JP2000184625A - Non-contact feeding method for transport cars in transporting system - Google Patents
Non-contact feeding method for transport cars in transporting systemInfo
- Publication number
- JP2000184625A JP2000184625A JP10362006A JP36200698A JP2000184625A JP 2000184625 A JP2000184625 A JP 2000184625A JP 10362006 A JP10362006 A JP 10362006A JP 36200698 A JP36200698 A JP 36200698A JP 2000184625 A JP2000184625 A JP 2000184625A
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- carrier
- primary
- transport
- reactance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Current-Collector Devices For Electrically Propelled Vehicles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、搬送システムにお
ける搬送車の非接触給電方法に関し、特に、1次側電源
の電圧の負荷変動を低減して搬送車に非接触で給電する
ようにした搬送システムにおける搬送車の非接触給電方
法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact power supply method for a transport vehicle in a transport system, and more particularly to a transport method in which a load variation of a voltage of a primary power supply is reduced to supply a power to the transport vehicle in a non-contact manner. The present invention relates to a non-contact power supply method for a carrier in a system.
【0002】[0002]
【従来の技術】従来、半導体、液晶等を製造する工程間
の部品の搬送は、クリーンな環境を汚染することなく搬
送することが求められるため、部品の搬送を行う搬送車
への電力供給についても、発塵を回避するために、非接
触給電方法が採用されている。この搬送車への非接触給
電方法は、電源に接続された導線を1次側として、1次
側に流れる電流から電磁誘導現象を利用して、2次側ピ
ックアップコイルを介して非接触的で電力を搬送車に供
給するように構成されている。2. Description of the Related Art Conventionally, it has been required to transport components between processes for manufacturing semiconductors, liquid crystals, etc. without polluting a clean environment. In order to avoid dust generation, a non-contact power supply method is adopted. This non-contact power supply method for a transport vehicle uses a conductor connected to a power source as a primary side and uses a magnetic induction phenomenon from a current flowing through the primary side to use a non-contact power supply via a secondary side pickup coil. It is configured to supply electric power to the carrier.
【0003】[0003]
【発明が解決しようとする課題】ところで、従来の非接
触給電方法は、1次側導線に流れる電流から効率的に電
力を得るため、また、装置の小形化を図るため、さら
に、電磁ノイズの抑制に配慮して、周波数の上限を抑え
て、数キロヘルツから数十キロヘルツの高周波電流を電
源から1次側導線に流すようにしている。通常、この1
次側導線は、往復導体で構成し、電源から出る電流と、
電源へ戻る電流を空間的に近づけて配置することによ
り、1次電流の作る磁場をできるだけ相殺し、1次側導
線と鎖交する磁束によるインダクタンスを低減するよう
にしている。しかし、高周波数電流が使用されるので、
1次側導線のリアクタンスは比較的大きく、負荷による
電圧変動を受け易いという問題があった。By the way, the conventional non-contact power supply method is intended to efficiently obtain power from the current flowing through the primary conductor, to reduce the size of the device, and to reduce electromagnetic noise. In consideration of the suppression, the upper limit of the frequency is suppressed, and a high frequency current of several kilohertz to several tens of kilohertz is caused to flow from the power supply to the primary conductor. Usually this 1
The secondary conductor is made up of a reciprocating conductor,
By arranging the current returning to the power supply spatially close to each other, the magnetic field generated by the primary current is canceled as much as possible, and the inductance due to the magnetic flux linked to the primary conductor is reduced. However, since high frequency currents are used,
The reactance of the primary conductor is relatively large, and there is a problem that the primary conductor is susceptible to voltage fluctuation due to the load.
【0004】一方、2次側ピックアップコイルを介して
非接触的で電力の供給を受けるために搬送車に設けられ
る給電回路は、ピックアップコイルのインダクタンスに
よるリアクタンスを補償するために、これと直列にコン
デンサを接続し、このコンデンサの両端に負荷を接続す
るようにしているので、ピックアップコイルとコンデン
サからなる直列回路の合成リアクタンスXが、X=0の
ときはいわゆる直列共振に当たり、僅かの入力で負荷の
端子に大きな電圧を与え得るが、平衡点からずれたとき
の負荷端子電圧の変動が大きいことから、通常、直列共
振に近いが、合成リアクタンスXを若干残したところで
非接触給電を行うようにしている。この2次側共振回路
に残った合成リアクタンスXは、1次側に換算加算さ
れ、リアクタンスとして作用する。ところが、大規模な
搬送システムにおいては、使用される搬送車の台数が数
十台にも及び、また各ピックアップコイルの共振回路の
合成リアクタンスが1次側に換算加算されるので、これ
によっても、1次側電源の電圧が負荷変動の影響を大き
く受けるという問題があった。On the other hand, a feeder circuit provided in the carrier for receiving power supply in a non-contact manner through a secondary pickup coil is provided with a capacitor in series with the pickup coil in order to compensate for the reactance due to the inductance of the pickup coil. And a load is connected to both ends of this capacitor. Therefore, when X = 0, the combined reactance X of the series circuit composed of the pickup coil and the capacitor corresponds to the so-called series resonance, and the input of the load is reduced by a slight input. Although a large voltage can be applied to the terminal, since the fluctuation of the load terminal voltage when deviating from the equilibrium point is large, it is usually close to the series resonance, but the non-contact power supply is performed when the synthesized reactance X is slightly left. I have. The combined reactance X remaining in the secondary side resonance circuit is converted and added to the primary side, and acts as a reactance. However, in a large-scale transport system, the number of transport vehicles used is increased to several tens, and the combined reactance of the resonance circuit of each pickup coil is converted and added to the primary side. There is a problem that the voltage of the primary side power supply is greatly affected by the load fluctuation.
【0005】本発明は、上記従来の搬送システムにおけ
る搬送車の非接触給電方法の有する問題点に鑑み、1次
側電源の電圧の負荷変動を低減して搬送車に非接触で給
電するようにした搬送システムにおける搬送車の非接触
給電方法を提供することを目的とする。The present invention has been made in view of the above-mentioned problems of the non-contact power supply method for a transport vehicle in the conventional transport system, and has been made to reduce the load variation of the voltage of the primary power supply so as to supply power to the transport vehicle in a non-contact manner. It is an object of the present invention to provide a non-contact power supply method for a transport vehicle in a transport system that has been provided.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、本発明の搬送システムにおける搬送車の非接触給電
方法は、電源に接続された導線を1次側として、1次側
導線に流れる電流から電磁誘導現象を利用して、2次側
ピックアップコイルを介して非接触的で電力を搬送車に
供給する搬送システムにおける搬送車の非接触給電方法
において、搬送車に搭載するピックアップコイルの2次
側共振回路のリアクタンスを搬送車毎に誘導性と容量性
となるようにして、1次側電源に対する搬送車毎の負荷
の影響を互いに相殺するようにしたことを特徴とする。In order to achieve the above object, a non-contact power supply method for a transport vehicle in a transport system according to the present invention is directed to a method in which a primary wire is connected to a power supply and a current flowing through the primary conductive wire. In a non-contact power supply method for a carrier in a carrier system for supplying power to the carrier in a non-contact manner through a secondary-side pickup coil by utilizing an electromagnetic induction phenomenon from a secondary coil of the pickup coil mounted on the carrier. The reactance of the side resonance circuit is made inductive and capacitive for each carrier, so that the influence of the load of each carrier on the primary-side power supply is offset each other.
【0007】この搬送システムにおける搬送車の非接触
給電方法は、搬送車に搭載するピックアップコイルの2
次側共振回路のリアクタンスを搬送車毎に誘導性と容量
性となるようにして、1次側電源に対する搬送車毎の負
荷の影響を互いに相殺するようにしたので、多数の搬送
車からなる大規模な搬送システムにおいても、2次側共
振回路の合成リアクタンスによる電圧降下が1次側電源
に換算加算されることなく互いに相殺されるので、1次
側電源の電圧の負荷変動を大幅に低減することができ
る。[0007] A non-contact power supply method for a transport vehicle in this transport system includes a pickup coil mounted on the transport vehicle.
Since the reactance of the secondary side resonance circuit is made inductive and capacitive for each carrier, and the influence of the load of each carrier on the primary-side power supply is offset each other, a large number of carriers is required. Even in a large-scale transport system, the voltage drop due to the combined reactance of the secondary-side resonance circuit is canceled out without being converted and added to the primary-side power supply, so that the load fluctuation of the voltage of the primary-side power supply is greatly reduced. be able to.
【0008】この場合において、搬送車を、ピックアッ
プコイルの2次側共振回路のリアクタンスが誘導性とな
る搬送車と、容量性となる搬送車とを交互に配設するよ
うにすることができる。In this case, it is possible to alternately arrange the transport vehicle in which the reactance of the secondary resonance circuit of the pickup coil is inductive and the transport vehicle in which the reactance is capacitive.
【0009】これにより、1次側電源の電圧の負荷変動
を、1次側導線の全長に亘って効率的に低減することが
できる。As a result, the load fluctuation of the voltage of the primary power supply can be efficiently reduced over the entire length of the primary conductor.
【0010】[0010]
【発明の実施の形態】以下、本発明の搬送システムにお
ける搬送車の非接触給電方法の実施の形態を図面に基づ
いて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a non-contact power supply method for a transport vehicle in a transport system according to the present invention will be described with reference to the drawings.
【0011】図1〜図3に、本発明の搬送システムにお
ける搬送車の非接触給電方法の一実施例を示す。この搬
送システム1は、搬送車の搬送行程に沿って、搬送車に
非接触で給電するための1次側の導線5を配設するとと
もに、この導線5に1次側電源3を接続し、かつ搬送路
に沿って複数台の搬送車2a,2bを走行可能に配設し
て構成する。1 to 3 show one embodiment of a non-contact power supply method for a transport vehicle in a transport system according to the present invention. The transport system 1 includes a primary conductor 5 for supplying power to the transport vehicle in a non-contact manner along a transport route of the transport vehicle, and a primary power source 3 connected to the conductor 5. In addition, a plurality of transport vehicles 2a and 2b are arranged so as to be able to travel along the transport path.
【0012】1次側の導線5は、図2に示すように、往
復導体5a,5bで構成し、電源3から出る電流を通電
する導体5aと、電源へ戻る電流を通電する導体5bと
を空間的に近づけて配置し、これにより1次電流の作る
磁場をできるだけ相殺し、1次側の導線5と鎖交する磁
束によるインダクタンスを低減するようにする。As shown in FIG. 2, the conductor 5 on the primary side is made up of reciprocating conductors 5a and 5b, and includes a conductor 5a for passing a current from the power source 3 and a conductor 5b for passing a current returning to the power source. They are arranged close to each other in space, so that the magnetic field generated by the primary current is canceled as much as possible, and the inductance due to the magnetic flux interlinking with the conductor 5 on the primary side is reduced.
【0013】1次側の導線5に流れる電流から、電磁誘
導現象を利用して、搬送車2a,2b側に、ピックアッ
プ11の鉄心13に巻回した2次側のピックアップコイ
ル12を介して、非接触で電力を得るようにする。1次
側の導線5からピックアップコイル12を介して非接触
で給電を受ける搬送車2a,2bは、搬送車毎に備える
2次側共振回路のリアクタンスを、例えば、搬送車2a
では誘導性、一方、搬送車2bでは容量性となるように
する。From the current flowing in the primary conductor 5, the electromagnetic induction phenomenon is used to cause the vehicles 2 a and 2 b to pass through the secondary pickup coil 12 wound around the iron core 13 of the pickup 11. Electric power is obtained without contact. Carriers 2a and 2b, which receive power from the primary conductor 5 in a non-contact manner via the pickup coil 12, contact the secondary resonance circuit provided for each carrier with the reactance of the carrier 2a, for example.
Is inductive, while on the other hand, the carrier 2b is capacitive.
【0014】1次側の導線5に流れる電流から、電磁誘
導現象を利用し、相互インダクタンスMの下で2次側の
ピックアップコイル12により効果的に電力を取るため
の共振回路は、図3に示すように、ピックアップコイル
12のインダクタンスL2によるリアクタンスを補償す
るために、これと直列に接続するようにしたコンデンサ
4の両端から負荷、すなわち、搬送車2a又は搬送車2
bへ電力を供給するようにしている。FIG. 3 shows a resonance circuit for effectively taking power from the current flowing through the primary conductor 5 by the secondary pickup coil 12 under the mutual inductance M by utilizing the electromagnetic induction phenomenon. as shown, in order to compensate for the reactance due to the inductance L 2 of the pick-up coil 12, the load from both ends of the capacitor 4 which is adapted to connect to a series, i.e., the transport vehicle 2a or transport vehicle 2
b.
【0015】ピックアップコイル12とコンデンサ4か
らなる直列回路の合成リアクタンスXは、 X=ωL2−1/(ωC2) ・・・・・(1) で表せ、この値を小さくしていった極限は、直列回路の
合成リアクタンスXが、X=0であり、いわゆる直列共
振に当たる。このとき、僅かの入力で負荷の端子に大き
な電圧を与え得るが、平衡点からずれたときの負荷端子
電圧の変動が大きいことから、通常、直列共振に近い
が、合成リアクタンスXを若干残したところで非接触給
電を行うようにする。The combined reactance X of the series circuit composed of the pickup coil 12 and the capacitor 4 can be expressed as follows: X = ωL 2 −1 / (ωC 2 ) (1) In the above, the combined reactance X of the series circuit is X = 0, which corresponds to so-called series resonance. At this time, a large voltage can be applied to the load terminal with a small input. However, since the fluctuation of the load terminal voltage when deviating from the equilibrium point is large, it is usually close to the series resonance, but the synthesized reactance X slightly remains. By the way, non-contact power supply is performed.
【0016】この場合、合成リアクタンスXを誘導性、
すなわち正数値とすることも、また容量性、すなわち負
数値とすることも容易に実現できる。非接触給電装置を
塔載した搬送車2a,2bを複数台配設した搬送システ
ムにおいては、同じ周波数特性を持つ1次電流に対して
多数の非接触給電装置が接続されることからから、電源
3の角周波数ωを変える手段は採用せず、ピックアップ
コイル12のインダクタンスL2と、直列コンデンサ4
のキャパシタンスC2の組み合わせを変えることによ
り、誘導性2次リアクタンス及び容量性2次リアクタン
スを持つ非接触給電装置が容易に実現できる。In this case, the synthetic reactance X is made inductive,
That is, it is easy to realize a positive value and a capacitive value, that is, a negative value. In a transport system having a plurality of transport vehicles 2a and 2b on which a non-contact power supply device is mounted, a large number of non-contact power supply devices are connected to a primary current having the same frequency characteristic. No means for changing the angular frequency ω of the pickup coil 12 is used, and the inductance L 2 of the pickup coil 12 and the series capacitor 4
By changing the combination of the capacitance C 2, non-contact power feeding device can be easily realized with an inductive secondary reactance and capacitive secondary reactance.
【0017】次に、2次側共振回路の合成リアクタンス
Xが、1次側電源3に与える影響を説明する。なお、説
明を簡単にするために、1次、2次の抵抗分を無視する
ものとし、また、直列コンデンサ4の両端に接続される
負荷がない場合を取り扱うが、通常の使用動作範囲内に
おける基本的なメカニズムにおいて、それらを考慮した
ときと本質的な差異は少ない。Next, the effect of the combined reactance X of the secondary side resonance circuit on the primary side power supply 3 will be described. For the sake of simplicity, it is assumed that the primary and secondary resistance components are ignored, and the case where there is no load connected to both ends of the series capacitor 4 is dealt with. There are few essential differences in the basic mechanism from when they are considered.
【0018】上記条件で、図3に示す回路において、次
の交流回路連立方程式(2)、(3)が成立する。 V1=jωL1I1+jωMI2 ・・・・・(2) jωMI1+jXI2=0 ・・・・・(3) ここで、Xは2次側ピックアップコイル12と、これに
直列に接続したコンデンサ4とからなる直列共振回路の
合成リアクタンスである。Under the above conditions, the following simultaneous equations (2) and (3) of the AC circuit are established in the circuit shown in FIG. V 1 = jωL 1 I 1 + jωMI 2 (2) jωMI 1 + jXI 2 = 0 (3) where X is connected in series to the secondary-side pickup coil 12. This is a combined reactance of a series resonance circuit including the capacitor 4.
【0019】この交流回路連立方程式(2)、(3)よ
り、式(4)が得られる。 V1=jωL1I1−j(ω2M2/X)I1 ・・・・・(4)Equation (4) is obtained from the simultaneous equations (2) and (3). V 1 = jωL 1 I 1 −j (ω 2 M 2 / X) I 1 (4)
【0020】式(4)において、V1は1次側導線5に
I1の電流を流すときに必要な1次側電源3の端子電圧
を示す。式(4)の右辺第1項は、1次側導線5のイン
ダクタンスL1に起因するリアクタンスにより生ずる電
圧降下である。式(4)の右辺第2項は、2次側ピック
アップコイル12と、これに直列に接続したコンデンサ
4とからなる直列共振回路に流れる電流I2が1次側導
線5へ誘導する電圧である。式(4)の右辺第2項の符
号は、2次側の直列共振回路の合成リアクタンスXの符
号の逆符号となっている。In the equation (4), V 1 indicates a terminal voltage of the primary power source 3 required when a current of I 1 flows through the primary conductor 5. The first term on the right side of the equation (4) is a voltage drop caused by a reactance caused by the inductance L 1 of the primary conductor 5. The second term on the right side of the equation (4) is a voltage at which a current I 2 flowing through a series resonance circuit including the secondary pickup coil 12 and the capacitor 4 connected in series thereto is induced to the primary conductor 5. . The sign of the second term on the right side of Expression (4) is the opposite sign of the sign of the combined reactance X of the secondary-side series resonance circuit.
【0021】したがって、本実施例のように、搬送車2
a,2bに搭載するピックアップコイルの2次側共振回
路のリアクタンスを搬送車2a,2b毎に誘導性と容量
性となるように、さらに好ましくは、誘導性となる搬送
車2aと、容量性となる搬送車2bとを交互に配設する
ようにするようにすれば、2次側共振回路の合成リアク
タンスによる電圧降下が1次側電源に換算加算されるこ
となく互いに相殺されるので、1次側電源の電圧の負荷
変動を大幅に低減できるものとなる。Therefore, as in this embodiment, the transport vehicle 2
a, 2b so that the reactance of the secondary side resonance circuit of the pickup coil is inductive and capacitive for each carrier 2a, 2b, more preferably the inductive carrier 2a, And the transfer vehicles 2b are alternately disposed, the voltage drops due to the combined reactance of the secondary side resonance circuit are canceled out without being converted and added to the primary side power supply. Load fluctuation of the voltage of the side power supply can be greatly reduced.
【0022】[0022]
【発明の効果】この搬送システムにおける搬送車の非接
触給電方法は、搬送車に搭載するピックアップコイルの
2次側共振回路のリアクタンスを搬送車毎に誘導性と容
量性となるようにして、1次側電源に対する搬送車毎の
負荷の影響を互いに相殺するようにしたので、多数の搬
送車からなる大規模な搬送システムにおいても、2次側
共振回路の合成リアクタンスによる電圧降下が1次側電
源に換算加算されることなく互いに相殺されるので、1
次側電源の電圧の負荷変動を大幅に低減でき、その結
果、負荷変動を抑制するための高価な制御装置を必要と
せず、設備コストを低廉にしながら、多数の搬送車に安
定して、非接触で電力を供給することができる。According to the non-contact power supply method for a carrier in the carrier system, the reactance of the secondary resonance circuit of the pickup coil mounted on the carrier is made inductive and capacitive for each carrier. Since the influence of the load of each carrier on the secondary power supply is offset each other, even in a large-scale transport system including a large number of transport vehicles, the voltage drop due to the combined reactance of the secondary resonance circuit is reduced by the primary power supply. Are offset by each other without being converted to
The load fluctuation of the voltage of the secondary power supply can be greatly reduced, and as a result, an expensive control device for suppressing the load fluctuation is not required. Power can be supplied by contact.
【0023】また、搬送車を、ピックアップコイルの2
次側共振回路のリアクタンスが誘導性となる搬送車と、
容量性となる搬送車とを交互に配設するようにすること
により、1次側電源の電圧の負荷変動を、1次側導線の
全長に亘って効率的に低減することができる。Further, the carrier is connected to the pickup coil 2.
A transport vehicle in which the reactance of the secondary resonance circuit is inductive,
By alternately arranging capacitive vehicles, the load fluctuation of the voltage of the primary power supply can be efficiently reduced over the entire length of the primary conductor.
【図1】本発明の搬送システムにおける搬送車の非接触
給電方法を適用した搬送システムの一実施例を示す説明
図である。FIG. 1 is an explanatory view showing one embodiment of a transport system to which a non-contact power supply method for a transport vehicle in a transport system of the present invention is applied.
【図2】1次側導線とピックアップコイルの位置関係を
示す断面図である。FIG. 2 is a cross-sectional view showing a positional relationship between a primary conductor and a pickup coil.
【図3】本発明の搬送システムにおける搬送車の非接触
給電方法を適用した回路図である。FIG. 3 is a circuit diagram to which a non-contact power supply method for a carrier in the carrier system of the present invention is applied.
1 搬送システム 2a 合成リアクタンスが誘導性である搬送車 2b 合成リアクタンスが容量性である搬送車 3 1次側電源 4 コンデンサ 5 1次側導線 5a 導体 5b 導体 12 ピックアッブコイル 13 鉄心 V1 1次電源端子電圧 I1 1次側導体の電流 M 1次側導体と2次側ピックアップコイルとの間の
相互インダクタンス L2 ピックアップコイルのインダクタンス C2 コンデンサのキャパシタンス I2 2次側直列共振回路の電流1 transport system 2a synthetic reactance transport vehicle transport vehicle 2b synthetic reactance is inductive is a capacitive 3 primary side power supply 4 capacitor 5 primary conductor 5a conductor 5b conductor 12 picks Abbu coil 13 core V 1 primary power supply Terminal voltage I 1 Current of primary side conductor M Mutual inductance between primary side conductor and secondary side pickup coil L 2 Inductance of pickup coil C 2 Capacitance of capacitor I 2 Current of secondary side series resonance circuit
Claims (2)
1次側導線に流れる電流から電磁誘導現象を利用して、
2次側ピックアップコイルを介して非接触的で電力を搬
送車に供給する搬送システムにおける搬送車の非接触給
電方法において、搬送車に搭載するピックアップコイル
の2次側共振回路のリアクタンスを搬送車毎に誘導性と
容量性となるようにして、1次側電源に対する搬送車毎
の負荷の影響を互いに相殺するようにしたことを特徴と
する搬送システムにおける搬送車の非接触給電方法。1. A conductor connected to a power supply is used as a primary side.
Using the electromagnetic induction phenomenon from the current flowing in the primary conductor,
In a non-contact power supply method for a carrier in a carrier system for supplying power to a carrier in a non-contact manner via a secondary pickup coil, a reactance of a secondary resonance circuit of a pickup coil mounted on the carrier is determined for each carrier. A non-contact power supply method for a transport vehicle in a transport system, wherein the inductive and capacitive characteristics of the transport system cancel each other out of the influence of the load of each transport vehicle on the primary-side power supply.
共振回路のリアクタンスが誘導性となる搬送車と、容量
性となる搬送車とを交互に配設するようにしたことを特
徴とする請求項1記載の搬送システムにおける搬送車の
非接触給電方法。2. The carrier according to claim 1, wherein the carrier having the inductive reactance of the secondary resonance circuit of the pickup coil and the carrier having the capacitive reactance are alternately arranged. Item 2. A non-contact power supply method for a carrier in the carrier system according to Item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10362006A JP2000184625A (en) | 1998-12-21 | 1998-12-21 | Non-contact feeding method for transport cars in transporting system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10362006A JP2000184625A (en) | 1998-12-21 | 1998-12-21 | Non-contact feeding method for transport cars in transporting system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000184625A true JP2000184625A (en) | 2000-06-30 |
Family
ID=18475594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10362006A Pending JP2000184625A (en) | 1998-12-21 | 1998-12-21 | Non-contact feeding method for transport cars in transporting system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000184625A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010068646A (en) * | 2008-09-11 | 2010-03-25 | Hitachi Plant Technologies Ltd | Non-contact power feed apparatus |
JP2012257374A (en) * | 2011-06-08 | 2012-12-27 | Toyota Industries Corp | Non-contact power transmission device |
CN103270671A (en) * | 2010-12-21 | 2013-08-28 | 矢崎总业株式会社 | Power feed system |
KR20140136935A (en) * | 2012-02-02 | 2014-12-01 | 오클랜드 유니서비시즈 리미티드 | Var control for inductive power transfer systems |
US10355532B2 (en) | 2016-11-02 | 2019-07-16 | Apple Inc. | Inductive power transfer |
US10447090B1 (en) | 2016-11-17 | 2019-10-15 | Apple Inc. | Inductive power receiver |
US10608470B2 (en) | 2012-10-29 | 2020-03-31 | Apple Inc. | Receiver for an inductive power transfer system and a method for controlling the receiver |
US10923953B2 (en) | 2014-11-05 | 2021-02-16 | Apple Inc. | Received wireless power regulation |
-
1998
- 1998-12-21 JP JP10362006A patent/JP2000184625A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010068646A (en) * | 2008-09-11 | 2010-03-25 | Hitachi Plant Technologies Ltd | Non-contact power feed apparatus |
CN103270671A (en) * | 2010-12-21 | 2013-08-28 | 矢崎总业株式会社 | Power feed system |
JP2012257374A (en) * | 2011-06-08 | 2012-12-27 | Toyota Industries Corp | Non-contact power transmission device |
KR20140136935A (en) * | 2012-02-02 | 2014-12-01 | 오클랜드 유니서비시즈 리미티드 | Var control for inductive power transfer systems |
JP2015510385A (en) * | 2012-02-02 | 2015-04-02 | オークランド ユニサービシズ リミテッドAuckland Uniservices Limited | VAR control for inductive power transfer systems |
KR102091222B1 (en) * | 2012-02-02 | 2020-03-20 | 오클랜드 유니서비시즈 리미티드 | Var control for inductive power transfer systems |
US11277027B2 (en) | 2012-02-02 | 2022-03-15 | Auckland Uniservices Limited | VAR control for inductive power transfer systems |
US10608470B2 (en) | 2012-10-29 | 2020-03-31 | Apple Inc. | Receiver for an inductive power transfer system and a method for controlling the receiver |
US10923953B2 (en) | 2014-11-05 | 2021-02-16 | Apple Inc. | Received wireless power regulation |
US10355532B2 (en) | 2016-11-02 | 2019-07-16 | Apple Inc. | Inductive power transfer |
US10447090B1 (en) | 2016-11-17 | 2019-10-15 | Apple Inc. | Inductive power receiver |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6686823B2 (en) | Inductive power transmission and distribution apparatus using a coaxial transformer | |
EP2895350B1 (en) | Circuit arrangement and method of operating a circuit arrangement | |
US20160182001A1 (en) | Common mode noise filter | |
JP3465075B2 (en) | Non-contact power supply | |
CN107710357B (en) | Primary and secondary side arrangement of a winding structure, system for inductive power transfer and method for inductively supplying power to a vehicle | |
CN101752871B (en) | Method for compensating interference current of an electrical system and interference current compensation device | |
US20080088399A1 (en) | Series impedance matched inductive power pick up | |
JP2000184625A (en) | Non-contact feeding method for transport cars in transporting system | |
JP2015528269A (en) | Power supply system, vehicle and method for operating vehicle | |
US20230365027A1 (en) | Non-contact power supply system and transportation system | |
JP2002354713A (en) | Impedance converter circuit of noncontact power feeder system | |
JP2011176949A (en) | Noncontact power supply | |
JPH08175232A (en) | Noncontact power feeding system | |
JP2015033166A (en) | Non-contact power supply system | |
JP2002272021A (en) | Non-contact feeder device to be mounted on transport vehicle for transporting system | |
JP3647234B2 (en) | Non-contact power supply device | |
JP4293854B2 (en) | Non-contact power receiving device and moving body | |
JP2002354710A (en) | Power feeder device for noncontacting feed | |
JPH08251842A (en) | Non-contact power feeding apparatus | |
JPH1132450A (en) | Non-contact feeding device | |
JP4122713B2 (en) | Contactless power supply | |
CN118811693A (en) | Power supply device for external equipment for transport vehicle system using high-frequency track cable | |
WO2023153000A1 (en) | Non-contact power supply system and transport system | |
JP4461538B2 (en) | Power line carrier communication equipment | |
JPH10248108A (en) | Non-contact feeder system |