JPH11168843A - Non-contact feeding method - Google Patents

Non-contact feeding method

Info

Publication number
JPH11168843A
JPH11168843A JP9348561A JP34856197A JPH11168843A JP H11168843 A JPH11168843 A JP H11168843A JP 9348561 A JP9348561 A JP 9348561A JP 34856197 A JP34856197 A JP 34856197A JP H11168843 A JPH11168843 A JP H11168843A
Authority
JP
Japan
Prior art keywords
load
inductor
power supply
threshold voltage
terminal voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9348561A
Other languages
Japanese (ja)
Other versions
JP3650694B2 (en
Inventor
Takao Takahashi
孝夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kiden Kogyo Ltd
Original Assignee
Hitachi Kiden Kogyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kiden Kogyo Ltd filed Critical Hitachi Kiden Kogyo Ltd
Priority to JP34856197A priority Critical patent/JP3650694B2/en
Publication of JPH11168843A publication Critical patent/JPH11168843A/en
Application granted granted Critical
Publication of JP3650694B2 publication Critical patent/JP3650694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact feeding method by which the threshold voltage of an inductor which causes an inductance transition is determined, in accordance with the value of a load current, a maximum load output obtained by a circuit system is secured and the fluctuations of a load terminal voltage can be reduced, even if the load current is varied significantly. SOLUTION: An inductor Lt whose inductance is changed in accordance with the value of a threshold voltage is connected between both the terminals of a load. When the load terminal voltage is larger than the threshold voltage, by utilizing the inductance transition of the inductor Lt , a resonance condition is deviated significantly, and the fluctuation of the load terminal voltage is suppressed. Furthermore, the threshold voltage of the inductor Lt is made to be approximately equal to the load terminal voltage at a load current value, corresponding to the maximum output of the load which is determined by a circuit system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非接触給電方法、
特に、インダクタにおけるインダクタンス遷移が起きる
スレショルド電圧を負荷電流の大きさにより定めて、回
路系で得られる最大の負荷出力を確保するとともに負荷
電流を大きく変えても負荷端子電圧の変動が少なくなる
ようにした非接触給電方法に関するものである。
The present invention relates to a wireless power supply method,
In particular, the threshold voltage at which the inductance transition in the inductor occurs is determined by the magnitude of the load current, so that the maximum load output obtained in the circuit system is ensured and the fluctuation of the load terminal voltage is reduced even if the load current is largely changed. And a contactless power supply method.

【0002】[0002]

【従来の技術】従来、半導体、液晶等の製造工程におけ
る部材あるいは部品の搬送においては、製品の高精度化
を図るために設定された清浄環境のもとで行うことが求
められる。搬送工程において、給電線から搬送台車への
電力供給時、該給電線と集電子との接触による発塵があ
る。これを防止するため、電源に接続された1次側導線
(給電線)を搬送台車の走行路に沿って固定側に配置す
るとともに、該1次側導線に流れる電流に対し、搬送車
側に非接触にて電力を給電されるための非接触給電装置
を配設し、これにより電磁誘導現象を利用して発塵する
ことなく所要の給電を搬送車側へ行える搬送システムが
提案されている。
2. Description of the Related Art Heretofore, it has been required to transport members or parts in the manufacturing process of semiconductors, liquid crystals, etc., in a clean environment which has been set in order to increase the precision of products. In the transporting process, when power is supplied from the power supply line to the transport vehicle, dust is generated due to contact between the power supply line and the current collector. In order to prevent this, a primary conductor (power supply line) connected to a power supply is arranged on the fixed side along the traveling path of the carrier, and a current flowing through the primary conductor is connected to the carrier on the carrier side. A transport system has been proposed in which a non-contact power supply device for supplying electric power in a non-contact manner is provided, and the required power can be supplied to a transport vehicle side without generating dust by using an electromagnetic induction phenomenon. .

【0003】このクリーン搬送システムにおいて、走行
する搬送車に搭載されている非接触給電装置にて給電す
るには、図3に示すように、1次側導体1a,1bに流
れる往復の電流が作る磁束を鉄心3に導く。1次電流は
高周波交番電流であるから鉄心3に導かれた磁束は交番
的に変化し、鉄心3に巻回されている2次側のピックア
ップコイルの巻線2には電磁誘導現象により電圧が誘起
される。ピックアップコイルは図4の回路図に示すよう
に、ピックアップコイルの巻線のリアクタンスωL2
補償するためにこれと直列にコンデンサC2を接続し、
その負のリアクタンス−1/(ωC2)により共振に近
い状態にしておき、コンデンサC2の両端に所定の電圧
を発生する。コンデンサC2の両端に負荷8をつなぎ、
この所定の電圧を利用して負荷8の電流を得る。
In this clean transport system, in order to supply power by a non-contact power supply device mounted on a traveling transport vehicle, a reciprocating current flowing through the primary conductors 1a and 1b is generated as shown in FIG. The magnetic flux is guided to the iron core 3. Since the primary current is a high-frequency alternating current, the magnetic flux guided to the iron core 3 changes alternately, and a voltage is applied to the winding 2 of the secondary side pickup coil wound around the iron core 3 by an electromagnetic induction phenomenon. Induced. As shown in the circuit diagram of FIG. 4, the pickup coil is connected with a capacitor C 2 in series with the pickup coil to compensate for the reactance ωL 2 of the winding of the pickup coil.
A state close to resonance is generated by the negative reactance -1 / (ωC 2 ), and a predetermined voltage is generated across the capacitor C 2 . Connecting the load 8 at both ends of the capacitor C 2,
The current of the load 8 is obtained using the predetermined voltage.

【0004】該直列回路の合成リアクタンスXは X=ωL2−1/(ωC2) で与えられ、X=0はいわゆる直列共振にあたる。この
とき、僅かの入力で負荷の端子に大きな電圧を与え得る
が、平衡点からずれたときの変動が大きいので、通常、
直列共振に近いが、合成リアクタンスXを若干残したと
ころで非接触給電を行う。
[0004] The combined reactance X of the series circuit is given by X = ωL 2 -1 / (ωC 2 ), and X = 0 corresponds to so-called series resonance. At this time, a large voltage can be applied to the load terminal with a small input, but the fluctuation at the time of deviating from the equilibrium point is large.
Non-contact power supply is performed when the synthesized reactance X is slightly left, although it is close to series resonance.

【0005】[0005]

【発明が解決しようとする課題】従来の非接触給電方
法、即ち、図4に示す回路にあっては、図2に示すよう
に負荷の端子電圧が、負荷電流の増加と共に低下する特
性がある。そのため、搬送車のモータ駆動等に伴う負荷
電流の変化に対して負荷電圧の変動を許容の範囲に抑え
るために、流し得る負荷電流を制約したり、ピックアッ
プコイルにより得られた交流を直流に変換する直流電源
に高価な電圧安定化機能を付加しなければならない問題
があった。
The conventional contactless power supply method, that is, the circuit shown in FIG. 4, has a characteristic that the terminal voltage of the load decreases as the load current increases, as shown in FIG. . Therefore, in order to keep the fluctuation of the load voltage within the allowable range with respect to the change of the load current due to the driving of the motor of the carrier, etc., the load current that can flow is restricted, and the AC obtained by the pickup coil is converted to DC. There is a problem that an expensive voltage stabilizing function must be added to the DC power supply.

【0006】本発明は、上記従来の非接触給電方法の有
する問題点を解決し、インダクタにおけるインダクタン
ス遷移が起きるスレショルド電圧を負荷電流の大きさに
より定めて、回路系で得られる最大の負荷出力を確保す
るとともに、負荷電流を大きく変えても負荷端子電圧の
変動が少ない非接触給電方法を提供することを目的とす
る。
The present invention solves the above-mentioned problems of the conventional non-contact power supply method, and determines a threshold voltage at which an inductance transition occurs in an inductor according to the magnitude of a load current, thereby obtaining a maximum load output obtained in a circuit system. An object of the present invention is to provide a non-contact power supply method that ensures a small change in load terminal voltage even when the load current is largely changed.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の非接触給電方法は、電源に接続された給電
線を1次側導体として、該1次側に流れる電流から、電
磁誘導現象を利用して、2次側のピックアップコイルに
より非接触的に電力を取り、かつピックアップコイルの
リアクタンスを補償するように、該ピックアップコイル
と接続したコンデンサの両端に負荷を接続した非接触給
電方法において、該負荷の両端に、そのスレショルド電
圧の大きさによりそのインダクタンスが非線形に変化す
るインダクタを接続し、該負荷の端子電圧が該スレショ
ルド電圧よりも大きな電圧となるときに、該インダクタ
のインダクタンス遷移を利用して、共振条件が大きくず
れて、負荷端子電圧の変動を抑制するとともに、該イン
ダクタのスレショルド電圧を、回路系より決まる負荷の
最大出力となる負荷電流の値における負荷端子電圧と略
等しくするようにしたことを特徴とする。
In order to achieve the above object, a non-contact power supply method according to the present invention uses a power supply line connected to a power supply as a primary conductor, and performs electromagnetic induction from a current flowing through the primary side. A non-contact power supply method in which a load is connected to both ends of a capacitor connected to the pickup coil so as to take power in a non-contact manner by a pickup coil on the secondary side and compensate for reactance of the pickup coil by utilizing the phenomenon. At the both ends of the load, an inductor whose inductance changes nonlinearly according to the magnitude of the threshold voltage is connected, and when the terminal voltage of the load becomes a voltage higher than the threshold voltage, the inductance transition of the inductor is performed. The resonance condition is greatly deviated, and the fluctuation of the load terminal voltage is suppressed. Voltage, characterized in that so as to substantially equal to the load terminal voltage in the value of the load current with the maximum output of the determined from the circuit system load.

