JP3650280B2 - Horizontal electric field type active matrix liquid crystal display device - Google Patents

Horizontal electric field type active matrix liquid crystal display device Download PDF

Info

Publication number
JP3650280B2
JP3650280B2 JP10287299A JP10287299A JP3650280B2 JP 3650280 B2 JP3650280 B2 JP 3650280B2 JP 10287299 A JP10287299 A JP 10287299A JP 10287299 A JP10287299 A JP 10287299A JP 3650280 B2 JP3650280 B2 JP 3650280B2
Authority
JP
Japan
Prior art keywords
liquid crystal
comb
common
lines
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10287299A
Other languages
Japanese (ja)
Other versions
JP2000292802A (en
Inventor
貴之 大内
恒典 山本
慎 米谷
誠 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10287299A priority Critical patent/JP3650280B2/en
Publication of JP2000292802A publication Critical patent/JP2000292802A/en
Application granted granted Critical
Publication of JP3650280B2 publication Critical patent/JP3650280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lateral electric field type active matrix liquid crystal display device which drives common lines with AC and obtains an excellent display image without lowering a contrast of a display image. SOLUTION: The liquid crystal display device consists of a 1st and a 2nd transparent substrate, a liquid crystal layer sandwiched between them, and a liquid crystal drive part formed on the 1st transparent substrate and drives the liquid crystal layer 8 with a parallel electric field produced by the liquid crystal drive part. The liquid crystal drive part has scanning lines 3 and signal lines 4 arranged in matrix, TFTs 4 arranged at the intersection parts of the scanning lines 3 and signal lines 4, pixel electrodes 6 having comb teeth pixel electrodes 6D arranged in the pixel areas surrounded with the scanning lines 3 and signal lines 4, and common lines 5 which are arranged while insulated from the pixel electrodes 6 and have comb teeth common electrodes 5; and the common lines 5 are connected to different drive sources alternately and the interval between the tip parts of each comb teeth pixel electrode 6D and each comb teeth common electrode 5D which face a scanning line 3 is made narrower than that if any other part.

Description

【0001】
【発明の属する技術分野】
本発明は、横電界型アクティブマトリクス型液晶表示装置に係わり、特に、高いコントラストを有し、視野角が広く、良好な画像表示を行うことが可能な横電界型アクティブマトリクス型液晶表示装置に関する。
【0002】
【従来の技術】
近年、アクティブマトリクス液晶表示装置は、各画素に薄膜トランジスタ(TFT)に代表されるアクティブ素子を用いることにより、陰極線管(CRT)に匹敵する高画質画像が得られるようになってきている。そして、アクティブマトリクス液晶表示装置は、CRTよりも消費電力が低く、CRTよりも小型化が可能であるという点から、パーソナルコンピュータ(パソコン)やワークステーション等のモニターとして多く使用されるようになっている。
【0003】
このようなモニター用途に適した液晶表示装置の1つとして、横電界型アクティブマトリクス液晶表示装置が知られている。この横電界型アクティブマトリクス液晶表示装置は、一対の透明基板における一方の透明基板上に、複数本の走査線、複数本の信号線、複数本の共通線をそれぞれ形成配置し、画素電極と対向電極の2つの電極を櫛歯状に形成し、液晶層に印加する電界を透明基板の表面にほぼ平行な方向に形成し、それにより液晶層を駆動するようにしたものである。この横電界型アクティブマトリクス液晶表示装置は、液晶層に印加する電界を透明基板の表面にほぼ垂直に形成した通常の縦電界型アクティブマトリクス液晶表示装置に比べて広い視野角が得られるため、直視型モニターの用途に最適なものである。
【0004】
このような横電界型アクティブマトリクス液晶表示装置においては、他の装置と同様に、低コスト化が要望されており、その一例として特開平7−261152号に開示の手段がある。この特開平7−261152号に開示の手段は、共通線(コモン線)を交流電圧で駆動し、液晶層への実効的な印加電圧を変えることなく、信号駆動電圧を低下させ、薄膜トランジスタ(TFT)駆動回路を構成する高価な駆動用集積回路(IC)を低コストなものにし、全体を低コスト化しているものである。
【0005】
【発明が解決しようとする課題】
ところで、特開平7−261152号に開示された横電界型アクティブマトリクス液晶表示装置を含む既知のこの種の液晶表示装置においては、共通線(コモン線)に交流電圧を用いた場合、その交流電圧を反転するタイミングとして、1ライン(1H)周期で反転する駆動方法と、1画面(1V)周期で反転する駆動方法とがあり、これらの駆動方法の中で、1画面(1V)周期で反転する駆動方法は、交流電圧の周波数が低いものになるため、消費電力が少なくて済む。
【0006】
しかしながら、1画面(1V)周期で反転する駆動方法は、1行置きに交互に実効印加電圧の正負極性が入れ替わるため、1画面(1V)周期で反転させるためには各共通線を1本置きに別の電源系統に接続する必要があり、少なくとも2系統以上の電源にそれぞれ接続された共通線を配置する必要がある。
【0007】
この場合、2系統の電源にそれぞれ接続された共通線があって、1本置きの共通線に入力される電源の極性が異なるような液晶表示装置においては、信号線方向に隣接する画素の液晶層への印加電圧の極性が異なっている。特に、共通(コモン)電圧は、常に共通(コモン)電圧の中心電圧に対して極性が逆になっているため、信号線方向に隣接する画素の共通(コモン)線間には共通(コモン)電圧の振幅に等しい電圧が常に印加されていることになる。
【0008】
一般に、横電界型アクティブマトリクス液晶表示装置に限らず、多くの液晶表示装置は、製造時の工程数が少なくなればなる程、製造コストを低下することができるため、できるだけ同時に製造可能な構成部分の形成工程を一工程として行うこと、例えば、共通線と走査線の形成を一工程として同じ層上に形成することが多く行われている。このとき、製造プロセス上の制約から、同じ層上に異なる線または電極を配置した場合は、それらの線または電極を一定の間隔を隔てて配置する必要がある。このような配置状態は、横電界型アクティブマトリクス液晶表示装置における共通線から櫛歯状に導出された櫛歯状共通電極と画素電極から櫛歯状に導出された櫛歯状画素電極との間においても実行されている。
【0009】
ここで、図10(a)、(b)、(c)は、既知の横電界型アクティブマトリクス液晶表示装置における櫛歯状共通電極と櫛歯状画素電極及び走査線との配置関係の一例を示す部分構成図であり、それらの間に形成される電界の状態を合わせて示したものであって、(a)は櫛歯状共通電極と櫛歯状画素電極との間に形成される電界の状態、(b)は走査線と櫛歯状共通電極との間に形成される電界の状態、(c)は走査線と櫛歯状共通電極との間の電界の影響を受けた櫛歯状共通電極と櫛歯状画素電極との間に形成される電界の状態を示すものである。
【0010】
図10(a)乃至(c)において、51は走査線、52は櫛歯状共通電極、53は櫛歯状画素電極、54は遮光層である。
【0011】
図10(a)に示されるように、櫛歯状共通電極52と櫛歯状画素電極53との間には矢印で示される電界が発生し、この電界によって液晶層が駆動される。この場合、外部電界の影響を受けないとすれば、櫛歯状共通電極52と櫛歯状画素電極53との間の領域には、平行配置された櫛歯状共通電極52と櫛歯状画素電極53に直交する方向に電界が発生し、櫛歯状共通電極52と櫛歯状画素電極53の先端部の電界はやや外側に膨らむ形となるが、通常、電界が外側に膨らんだ部分は遮光層54で覆われるため、表示画像には何等影響を与えない。
【0012】
ところが、図10(b)に示されるように、隣接する画素の共通線(図示なし)に供給される駆動電圧の位相が異なる場合は、櫛歯状共通電極52と櫛歯状画素電極53との間に発生する電界と直交した電界が走査線51と櫛歯状共通電極52との間の領域に発生する。
【0013】
このため、図10(c)に示されるように、櫛歯状共通電極52と櫛歯状画素電極53との間に発生する電界は、走査線51と櫛歯状共通電極52との間に発生する電界の影響を大きく受け、櫛歯状共通電極52と櫛歯状画素電極53の先端部の電界だけでなく、先端部から離れた領域に発生する電界も乱されるようになる。そして、櫛歯状共通電極52と櫛歯状画素電極53との間の先端部から離れた領域は遮光層54で覆われていないため、この領域における電界の乱れにより表示画像が影響を受ける。特に、表示画像で黒表示が行われるとき、液晶層に印加される電界が乱れると、液晶層におけるその部分の光透過率が高くなって、黒輝度(黒表示時における最小の輝度)が上昇し、表示画像のコントラストが低下して良好な表示画像が得られるなくなる。
【0014】
これに対し、遮光層54の配置面積を増やし、電界が乱れている領域まで覆うことも考えられるが、遮光層54の配置面積を増やすと、表示画像の開口率が低下するので、コントラストの低下の対策として好ましいことではない。
【0015】
本発明は、このような技術的背景に鑑みてなされたもので、その目的は、信号線方向に隣接する画素間の共通線を交流駆動したとき、表示画像のコントラストを低下させることなく、良好な表示画像を得ることができる横電界型アクティブマトリクス液晶表示装置を提供することにある。
【0016】
【課題を解決するための手段】
前記目的を達成するために、本発明による横電界型アクティブマトリクス液晶表示装置は、第1及び第2透明基板と、第1及び第2透明基板間に挟持された液晶層と、第1透明基板上に形成された液晶駆動部とからなり、液晶駆動部で形成した平行電界によって液晶層を駆動するものであって、液晶駆動部は、互いに絶縁状態でマトリクス状に配置された複数本の走査線及び複数本の信号線と、複数本の走査線及び複数本の信号線の各交点部分に配置された複数個のアクティブ素子と、複数本の走査線及び複数本の信号線で囲まれた部分に配置され、複数個のアクティブ素子に接続されるとともにそれぞれ複数の櫛歯状画素電極を形成した複数の画素電極と、複数本の走査線に平行配置され、複数の画素電極に対して絶縁配置されるとともにそれぞれ複数の櫛歯状共通電極を形成した複数本の共通線とを有し、隣接する共通線はそれぞれが異なる位相で動作するものであり、複数の櫛歯状画素電極及び複数の櫛歯状共通電極は、走査線に対向する先端部分の間隔が他の部分の間隔よりも狭くなるように形成されている第1の手段を具備する。
【0017】
また、前記目的を達成するために、本発明による横電界型アクティブマトリクス液晶表示装置は、第1及び第2透明基板と、第1及び第2透明基板間に挟持された液晶層と、第1透明基板上に形成された液晶駆動部とからなり、液晶駆動部で形成した平行電界によって液晶層を駆動するものであって、液晶駆動部は、互いに絶縁状態でマトリクス状に配置された複数本の走査線及び複数本の信号線と、複数本の走査線及び複数本の信号線の各交点部分に配置された複数個のアクティブ素子と、複数本の走査線及び前記複数本の信号線で囲まれた部分に配置され、複数個のアクティブ素子に接続されるとともにそれぞれ複数の櫛歯状画素電極を形成した複数の画素電極と、複数本の走査線に平行配置され、複数の画素電極に対して絶縁配置されるとともにそれぞれ複数の櫛歯状共通電極を形成した複数本の共通線とを有し、隣接する共通線はそれぞれが異なる位相で動作するものであり、各走査線と各共通線及び各櫛歯状共通電極とは絶縁層を介して積層配置され、複数の櫛歯状画素電極及び複数の櫛歯状共通電極の先端部は、走査線に重なり合うかあるいは近接するように配置され、かつ、遮光層と重なり合うように配置されている第2の手段を具備する。
【0018】
前記第1の手段によれば、画素電極に接続された櫛歯状画素電極及び共通線に接続された櫛歯状共通電極は、少なくとも一方の先端部の幅を他の部分よりも広くなるように構成し、櫛歯状画素電極と櫛歯状共通電極の先端部分との間隔を他の部分の間隔よりも狭くなるようにしているので、櫛歯状画素電極と櫛歯状共通電極の先端部間の狭い間隔の領域に形成された電界が乱れる割合を極めて少なくすることができ、その結果、表示画像のコントラストを低下させずに、良好な表示画像を得ることができる。
【0019】
また、前記第2の手段によれば、走査線と共通線及び櫛歯状共通電極とを絶縁層を介して積層配置しているので、画素電極に接続された櫛歯状画素電極及び共通線に接続された櫛歯状共通電極の各先端部分を遮光層の下まで延長することができるようになり、櫛歯状画素電極と櫛歯状共通電極の各先端部間に形成される乱れた電界の影響を受ける領域の表示画像を遮光層で覆うことが可能になる。その結果、表示画像のコントラストを低下させずに、良好な表示画像を得ることができる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0021】
図1は、本発明による横電界型アクティブマトリクス液晶表示装置の第1の実施の形態を示す構成図であって、左側は4つの隣接する画素を構成する液晶駆動部を示す平面図であり、右側は同画素に遮光層を重ね合わせた状態を示す平面図である。
【0022】
また、図2は、図1に図示の横電界型アクティブマトリクス液晶表示装置のA−A’線部分の断面構成図、図3は、図1に図示の横電界型アクティブマトリクス液晶表示装置のB−B’線部分の断面構成図、図4は、図1に図示の横電界型アクティブマトリクス液晶表示装置のC−C’線部分の断面構成図である。
【0023】
図1乃至図4において、1は第1透明基板、2は第2透明基板、3は走査線、4は信号線、5は共通(コモン)線、5Dは櫛歯状共通電極、6は画素電極、6Dは櫛歯状画素電極、7は薄膜トランジスタ(TFT)、7Gはゲート電極、7Dはドレイン電極、7Sはソース電極、7Hは半導体層、7Cはオーミックコンタクト層、8は液晶層、9は絶縁層、10は保護層、11は第1偏光板、12は第1配向膜、13は遮光層(ブラックマトリクス)、14はカラーフィルタ、15は平坦化樹脂膜、16は第2偏光板、17は第2配向膜、18は補助容量である。
【0024】
そして、図1及び図2に示されるように、第1透明基板1の一方の面には、走査線3と共通線5と共通線5から導出された櫛歯状共通電極5Dとが形成され、それらの表面を覆うように絶縁層9が形成される。絶縁層9上には信号線4と画素電極6と画素電極6から導出された櫛歯状画素電極6Dとが形成され、それらの表面を覆うように保護層10が形成され、さらに、保護層10上に第1配向膜12が形成される。第1透明基板1の他方の面には、第1偏光板11が接合される。また、第2透明基板2の一方の面には、マトリクス状の遮光膜13と遮光膜13の開口を覆うようにカラーフィルタ14とが形成され、それらの表面を覆うように平坦化樹脂膜15が形成され、平坦化樹脂膜15上に第2配向膜17が形成される。第2透明基板2の他方の面には、第2偏光板16が接合される。第1透明基板1と第2透明基板2との間には、第1配向膜12と第2配向膜17に接するように液晶層8が配置され、全体として液晶表示素子が形成される。
【0025】
この場合、複数本の走査線3は平行に配置され、隣接する走査線3間にそれぞれ共通線5が走査線3に平行配置される。複数本の信号線4は平行配置されるとともに、各走査線3に直交配置され、各走査線3と各信号線4との交点部分にそれぞれ薄膜トランジスタ7が形成されている。薄膜トランジスタ7は、図3に示されるように、主にa−Siからなる半導体層7Hと、半導体層7Hにそれぞれオーミックコンタクト層7Cを介して結合されたドレイン電極7D及びソース電極7Sと、半導体層7Hに絶縁層9を介して結合されたゲート電極7Gとからなっている。ドレイン電極7Dは対応する信号線4に、ソース電極7Sは対応する櫛歯状画素電極6Dに、ゲート電極7Gは対応する走査線3にそれぞれ接続される。補助容量18は、容量値Cstgを有するもので、図4に示されるように、絶縁層9を介して共通線5と画素電極6が重なり合った部分に形成される。
【0026】
また、櫛歯状共通電極5Dは、共通線5から櫛歯状に、信号線4に平行になるように導出されたもので、先端部が走査線3に近接対向する位置まで延び、かつ、先端部が他の部分よりも幅広になるように構成されている。櫛歯状画素電極6Dは、画素電極6から櫛歯状に、信号線4に平行に、隣接する櫛歯状共通電極5Dの間になるように導出されたもので、同じように、先端部が走査線3に近接対向する位置まで延び、かつ、先端部が他の部分よりも幅広になるように構成されている。このため、櫛歯状共通電極5Dの先端部と櫛歯状画素電極6Dの先端部との間隔は、他の部分の間隔よりも狭くなるように構成されている。
【0027】
さらに、共通線5は、1本置きに第1電源と第2電源に接続されており、第1電源から供給される交流駆動電圧Vc1と、第2電源から供給される交流駆動電圧Vc2は、互いに逆位相になっている。このとき、櫛歯状画素電極6Dとそれに隣接する櫛歯状共通電極5Dとの間には、櫛歯状画素電極6Dと櫛歯状共通電極5Dに加わる電圧の電圧差により、図2に示すように、液晶層8内に第1及び第2透明基板1、2の表面に平行な電界が形成される。
【0028】
前記構成を有する横電界型アクティブマトリクス液晶表示装置は、画素電極6と共通線5とにそれぞれ駆動電圧を印加した際に、それらの駆動電圧の電位差が小さいとき、液晶層8を透過する透過光量が減少して黒表示状態になり、一方、それらの駆動電圧の電位差が大きいとき、液晶層8を透過する透過光量が増大して白表示状態になる。この場合、液晶層8を透過する透過光量は、画素電極6と共通線5の間の駆動電圧の電位差によって形成される平行電界の強さで決定されるもので、この平行電界の強さに応じて液晶層8内の液晶分子の配向状態が変化し、それにより透過光量の制御が行われる。
【0029】
続いて、図5は、図1に図示の横電界型アクティブマトリクス液晶表示装置における等価回路の一例を示す回路図である。
【0030】
図5において、19は走査電極駆動回路、20は信号電極駆動回路、21は共通電極駆動回路、22が液晶容量であり、その他、図1乃至図4に示された構成要素と同じ構成要素については同じ符号を付けている。
【0031】
そして、走査電極駆動回路19は各走査線3に接続され、信号電極駆動回路20は各信号線4に接続され、共通電極駆動回路21は2つの出力線211 、212 がそれぞれ1本置きの共通線5に接続される。薄膜トランジスタ7は、ドレイン電極が信号線4に接続され、ソース電極7Sが補助容量18と液晶容量22を介して共通線5に接続され、ゲート電極7Gが走査線3に接続される。
【0032】
この場合、信号線4には画像情報を有する画像信号が印加され、走査線5には画像信号に同期して走査駆動電圧が印加される。信号線4を通して供給された画像情報は、走査駆動電圧によりオン状態になった薄膜トランジスタ7を通して画素電極及び櫛歯状画素電極(図5に図示なし)に伝達され、櫛歯状画素電極と櫛歯状共通電極(図5に図示なし)との間に形成された平行電界によって液晶層(図5に図示なし)が駆動される。
【0033】
薄膜トランジスタ7のオンにより画素電極に書き込まれた画像情報は、薄膜トランジスタ7がオンからオフに変わると、補助容量18と液晶容量22に電荷として蓄えられる。補助容量18と液晶容量22に蓄えられた電荷は、次の周期に薄膜トランジスタ7が再度オンするまで保持される。
【0034】
次に、図6(a)、(b)、(c)は、図1乃至図5に図示された第1の実施の形態における櫛歯状共通電極と櫛歯状画素電極及び走査線との配置関係の一例を示す部分構成図であり、それらの間に形成される電界の状態を合わせて示したものであって、(a)は櫛歯状共通電極と櫛歯状画素電極との間に形成される電界の状態、(b)は走査線と櫛歯状共通電極との間に形成される電界の状態、(c)は走査線と櫛歯状共通電極との間の電界の影響を受けた櫛歯状共通電極と櫛歯状画素電極との間に形成される電界の状態を示すものである。
【0035】
図6(a)乃至(c)において、図1乃至図4に示された構成要素と同じ構成要素については同じ符号を付けている。
【0036】
図6(a)乃至(c)に示されるように、櫛歯状共通電極5Dと櫛歯状画素電極6Dは、先端部の電極幅が他の部分の電極幅よりも幅広になるように、具体的には通常の電極幅から幅広の電極幅に、テーパー状部を介して移行するように形成され、櫛歯状共通電極5Dと櫛歯状画素電極6Dの先端部の間隔は先端部以外の部分の間隔よりも狭くなっている。
【0037】
前記構成において、図6(a)に示されるように、櫛歯状共通電極5Dと櫛歯状画素電極6Dには矢印で示される電界Eが発生し、電界Eによって液晶層が駆動される。そして、電界Eが外部電界の影響を受けなければ、電界Eは、櫛歯状共通電極5Dと櫛歯状画素電極6Dとの間の領域において、平行配置された櫛歯状共通電極5Dと櫛歯状画素電極6Dに直交する方向に発生し、櫛歯状共通電極5Dと櫛歯状画素電極6Dの先端部の電界Eがやや外側に膨らんだ形となる。このとき、電界Eが外側に膨らんだ部分は、遮光層13で覆われるため、表示画像に何等影響を与えない。
【0038】
ところで、図6(b)に示されるように、隣接する画素の共通線(図6に図示なし)に供給される駆動電圧の位相が反転しているため、走査線3と櫛歯状共通電極5Dとの間に電界E’が発生し、この電界E’は櫛歯状共通電極5Dと櫛歯状画素電極6Dとの間に発生する電界Eと略直交した方向に発生する。
【0039】
このため、図6(c)に示されるように、櫛歯状共通電極5Dと櫛歯状画素電極6Dとの間に発生する電界Eは、走査線5と櫛歯状共通電極5Dとの間に発生する電界E’の影響を受けるが、櫛歯状共通電極5Dと櫛歯状画素電極6Dの先端部の間隔が狭められているので、電界E’の影響を受ける電界Eは、狭められた領域に発生する電界Eに限られ、先端部から離れた領域に発生する電界Eは乱されない。そして、櫛歯状共通電極5Dと櫛歯状画素電極6Dとの間の先端部の間隔が狭められている領域を遮光層13で覆うことにより、電界Eが乱れた領域を全て覆うことができるので、表示画像が電界Eの乱れの影響を受けることはなくなり、表示画像のコントラストを向上させ、良好な表示画像が得られるようになる。
【0040】
また、図7(a)、(b)、(c)、(d)は、図1乃至図5に図示された第1の実施の形態における櫛歯状共通電極と櫛歯状画素電極及び走査線との配置関係のそれぞれ異なる例を示す部分構成図であり、それらの間に形成される電界の状態を合わせて示したものである。
【0041】
図7(a)乃至(d)において、図1乃至図4に示された構成要素と同じ構成要素については同じ符号を付けている。
【0042】
櫛歯状共通電極5Dと櫛歯状画素電極6Dは、図6(a)乃至(c)に示された形状の他に、図7(a)に示されるように、櫛歯状共通電極5Dと櫛歯状画素電極6Dの両側縁をテーパー状に外側方向に拡げ、先端部に幅広部分を形成しているもの、図7(b)に示されるように、櫛歯状共通電極5Dと櫛歯状画素電極6Dの両側縁をテーパー状に外側方向に拡げ、先端部に幅広部分を形成するとともに、櫛歯状共通電極5Dと走査線3との間隔に比べて櫛歯状画素電極6Dと走査線3との間隔が狭くなるように配置しているもの、図7(c)に示されるように、櫛歯状共通電極5Dの幅を不変にし、櫛歯状画素電極6Dの両側縁をテーパー状に外側方向に急激に拡げ、先端部に大きな幅広部分を形成しているもの、図7(d)に示されるように、櫛歯状共通電極5Dと櫛歯状画素電極6Dの両側縁をテーパー状に外側方向に拡げ、先端部に幅広部分を形成するとともに、櫛歯状共通電極5Dの走査線3との対向部分及び櫛歯状画素電極6Dの走査線3との対向部分をそれぞれ中央部分を若干凹ませるようにしたもの等の形状であってもよい。そして、図7(a)乃至(d)に図示された櫛歯状共通電極5D及び櫛歯状画素電極6Dのいずれのものであっても、図6(a)乃至(c)に図示された櫛歯状共通電極5D及び櫛歯状画素電極6Dにおいて達成される機能と同等の機能を達成することができる。
【0043】
なお、前記各例においては、櫛歯状共通電極5D及び櫛歯状画素電極6Dの先端部を幅広にするため、通常の幅の部分と幅広の部分との間の幅がテーパー状に変わる部分を設け、ディスクリネーションを防止している。
【0044】
続く、図8は、本発明による横電界型アクティブマトリクス液晶表示装置の第2の実施の形態を示す構成図であって、左側は4つの隣接する画素を構成する液晶駆動部を示す平面図であり、右側は同画素に遮光層を重ね合わせた状態を示す平面図である。
【0045】
図8において、図1に示された構成要素と同じ構成要素については同じ符号を付けている。
【0046】
この第2の実施の形態と前記第1の実施の形態とを比較すると、第2の実施の形態の構成は、共通線5及び画素電極6がそれぞれ前段側の走査線3に近接するように配置され、櫛歯状共通電極5D及び櫛歯状画素電極6Dが共通線5及び画素電極6の片側方向だけに櫛歯状に導出されている点において、第1の実施の形態と構成を異にしているが、それ以外の構成は第1の実施の形態と同じである。このため、第2の実施の形態の構成については、これ以上の説明を省略する。
【0047】
また、第2の実施の形態の動作は、第2の実施の形態の構成が第1の実施の形態の構成と類似していることから、前述の第1の実施の形態の動作と殆んど同じである。このため、第2の実施の形態の動作についても、これ以上の説明を省略する。
【0048】
このように、第2の実施の形態によれば、櫛歯状共通電極5Dと櫛歯状画素電極6Dとの先端部の間隔を狭めた領域を、第1の実施の形態に比べて半分形成するだけで済むので、その分、開口率を高くすることが可能になり、かつ、第1の実施の形態と同様に、表示画像のコントラストを向上させ、良好な表示画像が得られるものである。
【0049】
この場合、第2の実施の形態においても、櫛歯状共通電極5Dと櫛歯状画素電極6Dの先端部の形状は、図6(a)乃至(c)に図示されたもの、または、図7(a)乃至(d)のいずれかに図示されたもの等が用いられる。
【0050】
次いで、図9は、本発明による横電界型アクティブマトリクス液晶表示装置の第3の実施の形態を示す構成図であって、左側は4つの隣接する画素を構成する液晶駆動部を示す平面図であり、右側は同画素に遮光層を重ね合わせた状態を示す平面図であり、中間はA−A’線部分の断面構成を示す断面図である。
【0051】
図9において、図1に示された構成要素と同じ構成要素については同じ符号を付けている。
【0052】
この第3の実施の形態と前記第1の実施の形態とを比較すると、第3の実施の形態の構成は、走査線3、共通線5及び櫛歯状共通電極5D、画素電極6及び櫛歯状画素電極6Dをそれぞれ異なる層上に形成配置しているもので、櫛歯状共通電極5D及び櫛歯状画素電極6Dの先端部を走査線3上まで延長配置し、櫛歯状共通電極5Dと櫛歯状画素電極6Dの先端部の間隔を他の部分の間隔と同じに形成している点において、第1の実施の形態と構成を異にしているが、それ以外の構成は第1の実施の形態と同じである。このため、第3の実施の形態の構成については、これ以上の説明を省略する。
【0053】
また、第3の実施の形態の動作は、本質的に、第1の実施の形態の動作とほぼ同じである。この場合、第3の実施の形態は、櫛歯状共通電極5Dと櫛歯状画素電極6Dの先端部分の間隔が他の部分の間隔と同じになっていることから、第1の実施の形態における同部分に発生する電界Eの乱れに比べ、やや大きな電界Eの乱れを生じることになる。ところが、第3の実施の形態は、櫛歯状共通電極5Dと櫛歯状画素電極6Dの先端部が走査線3上まで延長配置されているため、電界Eの乱れを生じる部分が遮光層13で覆われるようになり、表示むらを発生する部分が表示されないことになる。このため、第3の実施の形態においても、第1の実施の形態と同様に、表示画像のコントラストを向上させ、良好な表示画像が得られるものである。
【0054】
この場合、櫛歯状共通電極5Dと櫛歯状画素電極6Dの先端部を走査線3上まで延長配置する代わりに、同先端部を走査線3に近づけた状態まで延長配置するようにしてもよい。
【0055】
このように、前記第1乃至第3の実施の形態のそれぞれにおいては、共通線5を1つ置きに位相が反転する駆動電圧を用いた駆動により、明るくかつ視角特性の優れた画像表示を行った場合においても、その駆動電圧の影響を受けずにコントラストを向上させることができるものである。
【0056】
また、前記第1乃至第3の実施の形態のそれぞれにおいて、各共通線5は、それぞれが異なる位相で駆動され、かつ、隣接する共通線5間では、その大部分の時間でコモンの中心電圧に対して極性が逆となるように駆動することにより、表示画像のコントラストを向上させ、良好な表示画像を得られるものが含まれることはいうまでもない。
【0057】
【発明の効果】
以上のように、請求項1に記載された発明によれば、画素電極に接続された櫛歯状画素電極及び共通線に接続された櫛歯状共通電極を、少なくとも一方の先端部の幅が他の部分よりも広くなるように構成し、櫛歯状画素電極と櫛歯状共通電極の先端部分との間隔を他の部分の間隔よりも狭くなるようにしているので、櫛歯状画素電極と櫛歯状共通電極の先端部間の狭い間隔の領域に形成された電界が乱れる割合を極めて少なくすることができ、その結果として、表示画像のコントラストを低下させずに、良好な表示画像を得ることができるという効果がある。
【0058】
また、請求項2に記載された発明によれば、走査線と共通線及び櫛歯状共通電極とを絶縁層を介して積層配置し、画素電極に接続された櫛歯状画素電極及び共通線に接続された櫛歯状共通電極の各先端部分を遮光層の下まで延長配置するようにしているので、櫛歯状画素電極と櫛歯状共通電極の各先端部間に形成される乱れた電界の影響を受ける領域の表示画像を遮光層で覆うことが可能になり、その結果として、表示画像のコントラストを低下させずに、良好な表示画像を得ることができるという効果がある。
【図面の簡単な説明】
【図1】本発明による横電界型アクティブマトリクス液晶表示装置の第1の実施の形態を示す構成図である。
【図2】図1に図示の横電界型アクティブマトリクス液晶表示装置のA−A’線部分の断面構成図である。
【図3】図1に図示の横電界型アクティブマトリクス液晶表示装置のB−B’線部分の断面構成図である。
【図4】図1に図示の横電界型アクティブマトリクス液晶表示装置のC−C’線部分の断面構成図である。
【図5】図1に図示の横電界型アクティブマトリクス液晶表示装置における等価回路の一例を示す回路図である。
【図6】図1乃至図5に図示された第1の実施の形態における櫛歯状共通電極と櫛歯状画素電極及び走査線との配置関係の一例を示す部分構成図である。
【図7】図1乃至図5に図示された第1の実施の形態における櫛歯状共通電極と櫛歯状画素電極及び走査線との配置関係のそれぞれ異なる例を示す部分構成図である。
【図8】本発明による横電界型アクティブマトリクス液晶表示装置の第2の実施の形態を示す構成図である。
【図9】本発明による横電界型アクティブマトリクス液晶表示装置の第3の実施の形態を示す構成図である。
【図10】既知の横電界型アクティブマトリクス液晶表示装置における櫛歯状共通電極と櫛歯状画素電極及び走査線との配置関係の一例を示す部分構成図である。
【符号の説明】
1 第1透明基板22が液晶容量
2 第2透明基板
3 走査線
4 信号線
5 共通(コモン)線
5D 櫛歯状共通電極
6 画素電極
6D 櫛歯状画素電極
7 薄膜トランジスタ(TFT)
7G ゲート電極
7D ドレイン電極
7S ソース電極
7H 半導体層
7C オーミックコンタクト層
8 液晶層
9 絶縁層
10 保護層
11 第1偏光板
12 第1配向膜
13 遮光層(ブラックマトリクス)
14 カラーフィルタ
15 平坦化樹脂膜
16 第2偏光板
17 第2配向膜
18 補助容量
19 走査電極駆動回路
20 信号電極駆動回路
21 共通電極駆動回路
22 液晶容量
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a horizontal electric field type active matrix liquid crystal display device, and more particularly to a horizontal electric field type active matrix liquid crystal display device having high contrast, a wide viewing angle, and capable of performing good image display.
[0002]
[Prior art]
In recent years, an active matrix liquid crystal display device has been able to obtain a high-quality image comparable to a cathode ray tube (CRT) by using an active element typified by a thin film transistor (TFT) for each pixel. Active matrix liquid crystal display devices are often used as monitors for personal computers (PCs) and workstations because they consume less power than CRTs and can be made smaller than CRTs. Yes.
[0003]
As one of liquid crystal display devices suitable for such a monitor application, a horizontal electric field type active matrix liquid crystal display device is known. In this lateral electric field type active matrix liquid crystal display device, a plurality of scanning lines, a plurality of signal lines, and a plurality of common lines are formed and arranged on one transparent substrate of a pair of transparent substrates, respectively, and are opposed to the pixel electrodes. The two electrodes are formed in a comb-like shape, and an electric field applied to the liquid crystal layer is formed in a direction substantially parallel to the surface of the transparent substrate, thereby driving the liquid crystal layer. This horizontal electric field type active matrix liquid crystal display device has a wider viewing angle than a normal vertical electric field type active matrix liquid crystal display device in which the electric field applied to the liquid crystal layer is formed substantially perpendicular to the surface of the transparent substrate. It is most suitable for the use of type monitors.
[0004]
In such a horizontal electric field type active matrix liquid crystal display device, as with other devices, cost reduction is desired. As an example, there is means disclosed in Japanese Patent Laid-Open No. 7-261152. The means disclosed in Japanese Patent Application Laid-Open No. 7-261152 drives a common line (common line) with an alternating voltage, reduces the signal driving voltage without changing the effective applied voltage to the liquid crystal layer, and reduces the thin film transistor (TFT). ) An expensive driving integrated circuit (IC) constituting the driving circuit is made low-cost, and the whole is made low-cost.
[0005]
[Problems to be solved by the invention]
By the way, in this kind of known liquid crystal display device including the lateral electric field type active matrix liquid crystal display device disclosed in JP-A-7-261152, when an AC voltage is used for a common line (common line), the AC voltage There are a driving method that inverts at a cycle of 1 line (1H) and a driving method that inverts at a cycle of 1 screen (1V). Among these driving methods, inversion is performed at a cycle of 1 screen (1V). Since the driving method is such that the frequency of the AC voltage is low, less power is consumed.
[0006]
However, in the driving method that inverts in the cycle of 1 screen (1V), the positive / negative polarity of the effective applied voltage is alternately switched every other row. Therefore, in order to invert in the cycle of 1 screen (1V), every other common line is placed. It is necessary to connect to another power source system, and it is necessary to arrange common lines respectively connected to at least two power sources.
[0007]
In this case, in a liquid crystal display device in which there is a common line connected to each of the two power sources and the polarity of the power source input to every other common line is different, the liquid crystal of pixels adjacent in the signal line direction The polarity of the voltage applied to the layers is different. In particular, since the polarity of the common voltage is always reversed with respect to the center voltage of the common voltage, the common voltage is common between adjacent pixels in the signal line direction. A voltage equal to the amplitude of the voltage is always applied.
[0008]
In general, not only horizontal electric field type active matrix liquid crystal display devices but also many liquid crystal display devices can be manufactured at the same time as possible because the manufacturing cost can be reduced as the number of manufacturing steps decreases. In many cases, the forming process is performed as one process, for example, the common line and the scanning line are formed on the same layer as one process. At this time, when different lines or electrodes are arranged on the same layer due to restrictions on the manufacturing process, the lines or electrodes need to be arranged at a predetermined interval. Such an arrangement state is between a comb-like common electrode derived from a common line in a comb-teeth shape and a comb-like pixel electrode derived from a pixel electrode in a comb-teeth shape in a lateral electric field type active matrix liquid crystal display device. Has also been implemented.
[0009]
Here, FIGS. 10A, 10B, and 10C are examples of the arrangement relationship between the comb-like common electrode, the comb-like pixel electrode, and the scanning line in a known lateral electric field type active matrix liquid crystal display device. It is the partial block diagram shown, and shows the state of the electric field formed between them, Comprising: (a) is an electric field formed between a comb-like common electrode and a comb-like pixel electrode (B) is the state of the electric field formed between the scanning line and the comb-like common electrode, and (c) is the comb-tooth affected by the electric field between the scanning line and the comb-like common electrode. 2 shows a state of an electric field formed between the common electrode and the comb-like pixel electrode.
[0010]
10A to 10C, 51 is a scanning line, 52 is a comb-like common electrode, 53 is a comb-like pixel electrode, and 54 is a light shielding layer.
[0011]
As shown in FIG. 10A, an electric field indicated by an arrow is generated between the comb-like common electrode 52 and the comb-like pixel electrode 53, and the liquid crystal layer is driven by this electric field. In this case, if not affected by the external electric field, the comb-shaped common electrode 52 and the comb-shaped pixel arranged in parallel are arranged in the region between the comb-shaped common electrode 52 and the comb-shaped pixel electrode 53. An electric field is generated in a direction orthogonal to the electrode 53, and the electric fields at the tips of the comb-like common electrode 52 and the comb-like pixel electrode 53 swell slightly outward. Since it is covered with the light shielding layer 54, the display image is not affected at all.
[0012]
However, as shown in FIG. 10B, when the phases of the drive voltages supplied to the common lines (not shown) of adjacent pixels are different, the comb-like common electrode 52 and the comb-like pixel electrode 53 An electric field orthogonal to the electric field generated between the scanning lines 51 and the comb-shaped common electrode 52 is generated.
[0013]
For this reason, as shown in FIG. 10C, the electric field generated between the comb-like common electrode 52 and the comb-like pixel electrode 53 is between the scanning line 51 and the comb-like common electrode 52. Due to the large influence of the generated electric field, not only the electric field at the tips of the comb-like common electrode 52 and the comb-like pixel electrode 53 but also the electric field generated in a region away from the tip is disturbed. Since the region away from the tip between the comb-like common electrode 52 and the comb-like pixel electrode 53 is not covered with the light shielding layer 54, the display image is affected by the disturbance of the electric field in this region. In particular, when black display is performed on a display image, if the electric field applied to the liquid crystal layer is disturbed, the light transmittance of that portion of the liquid crystal layer increases and black luminance (minimum luminance during black display) increases. As a result, the contrast of the display image is lowered and a good display image cannot be obtained.
[0014]
On the other hand, the arrangement area of the light shielding layer 54 may be increased to cover the region where the electric field is disturbed. However, if the arrangement area of the light shielding layer 54 is increased, the aperture ratio of the display image is lowered, so that the contrast is lowered. It is not preferable as a countermeasure.
[0015]
The present invention has been made in view of such a technical background, and the object thereof is good without reducing the contrast of a display image when a common line between pixels adjacent in the signal line direction is AC driven. It is an object of the present invention to provide a lateral electric field type active matrix liquid crystal display device capable of obtaining a display image.
[0016]
[Means for Solving the Problems]
To achieve the above object, a lateral electric field type active matrix liquid crystal display device according to the present invention includes a first and second transparent substrate, a liquid crystal layer sandwiched between the first and second transparent substrates, and a first transparent substrate. The liquid crystal driving unit is formed on the liquid crystal driving unit, and drives the liquid crystal layer by a parallel electric field formed by the liquid crystal driving unit. The liquid crystal driving unit is a plurality of scans arranged in a matrix in an insulated state. A plurality of scanning lines and a plurality of signal lines, a plurality of scanning lines and a plurality of signal lines surrounded by a plurality of active elements, and a plurality of scanning lines and a plurality of signal lines. A plurality of pixel electrodes arranged in a portion, connected to a plurality of active elements and formed with a plurality of comb-like pixel electrodes, respectively, and parallel to a plurality of scanning lines and insulated from the plurality of pixel electrodes With being placed Each having a plurality of common lines on which a plurality of comb-like common electrodes are formed, and the adjacent common lines each operate in different phases. The tooth-like common electrode includes first means formed such that the interval between the tip portions facing the scanning line is narrower than the interval between the other portions.
[0017]
In order to achieve the above object, a lateral electric field type active matrix liquid crystal display device according to the present invention includes first and second transparent substrates, a liquid crystal layer sandwiched between the first and second transparent substrates, A liquid crystal driving unit formed on a transparent substrate, and driving a liquid crystal layer by a parallel electric field formed by the liquid crystal driving unit. The liquid crystal driving units are arranged in a matrix in a state of being insulated from each other. A plurality of scanning lines and a plurality of signal lines, a plurality of active elements disposed at intersections of the plurality of scanning lines and the plurality of signal lines, a plurality of scanning lines and the plurality of signal lines. A plurality of pixel electrodes arranged in an enclosed portion, connected to a plurality of active elements and formed with a plurality of comb-like pixel electrodes, respectively, and parallel to a plurality of scanning lines are arranged on the plurality of pixel electrodes. Insulated against And a plurality of common lines each forming a plurality of comb-like common electrodes, and the adjacent common lines operate at different phases, and each scanning line, each common line, and each comb-like shape The common electrode is stacked with an insulating layer interposed therebetween, and the tip portions of the plurality of comb-like pixel electrodes and the plurality of comb-like common electrodes are arranged so as to overlap or be close to the scanning line, and the light shielding layer And second means arranged to overlap with each other.
[0018]
According to the first means, the comb-like pixel electrode connected to the pixel electrode and the comb-like common electrode connected to the common line have at least one tip portion wider than the other portions. Since the interval between the comb-like pixel electrode and the tip portion of the comb-like common electrode is narrower than the interval between other portions, the tip of the comb-like pixel electrode and the comb-like common electrode The rate at which the electric field formed in the narrowly spaced region between the parts is disturbed can be extremely reduced. As a result, a good display image can be obtained without reducing the contrast of the display image.
[0019]
According to the second means, since the scanning line, the common line, and the comb-like common electrode are stacked via the insulating layer, the comb-like pixel electrode and the common line connected to the pixel electrode are arranged. Each tip portion of the comb-like common electrode connected to the bottom of the light-shielding layer can be extended, and a disorder formed between the tip portions of the comb-like pixel electrode and the comb-like common electrode It becomes possible to cover the display image of the region affected by the electric field with the light shielding layer. As a result, a good display image can be obtained without reducing the contrast of the display image.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0021]
FIG. 1 is a configuration diagram showing a first embodiment of a lateral electric field type active matrix liquid crystal display device according to the present invention, and the left side is a plan view showing a liquid crystal driving unit constituting four adjacent pixels, The right side is a plan view showing a state in which a light shielding layer is superimposed on the same pixel.
[0022]
2 is a cross-sectional configuration diagram of the AA ′ line portion of the horizontal electric field type active matrix liquid crystal display device shown in FIG. 1. FIG. 3 is a cross-sectional view of the horizontal electric field type active matrix liquid crystal display device shown in FIG. FIG. 4 is a cross-sectional configuration diagram of the CC ′ line portion of the lateral electric field type active matrix liquid crystal display device illustrated in FIG. 1.
[0023]
1 to 4, 1 is a first transparent substrate, 2 is a second transparent substrate, 3 is a scanning line, 4 is a signal line, 5 is a common line, 5D is a comb-like common electrode, and 6 is a pixel. Electrode, 6D is a comb-like pixel electrode, 7 is a thin film transistor (TFT), 7G is a gate electrode, 7D is a drain electrode, 7S is a source electrode, 7H is a semiconductor layer, 7C is an ohmic contact layer, 8 is a liquid crystal layer, 9 is Insulating layer, 10 is a protective layer, 11 is a first polarizing plate, 12 is a first alignment film, 13 is a light shielding layer (black matrix), 14 is a color filter, 15 is a planarizing resin film, 16 is a second polarizing plate, Reference numeral 17 denotes a second alignment film, and 18 denotes an auxiliary capacitor.
[0024]
As shown in FIGS. 1 and 2, the scanning line 3, the common line 5, and the comb-like common electrode 5 </ b> D derived from the common line 5 are formed on one surface of the first transparent substrate 1. The insulating layer 9 is formed so as to cover the surfaces thereof. A signal line 4, a pixel electrode 6, and a comb-like pixel electrode 6 </ b> D led out from the pixel electrode 6 are formed on the insulating layer 9, and a protective layer 10 is formed so as to cover the surfaces thereof. A first alignment film 12 is formed on 10. A first polarizing plate 11 is bonded to the other surface of the first transparent substrate 1. Further, on one surface of the second transparent substrate 2, a matrix-shaped light shielding film 13 and a color filter 14 are formed so as to cover the openings of the light shielding film 13, and the planarizing resin film 15 is formed so as to cover the surfaces thereof. The second alignment film 17 is formed on the planarizing resin film 15. A second polarizing plate 16 is bonded to the other surface of the second transparent substrate 2. A liquid crystal layer 8 is disposed between the first transparent substrate 1 and the second transparent substrate 2 so as to be in contact with the first alignment film 12 and the second alignment film 17, and a liquid crystal display element is formed as a whole.
[0025]
In this case, the plurality of scanning lines 3 are arranged in parallel, and the common lines 5 are arranged in parallel to the scanning lines 3 between the adjacent scanning lines 3. A plurality of signal lines 4 are arranged in parallel and orthogonal to each scanning line 3, and a thin film transistor 7 is formed at the intersection of each scanning line 3 and each signal line 4. As shown in FIG. 3, the thin film transistor 7 includes a semiconductor layer 7H mainly made of a-Si, a drain electrode 7D and a source electrode 7S coupled to the semiconductor layer 7H through an ohmic contact layer 7C, and a semiconductor layer. The gate electrode 7G is coupled to 7H through the insulating layer 9. The drain electrode 7D is connected to the corresponding signal line 4, the source electrode 7S is connected to the corresponding comb-like pixel electrode 6D, and the gate electrode 7G is connected to the corresponding scanning line 3. The auxiliary capacitor 18 has a capacitance value Cstg, and is formed in a portion where the common line 5 and the pixel electrode 6 overlap with each other through the insulating layer 9 as shown in FIG.
[0026]
Further, the comb-like common electrode 5D is derived from the common line 5 in a comb-like shape so as to be parallel to the signal line 4, and extends to a position where the tip portion is close to and opposed to the scanning line 3, and The tip portion is configured to be wider than other portions. The comb-like pixel electrode 6D is derived from the pixel electrode 6 in a comb-like shape so as to be parallel to the signal line 4 and between the adjacent comb-like common electrodes 5D. Is extended to a position that faces and opposes the scanning line 3, and the tip is wider than the other parts. Therefore, the interval between the tip of the comb-like common electrode 5D and the tip of the comb-like pixel electrode 6D is configured to be narrower than the interval between the other portions.
[0027]
Further, every other common line 5 is connected to the first power supply and the second power supply, and the AC drive voltage Vc1 supplied from the first power supply and the AC drive voltage Vc2 supplied from the second power supply are: They are out of phase with each other. At this time, between the comb-like pixel electrode 6D and the adjacent comb-like common electrode 5D, the voltage difference between the voltages applied to the comb-like pixel electrode 6D and the comb-like common electrode 5D is shown in FIG. Thus, an electric field parallel to the surfaces of the first and second transparent substrates 1 and 2 is formed in the liquid crystal layer 8.
[0028]
The lateral electric field type active matrix liquid crystal display device having the above-described configuration is such that when a drive voltage is applied to each of the pixel electrode 6 and the common line 5 and the potential difference between the drive voltages is small, the amount of transmitted light that is transmitted through the liquid crystal layer 8. Decreases to a black display state. On the other hand, when the potential difference between the drive voltages is large, the amount of transmitted light transmitted through the liquid crystal layer 8 is increased to a white display state. In this case, the amount of light transmitted through the liquid crystal layer 8 is determined by the strength of the parallel electric field formed by the potential difference of the drive voltage between the pixel electrode 6 and the common line 5. Accordingly, the alignment state of the liquid crystal molecules in the liquid crystal layer 8 changes, whereby the amount of transmitted light is controlled.
[0029]
5 is a circuit diagram showing an example of an equivalent circuit in the lateral electric field type active matrix liquid crystal display device shown in FIG.
[0030]
In FIG. 5, 19 is a scanning electrode drive circuit, 20 is a signal electrode drive circuit, 21 is a common electrode drive circuit, 22 is a liquid crystal capacitor, and the other components are the same as those shown in FIGS. Have the same sign.
[0031]
The scanning electrode driving circuit 19 is connected to each scanning line 3, the signal electrode driving circuit 20 is connected to each signal line 4, and the common electrode driving circuit 21 is connected to two output lines 21. 1 , 21 2 Are connected to every other common line 5. In the thin film transistor 7, the drain electrode is connected to the signal line 4, the source electrode 7 </ b> S is connected to the common line 5 through the auxiliary capacitor 18 and the liquid crystal capacitor 22, and the gate electrode 7 </ b> G is connected to the scanning line 3.
[0032]
In this case, an image signal having image information is applied to the signal line 4, and a scanning drive voltage is applied to the scanning line 5 in synchronization with the image signal. The image information supplied through the signal line 4 is transmitted to the pixel electrode and the comb-like pixel electrode (not shown in FIG. 5) through the thin film transistor 7 turned on by the scanning drive voltage, and the comb-like pixel electrode and the comb tooth The liquid crystal layer (not shown in FIG. 5) is driven by a parallel electric field formed between the two common electrodes (not shown in FIG. 5).
[0033]
Image information written to the pixel electrode by turning on the thin film transistor 7 is stored as electric charges in the auxiliary capacitor 18 and the liquid crystal capacitor 22 when the thin film transistor 7 is changed from on to off. The charges stored in the auxiliary capacitor 18 and the liquid crystal capacitor 22 are held until the thin film transistor 7 is turned on again in the next cycle.
[0034]
Next, FIGS. 6A, 6B, and 6C show the comb-like common electrode, the comb-like pixel electrode, and the scanning line in the first embodiment shown in FIGS. It is a partial block diagram which shows an example of arrangement | positioning relationship, Comprising: The state of the electric field formed between them was shown collectively, Comprising: (a) is between a comb-like common electrode and a comb-like pixel electrode. (B) is the state of the electric field formed between the scanning line and the comb-like common electrode, and (c) is the influence of the electric field between the scanning line and the comb-like common electrode. 2 shows a state of an electric field formed between the comb-shaped common electrode and the comb-shaped pixel electrode that have received the light.
[0035]
6A to 6C, the same components as those shown in FIGS. 1 to 4 are denoted by the same reference numerals.
[0036]
As shown in FIGS. 6A to 6C, the comb-like common electrode 5D and the comb-like pixel electrode 6D are arranged so that the electrode width of the tip portion is wider than the electrode width of other portions. Specifically, it is formed so as to shift from a normal electrode width to a wide electrode width through a tapered portion, and the interval between the tip portions of the comb-like common electrode 5D and the comb-like pixel electrode 6D is other than the tip portion. It is narrower than the interval of the part.
[0037]
6A, an electric field E indicated by an arrow is generated in the comb-like common electrode 5D and the comb-like pixel electrode 6D, and the liquid crystal layer is driven by the electric field E. If the electric field E is not affected by the external electric field, the electric field E is combined with the comb-shaped common electrode 5D and the comb arranged in parallel in the region between the comb-shaped common electrode 5D and the comb-shaped pixel electrode 6D. The electric field E is generated in a direction orthogonal to the tooth-like pixel electrode 6D, and the electric field E at the tips of the comb-like common electrode 5D and the comb-like pixel electrode 6D is slightly expanded outward. At this time, the portion where the electric field E bulges outside is covered with the light-shielding layer 13 and thus has no effect on the display image.
[0038]
By the way, as shown in FIG. 6B, the phase of the drive voltage supplied to the common line (not shown in FIG. 6) of adjacent pixels is inverted, so that the scanning line 3 and the comb-like common electrode An electric field E ′ is generated between 5D and 5D, and this electric field E ′ is generated in a direction substantially orthogonal to the electric field E generated between the comb-shaped common electrode 5D and the comb-shaped pixel electrode 6D.
[0039]
Therefore, as shown in FIG. 6C, the electric field E generated between the comb-like common electrode 5D and the comb-like pixel electrode 6D is between the scanning line 5 and the comb-like common electrode 5D. Although the distance between the tips of the comb-like common electrode 5D and the comb-like pixel electrode 6D is narrowed, the electric field E affected by the electric field E 'is narrowed. The electric field E generated in the region far from the tip is not disturbed. Then, by covering the region where the distance between the tips of the comb-like common electrode 5D and the comb-like pixel electrode 6D is narrowed by the light shielding layer 13, it is possible to cover all the regions where the electric field E is disturbed. Therefore, the display image is not affected by the disturbance of the electric field E, the contrast of the display image is improved, and a good display image can be obtained.
[0040]
FIGS. 7A, 7B, 7C, and 7D show comb-like common electrodes, comb-like pixel electrodes, and scanning in the first embodiment shown in FIGS. It is a partial block diagram which shows the example from which each arrangement | positioning relationship with a line differs, Comprising: The state of the electric field formed between them is shown collectively.
[0041]
7A to 7D, the same components as those shown in FIGS. 1 to 4 are denoted by the same reference numerals.
[0042]
In addition to the shapes shown in FIGS. 6A to 6C, the comb-like common electrode 5D and the comb-like pixel electrode 6D have a comb-like common electrode 5D as shown in FIG. 7A. And the comb-like pixel electrode 6D have both side edges tapered outward and a wide portion is formed at the tip, as shown in FIG. 7B, the comb-like common electrode 5D and the comb-like pixel electrode 6D Both side edges of the tooth-like pixel electrode 6D are tapered outward to form a wide portion at the tip, and the comb-like pixel electrode 6D is compared to the distance between the comb-like common electrode 5D and the scanning line 3. As shown in FIG. 7 (c), the width of the comb-like common electrode 5D is not changed, and both side edges of the comb-like pixel electrode 6D are arranged as shown in FIG. 7C. A taper-shaped sharply expanding outward and a large wide portion at the tip, as shown in FIG. 7 (d) Further, both side edges of the comb-like common electrode 5D and the comb-like pixel electrode 6D are widened outwardly in a taper shape to form a wide portion at the tip, and the comb-like common electrode 5D is opposed to the scanning line 3. The shape of the part and the part facing the scanning line 3 of the comb-like pixel electrode 6D may be such that the central part is slightly recessed. Further, any of the comb-shaped common electrode 5D and the comb-shaped pixel electrode 6D illustrated in FIGS. 7A to 7D is illustrated in FIGS. 6A to 6C. Functions equivalent to those achieved in the comb-like common electrode 5D and the comb-like pixel electrode 6D can be achieved.
[0043]
In each of the above examples, in order to widen the tips of the comb-like common electrode 5D and the comb-like pixel electrode 6D, the width between the normal width portion and the wide portion changes to a taper shape. To prevent disclination.
[0044]
FIG. 8 is a configuration diagram showing a second embodiment of a lateral electric field type active matrix liquid crystal display device according to the present invention, and the left side is a plan view showing a liquid crystal driving unit constituting four adjacent pixels. The right side is a plan view showing a state in which a light shielding layer is superimposed on the same pixel.
[0045]
In FIG. 8, the same components as those shown in FIG.
[0046]
Comparing the second embodiment with the first embodiment, the configuration of the second embodiment is such that the common line 5 and the pixel electrode 6 are close to the scanning line 3 on the preceding stage side. The configuration differs from that of the first embodiment in that the comb-like common electrode 5D and the comb-like pixel electrode 6D are arranged in a comb-like shape only in one direction of the common line 5 and the pixel electrode 6. However, the rest of the configuration is the same as in the first embodiment. For this reason, the further description is abbreviate | omitted about the structure of 2nd Embodiment.
[0047]
The operation of the second embodiment is almost the same as the operation of the first embodiment because the configuration of the second embodiment is similar to the configuration of the first embodiment. It is the same. For this reason, further description of the operation of the second embodiment is also omitted.
[0048]
As described above, according to the second embodiment, a region in which the distance between the tips of the comb-like common electrode 5D and the comb-like pixel electrode 6D is narrowed is formed as compared with the first embodiment. Therefore, the aperture ratio can be increased correspondingly, and the contrast of the display image can be improved and a good display image can be obtained as in the first embodiment. .
[0049]
In this case, also in the second embodiment, the shapes of the tips of the comb-like common electrode 5D and the comb-like pixel electrode 6D are the same as those shown in FIGS. 6A to 6C, or FIG. 7 (a) to 7 (d) are used.
[0050]
Next, FIG. 9 is a block diagram showing a third embodiment of a lateral electric field type active matrix liquid crystal display device according to the present invention, and the left side is a plan view showing a liquid crystal driving unit constituting four adjacent pixels. Yes, the right side is a plan view showing a state in which the light shielding layer is superimposed on the same pixel, and the middle is a cross-sectional view showing a cross-sectional configuration of the AA ′ line portion.
[0051]
9, the same components as those shown in FIG. 1 are denoted by the same reference numerals.
[0052]
Comparing the third embodiment with the first embodiment, the configuration of the third embodiment is that the scanning line 3, the common line 5 and the comb-like common electrode 5D, the pixel electrode 6 and the comb The tooth-like pixel electrodes 6D are formed and arranged on different layers, and the comb-like common electrode 5D and the tip of the comb-like pixel electrode 6D are extended to the scanning line 3 to form the comb-like common electrode. The configuration of the first embodiment is different from that of the first embodiment in that the distance between the tip portions of 5D and the comb-like pixel electrode 6D is the same as the distance between the other portions. This is the same as the first embodiment. For this reason, the further description is abbreviate | omitted about the structure of 3rd Embodiment.
[0053]
The operation of the third embodiment is essentially the same as the operation of the first embodiment. In this case, in the third embodiment, the interval between the tip portions of the comb-like common electrode 5D and the comb-like pixel electrode 6D is the same as the interval between the other portions. As compared with the disturbance of the electric field E generated in the same part in FIG. However, in the third embodiment, since the tip portions of the comb-like common electrode 5D and the comb-like pixel electrode 6D are extended to the scanning line 3, the portion where the disturbance of the electric field E occurs is the light shielding layer 13. As a result, the portion that causes display unevenness is not displayed. For this reason, also in the third embodiment, as in the first embodiment, the contrast of the display image is improved and a good display image is obtained.
[0054]
In this case, instead of extending the tip portions of the comb-like common electrode 5D and the comb-like pixel electrode 6D to the scanning line 3, the tip portions may be extended to a state close to the scanning line 3. Good.
[0055]
As described above, in each of the first to third embodiments, a bright image display with excellent viewing angle characteristics is performed by driving using a driving voltage whose phase is inverted every other common line 5. Even in this case, the contrast can be improved without being affected by the drive voltage.
[0056]
Further, in each of the first to third embodiments, each common line 5 is driven with a different phase, and a common center voltage between the adjacent common lines 5 in most of the time. However, it is needless to say that the display is improved so that the contrast of the display image is improved and a good display image can be obtained by driving so that the polarity is reversed.
[0057]
【The invention's effect】
As described above, according to the invention described in claim 1, at least one of the tip portions of the comb-like pixel electrode connected to the pixel electrode and the comb-like common electrode connected to the common line has a width. Since it is configured so as to be wider than other portions, and the interval between the comb-like pixel electrode and the tip portion of the comb-like common electrode is made narrower than the interval between the other portions, the comb-like pixel electrode The rate at which the electric field formed in the narrowly spaced region between the tips of the comb-like common electrodes is disturbed can be extremely reduced, and as a result, a good display image can be obtained without reducing the contrast of the display image. There is an effect that can be obtained.
[0058]
According to the second aspect of the present invention, the scanning line, the common line, and the comb-like common electrode are stacked via the insulating layer, and the comb-like pixel electrode and the common line connected to the pixel electrode are arranged. Since each tip portion of the comb-like common electrode connected to is extended to the bottom of the light shielding layer, a disorder formed between each tip portion of the comb-like pixel electrode and the comb-like common electrode is disturbed. It is possible to cover the display image in the region affected by the electric field with the light shielding layer, and as a result, there is an effect that a good display image can be obtained without reducing the contrast of the display image.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a first embodiment of a lateral electric field type active matrix liquid crystal display device according to the present invention.
2 is a cross-sectional configuration view taken along the line AA ′ of the horizontal electric field type active matrix liquid crystal display device illustrated in FIG. 1. FIG.
3 is a cross-sectional configuration view taken along line BB ′ of the lateral electric field type active matrix liquid crystal display device illustrated in FIG. 1; FIG.
4 is a cross-sectional configuration diagram of a CC ′ line portion of the horizontal electric field type active matrix liquid crystal display device illustrated in FIG. 1. FIG.
5 is a circuit diagram showing an example of an equivalent circuit in the horizontal electric field type active matrix liquid crystal display device shown in FIG. 1. FIG.
6 is a partial configuration diagram showing an example of an arrangement relationship among a comb-like common electrode, a comb-like pixel electrode, and a scanning line in the first embodiment shown in FIGS. 1 to 5; FIG.
7 is a partial configuration diagram showing different examples of the positional relationship among the comb-like common electrode, the comb-like pixel electrode, and the scanning line in the first embodiment shown in FIGS. 1 to 5; FIG.
FIG. 8 is a configuration diagram showing a second embodiment of a lateral electric field type active matrix liquid crystal display device according to the present invention.
FIG. 9 is a configuration diagram showing a third embodiment of a lateral electric field type active matrix liquid crystal display device according to the present invention;
FIG. 10 is a partial configuration diagram showing an example of an arrangement relationship among comb-like common electrodes, comb-like pixel electrodes, and scanning lines in a known lateral electric field type active matrix liquid crystal display device.
[Explanation of symbols]
1 The first transparent substrate 22 is a liquid crystal capacitor
2 Second transparent substrate
3 Scan lines
4 signal lines
5 Common wire
5D comb-shaped common electrode
6 Pixel electrode
6D comb pixel electrode
7 Thin film transistor (TFT)
7G gate electrode
7D Drain electrode
7S source electrode
7H semiconductor layer
7C ohmic contact layer
8 Liquid crystal layer
9 Insulating layer
10 Protective layer
11 First polarizing plate
12 First alignment film
13 Shading layer (black matrix)
14 Color filter
15 Flattening resin film
16 Second polarizing plate
17 Second alignment film
18 Auxiliary capacity
19 Scan electrode drive circuit
20 Signal electrode drive circuit
21 Common electrode drive circuit
22 LCD capacity

Claims (4)

第1及び第2透明基板と、前記第1及び第2透明基板間に挟持された液晶層と、前記第1透明基板上に形成された液晶駆動部とからなり、前記液晶駆動部で形成した平行電界によって前記液晶層を駆動する液晶表示装置であって、前記液晶駆動部は、互いに絶縁状態でマトリクス状に配置された複数本の走査線及び複数本の信号線と、前記複数本の走査線及び前記複数本の信号線の各交点部分に配置された複数個のアクティブ素子と、前記複数本の走査線及び前記複数本の信号線で囲まれた部分に配置され、前記複数個のアクティブ素子に接続されるとともにそれぞれ複数の櫛歯状画素電極を形成した複数の画素電極と、前記複数本の走査線に平行配置され、前記複数の画素電極に対して絶縁配置されるとともにそれぞれ複数の櫛歯状共通電極を形成した複数本の共通線とを有し、隣接する前記共通線はそれぞれが異なる位相で動作するものであり、前記複数の櫛歯状画素電極及び前記複数の櫛歯状共通電極は、前記走査線に対向する先端部分の間隔が他の部分の間隔よりも狭くなるように形成されていることを特徴とする液晶表示装置。The first and second transparent substrates, a liquid crystal layer sandwiched between the first and second transparent substrates, and a liquid crystal driving unit formed on the first transparent substrate, are formed by the liquid crystal driving unit. A liquid crystal display device that drives the liquid crystal layer by a parallel electric field, wherein the liquid crystal driving unit includes a plurality of scanning lines and a plurality of signal lines arranged in a matrix in an insulated state, and the plurality of scanning lines. A plurality of active elements disposed at each intersection of the line and the plurality of signal lines, and a plurality of active elements disposed at a portion surrounded by the plurality of scanning lines and the plurality of signal lines. A plurality of pixel electrodes that are connected to the element and each have a plurality of comb-like pixel electrodes, and are arranged in parallel to the plurality of scanning lines, are insulated from the plurality of pixel electrodes, and each have a plurality of Comb-shaped common electric A plurality of common lines, and the adjacent common lines operate at different phases, and the plurality of comb-like pixel electrodes and the plurality of comb-like common electrodes are A liquid crystal display device, characterized in that the interval between the tip portions facing the scanning lines is narrower than the interval between other portions. 第1及び第2透明基板と、前記第1及び第2透明基板間に挟持された液晶層と、前記第1透明基板上に形成された液晶駆動部とからなり、前記液晶駆動部で形成した平行電界によって前記液晶層を駆動する液晶表示装置であって、前記液晶駆動部は、互いに絶縁状態でマトリクス状に配置された複数本の走査線及び複数本の信号線と、前記複数本の走査線及び前記複数本の信号線の各交点部分に配置された複数個のアクティブ素子と、前記複数本の走査線及び前記複数本の信号線で囲まれた部分に配置され、前記複数個のアクティブ素子に接続されるとともにそれぞれ複数の櫛歯状画素電極を形成した複数の画素電極と、前記複数本の走査線に平行配置され、前記複数の画素電極に対して絶縁配置されるとともにそれぞれ複数の櫛歯状共通電極を形成した複数本の共通線とを有し、隣接する前記共通線はそれぞれが異なる位相で動作するものであり、前記各走査線と前記各共通線及び各櫛歯状共通電極とは絶縁層を介して積層配置され、前記複数の櫛歯状画素電極及び前記複数の櫛歯状共通電極の先端部は、前記走査線に重なり合うかあるいは近接するように配置され、かつ、遮光層と重なり合うように配置されていることを特徴とする液晶表示装置。The first and second transparent substrates, a liquid crystal layer sandwiched between the first and second transparent substrates, and a liquid crystal driving unit formed on the first transparent substrate, are formed by the liquid crystal driving unit. A liquid crystal display device that drives the liquid crystal layer by a parallel electric field, wherein the liquid crystal driving unit includes a plurality of scanning lines and a plurality of signal lines arranged in a matrix in an insulated state, and the plurality of scanning lines. A plurality of active elements disposed at each intersection of the line and the plurality of signal lines, and a plurality of active elements disposed at a portion surrounded by the plurality of scanning lines and the plurality of signal lines. A plurality of pixel electrodes that are connected to the element and each have a plurality of comb-like pixel electrodes, and are arranged in parallel to the plurality of scanning lines, are insulated from the plurality of pixel electrodes, and each have a plurality of Comb-shaped common electric And each of the adjacent common lines operates at a different phase, and each of the scanning lines, each of the common lines, and each of the comb-shaped common electrodes is an insulating layer. The tip portions of the plurality of comb-like pixel electrodes and the plurality of comb-like common electrodes are arranged so as to overlap with or be close to the scanning line, and so as to overlap with the light shielding layer. A liquid crystal display device, wherein 前記共通線は、表示の1画面期間毎に反転交流駆動されることを特徴とする請求項1または2に記載の液晶表示装置。3. The liquid crystal display device according to claim 1, wherein the common line is driven by inversion alternating current every display screen period. 前記共通線は、画素内で端部が前段側の走査線に近接配置されていることを特徴とする請求項1または3に記載の液晶表示装置。4. The liquid crystal display device according to claim 1, wherein an end portion of the common line is disposed close to a scanning line on the preceding stage in the pixel.
JP10287299A 1999-04-09 1999-04-09 Horizontal electric field type active matrix liquid crystal display device Expired - Fee Related JP3650280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10287299A JP3650280B2 (en) 1999-04-09 1999-04-09 Horizontal electric field type active matrix liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10287299A JP3650280B2 (en) 1999-04-09 1999-04-09 Horizontal electric field type active matrix liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2000292802A JP2000292802A (en) 2000-10-20
JP3650280B2 true JP3650280B2 (en) 2005-05-18

Family

ID=14338999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10287299A Expired - Fee Related JP3650280B2 (en) 1999-04-09 1999-04-09 Horizontal electric field type active matrix liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3650280B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4750072B2 (en) * 2002-05-17 2011-08-17 三菱電機株式会社 Manufacturing method of liquid crystal display device
TWI243271B (en) 2002-05-17 2005-11-11 Advanced Display Kk Liquid crystal display device
KR100653474B1 (en) * 2003-09-26 2006-12-04 비오이 하이디스 테크놀로지 주식회사 fringe field switching liquid crystal display
DE602006011960D1 (en) * 2006-01-31 2010-03-11 Casio Computer Co Ltd LIQUID CRYSTAL DISPLAY DEVICE WITH A PARALLEL ELECTRICAL FIELD ESSENTIAL TO THE SUBSTRATE SURFACES
JP2009122595A (en) 2007-11-19 2009-06-04 Hitachi Displays Ltd Liquid crystal display
JP5591843B2 (en) * 2012-02-27 2014-09-17 株式会社東芝 Liquid crystal lens element and stereoscopic image display device
JP6888039B2 (en) * 2019-02-27 2021-06-16 パナソニック液晶ディスプレイ株式会社 Liquid crystal display panel

Also Published As

Publication number Publication date
JP2000292802A (en) 2000-10-20

Similar Documents

Publication Publication Date Title
JP5191639B2 (en) Liquid crystal display
JP4731206B2 (en) Liquid crystal display
US8669973B2 (en) Liquid crystal display element, liquid crystal display device, and method for displaying with liquid crystal display element
JPH08179341A (en) Liquid crystal display device and its driving method
JP4728045B2 (en) Liquid crystal display
JP5048970B2 (en) Display device
CN107942590B (en) Array substrate, liquid crystal display device and driving method
KR101122002B1 (en) Liquid Crystal Display Panel and Method of Driving The Same
JP3031295B2 (en) Active matrix type liquid crystal display
JP3650280B2 (en) Horizontal electric field type active matrix liquid crystal display device
JP2003295226A (en) Liquid crystal display device
KR20070003164A (en) Liquid crystal display device
US6999049B2 (en) Liquid crystal display device and drive method thereof
JPH10274783A (en) Liquid crystal display device
JP5589018B2 (en) Liquid crystal display
KR100494701B1 (en) Apparatus for fringe field switching liquid crystal display device
KR20080076466A (en) Array substrate and display panel having the same
KR100640215B1 (en) In-plain switching liquid cristalline display device
CN108761935B (en) Array substrate, liquid crystal display device and driving method
JP2010139776A (en) Liquid crystal display
US10754207B2 (en) Liquid crystal display device
KR20080047945A (en) Liquid crystal display device
KR101227133B1 (en) Liquid Crystal Display Panel Of Horizontal Electronic Fileld Applying Type
CN115755471B (en) Display panel and display device
KR100827461B1 (en) Cross field switchhing mode liquid crystla display

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050217

R150 Certificate of patent or registration of utility model

Ref document number: 3650280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees