックアップコイルの巻線に流れる電流を自律的、かつ
合理的に加減できるとともに、高価な回路並びに制御の
付加をすることなく、軽負荷時における2次側ピックア
ップコイルの巻線の過熱の問題を回避することができ、
安価な搬送システム非接触給電装置が提供できる。ま
た、2次側ピックアップコイルの巻回数が多いので、各
車に搭載された2次側ピックアップコイルのインダクタ
ンスを可能な限り同一値に近づけてコイルを製作するこ
とが従来法と比べて容易であり、多数の搬送車に安定し
て、非接触的に電力が供給できる搬送システムが実現で
きる。
According to the non-contact power supply device mounted on the carrier for the carrier system of the present invention, the current flowing through the winding of the secondary side pickup coil can be autonomously and rationally adjusted according to the magnitude of the load. It is possible to avoid the problem of overheating of the winding of the secondary side pickup coil at light load without adding an expensive circuit and control,
An inexpensive transport system non-contact power supply device can be provided. Also, since the number of turns of the secondary pickup coil is large, it is easier to manufacture the coil with the inductance of the secondary pickup coil mounted on each car as close as possible to the same value as possible. Thus, it is possible to realize a transport system that can stably and non-contactly supply power to a large number of transport vehicles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の搬送システム用搬送車に搭載する非接
触給電装置の一実施例を示す回路図である。
FIG. 1 is a circuit diagram showing one embodiment of a non-contact power supply device mounted on a carrier for a carrier system of the present invention.

【図2】非接触給電装置の正面図である。FIG. 2 is a front view of the wireless power supply device.

【図3】従来例の回路図である。FIG. 3 is a circuit diagram of a conventional example.

【符号の説明】[Explanation of symbols]

E 電源 M 1次側導体と2次側ピックアップコイルとの間の
相互インダクタンス I1 1次側導体に流れる電流 L1 1次側のインダクタンス L2 2次側ピックアップコイルのインダクタンス C2 共振用コンデンサ a,b 2次側ピックアップコイルL2の端子
E power supply M Mutual inductance between primary conductor and secondary pickup coil I1 Current flowing in primary conductor L1 Primary inductance L2 Inductance of secondary pickup coil C2 Resonant capacitors a, b Secondary Terminal of the side pickup coil L2

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電源に接続された導線を1次側として、
1次側に流れる電流から、電磁誘導現象を利用して、2
次側ピックアップコイルにより非接触的に電力を得るよ
うにした搬送システム用搬送車に搭載する非接触給電装
置において、車上に搭載された2次側ピックアップコイ
ルの両端子に、負荷と共振用コンデンサを直列に結線し
てなる支路回路を接続したことを特徴とする搬送システ
ム用搬送車に搭載する非接触給電装置。
1. A conductor connected to a power supply is used as a primary side.
From the current flowing to the primary side, using the electromagnetic induction phenomenon,
In a non-contact power feeding device mounted on a transport vehicle for a transport system in which power is contactlessly obtained by a secondary pickup coil, a load and a resonance capacitor are connected to both terminals of a secondary pickup coil mounted on the vehicle. A non-contact power supply device mounted on a transport vehicle for a transport system, wherein a branch circuit formed by connecting the power supply in series is connected.
JP2001069609A 2001-03-13 2001-03-13 Non-contact feeder device to be mounted on transport vehicle for transporting system Pending JP2002272021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001069609A JP2002272021A (en) 2001-03-13 2001-03-13 Non-contact feeder device to be mounted on transport vehicle for transporting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001069609A JP2002272021A (en) 2001-03-13 2001-03-13 Non-contact feeder device to be mounted on transport vehicle for transporting system

Publications (1)

Publication Number Publication Date
JP2002272021A true JP2002272021A (en) 2002-09-20

Family

ID=18927627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001069609A Pending JP2002272021A (en) 2001-03-13 2001-03-13 Non-contact feeder device to be mounted on transport vehicle for transporting system

Country Status (1)

Country Link
JP (1) JP2002272021A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060076796A (en) * 2004-12-29 2006-07-05 한국전기연구원 Non-contacting power supply unit
JP2010535458A (en) * 2007-08-02 2010-11-18 クゥアルコム・インコーポレイテッド Deployable antenna for wireless power
CN102204074A (en) * 2008-09-11 2011-09-28 奥克兰联合服务有限公司 Inductively coupled AC power transfer
WO2015040650A1 (en) * 2013-09-17 2015-03-26 パナソニックIpマネジメント株式会社 Contactless power transmission device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060076796A (en) * 2004-12-29 2006-07-05 한국전기연구원 Non-contacting power supply unit
JP2010535458A (en) * 2007-08-02 2010-11-18 クゥアルコム・インコーポレイテッド Deployable antenna for wireless power
JP2013017388A (en) * 2007-08-02 2013-01-24 Qualcomm Inc Deployable antennas for wireless power
CN102204074A (en) * 2008-09-11 2011-09-28 奥克兰联合服务有限公司 Inductively coupled AC power transfer
JP2012502618A (en) * 2008-09-11 2012-01-26 オークランド ユニサービシズ リミテッド Inductively coupled AC power transfer
WO2015040650A1 (en) * 2013-09-17 2015-03-26 パナソニックIpマネジメント株式会社 Contactless power transmission device

Similar Documents

Publication Publication Date Title
US6686823B2 (en) Inductive power transmission and distribution apparatus using a coaxial transformer
JP2914439B2 (en) Resonant converter with controlled inductor
CA2881905C (en) Circuit arrangement and method of operating a circuit arrangement
US6486765B1 (en) Transformer
US20160182001A1 (en) Common mode noise filter
JP2002272134A (en) Non-contact feeding device of high frequency power, and method therefor
JP3551304B2 (en) Non-contact power supply
US20080088399A1 (en) Series impedance matched inductive power pick up
JP5217324B2 (en) Power supply system
US9263950B2 (en) Coupled inductors for improved power converter
US20230365027A1 (en) Non-contact power supply system and transportation system
JPH0374172A (en) Voltage generator
JP2002272021A (en) Non-contact feeder device to be mounted on transport vehicle for transporting system
US6100781A (en) High leakage inductance transformer
JP2000184625A (en) Non-contact feeding method for transport cars in transporting system
JP2002354713A (en) Impedance converter circuit of noncontact power feeder system
KR101953571B1 (en) Semiconductor transformer for railway vehicle with wireless power transmission coil and wireless power transmission coil thereof
KR102429895B1 (en) Magnetic component and display device having the same
JP5250867B2 (en) Induction power receiving circuit
US20200196400A1 (en) Induction heating apparatus
US20220410738A1 (en) Power conversion apparatus, vehicle including the same, and method of controlling
JP3647234B2 (en) Non-contact power supply device
JP2022513161A (en) Electromagnetic induction device
CN110880492A (en) Magnetic coupler and communication system
JP2019179904A (en) Coil unit, wireless power transmission device, wireless power reception device, and wireless power transmission system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127