【0008】上記の構成からなる本発明の非接触給電方
法は、系が可能とする最大出力を確保し、且つ、より広
い負荷電流の変化に対して、変動の少ない負荷電圧特性
を提供するものである。
[0008] The contactless power supply method of the present invention having the above-described configuration secures the maximum output possible by the system, and provides a load voltage characteristic with little fluctuation with respect to a wider change in load current. It is.

【0009】また、同じ目的を達成するため、電源に接
続された給電線を1次側導体として、該1次側に流れる
電流から、電磁誘導現象を利用して、2次側のピックア
ップコイルにより非接触的に電力を取り、かつピックア
ップコイルのリアクタンスを補償するように、該ピック
アップコイルと接続したコンデンサの両端に負荷を接続
した非接触給電方法において、該負荷の両端に、そのス
レショルド電圧の大きさによりそのインダクタンスが非
線形に変化するインダクタを接続し、該負荷の端子電圧
が該スレショルド電圧よりも大きな電圧となるときに、
該インダクタのインダクタンス遷移を利用して、共振条
件が大きくずれて、負荷端子電圧の変動を抑制するとと
もに、該インダクタのスレショルド電圧を、回路系より
決まる負荷短絡電流の70乃至75パーセントの負荷電
流の値における負荷端子電圧と略等しくするようにした
ことを特徴とする。
In order to achieve the same object, a feeder line connected to a power supply is used as a primary conductor, and a current flowing through the primary side is used by a secondary pickup coil by utilizing an electromagnetic induction phenomenon. In a non-contact power supply method in which a load is connected to both ends of a capacitor connected to the pickup coil so as to take power in a non-contact manner and compensate for the reactance of the pickup coil, the magnitude of the threshold voltage is applied to both ends of the load. By connecting an inductor whose inductance changes nonlinearly, when the terminal voltage of the load becomes larger than the threshold voltage,
Utilizing the inductance transition of the inductor, the resonance condition is greatly shifted to suppress the fluctuation of the load terminal voltage, and the threshold voltage of the inductor is reduced by 70 to 75% of the load short-circuit current determined by the circuit system. It is characterized in that it is made substantially equal to the load terminal voltage at the value.

【0010】上記の構成からなる本発明の非接触給電方
法は、より簡便で直截な方法で実測並びに算定可能な負
荷短絡電流の値のみを用いて、系が可能とする最大出力
を確保し、且つ、より広い負荷電流の変化に対して、変
動の少ない負荷電圧特性を提供するものである。
The non-contact power supply method of the present invention having the above-mentioned configuration secures the maximum output possible by the system by using only the value of the load short-circuit current which can be measured and calculated in a simpler and more straightforward manner. In addition, the present invention provides a load voltage characteristic with less variation with respect to a wider change in load current.

【0011】[0011]

【発明の実施の形態】本発明の非接触給電方法の実施の
形態を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the wireless power supply method according to the present invention will be described with reference to the drawings.

【0012】本発明は、クリーン搬送システムにおい
て、可動の搬送車に搭載されている非接触給電方法に係
るものであり、図3に示すように、1次側導体1a,1
bに流れる往復の電流が作る磁束を鉄心3に導く。高周
波交番電流である1次電流による磁束を鉄心3に導び
き、電磁誘導現象により、鉄心3に巻回されている2次
側のピックアップコイルの巻線2に電圧を誘起する。ピ
ックアップコイルはその回路図である図4に示すよう
に、ピックアップコイルの巻線のリアクタンスωL2
補償するためにこれと直列にコンデンサC2を接続しそ
の負のリアクタンス−1/(ωC2)により共振に近い
状態にしておき、コンデンサC2の両端に所要の電圧を
得る。コンデンサC2の両端に負荷8をつなぎ、この所
要の電圧を利用して負荷8の電流を得る。
The present invention relates to a non-contact power supply method mounted on a movable transport vehicle in a clean transport system, and as shown in FIG.
The magnetic flux generated by the reciprocating current flowing through b is guided to the iron core 3. The magnetic flux generated by the primary current, which is a high-frequency alternating current, is guided to the iron core 3, and a voltage is induced in the winding 2 of the secondary-side pickup coil wound around the iron core 3 by an electromagnetic induction phenomenon. As the pickup coil is shown in FIG. 4 is a circuit diagram thereof, the negative reactance -1 / connecting a capacitor C 2 in series with this to compensate for the reactance .omega.L 2 windings of the pickup coil (.omega.C 2) leave the state close to the resonance gives the required voltage across the capacitor C 2. Connecting the load 8 at both ends of the capacitor C 2, to obtain a current of the load 8 by utilizing this required voltage.

【0013】直列回路の合成リアクタンスXは次式 X=ωL2−1/(ωC2) ・・・・・・ (1) で与えられ、X=0はいわゆる直列共振にあたる。この
とき、僅かの入力で負荷の端子に大きな電圧を与え得る
が、平衡点からずれたときの変動が大きいので、通常、
直列共振に近いが、合成リアクタンスXを若干残したと
ころで非接触給電を行う。
The combined reactance X of the series circuit is given by the following equation: X = ωL 2 −1 / (ωC 2 ) (1), where X = 0 corresponds to so-called series resonance. At this time, a large voltage can be applied to the load terminal with a small input, but the fluctuation at the time of deviating from the equilibrium point is large.
Non-contact power supply is performed when the synthesized reactance X is slightly left, although it is close to series resonance.

【0014】図4に示す回路だけでは、図2に実線で示
すように負荷電流と共に負荷の端子電圧が大きく降下す
る。負荷電圧特性を図2において点線で示すように負荷
電流に対して変動を小さくするために、本発明では端子
電圧が大きくなる負荷電流の小さいところでピックアッ
プコイルとコンデンサC2による直列回路を共振条件か
ら大きくずらす目的で、例えば、その回路図を図5に示
すように、コンデンサC2並びに負荷と並列に、電圧の
大きさによりそのインダクタンスが非線形に変化するイ
ンダクタLtを接続する。このインダクタには図6に示
すように、所要のスレショルド電圧Ectよりも低い電圧
の範囲で十分大きなインダクタンスを保持し、所要のス
レショルド電圧Ectよりも高い電圧に対してはインダク
タンスが急激に小さくなる非線形のインダクタンス特性
をもたせる。このような非線形のインダクタンス特性を
持つインダクタは、巻線をリング状鉄心に巻いた構造の
ものであり、鉄心の磁気飽和特性を利用して所望の非線
形インダクタンス特性が実現される。
In the circuit shown in FIG. 4 alone, the terminal voltage of the load greatly decreases together with the load current as shown by the solid line in FIG. In order to reduce the variation of the load voltage characteristics for the load current, as shown by a dotted line in FIG. 2, the series circuit of the pickup coil and a capacitor C 2 at a small load current the terminal voltage increases in the present invention from the resonance condition in large shifting purposes, for example, the circuit diagram as shown in FIG. 5, in parallel with the capacitor C 2 and the load, connecting the inductor Lt whose inductance varies nonlinearly with the magnitude of the voltage. As shown in FIG. 6, this inductor retains a sufficiently large inductance in a voltage range lower than a required threshold voltage Ect, and has a non-linear structure in which the inductance is rapidly reduced for a voltage higher than the required threshold voltage Ect. Having the inductance characteristic of An inductor having such non-linear inductance characteristics has a structure in which a winding is wound around a ring-shaped iron core, and a desired non-linear inductance characteristic is realized using the magnetic saturation characteristics of the iron core.

【0015】負荷の端子電圧、従ってコンデンサC2
びにこれらと並列に接続されているインダクタの端子電
圧が上記したインダクタにおいてインダクタンスの値の
遷移が起きるスレショルド電圧Ectよりも低いときに
は、図6に示すようにインダクタのインダクタンスは十
分に大きいのでコンデンサC2に対しては開放とみな
せ、ピックアップコイルとコンデンサC2による合成リ
アクタンスXは、共振に近い、小さな負の値に維持され
る。しかし、負荷電流が下がり、負荷の端子電圧が図2
の実線のように上昇すると、負荷と並列に接続されたイ
ンダクタのインダクタンスが急激に小さくなり、ピック
アップコイルから見たときのコンデンサのキャパシタン
スC2が見かけ小さくなり、共振に近く設定されていた
ピックアップコイルとコンデンサC2による合成リアク
タンスXは、負の大きな値となって、共振から大きくず
れ、コンデンサC2に流れる電流を減じ、負荷の端子電
圧は図2の点線のように抑制される。
[0015] load of the terminal voltage, thus when the capacitor C 2 and lower than the threshold voltage Ect transition occurs in the inductance value terminal voltage in the inductor described above the inductor connected in parallel with these, as shown in FIG. 6 since inductance of the inductor is sufficiently large regarded as open with the capacitor C 2, synthetic reactance X by the pickup coil and a capacitor C 2 is close to the resonance is maintained at a small negative value. However, the load current decreases, and the terminal voltage of the load decreases as shown in FIG.
, The inductance of the inductor connected in parallel with the load suddenly decreases, the capacitance C 2 of the capacitor as seen from the pickup coil decreases apparently, and the pickup coil set close to resonance synthesis reactance X according to the capacitor C 2 is a negative large value, largely deviated from the resonance reduces the current flowing through the capacitor C 2, the terminal voltage of the load is suppressed as shown by the dotted line in FIG.

【0016】本発明は、インダクタにおけるインダクタ
ンスの値の遷移が起きるスレショルド電圧Ectの決定法
に関するものである。本発明によるインダクタにおいて
インダクタンスの値の遷移が起きるスレショルド電圧E
ctの決め方を図1により示す。図4に示すように非線形
のインダクタンス特性を持つインダクタが負荷と並列に
されていないとき、負荷端子電圧は図1において、1−
3’−dと負荷電流とともに低下する。負荷出力は負荷
電流が増えるにつれてo−a’−a−b−c−dと山形
に変わり、負荷電流がIpmとなるとき、山形カーブ上の
点bにおいて、負荷出力は最大値Pmaxをとる。
The present invention relates to a method for determining a threshold voltage Ect at which a transition of an inductance value occurs in an inductor. In the inductor according to the invention, a threshold voltage E at which a transition of the value of the inductance occurs.
FIG. 1 shows how to determine ct. As shown in FIG. 4, when the inductor having the non-linear inductance characteristic is not arranged in parallel with the load, the load terminal voltage becomes 1-in FIG.
3'-d and decreases with the load current. As the load current increases, the load output changes to oa'-abcd and a mountain shape. When the load current becomes Ipm, the load output takes a maximum value Pmax at a point b on the mountain curve.

【0017】本発明においては、図5に示すように、コ
ンデンサ並びに負荷と並列に、電圧の大きさによりその
インダクタンスが非線形に変化するインダクタLxを接
続し、且つ、図6に示したようにインダクタンスの値の
遷移が起きるスレショルド電圧Ectを、回路系より決ま
る負荷が最大出力となる負荷電流の値における負荷端子
電圧3’と略等しくする。図4に示すように非線形のイ
ンダクタンス特性を持つインダクタが負荷と並列に接続
されていないとき、図1で示した負荷電流に対する負荷
端子電圧並びに負荷出力特性は実測することにより回路
系が定まれば特定できる。
In the present invention, as shown in FIG. 5, an inductor Lx whose inductance varies non-linearly according to the magnitude of a voltage is connected in parallel with a capacitor and a load, and as shown in FIG. Is made substantially equal to the load terminal voltage 3 'at the value of the load current at which the load determined by the circuit system has the maximum output. When an inductor having a non-linear inductance characteristic is not connected in parallel with the load as shown in FIG. 4, the load terminal voltage and the load output characteristic with respect to the load current shown in FIG. Can be identified.

【0018】また、図4における回路定数が分かれば、
複素数を用いた交流回路方程式を解くことによっても図
1で示した負荷電流に対する負荷端子電圧並びに負荷出
力特性は特定できる。従って、負荷と並列に接続された
インダクタにおいてインダクタンスの値の遷移が起きる
スレショルド電圧Ectを、本発明のように、回路系より
決まる負荷が最大出力となる負荷電流の値における負荷
端子電圧3’と略等しくなるように選ぶことは実現可能
である。
If the circuit constants in FIG. 4 are known,
The load terminal voltage and load output characteristics with respect to the load current shown in FIG. 1 can also be specified by solving an AC circuit equation using a complex number. Therefore, the threshold voltage Ect at which the transition of the inductance value occurs in the inductor connected in parallel with the load is defined as the load terminal voltage 3 ′ at the load current value at which the load determined by the circuit system has the maximum output, as in the present invention. It is feasible to choose to be approximately equal.

【0019】また、実用的に使用される非接触給電装置
に関する測定並びに計算解析の経験から、負荷が最大出
力となる負荷電流の値は、負荷電圧が零となる負荷電流
(図1における、Is)の70乃至75パーセントであ
ることが判明している。そこで、本発明の別の実施例で
は回路系より決まる負荷短絡電流Isの70乃至75パ
ーセントの負荷電流における負荷端子電圧と等しくす
る。この方法によれば、負荷電流変化の全域に亘る負荷
出力特性は不要であり、負荷短絡電流Isだけから、負
荷と並列に接続されたインダクタにおいてインダクタン
スの値の遷移が起きるスレショルド電圧Ectを決めるこ
とができる。回路系より決まる負荷短絡電流の大きさは
より簡便で直截な方法を用いて実測並びに計算により求
め得る。
From the experience of measurement and calculation analysis of a practically used non-contact power feeding device, the value of the load current at which the load has the maximum output is determined by the load current at which the load voltage becomes zero (Is in FIG. 1). ) Has been found to be 70-75%. Therefore, in another embodiment of the present invention, the load terminal voltage is set equal to 70 to 75% of the load short-circuit current Is determined by the circuit system. According to this method, the load output characteristic over the entire range of the load current change is unnecessary, and the threshold voltage Ect at which the transition of the inductance value occurs in the inductor connected in parallel with the load is determined only from the load short-circuit current Is. Can be. The magnitude of the load short-circuit current determined by the circuit system can be obtained by actual measurement and calculation using a simpler and simpler method.

【0020】スレショルド電圧Ectを、回路系より決ま
る負荷が最大出力となる負荷電流の値における負荷端子
電圧と略等しくする理由を図7により明らかにする。本
発明では負荷と並列に接続されたインダクタにおいてイ
ンダクタンスの値の遷移が起きるスレショルド電圧Ect
を、回路系より決まる負荷が最大出力となる負荷電流の
値Ipmにおける負荷端子電圧3’と略等しくなるように
している。
The reason why the threshold voltage Ect is made substantially equal to the load terminal voltage at the value of the load current at which the load determined by the circuit system has the maximum output will be clarified with reference to FIG. In the present invention, the threshold voltage Ect at which the transition of the inductance value occurs in the inductor connected in parallel with the load.
Is approximately equal to the load terminal voltage 3 'at the load current value Ipm at which the load determined by the circuit system has the maximum output.

【0021】従って、本発明では負荷電流の増加に対し
て、負荷端子電圧は3−3’−d、負荷出力はo−b−
dとなり、負荷出力として回路系が可能とする最大出力
Pmaxが得られる。しかし、インダクタにおけるスレシ
ョルド電圧Ectを4’とすると、平坦な負荷電圧範囲が
4−4’と、本発明の場合の3−3’よりも広くなる
が、負荷出力特性がo−c−dとなり、回路系が可能と
する最大出力Pmaxに達せず、好ましくない。また、ス
レショルド電圧Ectを2’とすると、負荷出力特性がo
−a−b−dとなり回路系が可能とする最大出力Pmax
は確保されるが、平坦な負荷電圧範囲が2−2’と、本
発明の場合の3−3’よりも狭くなり、好ましくない。
Therefore, according to the present invention, the load terminal voltage is 3-3'-d and the load output is ob-
d, and the maximum output Pmax that the circuit system allows as the load output is obtained. However, assuming that the threshold voltage Ect in the inductor is 4 ', the flat load voltage range is 4-4', which is wider than 3-3 'in the case of the present invention, but the load output characteristic is ocd. , Does not reach the maximum output Pmax allowed by the circuit system, which is not preferable. If the threshold voltage Ect is 2 ', the load output characteristic becomes o
−a−b−d and the maximum output Pmax that the circuit system allows
Is secured, but the flat load voltage range is 2-2 ', which is narrower than 3-3' in the case of the present invention, which is not preferable.

【0022】[0022]

【発明の効果】本発明の非接触給電方法によれば、負荷
と並列に接続されたインダクタにおいてインダクタンス
の値の遷移が起きるスレショルド電圧を本発明のように
決めることにより、回路系が可能とする最大出力を確保
することができ、負荷電流の変化に対して変動の少ない
平坦な負荷電圧範囲が広い非接触給電装置が提供でき
る。
According to the non-contact power supply method of the present invention, a circuit system can be realized by determining the threshold voltage at which the transition of the inductance value occurs in the inductor connected in parallel with the load as in the present invention. The maximum output can be ensured, and a non-contact power supply device having a wide flat load voltage range with little change with respect to a change in load current can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非接触給電方法の実施の形態を示し、
インダクタのスレショルド電圧決定法の説明図である。
FIG. 1 shows an embodiment of a contactless power supply method of the present invention,
FIG. 4 is an explanatory diagram of a method of determining a threshold voltage of an inductor.

【図2】従来の非接触給電装置における負荷の電流・電
圧特性図である。
FIG. 2 is a current-voltage characteristic diagram of a load in a conventional contactless power supply device.

【図3】非接触給電装置の正面断面図である。FIG. 3 is a front sectional view of the wireless power supply device.

【図4】従来の非接触給電装置の回路図である。FIG. 4 is a circuit diagram of a conventional wireless power supply device.

【図5】本発明の非接触給電方法の実施例で、非線形イ
ンダクタンス特性を有するインダクタを負荷と並列に接
続した回路図である。
FIG. 5 is a circuit diagram in which an inductor having a non-linear inductance characteristic is connected in parallel with a load in the embodiment of the non-contact power feeding method of the present invention.

【図6】図5におけるインダクタの非線形インダクタン
ス特性を示す特性図である。
FIG. 6 is a characteristic diagram showing a nonlinear inductance characteristic of the inductor in FIG. 5;

【図7】本発明の有効性を説明するための説明図であ
る。
FIG. 7 is an explanatory diagram for explaining the effectiveness of the present invention.

【符号の説明】[Explanation of symbols]

1 1次電源端子電圧 I1 1次側導体に通流する電流 M 1次側導体と二次側ピックアップコイルとの間の
相互インダクタンス C2 リアクタンスL2と直列に接続したコンデンサの
キャパシタンス L2 2次側ピックアップコイルのインダクタンス Is 負荷短絡電流 Ipm 負荷出力が最大となる負荷電流 Pmax 最大負荷出力 1a 1次導体 1b 1次導体 2 ピックアップコイル 3 鉄心 5 ピックアップコイル 7 ピックアップコイルのリアクタンス補償用直列コ
ンデンサ 8 負荷
V 1 Primary power supply terminal voltage I 1 Current flowing through primary side conductor M Mutual inductance between primary side conductor and secondary side pickup coil C 2 Reactance L 2 Capacitance L 2 connected in series with capacitor L 2 Inductance of secondary side pickup coil Is Load short-circuit current Ipm Load current at which load output is maximized Pmax Maximum load output 1a Primary conductor 1b Primary conductor 2 Pickup coil 3 Iron core 5 Pickup coil 7 Series capacitor for reactance compensation of pickup coil 8 load

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電源に接続された給電線を1次側導体と
して、該1次側に流れる電流から、電磁誘導現象を利用
して、2次側のピックアップコイルにより非接触的に電
力を取り、かつピックアップコイルのリアクタンスを補
償するように、該ピックアップコイルと接続したコンデ
ンサの両端に負荷を接続した非接触給電方法において、
該負荷の両端に、そのスレショルド電圧の大きさにより
そのインダクタンスが非線形に変化するインダクタを接
続し、該負荷の端子電圧が該スレショルド電圧よりも大
きな電圧となるときに、該インダクタのインダクタンス
遷移を利用して、共振条件が大きくずれて、負荷端子電
圧の変動を抑制するとともに、該インダクタのスレショ
ルド電圧を、回路系より決まる負荷の最大出力となる負
荷電流の値における負荷端子電圧と略等しくするように
したことを特徴とする非接触給電方法。
1. A power supply line connected to a power supply is used as a primary side conductor, and power is non-contactly taken from a current flowing through the primary side by a secondary side pickup coil using an electromagnetic induction phenomenon. And a non-contact power supply method in which loads are connected to both ends of a capacitor connected to the pickup coil so as to compensate for reactance of the pickup coil,
An inductor whose inductance varies non-linearly according to the magnitude of the threshold voltage is connected to both ends of the load, and when the terminal voltage of the load becomes higher than the threshold voltage, the inductance transition of the inductor is used. Then, the resonance condition is greatly deviated, the fluctuation of the load terminal voltage is suppressed, and the threshold voltage of the inductor is made substantially equal to the load terminal voltage at the value of the load current which is the maximum output of the load determined by the circuit system. A non-contact power supply method characterized in that:
【請求項2】 電源に接続された給電線を1次側導体と
して、該1次側に流れる電流から、電磁誘導現象を利用
して、2次側のピックアップコイルにより非接触的に電
力を取り、かつピックアップコイルのリアクタンスを補
償するように、該ピックアップコイルと接続したコンデ
ンサの両端に負荷を接続した非接触給電方法において、
該負荷の両端に、そのスレショルド電圧の大きさにより
そのインダクタンスが非線形に変化するインダクタを接
続し、該負荷の端子電圧が該スレショルド電圧よりも大
きな電圧となるときに、該インダクタのインダクタンス
遷移を利用して、共振条件が大きくずれて、負荷端子電
圧の変動を抑制するとともに、該インダクタのスレショ
ルド電圧を、回路系より決まる負荷短絡電流の70乃至
75パーセントの負荷電流の値における負荷端子電圧と
略等しくするようにしたことを特徴とする非接触給電方
法。
2. A power supply line connected to a power supply is used as a primary side conductor, and power is non-contactly taken from a current flowing through the primary side by a secondary side pickup coil using an electromagnetic induction phenomenon. And a non-contact power supply method in which loads are connected to both ends of a capacitor connected to the pickup coil so as to compensate for reactance of the pickup coil,
An inductor whose inductance varies non-linearly according to the magnitude of the threshold voltage is connected to both ends of the load, and when the terminal voltage of the load becomes higher than the threshold voltage, the inductance transition of the inductor is used. Then, the resonance condition is greatly deviated and the fluctuation of the load terminal voltage is suppressed, and the threshold voltage of the inductor is substantially equal to the load terminal voltage at a load current value of 70 to 75% of the load short-circuit current determined by the circuit system. A non-contact power supply method characterized by being equalized.
JP34856197A 1997-12-02 1997-12-02 Contactless power supply method Expired - Fee Related JP3650694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34856197A JP3650694B2 (en) 1997-12-02 1997-12-02 Contactless power supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34856197A JP3650694B2 (en) 1997-12-02 1997-12-02 Contactless power supply method

Publications (2)

Publication Number Publication Date
JPH11168843A true JPH11168843A (en) 1999-06-22
JP3650694B2 JP3650694B2 (en) 2005-05-25

Family

ID=18397855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34856197A Expired - Fee Related JP3650694B2 (en) 1997-12-02 1997-12-02 Contactless power supply method

Country Status (1)

Country Link
JP (1) JP3650694B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107591900A (en) * 2017-09-21 2018-01-16 南阳理工学院 Radio energy transmission system based on non-linear topological structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107591900A (en) * 2017-09-21 2018-01-16 南阳理工学院 Radio energy transmission system based on non-linear topological structure

Also Published As

Publication number Publication date
JP3650694B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
RU2255406C2 (en) Method and device for electrical energy transmission
EP3039770B1 (en) Impedance tuning
US10199155B2 (en) Variable magnetic coupling reactor having two integrated reactor elements, power supply system including the same, and method of use of composite magnetic component having two integrated reactor elements
US6005304A (en) Arrangement for contactless inductive transmission of electrical power
JP3512798B2 (en) Non-contact power distribution system
EP1741113B1 (en) A device and method of non-contact energy transmission
EP3248270B1 (en) An apparatus and a method for wireless transmission of power between dc voltage sources
EP0318695B1 (en) Magnetron drive apparatus
EP2895350A2 (en) Circuit arrangement and method of operating a circuit arrangement
EP1559120B1 (en) Transformer
US8964411B2 (en) Method for DC-DC conversion using a DC electric power source
JPH11168843A (en) Non-contact feeding method
US20130134777A1 (en) Converter for an electrical circuit designed to supply electrical propulsion power on board a motor vehicle
Zacharias et al. Comparison and optimization of magnetically coupled and non-coupled magnetic devices in interleaved operation
KR101131586B1 (en) Resonator for magnetic resonance power transmission device using current source input
JP2000078776A (en) Capacitor having saturable capacitance characteristic and non-contact feeding device using the same
JP3647234B2 (en) Non-contact power supply device
JP2000184625A (en) Non-contact feeding method for transport cars in transporting system
JP2000125487A (en) Noncontact feeding device
JPH10285836A (en) Receiving device of electromagnetic induction power supply unit
JP2002354710A (en) Power feeder device for noncontacting feed
JPH0898437A (en) Noncontact power supply
JP2002272021A (en) Non-contact feeder device to be mounted on transport vehicle for transporting system
JP3035728B2 (en) Power saving device
JP4122713B2 (en) Contactless power supply

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees