JP3649338B2 - Purified Myserioftra laccase and nucleic acid encoding it - Google Patents

Purified Myserioftra laccase and nucleic acid encoding it Download PDF

Info

Publication number
JP3649338B2
JP3649338B2 JP50113296A JP50113296A JP3649338B2 JP 3649338 B2 JP3649338 B2 JP 3649338B2 JP 50113296 A JP50113296 A JP 50113296A JP 50113296 A JP50113296 A JP 50113296A JP 3649338 B2 JP3649338 B2 JP 3649338B2
Authority
JP
Japan
Prior art keywords
laccase
myserioftra
vector
aspergillus
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP50113296A
Other languages
Japanese (ja)
Other versions
JPH10501137A (en
Inventor
エム. バーカ,ランディ
エイチ. ブラウン,スティーブン
シュー,フェン
シェニデール,パール
アニタ アースリン,ドーリット
エム. オクセンベール,カレン
Original Assignee
ノボザイムス バイオテック,インコーポレイティド
ノボザイムス アクティーゼルスカブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ノボザイムス バイオテック,インコーポレイティド, ノボザイムス アクティーゼルスカブ filed Critical ノボザイムス バイオテック,インコーポレイティド
Publication of JPH10501137A publication Critical patent/JPH10501137A/en
Application granted granted Critical
Publication of JP3649338B2 publication Critical patent/JP3649338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/66Enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/10Preparations for permanently dyeing the hair
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0055Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
    • C12N9/0057Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
    • C12N9/0061Laccase (1.10.3.2)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Paper (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • External Artificial Organs (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention relates to isolated nucleic acid constructs containing a sequence encoding a Myceliophthora laccase, and the laccase proteins encoded thereby.

Description

発明の分野
本発明は菌類オキシドリダクターゼ酵素をコードする単離された核酸酵素フラグメント及びそれにより産生された精製酵素に関する。より詳しくは、本発明はフェノールオキシダーゼ、特に好熱性子嚢菌綱マイセリオフトラ(Myceliophthora)のラッカーゼをコードする核酸フラグメントに関する。
発明の背景
ラッカーゼ(ベンゼンジオール:酸素オキシドリダクターゼ)は多銅含有酵素であり、フェノール類の酸化を触媒する。ラッカーゼ媒介式酸化は適当なフェノール系基質からのアリールオキシ基中間体の産生をもたらす。このようにして産生された中間体の究極的なカップリングは二量体、オリゴマー及び重合反応産物の組合せを供する。かかる反応はメラニン、アルカロイド、毒素、リグニン及びフミン酸(humic acid)の形成をもたらす生合成経路において本質的に重要である。ラッカーゼは多種多様な菌類、例えば子嚢菌綱、例えばアスペルギルス(Aspergillus)、ニューロスポラ(Neurospora)、及びポドスポラ(Podospora)、不完全菌類ボツリチス(Botrytis)、並びに担子菌綱、例えばコリビア(Collybia)、ホーメス(Fomes)、レンチヌス(Lentinus)、プレウロトゥス(Pleurotus)、トラメテス(Trametes)、及びリゾコトニア(Rhizoctonia)の完全形態により産生される。ラッカーゼは幅広い基質特異性を示し、そして各種の菌類ラッカーゼは通常フェノール系基質を酸化するその能力において互いと力価的に相違する。基質多様性を理由に、ラッカーゼには一緒に多くの潜在的な産業用途が見い出されている。それはとりわけリグニンの修飾、紙の強化、洗剤における染料転移の阻害、フェノールの重合、ジュースの製造、フェノール樹脂の製造及び廃水処理である。
種々の菌類種により作られるラッカーゼの触媒能力は類似しているか、異なる至適温度及びpHを有し、そしてこれらは特定の基質に依存しても相違しうる。数多くのこれらの菌類ラッカーゼが単離されており、そしてこれらのいくつかについての遺伝子がクローニングされている。例えば、Choiら(Mol.Plant−Microbe Interactions :119−128,1992)には、チェストナッツ・ブライト(chestut blight)菌類クリホネクトリア・パラシチカ(Cryphonectria parasitica)のラッカーゼをコードする遺伝子の分子特性決定及びクローニングが記載されている。Kojimaら(J.Biol.Chem.265:15224−15230,1990;JP2−23885)はホワイト・ロット(white−rot)担子菌綱コリオルス・ハーストゥス(Coriolus hirsutus)のラッカーゼの2通りの対立形質の説明を供する。Germann and Lerch(Experientia 41:801,1985;PNAS USA 83:8854−8858,1986)はニューロスポラ・クラッサ(Neurospora crassa)ラッカーゼ遺伝子のクローニング及び部分配列決定を報告する。Saloheimoら(J.Gen.Microbiol.137:1537−1544,1985;WO92/014046)は菌類フレビア・ラジアタ(Phlebia radiata)由来のラッカーゼ遺伝子の構造分析を開示する。
異種菌類系においてラッカーゼ遺伝子を発現させる試みは往々にして非常に低い収量をもたらす(Kojimaら、前掲;Saloheimoら、Bio/Technol.:987−990,1991)。例えば、トリコデルマ・リーゼイ(Trichoderma reesei)におけるフレビア・ラジアタラッカーゼの異種発現は1リットル当り20mgの活性酵素しか供していない(Saloheimo,1991、前掲)。ラッカーゼは偉大な商業的潜在性を有するが、大量に酵素を発現する能力はその商業的用途にとって重要である。現時点では、商業的に利用されている宿主、例えばアスペルギルスにおいて高レベルで発現されるようなラッカーゼはない。即ち、商業的に有用な(即ちグラム/リットル又はそれより多くの)量で産生されうるラッカーゼの存在のニーズがある。本発明はかかるニーズに応える。
発明の概要
本発明はマイセリオフトラ・ラッカーゼをコードする核酸配列を含むDNA構築体に関する。本発明は更に核酸配列によりコードされる単離されたラッカーゼにも関連する。好ましくは、ラッカーゼは実質的に純粋である。「実質的に純粋」とは、ラッカーゼがその他の非ラッカーゼタンパク質を本質的に含まないことを意味する(即ち≧90%)。
新規ラッカーゼの産生を助長するため、本発明は更に請求の範囲記載の核酸配列を含んで成るベクター及び宿主細胞も提供し、このベクター及び宿主細胞はラッカーゼの組換生産において有用である。この配列は選定した宿主細胞におけるラッカーゼタンパク質の発現を指令することのできる転写及び翻訳シグナルに作用可能式に連結されている。好適な宿主細胞は菌類細胞であり、最も好ましいのはアスペルギルス属のそれである。本発明のラッカーゼの組換生産は本発明の構築体により形質転換された又はトランスフェクションされた宿主細胞又はその子孫を、ラッカーゼタンパク質の発現に適する条件下で培養し、そしてその培養物からラッカーゼタンパク質を回収することにより達成される。
本発明のラッカーゼはフェノール類の酸化を必要とする数多くの産業プロセスにおいて有用である。これらのプロセスにはリグニンの処理、ジュースの製造、フェノールの重合及びフェノール樹脂の製造が含まれる。
【図面の簡単な説明】
図1はpRaMB1における7.5EcoR Iフラグメントの制限地図を示す。N.クラッサ・ラッカーゼ遺伝子プローブハイブリダイズする領域に陰影をつけた。
図2はマイセリオフトラ・サーモフィラ(M.thermophila)ラッカーゼのヌクレオチド(SEQ ID NO:1)及びアミノ酸(SEQ ID NO:2)を示す。ヌクレオチド配列における下方の小文字はイントロンの位置を示す。プロモーター領域の中の推定TATA及びCAAT配列を太文字で示し、そして下線を付した。イントロン内の共通ラリアット構築(PuCTPuAC)に下線を付した。
図3はプラスミドpRaMB5の構築を示す。
発明の詳細な説明
マイセリオフトラ・サーモフィラは最初にApinisにより論じられ(Nova Hedwigia :57−78,1963)、そしてスポロトリカム・サーモフィル(Sporotrichum thermophile)と称された好熱性子嚢菌綱である。その後の分類学的修正はこの生物をクリソスポリウム属に属させ(Von Klopotek,A.Arch.Microbiol.98:365−369,1974)、そしてその後マイセリオフトラに属させた(Van Oorschot,Persoonia :401−408,1977)。その他の名称で知られるいくつかの生物もこの種に属することが明らかとされた。それらにはスポロトリカム。セルロフィルム(S.cellulophilum)(米国特許第4,106,989号);シーラビア・サーモフィラ(Thielavia thermophila)(Fergus and Sinden,Can.J.Botany 47:1635−1637,1968);クリソスポリウム・ファーガシ(C.fergussi)及びコリナスカス・サーモフィルス(Corynascus thermophilus)(Von Klopotek、前掲)が含まれる。この種はいくつかの種々の工業的に有用な酵素、例えばセルラーゼ、β−グルコシダーゼ及びキシラナーゼの起源として知られる(例えば、Obersonら、Enzyme Microb.Technol.14:303−312,1992;Merchantら、Biotechnol.Lett.10:513−516,1988;Breuilら、Biotechnol.Lett.:673−676,1986;Gilbertら、Bioresource Technol.39:147−154,1992を参照のこと)。マイセリオフトラは中性pHのラッカーゼを産生し、そしてこのラッカーゼをコードする遺伝子は慣用の宿主系、例えばアスペルギルスを大量に生産するために利用できることがこの度決定された。
マイセリオフトラにおけるラッカーゼ遺伝子の存在を同定するため、ニューロスポラ・クラッサ・ラッカーゼ遺伝子の5'領域(lcc 1)は、種々の菌類種の全ゲノムDNAのサザンハイブリダイゼーションにおける温和なストンジェンシーの条件下でのプローブとして用いられる。約12kbのラッカーゼ特異性配列がマイセリオフトラDNAにおいて検出される。次いでN.クラッサフラグメントをλEMBL4バクテリオファージクローニングベクターの中の約20,000プラークのM.サーモフィラ・ゲノムDNAライブラリーをスクリーニングするために用いる。8プラークがこのプローブと強くハイブリダイズする。この8つのうち、3つからDNAを単離した。これらのクローンをそれぞれは7.5EcoR Iフラグメントを含み、それもプローブにハイブリダイズする(図1)。フラグメントのうちの1つをpBR322の中にサブクローニングし、プラスミドpRaMB1を作り上げた。lcc 1プローブを用い、クローンのコード領域の位置を決定する。全M.サーモフィラコード領域は3.2kbのNhe−I Bgl IIセグメントを含むことが明らかとなり、それをpUC119にクローニングし、そしてプライマー歩行法により配列決定した。
配列が決定されたら、遺伝子内のイントロン及びエキソンの位置を、対応のN.クラッサ・ラッカーゼ遺伝子産物に対する推定アミノ酸配列の整合に基づき認定する。この対比から、M.サーモフィラの遺伝子(lccM)は6つのイントロン(85,84,102,72,147及び93ヌクレオチド)により介在された7つのエキソン(246,79,12,70,973,69及び411ヌクレオチド)より成ることが明らかとなる。介在配列を除くコード領域は非常にGCリッチ(65.5%のG+C)であり、そして620アミノ酸のプレプロ酵素:22アミノ酸のシグナルペプチド、25アミノ酸のプロペプチド及び573個のアミノ酸を含んで成る成熟ラッカーゼをコードする。M.サーモフィラ遺伝子の配列及び推定アミノ酸配列を図2に示す(SEQ ID NO:1及び2)。
次いでラッカーゼ遺伝子をアスペルギルス宿主細胞の形質転換のための発現ベクターを作り上げるために利用する。このベクターpRaMB5はA.オリザTAKA−アミラーゼプロモーター及びターミネーター領域を含む。pRaMB5の構築を図3に概略する。アスペルギルス細胞をこの発現ベクター及びpyrG又はamds選択マーカーを含むプラスミドにより同時形質転換させる。形質転換体はABTSを含む適当な選択培地に基づいて選定する。ラッカーゼ産生コロニーは緑色の輪を示し、従って容易に単離できる。選定した形質転換体を振盪フラスコの中で増殖させ、そして培養培地をシリンガルダジン(syringaldazine)法によりラッカーゼ活性について試験した。振盪フラスコ培養物は0.2g/1以上のラッカーゼを産生でき、そして発酵槽の中では1〜2g/1を超える収量が認められる。
本発明に従うと、ラッカーゼをコードするマイセリオフトラ遺伝子は上記の方法により、又は本明細書において提供する情報を利用して当業界公知の別の方法により得られうる。この遺伝子は発現ベクターを用い、活性形態で発現されうる。有用な発現ベクターは宿主細胞ゲノムへのベクターの安定な組込み又は宿主細胞のゲノムと独立した宿主細胞の中でのベクターの自己複製を可能とする因子、及び好ましくは形質転換宿主細胞の容易な選定を可能とする1又は複数の表現型マーカーを含む。発現ベクターは更に、プロモーター、リボソーム結合性部位、翻訳開始シグナル、及び任意的にリプレッサー遺伝子又は様々な活性化性遺伝子をコードするコントロール配列を含みうる。発現されたタンパク質の分泌を可能とするため、シグナル配列をコードするヌクレオチドを遺伝子のコード配列の前に挿入してよい。コントロール配列の指令下での発現のため、本発明に従って利用されるラッカーゼ遺伝子は適当なリーディングフレーム内でコントロール配列に作用可能式に連結されている。プラスミドベクターの中に組込むことができ、そしてラッカーゼ遺伝子の転写を指令できうるプロモーター配列には、限定することなく、原核β−ラクタマーゼプロモーター(Villa−Kamaroffら、1978,Proc.Natl.Acad.Sci.U.S.A 75:3727−3731)及びtacプロモーター(DeBoerら、1983,Proc.Natl.Acad.Sci.U.S.A 80:21−25)が含まれる。更なる参考は「Useful proteins from recombinant bacteria」Scientific American,1980,242:74−94及びSambrookら、「Molecular Cloning」1989に見い出せうる。
本発明のDNA構築体を担持する発現ベクターは、組換DNA手順に簡単に委ねることのできうる任意のベクターであってよく、そしてベクターの選定は一般にそれを導入する宿主細胞に依存するであろう。即ち、ベクターは自己複製式ベクター、即ち、染色体外資として存在し、その複製が染色体の複製とは独立したベクター、例えばプラスミド、又は染色体外因子、ミニクロモソームもしくは人工染色体でありうる。他方、このベクターは、宿主細胞の中に導入したとき、宿主細胞ゲノムの中に組込まれ、そしてそれの組込まれた染色体と一緒に複製するものでありうる。
ベクターの中では、ラッカーゼDNA配列は適当なプロモーター配列に作用可能式に連結されているべきである。このプロモーターは選定の宿主細胞の中で転写活性を示す任意のDNA配列であってよく、そして宿主細胞と同族又は異種のいづれかのタンパク質をコードする遺伝子に由来しうる。本発明のDNA構築体の転写を指令するのに適当なプロモーター、特に細菌宿主におけるプロモーターの例は、E.コリ(E.coli)のlacオペロンのプロモーター、ストレプトマイセス・コエリカラー(Streptomyces coelicolor)アガラーゼ遺伝子dagAプロモーター、バチルス・リシュニホルミス(Bacillus licheniformis)α−アミラーゼ遺伝子(amyL)のプロモーター、バチルス・ステアロサーモフィルス(B.stearothermophilus)マルトジェニック・アミラーゼ遺伝子(amyM)のプロモーター、バチルス・アミロリケファシエス(B.amyloliquefaciens)α−アミラーゼ(amyQ)のプロモーター、バチルス・スブチリス(B.subtilis)xylA及びxylB遺伝子のプロモーターである。酵母宿主において有用なプロモーターはeno−1プロモーターである。菌類宿主における転写のために有用なプロモーターの例は、A.オリザ(A.oryzae)TAKAアミラーゼ、リゾムコール・ミーヘイ(Rhizomucor miehei)アスパラギン酸プロテイナーゼ、A.ニガー(A.niger)中性α−アミラーゼ、A.ニガー酸安定性α−アミラーゼ、A.ニガー又はA.アワモリ(A.awamori)グルコアミラーゼ(glaA)、リゾムコール・ミーヘイ・リパーゼ、A.オリザアルカリ性プロテアーゼ、A.オリザ・トリオース・ホスフェート・イソメラーゼ、又はA.ニドゥランス(A.nidulans)アセレアミダーゼをコードする遺伝子に由来するものである。TAKA−アミラーゼ及びglaAプロモーターが好ましい。
本発明の発現ベクターは適当な転写ターミネーターを含んで成ってよく、そして真核細胞においては、本発明のラッカーゼをコードするDNA配列に作用可能式に連結されたポリアデニル化配列も含んで成ってよい。転写及びポリアデニル化配列は適切にはプロモーターと同一の起源に由来していてよい。このベクターは更にベクターが課題の宿主細胞の中で複製できるようにするDNA配列を含んで成りうる。かかる配列の例はプラスミドpUC19,pACY177,pUB110,pE194,pAMB1及びpIJ702の複製起点である。
このベクターは更に選択マーカー、例えばその産物が宿主細胞における欠陥を補完する遺伝子、例えばB.スブチリスもしくはB.リシェニホルミス由来のdal遺伝子、又は抗生物質耐性、例えばアンピシリン、カナマイシン、クロラムフェニコールもしくはテトラサイクリン耐性を授ける遺伝子も含んで成りうる。アスペルギルス選択マーカーの例には、amdS,pyrG,argB,niaD,sC及びヒグロマイシン耐性をもたらすマーカーhygBが含まれる。アスペルギルス・宿主細胞における使用にとって好ましいのはA.ニドゥランス又はA.オリザのamdS及びpyrGマーカーである。往々にして利用される哺乳動物のマーカーはジヒドロフォレートリダクターゼ(DHFR)遺伝子である。更に、選定はWO91/17243号に記載の如く、同時形質転換により成し遂げられうる。
一般に発現は細胞外となる産物をもたらすことが好ましい。本発明のラッカーゼはそれ故培養培地に発現タンパク質を分泌させるプレ領域を含んで成りうる。所望するなら、このプレ領域は本発明のラッカーゼにとって天然でありうるか、又はプレ領域もしくはシグナル配列により置換されていてよく、それは好都合には反応のプレ領域をコードするDNA配列の置換により成し遂げられる。例えば、プレ領域はアスペルギルス種由来のグルコアミラーゼ、もしくはアミラーゼ遺伝子、バチルス種由来のアミラーゼ遺伝子、リゾムコール・ミーヘイ由来のリパーゼもしくはプロテイナーゼ遺伝子、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)もしくは子牛由来のα−因子についての遺伝子に由来しうる。特に好ましくは、宿主が菌類細胞であるとき、A.オリザTAKAアミラーゼ、A.ニガー中性アミラーゼ、バチルスNCIB 11837由来のマルトジェニックアミラーゼ、B.ステアロサーモフィルスα−アミラーゼ又はバチルス・リシェニホルミススブチリシンである。有効なシグナル配列はA.オリザTAKAアミラーゼシグナル、リゾムコール・ミーヘイ・アスパラギン酸プロテイナーゼシグナル及びリゾムコール・ミーヘイ・リパーゼシグナルである。
本発明のDNA構築体、プロモーター、ターミネーター及びその他の因子をそれぞれライゲーションする、並びにそれらを複製にとって必須の情報を含む適当なベクターに挿入するために利用する手順は当業者にとって公知である(例えば、Sambrookら、Molecular Cloning,1989を参照のこと)。
上記の本発明のDNA構築体又は発現ベクターのいづれかを含んで成る本発明の細胞は好都合には本発明の酵素の組換生産における宿主細胞として用いられる。この細胞は本発明のDNA構築体により、好都合にはそのDNA構築体を宿主染色体の中に組込むことにより形質転換されうる。この組込みが一般に好都合と解され、なぜならDNA配列が細胞の中に安定に維持され易いからである。宿主の染色体へのDNA構築体の組込みは例えば相同性又は異種組換により、慣用の方法に従って実施されうる。他方、この細胞は種々のタイプの宿主細胞との関連で上記した通りにして発現ベクターにより形質転換されうる。
宿主細胞は原核細胞、例えば細菌細胞から選定されうる。適当な細菌の例はグラム陽性菌、例えばバチルス・スブチリス、バチルス・リシェニホルミス、バチルス・レンタス(B.lentus)、バチルス・ブレビス(B.brevis)、バチルス・ステアロサーモフィルス、バチルス・アルカロフィルス(B.alkalophilus)、バチルス・アミロリケファシエンス、バチルス・コアジュランス(B.coagulans)、バチルス・サーキュランス(B.circulans)、バチルス・ロータス(B.lautus)、バチルス・メガテリウム(B.megaterium)、バチルス・スリンジェンシス(B.thuringiensis)、又はストレプトマイセス・リビダンス(S.lividans)もしくはストレプトマイセス・ミュリナス(S.murinus)、又はグラム陰性菌、例えばE.コリである。細菌の形質転換は例えばプロトプラスト形質転換により、又は本質的に公知の態様でコンピテント細胞を利用することにより行ってよい。
宿主細胞は真核系、例えば哺乳動物細胞、昆虫細胞、植物細胞又は好ましくは菌類細胞、例えば酵母及び糸状菌類であってもよい。例えば、有用な哺乳動物細胞にはCHO又はCOS細胞が含まれる。酵母宿主細胞はサッカロマイセス又はシゾサッカロマイセス(Schizosaccharomyces)の種、例えばサッカロマイセス・セレビジエから選定されうる。有用な糸状菌類はアスペルギルス種から選定され得、例えばアスペルギルス・オリザ又はアスペルギルス・ニガーである。他方、フサリウム種の株、例えばF.オキシスポルムを宿主細胞として利用できうる。菌類細胞は、本質的に公知の態様でのプロトプラスト形成及びプロトプラストの形質転換、その後の細胞壁の再生により形質転換してよい。アスペルギルス宿主細胞の形質転換のために適当な手順はEP 238,023号に記載されている。フサリウム種を形質転換するのに適当な方法はMalardierら、1989により述べられている。
従って、本発明は本発明の組換ラッカーゼを生産する方法を提供し、この方法は上記の宿主細胞を酵素の産生を誘導する条件下で培養し、そして酵素を細胞及び/又は培養培地から回収することを含んで成る。細胞を培養するのに用いられる培地は課題の宿主細胞を増殖させ、且つ本発明のラッカーゼの発現を獲得するのに適当な任意の慣用の培地であってよい。適当な培地は商業的供給者から入手できるものであるか、又は公開の処方に従って調製されうるものである(例えば、アメリカンタイプ・カルチャー・コレクションのカタログに記載)。
好適な態様において、培養物中のラッカーゼの組換生産は過剰量の銅の存在下で達成される。培養培地に添加する微量金属は少量の銅を含むが、本発明との関連で行う実験は培地への銅添加物の添加が活性酵素の収量を何倍にも高めうることを示す。好ましくは、銅は培地に可溶性形態で、好ましくは可溶性銅塩の形態で、例えば塩化銅、硫酸銅又は酢酸銅の形態で添加する。培地中の銅の最終濃度は0.2〜2mMの範囲、好ましくは0.05〜0.5mMの範囲にあるべきである。この方法は任意の組換的に生産した菌類ラッカーゼ、及びその他の銅含有酵素、特にオキシドリダクターゼの収量を高めるのに利用できうる。
得られる酵素は培地から、慣用の手順、例えば遠心又は濾過により培地から細胞を分離させ、上清液又は濾液のタンパク質性成分を塩、例えば硫酸アンモニウムにより沈殿させ、次いで様々なクロマトグラフィー手順、例えばイオン交換クロマトグラフィー、ゲル濾過クロマトグラフィー、アフィニティークロマトグラフィー等により精製することにより、回収できうる。好ましくは、単離したタンパク質はSDS−PAGEによる決定に従い約90%の純度でなり、その純度は食品、ジュース又は洗剤の用途において最も重要である。
特に好適な態様において、ラッカーゼの発現は菌類宿主細胞、例えばアスペルギルスにおいて達成される。以下の実施例において詳細に説明する通り、ラッカーゼ遺伝子はアスペルギルス・オリガTAKAα−アミラーゼプロモーター及びアスペルギルス・ニドゥランスamdS選択マーカーを含むプラスミドの中にライゲーションする。他方、amdSが独立したプラスミドの上にあり、そして同時形質転換において利用できる。1又は複数のプラスミドを、アスペルギルス種の宿主細胞、例えばA.オリザ又はA.ニガーをYeltorら(PNAS USA 81:1470−1474,1984)に記載の方法に従って形質転換するために利用する。
当業者は、本発明が本明細書に詳しく開示してある核酸フラグメント、例えば図1におけるそれの利用に限定されないことを理解するであろう。本発明は、図1に示しているのと同じアミノ酸配列をコードするが、しかし遺伝子コードの縮重により特定表示のヌクレオチド配列と異なるヌクレオチド配列を包括することも明らかであろう。また、本明細書及び請求の範囲における図1に対する言及は、その中に記載のゲノム配列並びに対応のcDNA及びRNA配列を包括することが理解され、そして本明細書において用いる「DNA構築体」及び「核酸配列」なる語はその全ての変異体を包括することが理解されるであろう。「DNA構築体」は一般に一本鎖又は二本鎖のいづれかのDNA分子を意味することが理解され、それは天然遺伝子から部分形態で単離されているか、又は天然では存在していないような態様で結合及び並んでいるDNAのセグメントを含むように改変されている。
本明細書に記載のマイセリオフトラ・ラッカーゼは、その比活性が論じられているその他の公知の子嚢菌綱又は不完全菌類と比べ、シリンガルダジン基質に対して極めて高い比活性を有する。本発明はその他の子嚢菌綱及び/又は不完全菌類ラッカーゼをも単離せしめうる手段を提供する。本明細書に特異的に例示したもの以外の起源からのラッカーゼ遺伝子の同定及び単離は本実施例に記載の方法の利用により、公的に入手できる子嚢菌綱及び不完全菌類株によって達成できうる。特に、本明細書に開示の特定の配列は標準のPCR又はサザンハイブリダイゼーション技術により類似のラッカーゼ遺伝子を単離するうえで有用なプライマー及び/又はプローブをデザインするのに利用できうる。従って、本発明は約30SOU/mg以上、そして好ましくは約40SOU/mg以上の比活性を有する子嚢菌綱及び不完全菌類ラッカーゼを包括する。「SOU」は至適pHで基質としてシリンガルダジンを用いて測定して、1分間当りに酸化される基質のμmole量として定義する。
更に、本発明はその他のマイセリオフトラ・ラッカーゼを包括し、例えばM.サーモフィラにおいて見い出せうるラッカーゼの別の形態、及びVan Oorschot,1977、前掲による定義に従ってマイセリオフトラの定義内に属するその他の菌類において見い出せうるラッカーゼを含む。本明細書において特異的に例示したもの以外の起源からのラッカーゼ遺伝子の同定及び単離は本実施例に記載の方法の利用により、公的に入手できるマイセリオフトラ株を用いて達成されうる。他方、本明細書に開示の配列は標準のPCRまたはサザンハイブリダイゼーション技術によりラッカーゼ遺伝子を単離するうえで有用なプライマー及び/又はプローブをデザインするために利用できうる。その他の名称のマイセリオフトラ種には、マイセリオフトラ・ヒンヌレア(M.hinnulea)(Awaoら、Mycotaxon,16:436−440,1983)、マイセリオフトラ・バレレア(M.vellerea)(Guarroら、Mycotaxon,23:419−427,1985)及びマイセリオフトラ・レテア・コスタンチン(M.lutea Costantin)が含まれる。また、別名のラッカーゼ、例えばマイセリオフトラ属の種又は株のアナモルフ又は完全状態も包括される。マイセリオフトラの株は数多くの培養物寄託機関において容易に公的にアクセス可能である。例えばATCC 48102,48103,48104等;CBS 117.65,131.65,379.65等;DSM 1799(M.サーモフィラ)、ATCC 52474,CBS 539.82,540.82等(M.ヒンヌレア)、DSM 62114,DBS 146.50,147.50,157.51等(M.ルテア)、並びにCBS 478.76,479.76及び715.84(M.ベレレア)。本発明は更に任意の変異ヌクレオチド配列及びそれによりコードされるタンパク質を包括し、そのタンパク質は図1に示すアミノ酸配列と約80%以上、好ましくは85%以上、そして最も好ましくは90〜95%以上の相同性を保持し、そしてそれは本明細書記載の配列のラッカーゼ活性を定性的に保持している。上記のカテゴリー内における有用な変異体には例えば保存アミノ酸置換されているものが含まれ、その置換はタンパク質の活性に有意な影響を及ぼさないものとする。保存置換とは、同じクラスのアミノ酸がそのクラスの任意の別のものにより置換されうることを意味する。例えば、非極性脂肪族残基Ala,Val,Leu及びIleは、塩基性残基Lys及びArg、又は酸性残基Asp及びGluと同様に相互変換してよい。同様に、Ser及びThrは、Asn及びGlnと同様に、互いと保存置換の関係にある。かかる置換は分子の機能にとって重要な領域の外部で成し得、従って未だ活性な酵素をもたらすことが当業者にとって明らかであろう。所望の活性の保持は標準のABTS酸化法、例えば本実施例に記載のそれを実施することにより容易に決定できる。
タンパク質は数多くの様々な産業的プロセスにおいて利用できる。これらのプロセスは高分子量を有するリグニンを製造するための、リグニンのクラフト及びリグノスルフェートの双方での溶液重合が含まれる。中性/アルカリ性ラッカーゼは、クラフトリグニンが高めのpHで一層可溶性である点で特に有利である。かかる方法は例えばJinら、Holzforshung45(6):467−468,1991;米国特許第4,432,921号;EP 0,275,544号;PCT/DK93/00217,1992に記載されている。
本発明のラッカーゼはクラフトパルプにおけるリグニンのin−situ脱重合のためにも利用でき、これにより低リグニン含有量を有するパルプが製造できる。ラッカーゼの利用はリグニンの脱重合のための現状の塩素の利用よりも優れる。塩素の利用は塩素化芳香族化合物の生成を招き、それは製紙工場の環境的に望ましくない副産物である。かかる利用は例えばCurrent opinion,Biotechnology :261−266,1992;J.Biotechnol.25:333−339,1992;Hiroiら、Svensk paperstidning :162−166,1976に記載されている。製紙工場における環境は一般にアルカリ性であるため、該ラッカーゼは、酸性条件下で最も良く機能するその他の公知のラッカーゼよりもこの目的にとってより有用である。
染料及び染料前駆体、並びにその他の発色化合物の酸化は化合物の脱色を招く。ラッカーゼはこの目的のために利用でき、それは布帛間での染料の転移が望ましくないとき、例えば繊維産業及び洗剤産業における状況において極めて好都合でありうる。染色転移阻害及び染料の酸化のための方法はWO92/01406号;WO92.18683号;EP 0,495,836号;Calvo,Mededelingen van de Faculteit Landboum−wetenschappen/Rijiksuniversitet Gent.56:1565−1567,1991;Tsujinoら、J.Soc.Chem.42:273−282,1991において見い出せうる。
ラッカーゼは毛髪の染色における利用に極めてよく適する。かかる用途においては、ラッカーゼを染料前駆体と好ましくは毛髪の上で接触させ、これにより染料前駆体の制御された酸化が達成され、前駆体は染料へと又は顔料生成化合物、例えばキノイド化合物へと変換される。染料前駆体は好ましくは3種の主要化学族、即ちジアミン類、アミノフェノール類(又はアミノナフトール類)及びフェノール類のいづれかに属する芳香族化合物である。染料前駆体は単独又は組合せで利用できうる。共重合にける中間体の少なくとも一種はオルト−もしくはパラ−ジアミン又はアミノフェノール(一次中間体)でなくてはならない。かかるものの例は後述の第IV章に見い出され、そしてp−フェニレン−ジアミン(pPD)、p−トルイレン−ジアミン、クロロ−p−フェニレンジアミン、p−アミノフェノール、o−アミノフェノール、3,4−ジアミノトルエンが含まれる。米国特許第3,251,742号にはその他の化合物も記載されており、その内容は引用することで本明細書に組入れる。一の態様において、出発材料は酵素及び一次中間体のみでなく、更には改質剤(カップラ−)(又は改質剤の組合せ)も含み、その改質剤は一般にメタ−ジアミン、メタ−アミノフェノール又はポリフェノールである。改質化合物の例にはm−フェニレン−ジアミン、2,4−ジアミノアニソール、α−ナフトール、ヒドロキノン、ピロカテコール、レゾルシノール及び4−クロロレゾルシノールが含まれる。次いで改質剤をラッカーゼの存在下で一次中間体と反応させ、それを有用化合物に変換させる。別の態様において、ラッカーゼは一次中間体と直接、それを有色化合物へと酸化するため、利用してよい。全てのケースにおいて、染色工程は1又は複数種の一次中間体により、単独で、又は1もしくは複数種の改質剤と組合せて行ってよい。成分の量の類似の成分についての通常の商業的な量に応じ、そして成分の比はそれに従って変えられうる。
このラッカーゼの利用はより伝統的なH2O2の利用よりも、その後者が毛髪に損傷を及ぼし、そしてその利用が通常高いpH(これも毛髪を損傷せしめる)を必要とするという点で、優れている。反対に、ラッカーゼとの反応はアルカリ性、中性又は酸性のpHでさえも行うことができ、そして酸化のために必要な酸素は苛酷な化学酸化を介するではなく、大気に由来する。マイセリオフトラ・ラッカーゼの利用により供される結果はH2O2の利用により達成されるそれに匹敵し、それは発色のみならず、洗濯安定性及び輝度の消失性においてもそうである。更なる商業的な利点は、ラッカーゼ及び前駆体の無酸素雰囲気の中での単一容器包装にあり、そのような方式はH2O2の利用は不可能である。
該ラッカーゼは液体の中に存在するフェノール系化合物の重合のためにも利用できる。かかる有用性の例はジュース、例えばアップルジュースの処理により、ラッカーゼはジュースの中に存在するフェノール系化合物の沈殿を促進せしめ、それ故一層安定なジュースが製造されるようになるであろう。かかる用途はStutz,Fruit processing 7/93,248−252,1993;Maierら、Dt.Lebensmittel−rindschau 86(5):137−142,1990;Dietrichら、Fluss.Obst 57(2):67−73,1990に記載されている。
ラッカーゼ、例えばマイセリオフトラ・ラッカーゼは土壌の解毒においても有用である(Nannipieriら、J.Environ.Qual.20:510−517,1991;Dec and Bollag,Arch.Environ.Contam.Toxicol.19:543−550,1990)。
本発明を以下の非限定的な実施例により更に説明する。
実施例
I.マイセリオフトラ・サーモフィラ・ラッカーゼ遺伝子 の単離
A.材料及び方法
1.DNAの抽出及びハイブリダイゼーション分析
全細胞DNAを、以下のプロトコールを利用して、25mlのYEG培地(0.5%の酵母抽出物、2%のグルコース)の中で24時間増殖させたマイセリオフトラ・サーモフィラ株E421の菌類細胞から抽出した:菌糸体をMiracloth(Calbiochem)を通じる濾過により集め、そして25mlのTEバッファーで1回洗った。よけいなバッファーを菌糸体から除き、菌糸体を液体窒素の中で凍結した。凍結した菌糸体を電気コーヒーグラインダーで微粉末に砕き、そしてその粉をディスポーザブルプラスチック遠沈管中の20mlのTEバッファー及び5mlの20%のSDS(w/v)に加えた。この混合物を静かに数回反転させて混合を確実なものとし、そして等容量のフェノール:クロロホルム:イソアミルアルコール(25:24:1)で2回抽出した。酢酸ナトリウム(3Mの溶液)を0.3Mの最終濃度となるように加え、そして核酸を2.5容量の氷冷エタノールで沈殿させた。これらのチューブを15,000×gで30分遠心し、そしてそのペレットを30分風乾させ、次いで0.5mlのTEバッファーの中に再懸濁させた。DNase非含有リボヌクレアーゼAを100μg/mlの濃度となるように加え、そしてその混合物を37℃で30分インキュベーションした。プロテイナーゼK(200μg/ml)を加え、そして各チューブを更に1時間37℃でインキュベーションした。最後に、各サンプルをフェノール:クロロホルム:イソアミルアルコールで2回抽出し、次いで酢酸ナトリウム及びエタノールでDNAを沈殿させた。DNAペレットを真空で乾かし、TEバッファーの中で再懸濁し、そして4℃で保存した。
形質転換及び未形質転換コントロール株由来の全細胞DNAサンプルをサザンハイブリダイゼーションにより分析する。約5μgのDNAをEcoR Iにより消化し、そして1%のアガロースゲル上でサイズ分別する。このゲルを短波長UV下で写真撮影し、そして0.5MのNaOH,1.5MのNaCl中に15分、次いで1Mのトリス−HCl,pH8,1.5MのNaClの中で15分浸す。ゲル中のDNAをZeta−Probe(商標)ハイブリダイゼーション膜(BioRad Laboratories)上に20×のSSPE(R.W.Davisら、Advanced Bacterial Genetics,A Manual for Genetic Engineering.Cold Spring Habor press.1980)中でのキャピラリーブロッティングにより移す。膜を2時間、80℃、真空下で焼き、そして以下のハイブリダイゼーションバッファーの中で45℃にて静かに攪拌しながら浸す:5×SSPE,35%のホルムアミド(v/v)、0.3%のSCS,200μg/mlの変性且つ剪断したサケ精巣DNA。N.クラッサlcc 1遺伝子の5'領域をコードするラッカーゼ特異性プロ−フラグメント(約1.5kb)をN.クラッサ・ゲノムDNAから、標準のPCR条件(Perkin−Elmer Cetus,Emeryville,CA)を利用し、以下のプライマーペアーを用いて増幅させる:フォワードプライマー5'CGAGACTGATAACTGGCTTGG 3';リバースプライマー5'ACGGCGCATTGTCAGGGAAGT 3'。増幅させたDNAセグメントをまずTA−クローニングベクター(Invitrogen,Inc.,San Diego,CA)の中にクローニングし、次いでアガロースゲル電気泳動により精製し、そしてEcoR Iで消化する。精製したプローブフラグメントをα〔32P〕dCTP(Amersham)によるニックトランスレーションにより放射能ラベルし、そしてバッファー1ml当り約1×106cpmの活性においてハイブリダイゼーションバッファーに加える。その混合物を振盪浴槽中で45℃にて一夜インキュベーションする。インキュベーション後、膜を0.2×のSSPEと0.1%のSDSで45%において1回洗い、次いで0.2×のSSPE(SDSなし)で同じ温度で2回洗う。膜をペーパータオル上で15分かけて乾かし、次いでSaran Wrap(商標)の中に包み、そしてX線フィルムに−70℃で増強スクリーン(Kodak)を伴って一夜曝露する。
2.ラッカーゼクローンのDNAライブラリー及び同定
ゲノムDNAライブラリーをバクテリオファージクローニングベクターλ−EMBL4の中で構築する(J.A.Sorge.Vectors,A Snrvey of Molecular Cloning Vectors and Their Uses,Rodriguesら、編pp43−60,Butterworths,Boston,1988)。簡単には、前細胞DNAをSan 3Aで部分消化し、そして低融点アガロースゲル上でサイズ分別する。9kb〜23kbの間で泳動するDNAフラグメントを切り出し、そしてβ−アガラーゼ(New England Biolabs,Beverly MA)を用いてゲルから溶出させる。溶出したDNAフラグメントをBamH 1−切断し、且つ脱ホスホリル化したλ−EMBL4ベクターアームにライゲーションし、そしてそのライゲーション混合物を商業的なパッケージング抽出物(Stratagene,La Jolla,CA)を用いてパッケージングする。パッケージングしたDNAライブラリーをプレート培養し、そしてエッシェリヒア・コリK802細胞上で増殖させる。各ライブラリー由来の約10,000〜20,000プラークを上記の条件を利用し、放射能ラベルしたlcc 1 DNAフラグメントとのプラークハイブリダイ−ゼーションによりスクリーニングする。このプローブとのハイブリダイゼーションシグナルを出すプラークをE.コリK802細胞上に基づいて2回精製し、そして対応のファージ由来のDNAをQiagen Lamda kit(Qiagen,Inc.,Chatswarth,CA)を用い、高力価リゼートから精製する。
3.ラッカーゼ遺伝子の分析
ラッカーゼクローンの制限地図化を標準の方法を利用して行う(Lewin,Genes,第2版、Wiley & Sons,1985,New York)。DNA配列決定はApplied Biosystemsモデル373A自動化DNAシーケンサー(Applied Biosystems.Inc.,Foster City,CA)により、色素−ターミネーター化学によるプライマー歩行技術を利用して行う(H.Gieseckeら、J.Virol.Methods 38:47−60,1992)。オリゴヌクレオチド配列決定用プライマーはApplied Biosystemsモデル394DNA/RNAシンセサイザーで合成する。
B.結果及び考察
1.ラッカーゼ遺伝子配列の同定
全細胞DNAサンプルをニューロスポラ・クラッサ、ボツリチス・シネレア(B.cinerea)及びマイセリオフトラの種から調製する。これらのDNA調製品のアリコートをBamH 1で消化し、そしてアガロースゲル電気泳動により分別する。ゲル中のDNAをZcta−Probe(商標)膜フィルター(BioRad Laboratories,Hercules,CA)にブロッティングし、そして前述の通りにしてN.クラッサlcc 1遺伝子の一部をコードする放射能ラベルしたフラグメントと温和なストリンジェンシーの条件下でプロービングする。ラッカーゼ特異性配列はM.サーモフィラ及びN.クラッサ・コントロールのゲノムにおいて検出されるが、B.シネレアゲノムDNAにおいてはこのプローブでは検出されない。
2.マイセリオフトラ・サーモフィラ・ラッカーゼ(Mt L)遺伝子のクローニング及び特性決定
λ−EMBL4クローニング用ベクターの中に構築したM.サーモフィラゲノムDNAライブラリー由来の約20,000のプラークをスクリーニングする。このライブラリーは約10,000個の独立クローンより成り、インサートは9kbから23kbのサイズに範囲した。M.サーモフィラについて平均インサートサイズを10kb、そして全ゲノムサイズを4×107bpと仮定して、この数字は全ゲノムを表示するのに必要とされるクローンの数の約2.5倍である。8つのプラークがN.クラッサ・ラッカーゼ遺伝子と強くハイブリダイズすることが同定された。DNAをそのうちの3つから単離し、EcoR Iで消化し、そしてアガロースゲル電気泳動及びサザンハイブリダイゼーションにより分析する。これらの3つのクローンは全てラッカーゼ特異性プローブとハイブリダイズする。7.5kbのEcoR Iフラグメントを含む。これらのEcoR Iフラグメントの1つをpBR322(Bolivarら、Gene 2:95−113,1977)にサブクローニングしてプラスミドpRaMB1を作り上げる。このDNAセグメントの制限地図を図1に示す。このクローン上のラッカーゼコード領域の位置を上記のlcc 1遺伝子フラグメントとのハイブリダイゼーションにより決定する。得られる地図データー、及び約80kdalのラッカーゼタンパク質の推定サイズに基づき、全M.サーモフィララッカーゼコード領域は3.2kbのNhe I−Bgl IIセグメントを含むことと判定され、そのセグメントをpUC119(Viera and Messing,Methods Enzymol.153:3−11,1987)の中にサブクローニングする。このセグメントのヌクレオチド配列をプライマー歩行法(Gieseckeら、前掲)を用いて決定する。核酸配列を図2及びSEQ ID NO:1に示す。
MtLの推定アミノ酸配列をN.クラッサラッカーゼとのアミノ酸配列相同性に基づき得る。アミノ酸レベルは、これら2種類のラッカーゼは約60%の配列同一性を共有する。トリヌクレアー銅クラスターの形成に関与する4個のヒスチジン及び1個のシステインに対応する領域において類似性が最も高い(Perryら、J.Gen.Microbiol.139:1209−1218,1993;Collら、Appl.Environ.Microbiol.59:4129−4135,1993;Messerschmidtら、J.Mol.Biol.206:513−530,1989)。MtLの推定アミノ酸配列におけるN−連結化グリコシル化にとって11個の潜在部位がある。MtLの最初の22個のアミノ酸はAla残基の後方に推定切断部位のある標準的なシグナルペプチドを含んで成ることが認められた(von Heijne,J.Mol.Biol.173:243−251,1984)。天然MtLのアミノ末端配列は未知であるが、A.オリザにおいて生成される組換MtLのアミノ末端はパイロ−グルタミン酸残基によりブロッキングされている。この残基の酵素的除去、それに続くアミノ酸配列決定は成熟MtLがGln残基(図2において1位;SEQ ID NO:2)で始まることを示唆する。即ち、MtLは22個のアミノ酸のシグナルペプチド及び25残基のプロペプチドを有する620個のアミノ酸のプレプロ酵素として合成されることが明らかである。ニューロスポラ・クラッサ・ラッカーゼ(NcL)は同様にしてそのアミノ末端でプロセシングされる。更に、NcLもそのC末端でタンパク質分解的にプロセシングされ、13個のアミノ酸の除去がもたらされる(Germannら、J.Biol.Chem.263:885−896,1988)。プロセシング部位は配列Asp−Ser−Gly−LeuArg558(ここで*は切断部位を示す)内に含まれる。類似の配列がMtLのC末端付近(Asp−Ser−Gly−Leu−Lys560)にあり、マイセリオフトラ酵素がC末端プロセシング(Asp−Ser−Gly−LeuLys560)にも委ねられ、12個のアミノ酸が除去されることを示唆する。
lcc 1コード領域内の6つのイントロン(85,84,102,72,147及び93ヌクレオチド)の位置は、MtLの推定アミノ酸配列をNcLのそれと対比させることにより、及び糸状菌類におけるイントロンの特徴に関する共通の原則(Gurrら、Gene Structure in Eukaryotic Microbes,J.R.Kinghorn絹pp93−139,IRL Press,Oxford,1987)を適用することにより決定される。イントロンを除く1860ヌクレオチドのコード配列はグアノシン及びシトシンリッチである(65.5%のGtC)。この遺伝子に関するコドン用法パターンは、G又はCで終えるコドンについての強力な偏り(89.7%)のDNA塩基組成を反映する。
II.アスペルギルスにおけるマイセリオフトラ・ラッカ ーゼの発現
A.材料及び方法
1.細菌及び菌類宿主株
エッシェリア・コリJM101(Messingら、Nucl.Acids Res.9:309−321,1981)を本研究におけるラッカーゼ発現ベクターの構築及びルーチン的な増殖のための宿主として用いる。ラッカーゼ発現のための菌類宿主にはアスペルギルス・ニガー株Bo−1,AB4.1及びAB1.13(Matternら、Mol.Gen.Genet.234:332−336)並びにα−アミラーゼ欠損アスペルギルス・オリザ株How B104のウリジン要求(pyrG)突然変異体が含まれる。
2.プラスミド
プラスミドpRaMB2はMtLをコードするM.サーモフィラゲノムDNAの3.2kbのBgl II−Nhe Iフラグメントを含む。ベクターpMWRはpUC18(Yanisch−Perronら、Gene3 3:103−119,1985)の中にA.オリザTAKA−アミラーゼプロモーター及びpTAKA17由来のターミネーター因子(Christensenら、Bio/Technol.:1419−1422,1988;EP 238,023号)を挿入することにより構築する。このベクターにおいて、プロモーター因子の終点に固有Swa I部位があり、そしてターミネーターの始点にコード配列の指令的クローニングのための単一Nsi I部位がある。クローニング用ビヒクルpUC518はpUC118(Vieira and Messing,前掲)の隣接し合うBamH 1及びXba I部位の間にNsi I,Cla I,Xho I及びBgl II制限部位を含む小さなリンカーを挿入することにより誘導する。プラスミドpToC68(WO91/17243)はA.オリザTAKA−アミラーゼプロモーター及びA.ニガーglaAターミネーターを含み、そしてpToC90(WO91/17243)はA.ニドゥランスamdS遺伝子を担持する。
3.ラッカーゼ発現ベクターの構築
ラッカーゼ発現ベクターpRaMB5についての構築手法を図3に概略する。ラッカーゼ遺伝子の転写を指令するプロモーターはA.オリザα−アミラーゼ(TAKA−アミラーゼ)遺伝子(Christensenら、前掲)及びTAKA−アミラーゼターミネーター領域から得られる。このプラスミドはSwa I及びNsi I部位の間にApa I部位を含む小さなリカンーを挿入してpMWR3−SANと称するプラスミドを作り上げることによってpMWR3を改質することにより構築する。Pfu Iポリメラーゼ依存性PCR(Stratagene,La Jolla,CA)を、開始コドンから内部Pst I部位に至る(約0.5kb)MTLの5'部をコードする短いDNAセグメントを増幅するために用いる。このPCR反応のためのフォワードプライマーは開始コドンのすぐ上流のEcoR I部位を作り上げるようにデザインされている。次に、増幅フラグメントをEcoR I及びPst Iで消化し(この工程の際、EcoR I部位はdNTP及びDNAポリメラーゼI(クレノウフラグメント)による処理によりブラント化(接着末端化)する)、そしてアガロースゲル電気泳動により精製する。M.サーモフィラコード領域の3'部をpRaMB2から2kbのPst I−Apa Iフラグメントとして切り出す(このセグメントも3'非翻訳領域から約110bpを含む)。これら2本のフラグメントをSwa I−及びApa I−切断pMWR3−SANと三部ライゲーション反応で組合せ、ラッカーゼ発現ベクターpRaMB5を作る。
4.アスペルギルス宿主細胞の形質転換
アスペルギルス株の同時形質転換のための方法はChristensenら前掲に記載されている。A.オリザHowB104pyrGへのラッカーゼ発現ベクターの導入のため、等量(約5μgづつ)のラッカーゼ発現ベクター、並びに以下のプラスミドのいづれかを使用する:pPYRG(Fungal Genetics Stock Center,Kansas City,KS)〔これはA.ニドゥランスpyrG遺伝子を含む(Oakleyら、Gene 61 385−399,1987)〕;pSO2〔これはクローンA.オリザpyrG遺伝子をもつ〕;pPRYG24〔これはA.フィキューム(A.ficuum)(=A.ニガー)pyrG遺伝子を含む〕。原栄養性(Pyr+)形質転換体をアスペルギルス最少培地(Rowlands and Turner,Mol.Gen.Genet.126:201−216,1973)上で選別し、そしてその形質転換体を1mMの2,2'−アジノビス(3−エチルベンズチアゾリンスルホン酸)〔ABTS〕を含む最少培地上でラッカーゼを産生する能力についてスクリーニングする。活性ラッカーゼを分泌する細胞はABTSを酸化し、コロニーを囲む緑色の輪をもたらす。最後に、A.ニガーBo−1プロトプラストを等量(約5μgづつ)のラッカーゼ発現ベクター及びA.ニドゥランスamdS(アセトアミダーゼ)遺伝子(Hynesら、Mol.Cell Biol.:1430−1439,1983)含有pToC90を用いて同時形質転換する。amdS+形質転換体をCove最少培地(Cove,Biochim.Biophys.Acta 113:51−56,1966)上で、炭素源としての1%のグルコース及び唯一の窒素源としてのアセトアミドを伴って選別し、そして1mMのABTSを含むcove培地上でのラッカーゼ発現についてスクリーニングする。
5.ラッカーゼ産生形質転換体の分析
アガ−プレート上でラッカーゼ活性体を産生する形質転換体を、それから滅菌0.01%Tween−80中の分生子柄及び胞子懸濁物を作ることを通じて2回精製する。各懸濁物中の胞子の密度を光学的に評価する(A595nm)。約0.5吸収単位の胞子を、125mlのプラスチック製フラスコ中の25mlのASPO 4又はMY50培地を接種せしめるために用いる。その培養物を37℃にて、多大な通気を伴い(約200rpm)、4〜5日間インキュベーションする。培養液を遠心により獲得し、そして上清液中のラッカーゼ活性の値を基質としてシリンガルダジンを用いて決定する。簡単には、800μ1のアッセイバッファー(25mMの酢酸ナトリウム、pH5.5,40μMのCnSO4)を20μ1の培養上清液及び50%のETOH中の60μ1の0.28mMのシリンガルダジン(Sigma Chemical Co.,St.Lonis,MO)と混合する。530nmでの吸収をGenesys 5UV−ビス光度計(Milton−Roy)で経時的に測定する。1ラッカーゼ単位(LACU)は室温において1分間当り1μmoleの基質を酸化する酵素の量と定義する。SDS−ポリアクリルアミドゲル電気泳動(PAGE)をNovex(San Diego,CA)由来のプレカスト10〜27%グラジエントゲルを用いて行う。タンパク質バンドをクマジー・ブリリアント・ブルー(Sigma)を用いて発色させる。
B.結果及び考察
1.マイセリオフトラ・ラッカーゼの発現
ラッカーゼ産生形質転換体は選択培地へのABTSの組込みにより検出される。選択マーカーとしてpyrG又はamdSを利用することで、同時形質転換頻度は約30%から70%に変動する。MtLの異種発現はA.オリザ形質転換において最も高いことが認められた。更に、MY50と比べてASPO 4培地における方が生産率が良いことが認められ、しかしながらこの理由はわからない。培養液サンプルのSDS−PAGEは約80kdalにおいて主要ラッカーゼがバンドを示し、それはM.サーモフィラから精製した天然酵素のサイズと類似する。A.ニガーBo形質転換体由来の培養濾液の類似の分析は、ラッカーゼバンドが非常に強いグルコアミラーゼ及び酸安定性アミラーゼタンパク質バンドによりかくされていることを示唆する。結果を表1に示す。

Figure 0003649338
2.過剰の銅の有無での発現
アスペルギルス・オリザ形質転換体HowB104−pRaMB5.30(約109胞子/ml)の胞子懸濁物1mlのアリコートを無菌的に100mlの無菌振盪フラスコ培地(マルトース50g/1;MgSO4・7H2O 2g/1;KH2PO4 10g/1;K2SO4 2g/1;GaCl2・2H2O 0.5g/1;クエン酸2g/1;酵母抽出物10g/1;微量金属〔ZnSO4・7H2O 14.3g/1;CuSO4・5H2O 2.5g/1;NiCl2・6H2O 0.5g/1;FeSO4・7H2O 13.8g/1;MnSO4・H2O 8.5g/1;クエン酸3.0g/1〕、0.5ml/1;尿素2g/1;水道水でメスアップし、オートクレーブにかける前にpH6.0に調整)を含む500mlの振盪フラスコに入れ、そして37℃においてロータリーシェーカー上で200rpmにて18時間インキュベーションする。この培養物50mlを無菌的に1.8リットルの発酵培地(MgSO4・7H2O 2g/1;KH2PO4 2g/1;クエン酸 4g/1;K2SO4 3g/1;CaCl2・2H2O 2g/1;微量金属0.5ml/1;プルロニック発泡抑制剤1ml/1)を含む3リットルの発酵槽に移す。この発酵槽の温度は発酵槽ジャケットを通じる冷却水の循環により34℃に保つ。無菌エアーを1.8リットル/分(1v/v/m)の率で発酵槽に散布する。撹拌速度は培養物中の溶解酸素レベルを20%より高く保つのに必要とされるほぼ最低レベルである。600〜1300rpmに維持する。無菌添加物(Nutriose 725〔マルトースシロップ〕225g/1;尿素30g/1;酵母抽出物15g/1;プルロニック発泡抑制剤1.5ml/1;蒸留水でメスアップし、そしてオートクレーブにかける)をペリスターポンプを利用して発酵槽に加える。発酵の際の供給速度は以下の通りとする:接種前は当初30gの添加物;0〜24h 2g/1h;24〜48h 4g/1h;48h−終了 6g/1h。
銅を水又は適当なバッファー中で400×のストックとして調製し、無菌濾過し、そして無菌的にタンクに0.5mMの最終レベルとなるように加える。上記の発酵をタンク培地への銅添加物の添加抜きでも行う。酵素活性の決定のためのサンプルを抜き取り、そしてMiraclothで濾過して菌糸体を除去する。これらのサンプルを上記のLACUアッセイによりラッカーゼ活性についてアッセイする。ラッカーゼ活性は発酵中に連続的に上昇することが認められ、過剰の銅を含む発酵においては180時間後に約45LACU/mlの値が達成される。22LACU/mgの比活性において、これは2g/1の発現組換ラッカーゼに相当する。他方、銅添加物抜きの発酵において達成される最大ラッカーゼ活性は170時間後に約10LACU/mlであり、添加銅の存在下で見い出せる値の約25%であった。
III.マイセリオフトラ・ラッカーゼの精製及び特性決定
A.材料及び方法
1.材料
バッファー及び基質として用いる化学試薬は最低でも試薬級の商品とする。エンド/N−グリコシダーゼF及びパイログルタミン酸アミノペプチダーゼをBoehringer Mannheimより購入した。クロマトグラフィーはPharmacia FPLC又は慣用の低圧システムのいづれかで行う。吸光アッセイは光度計(Shimadzu PC160)又はマイクロプレートリーダー(Molecular Devices)のいづれかで行う。Britton & Robinson(B&R)バッファーをQuelle,Biochemisches Taschenbuch,H.M.Raven,II.Teil,S.93u,102,1964に記載のプロトコールに従って調製する。
2.酵素活性
ラッカーゼ活性はシリンガルダジン酸化により、30℃にて1−cm石英キュベットの中で決定する。60μ1のシリンガルダジンストック溶液(50%のエタノール中0.28mM)及び20μ1のサンプルを0.8mlの予備加熱したバッファー溶液と混合する。酸化は5分間にわたり530nmでモニターする。活性は1分間当りに酸化された基質のμmoleとして表示する。様々なpHのB&Rバッファーを使用する。活性単位はここでは「SOU」と称する。上述の通りLACUと称する活性を決定するために25mMの酢酸ナトリウム、40μMのCuSO4,pH5.5のバッファーも使用する。2,2'−アジノビス(3−エチルベンゾチアゾリン−6−スルホン酸)(ABTS)酸化アッセイは0.4mMのABTS,B&Rバッファー、pH4.1を用い、室温においてA405をモニターすることにより行う。ABTSオキシダーゼ活性上層(オーバーレー)アッセイは、冷却したABTS−アガロース(0.05gのABTS,1gのアガロース、50mlのH2O、アガロースを溶かすために加熱)を自然IEFゲルの上に注ぎ、そして室温でインキュベートすることにより行う。ラッカーゼ(r−MtL)の熱安定性分析は、B&RバッファーpH6の中で様々な温度において予備インキュベーションした3SOU活性を有するサンプルを用いて行う。サンプルは同じバッファーに400倍に希釈してから室温でアッセイする。
3.発酵培養液からの精製
3.7リットルのチーズクロス濾過した培養液(pH7.6,16mS)をWhatman#2濾紙で濾過する。その培養液をS1Y100膜(MWCO:100)の付いたSpiral Concentrator(Amicon)で3700mlから200mlへと濃縮する。その濃縮液を水に希釈することにより0.75mSに調整し、そしてS1Y100で170mlに再濃縮する。洗浄且つ濃縮した培養液は濃緑色を帯びた色調を有する。
その培養液を−20℃で一夜凍結し、翌日融解し、そして10mMのトリス、pH7.5,0.7mS(バッファーA)で予備平衡化しておいたQ−sepharose XK26カラム(120ml)に載せる。青色のラッカーゼバンドは添加中にカラムをゆっくり下降する。青色画分の1のグループは添加及びバッファーAによる洗浄の後はカラムを通り抜ける。第2グループはバッファーB(バッファーAと2MのNaCl)による線形勾配の際に溶出する。ラッカーゼ活性のない一部の茶色の物質は1MのNaOHによりその後溶出する。SDS−PAGE分析はこの調製が純粋なラッカーゼをもたらすことを示す。
4.アミノ酸含有量、グリコシル化の程度及びN−末端配 列の分析
N−末端配列決定をABI 476Aシーケンサーで行う。全アミノ酸分析(それからr−MtLの励起係数を決定)をHP Amino Quant装置で実施する。脱グリコシル化はエンド/N−クルコシダーゼFを用いて製造業者の仕様書に従って行い、そして炭水化物含有量はSDS−PAGEにより決定される移動度の相違により評価する。パイログルタミン酸アミノペプチダーゼによるN−末端の脱ブロッキングは製造業者の仕様書に従って実施する。約80μgのr−MtLを4μgのペプチダーゼにより、1Mの尿素又は0.1MのグアニジンHClの存在下又は非存在下で処理し、次いで配列決定のためにPVDF膜にブロッティングする。約20pmolの脱ブロッキングされたタンパク質が得られ、そして配列決定する。
SDS−PAGE及び自然IFF分析はNovexセル又はMini Protean II及びモデルIII Mini IEFセル(Bio−Rad)のいづれかで行う。ゲル濾過分析はSephacryl S−300(Pharmacia)で行い、それより自然MWをカラムを較正するためのブルーデキストラン(2000kdal)、牛IgG(158kdal)、牛血清アルブミン(66kdal)、オバルブミン(45kdal)及び馬心臓ミオグロビン(17kdal)を用いることにより推定する。
B.結果及び考察
1.発酵培養液からのr−MtLの精製及び特性決定
3.71の発酵培養液から、約2〜3gのr−MtLが単離される。100kdalのMWCOを有する膜を用いる最初の濃縮は有意な量の茶色物質及び少量の夾雑タンパク質を除去した。10mMのトリス、pH7.5で平衡化しておいたQ−Sepharoseマトリックスに対するr−MtLの低親和力はその他のより酸性、且つより強く結合した不純物からのその分離を助長する。SDS−PAGEにより示される通り、この調製はピークのまわりに位置している最も活性な画分に関する本質的に純粋ラッカーゼをもたらした。その他の活性の弱い画分はより浅い勾配によるMon−Q又はゲル濾過カラム、例えばS−300のいづれかで更に精製でき、それより夾雑物は小さめのMWに基づき分離される。総合的に18倍の精製度及び67%の回収率が達せられる。以下に記載の通り、Q−Sepharoseクロマトグラフィーでのr−MtLの2本の溶出バンドの存在はおそらくは示差的なグリコシル化に基づく。
精製したr−MtLはS−300ゲル濾過で100〜140kdalのMW、そしてSDS−PAGEで85kdalのMWを示す。脱グリコシル化後のSDS−PAGEでのr−MtLの移動度の上昇は炭水化物がその全質量の14%を占めることを示す。自然IEFはABTSオーバーレーアッセイにおいて活性なpI〜4.2の主要バンドを示した。
脱塩した溶液又はPVDF膜のいづれかのサンプル由来の精製r−MtLのN−末端の直接配列決定は不成功に終わった。しかしながら、パイログルタミン酸アミノペプチダーゼによるr−MtLの処理は脱ブロッキングされたN−末端を有するタンパク質をもたらした。これは、r−MtLの成熟化の際のプロペプチドのプロセシング、即ち、リゾクトニア・ソラニ(Rhizoctonia solani)の如きその他のラッカーゼにおいては認められないが、N.クラッサ・ラッカーゼのそれに類似する後翻訳現象を示唆する。考えられるスキームを以下に概略する。
Figure 0003649338
青色のr−MtLのスペクトルは276及び589nmにて最大吸収を有していた。
ラッカーゼの活性を基質としてシリンガルダジン及びABTSのいづれかを用いて試験する。Abs276当り又はmg当りとして表示して、ラッカーゼはpH6.5において20又はSOUに関する45単位の値それぞれを有した。LACUアッセイはAbs276当り又はmg当り10又は22単位の値をもたらした。
r−MtL活性のpHプロフィールは野生型のそれとかなり近く、6.5の至適pHを有する。r−MtLについて観察される20分の予備インキュベーション後に保持している完全活性にとっての上記温度値は約60℃である。精製r−MtLはQ−Sepharose溶出バッファーの中で−20℃で凍結して5週間保存しても活性を失わないことを示した。
Q−Sepharoseで単離した発酵培養液から得られるr−MtLの2通りの形態を比較したとき、SDS−PAGE、自然PAGE、自然IEF,S−300ゲル濾過、UV可視スペクトル、シリンガルダジン及びABTSに対する比活性、並びに脱ブロッキングしたN−末端配列決定尺度の観点において有意な差はなかった。同様に、Q−Sepaharoseでの種々の溶出パターンは数種の異なるグリコシル化に由来する。
IV.毛髪の染色におけるマイセリオフトラ・ラッカーゼ の利用
マイセリオフトラ・ラッカーゼの染色効果を様々な染料前駆体に基づき、そして更にはいく種かの改質剤と対比させた0.1%p−フェニレンジアミンに基づいて試験した。
材料:
染料前駆体:
0.1MのK−リン酸バッファー(pH7.0)中の0.1%のp−フェニレン−ジアミン
0.1MのK−リン酸バッファー(pH7.0)中の0.1%のアミノフェノール
酵素:
組換マイセリオフトラ・サーモフィラ・ラッカーゼ16LACU/ml(最終染色溶液中)。
装置:
Datacolor Textflash 2000(CIE−Lab)
毛髪の色の評価
巻き毛の定性的色調をDatacolor Textflash 2000で、CIE−LabパラメーターL(「0」=黒、そして「100」=白)とa(「−」=緑、そして「+」=赤)を利用して決定する。
結果:
染色効果
ヨーロッパ人の金髪の巻き毛(1g)を酸化性毛髪染色についてマイセリオフトラ・サーモフィラ・ラッカーゼを試験するために用いる。染料前駆体としてp−フェニレンジアミン及びo−アミノフェノールを使用する。
毛髪染色
4mlの染料前駆体溶液をWhirleyミキサーで1mlのラッカーゼと混合し、巻き毛に塗布し、そして30℃で60分保つ。その巻き毛を水道水で約3すすぎ、2本の指の間で押え、くしを通し、そして風乾する。
染色効果試験の結果を以下の表1及び2に示す。
Figure 0003649338
Figure 0003649338
試験の結果
表1及び2から、マイセリオフトラ・サーモフィラ・ラッカーゼが毛髪の酸化的染色のために利用できることがわかる。
生物材料の寄託
以下の生物材料をブダペスト条約のもとで、1994年5月25日にAgricultural Research Service Patent Culture Collection,Nothern Regional Research Center,1815 University Street,Peoria,Illinois,61604に寄託し、そして以下の受託番号が与えられている。
寄託物 受託番号
pRaMB5含有のE.コリJM101 NRRL B−21261
配列表
(1)一般情報:
(i)出願人:
(A)名称:Novo Nordisk Biotech,Inc.
(B)通り:1445 Drew Avenue
(C)市:Davis,California
(D)国:United States of America
(E)郵便番号:95616−4880
(F)電話番号:(916)757−8100
(G)ファックス番号:(916)758−0317
(i)出願人:
(A)名称:Novo Nordisk A/S
(B)通り:Novo Alle
(C)市:Bagsv rd
(D)国:Denmark
(E)郵便番号:DK−2880
(F)電話番号:+45 4444 8888
(G)ファックス番号:+45 4449 3256
(ii)発明の名称:精製されたマイセリオフトラ・ラッカーゼ及びそれをコードする核酸
(iii)配列の数:2
(iv)連絡先:
(A)名称:Novo Nordisk of North America,Inc.
(B)通り:405 Lexington Avenue,Suite 6400
(C)市及び州:New York,New York
(D)国:U.S.A.
(E)郵便番号:10174−6401
(v)コンピューター読取フォーム:
(A)媒体タイプ:Floppy disk
(B)コンピューター:IBM PC compatible
(C)作動システム:PC−DOS/MS−DOS
(D)ソフトウェア:PatentIn Release#1.0,Version#1.25(EPO)
(vi)現出願人データー:
(A)出願番号:認定前
(B)出願日:1995年5月31日
(C)分類:
(vii)先の出願のデーター:
(A)出願番号:US 08/253,781
(B)出願日:1994年6月3日
(viii)代理人/代理店情報:
(A)名称:Lowney,Karen A.
(B)登録番号:31,274
(C)参照/事件番号:4184.204−WO
(ix)通信情報:
(A)電話番号:212 867 0123
(B)ファックス番号:212 867 0298
(2)SEQ ID NO:1についての情報:
(i)配列の特徴:
(A)長さ:3187塩基対
(B)タイプ:核酸
(C)鎖の数:二本鎖
(D)トポロジー:直鎖
(ii)分子のタイプ:DNA(ゲノム)
(vi)起源:
(A)生物:マイセリオフトラ・サーモフィラ
(ix)特徴:
(A)名称/キー:イントロン
(B)位置:833...917
(ix)特徴:
(A)名称/キー:イントロン
(B)位置:996...1077
(ix)特徴:
(A)名称/キー:イントロン
(B)位置:1090...1188
(ix)特徴:
(A)名称/キー:イントロン
(B)位置:1261...1332
(ix)特徴:
(A)名称/キー:イントロン
(B)位置:2305...2451
(ix)特徴:
(A)名称/キー:イントロン
(B)位置:2521...2613
(ix)特徴:
(A)名称/キー:CDS
(B)位置:連絡(587..832,918..995,1078..1089,1189..1260,1333..2304,2452..2520,2614..3024)
(xi)配列の詳細:SEQ ID NO:1:
Figure 0003649338
Figure 0003649338
Figure 0003649338
Figure 0003649338
(2)SEQ ID NO:2についての情報:
(i)配列の特徴:
(A)長さ:620アミノ酸
(B)タイプ:アミノ酸
(C)鎖の数:一本鎖
(D)トポロジー:直鎖
(ii)分子のタイプ:タンパク質
(vi)起源:
(A)生物:マイセリオフトラ・サーモフィラ
(xi)配列の詳細:SEQ ID NO:2:
Figure 0003649338
Figure 0003649338
Figure 0003649338
Field of Invention
The present invention relates to an isolated nucleic acid enzyme fragment encoding a fungal oxidoreductase enzyme and a purified enzyme produced thereby. More particularly, the present invention relates to a nucleic acid fragment encoding a phenol oxidase, in particular a laccase of the thermophilic Ascomycetes Myceliophthora.
Background of the Invention
Laccase (benzenediol: oxygen oxidoreductase) is a polycopper-containing enzyme that catalyzes the oxidation of phenols. Laccase-mediated oxidation results in the production of an aryloxy group intermediate from a suitable phenolic substrate. The ultimate coupling of the intermediate thus produced provides a combination of dimer, oligomer and polymerization reaction product. Such reactions are essential in the biosynthetic pathway that results in the formation of melanin, alkaloids, toxins, lignin and humic acid. Laccases can be used in a wide variety of fungi such as Ascomycetes, such as Aspergillus, Neurospora, and Podospora, incomplete fungi Botrytis, and basidiomycetes, such as Collybia, Homes. (Fomes), Lentinus, Pleurotus, Trametes, and Rhizoctonia. Laccases exhibit a wide range of substrate specificities, and the various fungal laccases usually differ from each other in their ability to oxidize phenolic substrates. Because of substrate diversity, laccases together find many potential industrial uses. Among them are lignin modification, paper strengthening, inhibition of dye transfer in detergents, phenol polymerization, juice production, phenol resin production and wastewater treatment.
The catalytic ability of laccases made by different fungal species is similar or has different optimum temperatures and pHs, and these may differ depending on the particular substrate. A number of these fungal laccases have been isolated and the genes for some of these have been cloned. For example, Choi et al. (Mol. Plant-Microbe Interactions5: 119-128,1992) describes the molecular characterization and cloning of the gene encoding the laccase of the chestut blight fungus Cryphonectria parasitica. Kojima et al. (J. Biol. Chem.265: 15224-15230,1990; JP2-23885) provides a description of two alleles of the laccase of the white-rot basidiomycete Coriolus hirsutus. Germann and Lerch (Experientia41: 801,1985; PNAS USA83: 8854-8858, 1986) report the cloning and partial sequencing of the Neurospora crassa laccase gene. Saloheimo et al. (J. Gen. Microbiol.137: 1537-1544, 1985; WO92 / 014046) disclose the structural analysis of the laccase gene from the fungus Phlebia radiata.
Attempts to express laccase genes in heterologous fungal systems often result in very low yields (Kojima et al., Supra; Saloheimo et al., Bio / Technol.9: 987-990,1991). For example, heterologous expression of flavia radiata laccase in Trichoderma reesei provides only 20 mg of active enzyme per liter (Saloheimo, 1991, supra). Laccase has great commercial potential, but the ability to express enzymes in large quantities is important for its commercial use. At present, there are no laccases that are expressed at high levels in commercially available hosts such as Aspergillus. That is, there is a need for the presence of laccase that can be produced in commercially useful quantities (ie, grams / liter or more). The present invention meets this need.
Summary of the Invention
The present invention relates to a DNA construct comprising a nucleic acid sequence encoding Myserioftra laccase. The invention further relates to an isolated laccase encoded by a nucleic acid sequence. Preferably, the laccase is substantially pure. “Substantially pure” means that the laccase is essentially free of other non-laccase proteins (ie, ≧ 90%).
To facilitate the production of novel laccases, the present invention further provides vectors and host cells comprising the claimed nucleic acid sequences, which are useful in the recombinant production of laccases. This sequence is operably linked to transcriptional and translational signals that can direct the expression of the laccase protein in the selected host cell. Preferred host cells are fungal cells, most preferably those of the genus Aspergillus. Recombinant production of the laccase of the present invention involves culturing host cells transformed or transfected with the construct of the present invention or progeny thereof under conditions suitable for expression of the laccase protein, and laccase protein from the culture. This is achieved by recovering.
The laccases of the present invention are useful in a number of industrial processes that require the oxidation of phenols. These processes include lignin treatment, juice production, phenol polymerization and phenol resin production.
[Brief description of the drawings]
FIG. 1 shows a restriction map of the 7.5 EcoR I fragment in pRaMB1. The region that hybridizes with the N. crassa laccase gene probe is shaded.
FIG. 2 shows the nucleotides (SEQ ID NO: 1) and amino acids (SEQ ID NO: 2) of M. thermophila laccase. The lower case lower letter in the nucleotide sequence indicates the position of the intron. Putative TATA and CAAT sequences in the promoter region are shown in bold and underlined. The common lariat construction (PuCTPuAC) in the intron is underlined.
FIG. 3 shows the construction of plasmid pRaMB5.
Detailed Description of the Invention
Myseri offora thermophila was first discussed by Apinis (Nova Hedwigia5: 57-78,1963), and a thermophilic ascomycota class called Sporotrichum thermophile. Subsequent taxonomic correction caused the organism to belong to the genus Chrysosporium (Von Klopotek, A. Arch. Microbiol.98: 365-369,1974), and later belonged to Myseriophora (Van Oorschot, Persoonia)9: 401-408,1977). Several organisms known by other names were also found to belong to this species. They are Sporotricum. S. cellulophilum (US Pat. No. 4,106,989); Thielavia thermophila (Fergus and Sinden, Can. J. Botany 47: 1635-1637, 1968); Chrysosporium fergashi (C. fergussi) and Corynascus thermophilus (Von Klopotek, supra). This species is known as the origin of several different industrially useful enzymes such as cellulase, β-glucosidase and xylanase (see, eg, Oberson et al., Enzyme Microb. Technol.14: 303-312,1992; Merchant et al., Biotechnol.Lett.Ten: 513-516, 1988; Breuil et al., Biotechnol. Lett.8: 673-676, 1986; Gilbert et al., Bioresource Technol.39: 147-154,1992). It has now been determined that Myseri offtra produces a neutral pH laccase and that the gene encoding this laccase can be used to produce conventional host systems such as Aspergillus in large quantities.
To identify the presence of the laccase gene in Myseri offtra, the 5 ′ region (lcc 1) of the Neurospora crassa laccase gene is subject to mild stone-generic conditions in Southern hybridization of total genomic DNA of various fungal species. Used as a probe. An approximately 12 kb laccase specific sequence is detected in Myseri offtra DNA. The N. classa fragment is then used to screen about 20,000 plaques of the M. thermophila genomic DNA library in the λEMBL4 bacteriophage cloning vector. Eight plaques hybridize strongly with this probe. DNA was isolated from three of the eight. Each of these clones contains a 7.5 EcoR I fragment, which also hybridizes to the probe (FIG. 1). One of the fragments was subcloned into pBR322 to create plasmid pRaMB1. Using the lcc 1 probe, the position of the coding region of the clone is determined. The entire M. thermophila coding region was found to contain a 3.2 kb Nhe-I Bgl II segment, which was cloned into pUC119 and sequenced by primer walking.
Once the sequence has been determined, the location of introns and exons within the gene is identified based on the predicted amino acid sequence match to the corresponding N. classa laccase gene product. From this contrast, the M. thermophila gene (lccM) consists of seven exons (246,79,12,70,973,69 and 411 nucleotides) intervened by six introns (85,84,102,72,147 and 93 nucleotides). It becomes clear. The coding region, excluding the intervening sequence, is very GC rich (65.5% G + C) and a 620 amino acid preproenzyme: a mature laccase comprising a 22 amino acid signal peptide, a 25 amino acid propeptide and 573 amino acids. Code. The sequence of the M. thermophila gene and the deduced amino acid sequence are shown in FIG. 2 (SEQ ID NO: 1 and 2).
The laccase gene is then utilized to construct an expression vector for transformation of Aspergillus host cells. This vector pRaMB5 contains the A. oryzae TAKA-amylase promoter and terminator region. The construction of pRaMB5 is outlined in FIG. Aspergillus cells are cotransformed with this expression vector and a plasmid containing a pyrG or amds selection marker. Transformants are selected based on an appropriate selection medium containing ABTS. Laccase-producing colonies show a green circle and can therefore be easily isolated. Selected transformants were grown in shake flasks and the culture medium was tested for laccase activity by the syringaldazine method. Shake flask cultures can produce 0.2 g / 1 or more of laccase and yields in the fermenter of greater than 1-2 g / 1.
In accordance with the present invention, the myseriophora gene encoding laccase can be obtained by the methods described above or by other methods known in the art using the information provided herein. This gene can be expressed in an active form using an expression vector. Useful expression vectors are those that allow stable integration of the vector into the host cell genome or self-replication of the vector in the host cell independent of the host cell genome, and preferably easy selection of transformed host cells. One or more phenotypic markers that enable The expression vector may further comprise a promoter, a ribosome binding site, a translation initiation signal, and optionally a control sequence encoding a repressor gene or various activating genes. In order to allow secretion of the expressed protein, a nucleotide encoding a signal sequence may be inserted in front of the coding sequence of the gene. For expression under the direction of control sequences, the laccase gene utilized in accordance with the present invention is operably linked to the control sequence within the appropriate reading frame. Promoter sequences that can be incorporated into plasmid vectors and can direct transcription of the laccase gene include, but are not limited to, the prokaryotic β-lactamase promoter (Villa-Kamaroff et al., 1978, Proc. Natl. Acad. Sci. USA75: 3727-3731) and the tac promoter (DeBoer et al., 1983, Proc. Natl. Acad. Sci. U.S.A.80: 21-25) is included. For further reference, see `` Useful proteins from recombinant bacteria '' Scientific American, 1980,242: 74-94 and Sambrook et al., "Molecular Cloning" 1989.
The expression vector carrying the DNA construct of the present invention may be any vector that can be easily submitted to recombinant DNA procedures, and the choice of vector will generally depend on the host cell into which it is introduced. Let's go. That is, the vector can be a self-replicating vector, ie, a vector that exists as a foreign chromosome and whose replication is independent of chromosomal replication, such as a plasmid, or extrachromosomal factors, minichromosomes, or artificial chromosomes. On the other hand, when introduced into a host cell, the vector may be one that integrates into the host cell genome and replicates along with its integrated chromosome.
Within the vector, the laccase DNA sequence should be operably linked to a suitable promoter sequence. The promoter can be any DNA sequence that exhibits transcriptional activity in the selected host cell and can be derived from a gene encoding a protein that is either cognate or heterologous to the host cell. Examples of promoters suitable for directing transcription of the DNA constructs of the present invention, particularly promoters in bacterial hosts, include the E. coli lac operon promoter, Streptomyces coelicolor agarase Gene dagA promoter, Bacillus licheniformis α-amylase gene (amyL) promoter, Bacillus stearothermophilus maltogenic amylase gene (amyM) promoter, Bacillus amyloliquefacies ( B. amyloliquefaciens) α-amylase (amyQ) promoter, B. subtilis xylA and xylB gene promoter. A useful promoter in yeast hosts is the eno-1 promoter. Examples of useful promoters for transcription in fungal hosts include A. oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, A. niger neutral α-amylase, A. niger acid-stable α-amylase, A. niger or A. awamori glucoamylase (glaA), Rhizomucor mihei lipase, A. oryzae alkaline protease, A. oryzae triose phosphate isomerase, Or derived from the gene encoding A. nidulans aselemidase. TAKA-amylase and the glaA promoter are preferred.
The expression vector of the present invention may comprise a suitable transcription terminator and, in eukaryotic cells, may also comprise a polyadenylation sequence operably linked to a DNA sequence encoding the laccase of the present invention. . Transcription and polyadenylation sequences may suitably be derived from the same source as the promoter. The vector may further comprise a DNA sequence that enables the vector to replicate in the host cell in question. Examples of such sequences are the origins of replication of plasmids pUC19, pACY177, pUB110, pE194, pAMB1 and pIJ702.
This vector further comprises a selectable marker, for example a gene whose product complements the defect in the host cell, for example the dal gene from B. subtilis or B. licheniformis, or antibiotic resistance, for example ampicillin, kanamycin, chloramphenicol or tetracycline resistance It may also comprise a gene that confers. Examples of Aspergillus selectable markers include amdS, pyrG, argB, niaD, sC and the marker hygB that confers hygromycin resistance. Preferred for use in Aspergillus host cells are A. nidulans or A. oryzae amdS and pyrG markers. A frequently used mammalian marker is the dihydrofolate reductase (DHFR) gene. Furthermore, selection can be accomplished by co-transformation as described in WO91 / 17243.
In general, expression preferably results in a product that is extracellular. The laccases of the present invention may therefore comprise a pre-region that causes the expression medium to secrete the expressed protein. If desired, this pre-region can be natural to the laccase of the present invention, or it can be replaced by a pre-region or signal sequence, which is conveniently accomplished by replacement of the DNA sequence encoding the pre-region of the reaction. For example, the pre-region is a glucoamylase derived from Aspergillus sp. Or an amylase gene, an amylase gene derived from Bacillus sp., A lipase or proteinase gene derived from Rhizomucor maihei, Saccharomyces cerevisiae or a calf-derived α-factor. It can be derived from a gene. Particularly preferably, when the host is a fungal cell, A. oryzae TAKA amylase, A. niger neutral amylase, maltogenic amylase from Bacillus NCIB 11837, B. stearothermophilus α-amylase or Bacillus licheniformis Subtilisin. Valid signal sequences are the A. oryzae TAKA amylase signal, the Rhizomucor mihei aspartic proteinase signal, and the Rhizomucor mihei lipase signal.
The procedures used to ligate the DNA constructs, promoters, terminators and other factors of the invention, respectively, and insert them into appropriate vectors containing information essential for replication are known to those skilled in the art (e.g., See Sambrook et al., Molecular Cloning, 1989).
A cell of the invention comprising any of the DNA constructs or expression vectors of the invention described above is conveniently used as a host cell in the recombinant production of the enzyme of the invention. This cell can be transformed with the DNA construct of the invention, conveniently by integrating the DNA construct into the host chromosome. This integration is generally considered convenient because the DNA sequence tends to be stably maintained in the cell. Integration of the DNA construct into the host chromosome can be carried out according to conventional methods, for example by homology or heterologous recombination. Alternatively, the cell can be transformed with the expression vector as described above in connection with various types of host cells.
The host cell can be selected from prokaryotic cells, such as bacterial cells. Examples of suitable bacteria are Gram-positive bacteria such as Bacillus subtilis, Bacillus licheniformis, B. lentus, B. brevis, Bacillus stearothermophilus, Bacillus alkalophilus ( B. alkalophilus), Bacillus amyloliquefaciens, B. coagulans, B. circulans, B. lautus, B. megaterium, Bacillus -B. thuringiensis, or Streptomyces lividans or S. murinus, or Gram-negative bacteria such as E. coli. Bacterial transformation may be performed, for example, by protoplast transformation or by utilizing competent cells in a manner known per se.
Host cells may be eukaryotic, such as mammalian cells, insect cells, plant cells or preferably fungal cells such as yeasts and filamentous fungi. For example, useful mammalian cells include CHO or COS cells. Yeast host cells may be selected from Saccharomyces or Schizosaccharomyces species such as Saccharomyces cerevisiae. Useful fungi can be selected from Aspergillus species, such as Aspergillus oryzae or Aspergillus niger. On the other hand, strains of Fusarium species such as F. oxysporum can be used as host cells. Fungal cells may be transformed by protoplast formation and protoplast transformation in a manner known per se, followed by cell wall regeneration. A suitable procedure for transformation of Aspergillus host cells is described in EP 238,023. A suitable method for transforming Fusarium species is described by Malardier et al., 1989.
Accordingly, the present invention provides a method for producing the recombinant laccase of the present invention, wherein the method comprises culturing the above host cell under conditions that induce the production of the enzyme and recovering the enzyme from the cell and / or culture medium. Comprising. The medium used for culturing the cells may be any conventional medium suitable for growing the subject host cells and obtaining expression of the laccase of the present invention. Appropriate media are available from commercial suppliers or can be prepared according to published recipes (eg, listed in catalogs of the American Type Culture Collection).
In a preferred embodiment, recombinant production of laccase in the culture is achieved in the presence of excess copper. Although the trace metals added to the culture medium contain a small amount of copper, experiments conducted in the context of the present invention show that the addition of copper additives to the medium can increase the yield of active enzyme many times. Preferably, copper is added in a soluble form in the medium, preferably in the form of a soluble copper salt, for example in the form of copper chloride, copper sulfate or copper acetate. The final concentration of copper in the medium should be in the range of 0.2 to 2 mM, preferably in the range of 0.05 to 0.5 mM. This method can be used to increase the yield of any recombinantly produced fungal laccase and other copper-containing enzymes, particularly oxidoreductases.
The resulting enzyme is separated from the medium by conventional procedures such as centrifugation or filtration, the cells are separated from the medium, the protein component of the supernatant or filtrate is precipitated with a salt such as ammonium sulfate, and then various chromatographic procedures such as ions It can be recovered by purification by exchange chromatography, gel filtration chromatography, affinity chromatography or the like. Preferably, the isolated protein is about 90% pure as determined by SDS-PAGE, the purity of which is most important in food, juice or detergent applications.
In particularly preferred embodiments, expression of laccase is achieved in fungal host cells, such as Aspergillus. As described in detail in the Examples below, the laccase gene is ligated into a plasmid containing the Aspergillus origa TAKAα-amylase promoter and the Aspergillus nidulans amdS selectable marker. On the other hand, amdS is on an independent plasmid and is available for co-transformation. One or more plasmids are utilized to transform Aspergillus spp. Host cells such as A. oryzae or A. niger according to the method described by Yeltor et al. (PNAS USA 81: 1470-1474, 1984).
One skilled in the art will appreciate that the present invention is not limited to the use of the nucleic acid fragments disclosed in detail herein, such as that in FIG. It will also be apparent that the present invention encodes the same amino acid sequence as shown in FIG. 1, but encompasses nucleotide sequences that differ from the indicated nucleotide sequence due to the degeneracy of the genetic code. Also, references to FIG. 1 in the specification and claims are understood to encompass the genomic sequences described therein and the corresponding cDNA and RNA sequences, and as used herein “DNA constructs” and It will be understood that the term “nucleic acid sequence” encompasses all variants thereof. “DNA construct” is generally understood to mean either a single-stranded or double-stranded DNA molecule, which is isolated in partial form from a natural gene or is not present in nature. Modified to include segments of DNA that are bound and aligned in
The myserioftra laccase described herein has a very high specific activity for syringaldazin substrates compared to other known ascomycetes or incomplete fungi whose specific activity is discussed. The present invention provides a means by which other ascomycetes and / or incomplete fungal laccases can also be isolated. Identification and isolation of laccase genes from sources other than those specifically exemplified herein can be accomplished by publicly available ascomycetes and incomplete fungal strains using the methods described in this example. sell. In particular, the specific sequences disclosed herein can be used to design primers and / or probes useful in isolating similar laccase genes by standard PCR or Southern hybridization techniques. Accordingly, the present invention encompasses ascomycetes and incomplete fungal laccases having a specific activity of about 30 SOU / mg or more, and preferably about 40 SOU / mg or more. “SOU” is defined as the μmole amount of substrate that is oxidized per minute as measured using syringaldazine as the substrate at the optimum pH.
Furthermore, the present invention encompasses other myseriophora laccases, for example other forms of laccase that may be found in M. thermophila, and other belonging to the definition of Myserioftra according to the definitions by Van Oorschot, 1977, supra. Contains laccase that can be found in fungi. Identification and isolation of laccase genes from sources other than those specifically exemplified herein can be accomplished using publicly available Myserioftra strains by utilizing the methods described in this example. On the other hand, the sequences disclosed herein can be used to design primers and / or probes useful in isolating laccase genes by standard PCR or Southern hybridization techniques. Other names of Myseriofra species include M. hinnulea (Awao et al., Mycotaxon,16: 436-440,1983), M. vellerea (Guarro et al., Mycotaxon,twenty three: 419-427,1985) and M. lutea Costantin. Also encompassed are alias laccases, such as the anamorphs or complete state of Myseriophora species or strains. Myceliotra strains are readily publicly accessible at a number of culture depository institutions. For example, ATCC 48102, 48103, 48104, etc .; CBS 117.65, 131.65, 379.65, etc .; DSM 1799 (M. thermophila), ATCC 52474, CBS 539.82, 540.82 etc. (M. Hinnurea), DSM 62114, DBS 146.50, 147.50, 157.51, etc. (M. lutea), and CBS 478.76, 479.76 and 715.84 (M. Belerea). The invention further encompasses any mutated nucleotide sequence and the protein encoded thereby, which protein is about 80% or more, preferably 85% or more, and most preferably 90-95% or more of the amino acid sequence shown in FIG. And qualitatively retains the laccase activity of the sequences described herein. Useful variants within the above categories include, for example, those with conservative amino acid substitutions, and such substitutions should not significantly affect the activity of the protein. A conservative substitution means that an amino acid of the same class can be replaced by any other member of that class. For example, the nonpolar aliphatic residues Ala, Val, Leu and Ile may be interconverted in the same way as the basic residues Lys and Arg, or the acidic residues Asp and Glu. Similarly, Ser and Thr, like Asn and Gln, are in a conservative substitution relationship with each other. It will be apparent to those skilled in the art that such substitutions can be made outside the region important for the function of the molecule, thus resulting in a still active enzyme. Retention of the desired activity can be readily determined by performing standard ABTS oxidation methods, such as those described in this example.
Proteins can be used in many different industrial processes. These processes include solution polymerization of both lignin kraft and lignosulfate to produce high molecular weight lignin. Neutral / alkaline laccase is particularly advantageous in that kraft lignin is more soluble at higher pH. Such methods are described, for example, by Jin et al., Holzforshung.45 (6): 467-468,1991; U.S. Pat. No. 4,432,921; EP 0,275,544; PCT / DK93 / 00217,1992.
The laccase of the present invention can also be used for in-situ depolymerization of lignin in kraft pulp, thereby producing a pulp having a low lignin content. The use of laccase is superior to the current use of chlorine for the depolymerization of lignin. The use of chlorine leads to the production of chlorinated aromatics, which is an environmentally undesirable byproduct of the paper mill. Such use is, for example, Current opinion, Biotechnology3: 261-266,1992; J. Biotechnol.twenty five: 333-339,1992; Hiroi et al., Svensk paperstidning5: 162-166,1976. Because the environment in paper mills is generally alkaline, the laccase is more useful for this purpose than other known laccases that work best under acidic conditions.
Oxidation of dyes and dye precursors, as well as other chromogenic compounds, leads to decolorization of the compounds. Laccases can be used for this purpose, which can be very advantageous when dye transfer between fabrics is undesirable, for example in situations in the textile and detergent industries. Methods for inhibiting dye transfer and oxidation of dyes are WO92 / 01406; WO92.18683; EP 0,495,836; Calvo, Mededelingen van de Faculteit Landboum-wetenschappen / Rijiksuniversitet Gent.56: 1565-1567, 1991; Tsujino et al., J. Soc. Chem.42: 273-282,1991.
Laccase is very well suited for use in dyeing hair. In such applications, the laccase is contacted with a dye precursor, preferably on the hair, thereby achieving controlled oxidation of the dye precursor, which precursor becomes a dye or a pigment-forming compound such as a quinoid compound. Converted. The dye precursor is preferably an aromatic compound belonging to any of the three main chemical families, namely diamines, aminophenols (or aminonaphthols) and phenols. The dye precursors can be used alone or in combination. At least one of the intermediates in the copolymerization must be ortho- or para-diamine or aminophenol (primary intermediate). Examples of such are found in Chapter IV below and are p-phenylene-diamine (pPD), p-toluylene-diamine, chloro-p-phenylenediamine, p-aminophenol, o-aminophenol, 3,4- Diaminotoluene is included. U.S. Pat. No. 3,251,742 also describes other compounds, the contents of which are incorporated herein by reference. In one embodiment, the starting materials include not only enzymes and primary intermediates, but also modifiers (or couplers) (or combinations of modifiers), which are generally meta-diamines, meta-aminos. Phenol or polyphenol. Examples of modifying compounds include m-phenylene-diamine, 2,4-diaminoanisole, α-naphthol, hydroquinone, pyrocatechol, resorcinol and 4-chlororesorcinol. The modifier is then reacted with the primary intermediate in the presence of laccase to convert it to a useful compound. In another embodiment, laccase may be utilized to directly oxidize the primary intermediate to a colored compound. In all cases, the dyeing step may be performed with one or more primary intermediates, alone or in combination with one or more modifiers. Depending on the amount of the components, the usual commercial amounts for similar components, and the ratio of the components can be varied accordingly.
The use of this laccase is more traditional2O2This is superior to the use of the latter in that the latter causes damage to the hair and that use usually requires a high pH (which also damages the hair). In contrast, the reaction with laccase can be carried out even at alkaline, neutral or acidic pH, and the oxygen required for oxidation comes from the atmosphere rather than through harsh chemical oxidation. The result provided by the use of Myserioftra laccase is H2O2It is comparable to that achieved by the use of, which is not only in color development but also in washing stability and loss of brightness. A further commercial advantage resides in single container packaging in an oxygen-free atmosphere of laccase and precursor, such a method being H2O2The use of is impossible.
The laccase can also be used for the polymerization of phenolic compounds present in the liquid. An example of such utility would be the treatment of juice, such as apple juice, where laccase promotes the precipitation of phenolic compounds present in the juice, thus making a more stable juice produced. Such applications include Stutz and Fruit processing.7/93, 248-252, 1993; Maier et al., Dt. Lebensmittel-rindschau86 (5): 137-142,1990; Dietrich et al., Fluss.Obst57 (2): 67-73,1990.
Laccases such as Myserioftra laccase are also useful in soil detoxification (Nannipieri et al., J. Environ. Qual.20: 510-517,1991; Dec and Bollag, Arch.Environ.Contam.Toxicol.19: 543-550,1990).
The invention is further illustrated by the following non-limiting examples.
Example
I. Myseriophora thermophila laccase gene Isolation of
A. Materials and methods
1. DNA extraction and hybridization analysis
Total cellular DNA was obtained from fungal cells of Myseriophora thermophila strain E421 grown in 25 ml YEG medium (0.5% yeast extract, 2% glucose) for 24 hours using the following protocol: Extracted: Mycelium was collected by filtration through Miracloth (Calbiochem) and washed once with 25 ml TE buffer. The extra buffer was removed from the mycelium and the mycelium was frozen in liquid nitrogen. The frozen mycelium was crushed to a fine powder with an electric coffee grinder and the powder was added to 20 ml TE buffer and 5 ml 20% SDS (w / v) in a disposable plastic centrifuge tube. The mixture was gently inverted several times to ensure mixing and extracted twice with an equal volume of phenol: chloroform: isoamyl alcohol (25: 24: 1). Sodium acetate (3M solution) was added to a final concentration of 0.3M and the nucleic acid was precipitated with 2.5 volumes of ice-cold ethanol. The tubes were centrifuged at 15,000 × g for 30 minutes and the pellet was air dried for 30 minutes and then resuspended in 0.5 ml TE buffer. DNase-free ribonuclease A was added to a concentration of 100 μg / ml, and the mixture was incubated at 37 ° C. for 30 minutes. Proteinase K (200 μg / ml) was added and each tube was further incubated at 37 ° C. for 1 hour. Finally, each sample was extracted twice with phenol: chloroform: isoamyl alcohol, and then DNA was precipitated with sodium acetate and ethanol. The DNA pellet was dried in vacuo, resuspended in TE buffer and stored at 4 ° C.
Total cellular DNA samples from transformed and untransformed control strains are analyzed by Southern hybridization. Approximately 5 μg of DNA is digested with EcoR I and size fractionated on a 1% agarose gel. The gel is photographed under short wavelength UV and soaked in 0.5 M NaOH, 1.5 M NaCl for 15 minutes and then in 1 M Tris-HCl, pH 8, 1.5 M NaCl for 15 minutes. Capillary DNA in gel in 20x SSPE (RWDavis et al., Advanced Bacterial Genetics, A Manual for Genetic Engineering. Cold Spring Habor press. 1980) on Zeta-Probe ™ hybridization membrane (BioRad Laboratories) Transfer by blotting. The membrane is baked under vacuum at 80 ° C. for 2 hours and soaked in the following hybridization buffer at 45 ° C. with gentle agitation: 5 × SSPE, 35% formamide (v / v), 0.3% SCS, 200 μg / ml denatured and sheared salmon testis DNA. A laccase-specific pro-fragment (approximately 1.5 kb) encoding the 5 'region of the N. classa lcc 1 gene was obtained from N. classa genomic DNA using standard PCR conditions (Perkin-Elmer Cetus, Emeryville, CA). Amplify using the following primer pair: forward primer 5'CGAGACTGATAACTGGCTTGG 3 '; reverse primer 5'ACGGCGCATTGTCAGGGAAGT 3'. The amplified DNA segment is first cloned into a TA-cloning vector (Invitrogen, Inc., San Diego, Calif.), Then purified by agarose gel electrophoresis and digested with EcoR I. The purified probe fragment is α [32P] Radiolabeled by nick translation with dCTP (Amersham) and about 1 x 10 / ml buffer6Add to hybridization buffer at cpm activity. The mixture is incubated overnight at 45 ° C. in a shaking bath. After incubation, the membrane is washed once at 45% with 0.2 × SSPE and 0.1% SDS and then twice with 0.2 × SSPE (no SDS) at the same temperature. The membrane is dried on a paper towel for 15 minutes, then wrapped in Saran Wrap ™ and exposed to X-ray film at −70 ° C. with an intensifying screen (Kodak) overnight.
2. DNA library and identification of laccase clones
A genomic DNA library is constructed in the bacteriophage cloning vector λ-EMBL4 (J. A. Sorge. Vectors, A Snrvey of Molecular Cloning Vectors and Their Uses, Rodrigues et al., Ed pp43-60, Butterworths, Boston, 1988). Briefly, precellular DNA is partially digested with San 3A and size fractionated on a low melting point agarose gel. A DNA fragment running between 9 kb and 23 kb is excised and eluted from the gel using β-agarase (New England Biolabs, Beverly MA). The eluted DNA fragment was ligated to a BamH 1-cut and dephosphorylated λ-EMBL4 vector arm and the ligation mixture was packaged using a commercial packaging extract (Stratagene, La Jolla, Calif.) To do. The packaged DNA library is plated and propagated on Escherichia coli K802 cells. Approximately 10,000-20,000 plaques from each library are screened by plaque hybridization with radiolabeled lcc 1 DNA fragment using the conditions described above. Plaques that give a hybridization signal with this probe were purified twice on E. coli K802 cells, and DNA from the corresponding phage was amplified using Qiagen Lamda kit (Qiagen, Inc., Chatswarth, CA). Purify from titer lysate.
3. Analysis of laccase gene
Restriction mapping of laccase clones is performed using standard methods (Lewin, Genes, 2nd edition, Wiley & Sons, 1985, New York). DNA sequencing is performed with an Applied Biosystems model 373A automated DNA sequencer (Applied Biosystems. Inc., Foster City, Calif.) Using primer-walking technology with dye-terminator chemistry (H. Giesecke et al., J. Virol. Methods38: 47-60, 1992). Oligonucleotide sequencing primers are synthesized on an Applied Biosystems model 394 DNA / RNA synthesizer.
B. Results and discussion
1. Identification of laccase gene sequence
Total cellular DNA samples are prepared from Neurospora crassa, B. cinerea and Myserioftra species. Aliquots of these DNA preparations are digested with BamH 1 and fractionated by agarose gel electrophoresis. The DNA in the gel was blotted onto a Zcta-Probe ™ membrane filter (BioRad Laboratories, Hercules, Calif.), And mildly labeled with a radiolabeled fragment encoding part of the N. classa lcc 1 gene as described above. Probing under stringent conditions. Laccase-specific sequences are detected in the genomes of M. thermophila and N. crassa control but not in this probe in B. cinerea genomic DNA.
2. Myseri offtra thermophila laccase (Mt L) Gene cloning and characterization
Approximately 20,000 plaques from the M. thermophila genomic DNA library constructed in the λ-EMBL4 cloning vector are screened. This library consisted of approximately 10,000 independent clones and inserts ranged in size from 9 kb to 23 kb. Average insert size for M. thermophila is 10 kb and total genome size is 4 × 107Assuming bp, this number is about 2.5 times the number of clones needed to display the entire genome. Eight plaques were identified that hybridized strongly with the N. crassa laccase gene. DNA is isolated from three of them, digested with EcoR I, and analyzed by agarose gel electrophoresis and Southern hybridization. All three of these clones hybridize with laccase specific probes. Contains a 7.5 kb EcoR I fragment. One of these EcoR I fragments is subcloned into pBR322 (Bolivar et al., Gene 2: 95-113, 1977) to create plasmid pRaMB1. A restriction map of this DNA segment is shown in FIG. The position of the laccase coding region on this clone is determined by hybridization with the lcc 1 gene fragment described above. Based on the resulting map data and the estimated size of the laccase protein of approximately 80 kdal, the entire M. thermophila laccase coding region was determined to contain a 3.2 kb Nhe I-Bgl II segment, which was identified as pUC119 (Viera and Messing , Methods Enzymol. 153: 3-11, 1987). The nucleotide sequence of this segment is determined using the primer walking method (Giesecke et al., Supra). The nucleic acid sequence is shown in FIG. 2 and SEQ ID NO: 1.
The deduced amino acid sequence of MtL can be based on amino acid sequence homology with N. crassa laccase. At the amino acid level, these two laccases share about 60% sequence identity. The similarity is highest in the region corresponding to the four histidines and one cysteine involved in the formation of the trinuclear copper cluster (Perry et al., J. Gen. Microbiol. 139: 1209-1218, 1993; Coll et al., Appl. Environ. Microbiol. 59: 4129-4135, 1993; Messerschmidt et al., J. Mol. Biol. 206: 513-530, 1989). There are 11 potential sites for N-linked glycosylation in the deduced amino acid sequence of MtL. The first 22 amino acids of MtL were found to comprise a standard signal peptide with a putative cleavage site behind the Ala residue (von Heijne, J. Mol. Biol. 173: 243-251, 1984). The amino terminus sequence of native MtL is unknown, but the amino terminus of recombinant MtL produced in A. oryza is blocked by a pyro-glutamate residue. Enzymatic removal of this residue followed by amino acid sequencing suggests that mature MtL begins with a Gln residue (position 1 in FIG. 2; SEQ ID NO: 2). Thus, it is clear that MtL is synthesized as a 620 amino acid preproenzyme having a 22 amino acid signal peptide and a 25 residue propeptide. Neurospora crassa laccase (NcL) is similarly processed at its amino terminus. In addition, NcL is proteolytically processed at its C-terminus, resulting in the removal of 13 amino acids (Germann et al., J. Biol. Chem. 263: 885-896, 1988). The processing site is the sequence Asp-Ser-Gly-Leu*Arg558(Where * indicates a cleavage site). Similar sequence near the C-terminus of MtL (Asp-Ser-Gly-Leu-Lys560) And the myserioftraenzyme is C-terminal processed (Asp-Ser-Gly-Leu)*Lys560), Suggesting that 12 amino acids are removed.
The position of the six introns (85, 84, 102, 72, 147 and 93 nucleotides) within the lcc 1 coding region is determined by comparing the deduced amino acid sequence of MtL with that of NcL, and the common principle of intron characteristics in filamentous fungi (Gurr Et al., Gene Structure in Eukaryotic Microbes, JR Kinghorn Silk pp93-139, IRL Press, Oxford, 1987). The 1860 nucleotide coding sequence excluding introns is guanosine and cytosine rich (65.5% GtC). The codon usage pattern for this gene reflects the strong bias (89.7%) DNA base composition for codons ending with G or C.
II. Myserioftra rakka in Aspergillus Expression
A. Materials and methods
1. Bacteria and fungal host strains
Escherichia coli JM101 (Messing et al., Nucl. Acids Res. 9: 309-321, 1981) is used as a host for the construction and routine propagation of laccase expression vectors in this study. Fungal hosts for laccase expression include Aspergillus niger strains Bo-1, AB4.1 and AB1.13 (Mattern et al., Mol. Gen. Genet. 234: 332-336) and α-amylase-deficient Aspergillus oryzae strain How The uridine requirement (pyrG) mutant of B104 is included.
2. Plasmid
Plasmid pRaMB2 contains a 3.2 kb Bgl II-Nhe I fragment of M. thermophila genomic DNA encoding MtL. The vector pMWR is pUC18 (Yanisch-Perron et al., GeneThree Three: 103-119,1985) and A. oryzae TAKA-amylase promoter and pTAKA17-derived terminator element (Christensen et al., Bio / Technol.6: 1419–1422, 1988; EP 238,023). In this vector, there is a unique Swa I site at the end of the promoter element and a single Nsi I site for directed cloning of the coding sequence at the start of the terminator. Cloning vehicle pUC518 is derived by inserting a small linker containing Nsi I, Cla I, Xho I and Bgl II restriction sites between adjacent BamH 1 and Xba I sites of pUC118 (Vieira and Messing, supra). . Plasmid pToC68 (WO91 / 17243) contains the A. oryzae TAKA-amylase promoter and A. niger glaA terminator, and pToC90 (WO91 / 17243) carries the A. nidulans amdS gene.
3. Construction of laccase expression vector
The construction technique for the laccase expression vector pRaMB5 is outlined in FIG. Promoters that direct transcription of the laccase gene are obtained from the A. oryzae α-amylase (TAKA-amylase) gene (Christensen et al., Supra) and the TAKA-amylase terminator region. This plasmid is constructed by modifying pMWR3 by inserting a small rekan containing an Apa I site between the Swa I and Nsi I sites to create a plasmid called pMWR3-SAN. Pfu I polymerase dependent PCR (Stratagene, La Jolla, Calif.) Is used to amplify a short DNA segment encoding the 5 ′ portion of the MTL from the start codon to the internal Pst I site (approximately 0.5 kb). The forward primer for this PCR reaction is designed to create an EcoR I site immediately upstream of the start codon. The amplified fragment is then digested with EcoR I and Pst I (during this step, the EcoR I site is blunted (adherently terminated) by treatment with dNTP and DNA polymerase I (Klenow fragment)) and an agarose gel Purify by electrophoresis. The 3 ′ part of the M. thermophila coding region is excised from pRaMB2 as a 2 kb Pst I-Apa I fragment (this segment also contains about 110 bp from the 3 ′ untranslated region). These two fragments are combined with SwaI- and ApaI-cleaved pMWR3-SAN in a three-part ligation reaction to produce the laccase expression vector pRaMB5.
4. Transformation of Aspergillus host cells
Methods for cotransformation of Aspergillus strains are described in Christensen et al., Supra. For introduction of the laccase expression vector into A. oryza HowB104pyrG, use an equal amount (approximately 5 μg each) of the laccase expression vector and one of the following plasmids: pPYRG (Fungal Genetics Stock Center, Kansas City, KS) [this Contains the A. nidulans pyrG gene (Oakley et al., Gene61 385-399, 1987)]; pSO2 [which has the clone A. oryzae pyrG gene]; pPRYG24 [which contains the A. ficuum (= A. Niger) pyrG gene]. Primitive nutrition (Pyr+) Transformants were selected on Aspergillus minimal medium (Rowlands and Turner, Mol. Gen. Genet. 126: 201-216, 1973) and the transformants were selected from 1 mM 2,2′-azinobis (3-ethyl). Screen for the ability to produce laccase on minimal medium containing benzthiazoline sulfonic acid (ABTS). Cells that secrete active laccase oxidize ABTS, resulting in a green circle surrounding the colony. Finally, an equivalent amount of A. niger Bo-1 protoplast (about 5 μg each) and an A. nidulans amdS (acetamidase) gene (Hynes et al., Mol. Cell Biol.3: 1430-1439, 1983) containing pToC90. amdS+Transformants were selected on Cove minimal medium (Cove, Biochim. Biophys. Acta 113: 51-56, 1966) with 1% glucose as the carbon source and acetamide as the only nitrogen source, and 1 mM. Screen for laccase expression on cove medium containing ABTS.
5. Analysis of laccase-producing transformants
Transformants producing laccase active on agar plates are then purified twice through making conidia and spore suspensions in sterile 0.01% Tween-80. Optically assess the density of spores in each suspension (A595nm). Approximately 0.5 absorption units of spores are used to inoculate 25 ml of ASPO 4 or MY50 medium in a 125 ml plastic flask. The culture is incubated at 37 ° C. with great aeration (about 200 rpm) for 4-5 days. Culture medium is obtained by centrifugation and the value of laccase activity in the supernatant is determined using syringaldazine as a substrate. Briefly, 800 μl assay buffer (25 mM sodium acetate, pH 5.5, 40 μM CnSOFour) With 20 μl culture supernatant and 60 μl 0.28 mM syringaldazine (Sigma Chemical Co., St. Lonis, MO) in 50% ETOH. Absorption at 530 nm is measured over time with a Genesys 5 UV-bis photometer (Milton-Roy). One laccase unit (LACU) is defined as the amount of enzyme that oxidizes 1 μmole of substrate per minute at room temperature. SDS-polyacrylamide gel electrophoresis (PAGE) is performed using a precast 10-27% gradient gel from Novex (San Diego, Calif.). The protein band is developed using Coomassie Brilliant Blue (Sigma).
B. Results and discussion
1. Expression of Myserioftra laccase
Laccase producing transformants are detected by the incorporation of ABTS into the selective medium. By using pyrG or amdS as a selection marker, the co-transformation frequency varies from about 30% to 70%. The heterologous expression of MtL was found to be highest in A. oryzae transformation. Furthermore, it was found that the production rate in ASPO 4 medium was better than that in MY50, but the reason for this is not known. SDS-PAGE of the culture sample shows a band of the major laccase at approximately 80 kdal, which is similar to the size of the natural enzyme purified from M. thermophila. Similar analysis of culture filtrates from A. niger Bo transformants suggests that the laccase band is masked by very strong glucoamylase and acid stable amylase protein bands. The results are shown in Table 1.
Figure 0003649338
2. Expression with or without excess copper
Aspergillus oryzae transformant HowB104-pRaMB5.30 (about 1091 ml aliquots of spore suspension of aseptic spores / ml) aseptically in 100 ml sterile shake flask medium (maltose 50 g / 1; MgSOFour・ 7H2O 2g / 1; KH2POFour 10g / 1; K2SOFour 2g / 1; GaCl2・ 2H2O 0.5 g / 1; citric acid 2 g / 1; yeast extract 10 g / 1; trace metal [ZnSOFour・ 7H2O 14.3g / 1; CuSOFour・ 5H2O 2.5g / 1; NiCl2・ 6H2O 0.5g / 1; FeSOFour・ 7H2O 13.8g / 1; MnSOFour・ H2O 8.5g / 1; citric acid 3.0g / 1], 0.5ml / 1; urea 2g / 1; make up with tap water and adjust to pH 6.0 before autoclaving) into a 500ml shake flask And incubate for 18 hours at 200 rpm on a rotary shaker at 37 ° C. Aseptically transfer 50 ml of this culture to 1.8 liters of fermentation medium (MgSOFour・ 7H2O 2g / 1; KH2POFour 2g / 1; citric acid 4g / 1; K2SOFour 3g / 1; CaCl2・ 2H2Transfer to a 3 liter fermentor containing O 2g / 1; Trace metal 0.5ml / 1; Pluronic foam inhibitor 1ml / 1). The fermenter temperature is maintained at 34 ° C. by circulating cooling water through the fermenter jacket. Aseptic air is sprayed on the fermentor at a rate of 1.8 liters / minute (1 v / v / m). The agitation rate is approximately the lowest level required to keep the dissolved oxygen level in the culture above 20%. Maintain at 600-1300 rpm. Peristor aseptic additive (Nutriose 725 [maltose syrup] 225g / 1; urea 30g / 1; yeast extract 15g / 1; pluronic foam inhibitor 1.5ml / 1; make up with distilled water and autoclave) Add to fermentor using pump. The feed rate during fermentation is as follows: 30 g of additive initially before inoculation; 0-24h 2g / 1h; 24-48h 4g / 1h; 48h-end 6g / 1h.
Copper is prepared as a 400 × stock in water or a suitable buffer, sterile filtered and aseptically added to the tank to a final level of 0.5 mM. The above fermentation is also performed without adding the copper additive to the tank medium. Samples for determination of enzyme activity are withdrawn and filtered through Miracloth to remove mycelium. These samples are assayed for laccase activity by the LACU assay described above. Laccase activity is observed to increase continuously during the fermentation, and a value of about 45 LACU / ml is achieved after 180 hours in fermentation with excess copper. At a specific activity of 22 LACU / mg, this corresponds to 2 g / 1 expressed recombinant laccase. On the other hand, the maximum laccase activity achieved in the fermentation without copper additive was about 10 LACU / ml after 170 hours, about 25% of that found in the presence of added copper.
III. Purification and characterization of Myserioftra laccase
A. Materials and methods
1.Material
The chemical reagents used as buffers and substrates should be at least reagent grade products. Endo / N-glycosidase F and pyroglutamate aminopeptidase were purchased from Boehringer Mannheim. Chromatography is performed either on a Pharmacia FPLC or a conventional low pressure system. Absorbance assays are performed with either a photometer (Shimadzu PC160) or a microplate reader (Molecular Devices). Britton & Robinson (B & R) buffer is prepared according to the protocol described in Quelle, Biochemisches Taschenbuch, H. M. Raven, II. Teil, S. 93u, 102, 1964.
2.Enzyme activity
Laccase activity is determined by syringaldazine oxidation in a 1-cm quartz cuvette at 30 ° C. Mix 60 μl of syringaldazine stock solution (0.28 mM in 50% ethanol) and 20 μl of sample with 0.8 ml of preheated buffer solution. Oxidation is monitored at 530 nm for 5 minutes. Activity is expressed as μmole of substrate oxidized per minute. Use various pH B & R buffers. The active unit is referred to herein as “SOU”. 25 mM sodium acetate, 40 μM CuSO to determine the activity referred to as LACU as described aboveFourAlso use a pH 5.5 buffer. 2,2′-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) oxidation assay uses 0.4 mM ABTS, B & R buffer, pH 4.1, and A at room temperature.405This is done by monitoring. ABTS oxidase activity upper layer (overlay) assay consists of chilled ABTS-agarose (0.05 g ABTS, 1 g agarose, 50 ml H2O, heated to dissolve the agarose) is poured onto a natural IEF gel and incubated at room temperature. Thermal stability analysis of laccase (r-MtL) is performed using samples with 3SOU activity pre-incubated at various temperatures in B & R buffer pH6. Samples are diluted 400-fold in the same buffer and then assayed at room temperature.
3. Purification from fermentation broth
3.7 liters of cheesecloth filtered culture (pH 7.6, 16 mS) is filtered through Whatman # 2 filter paper. The culture solution is concentrated from 3700 ml to 200 ml using a spiral concentrator (Amicon) with an S1Y100 membrane (MWCO: 100). The concentrate is adjusted to 0.75 mS by diluting in water and reconcentrated to 170 ml with S1Y100. The washed and concentrated culture has a dark green color.
The culture is frozen overnight at −20 ° C., thawed the next day, and loaded onto a Q-sepharose XK26 column (120 ml) that has been pre-equilibrated with 10 mM Tris, pH 7.5, 0.7 mS (buffer A). The blue laccase band slowly descends the column during the addition. One group of blue fractions passes through the column after addition and washing with buffer A. The second group elutes during a linear gradient with buffer B (buffer A and 2M NaCl). Some brown material without laccase activity is subsequently eluted with 1M NaOH. SDS-PAGE analysis shows that this preparation yields pure laccase.
4. Amino acid content, degree of glycosylation and N-terminal configuration Analyzing columns
N-terminal sequencing is performed on an ABI 476A sequencer. Total amino acid analysis (thereby determining the r-MtL excitation coefficient) is performed on an HP Amino Quant instrument. Deglycosylation is performed using endo / N-curcosidase F according to manufacturer's specifications and carbohydrate content is assessed by the difference in mobility as determined by SDS-PAGE. N-terminal deblocking with pyroglutamate aminopeptidase is performed according to manufacturer's specifications. Approximately 80 μg of r-MtL is treated with 4 μg of peptidase in the presence or absence of 1 M urea or 0.1 M guanidine HCl and then blotted onto a PVDF membrane for sequencing. About 20 pmol of deblocked protein is obtained and sequenced.
SDS-PAGE and natural IFF analysis are performed in either Novex cells or Mini Protean II and Model III Mini IEF cells (Bio-Rad). Gel filtration analysis was performed with Sephacryl S-300 (Pharmacia), from which blue dextran (2000 kdal), bovine IgG (158 kdal), bovine serum albumin (66 kdal), ovalbumin (45 kdal) and horse to calibrate the column. Estimated by using cardiac myoglobin (17 kdal).
B. Results and discussion
1. Purification and characterization of r-MtL from fermentation broth
About 2-3 g of r-MtL is isolated from 3.71 fermentation broth. Initial concentration using a membrane with 100 kdal MWCO removed a significant amount of brown material and a small amount of contaminating protein. The low affinity of r-MtL for Q-Sepharose matrix equilibrated with 10 mM Tris, pH 7.5 facilitates its separation from other more acidic and more strongly bound impurities. As shown by SDS-PAGE, this preparation resulted in essentially pure laccase for the most active fraction located around the peak. Other weakly active fractions can be further purified on either a Mon-Q or gel filtration column with a shallower gradient, such as S-300, from which contaminants are separated based on the smaller MW. Overall, 18 times purification and 67% recovery can be achieved. As described below, the presence of two elution bands of r-MtL in Q-Sepharose chromatography is probably based on differential glycosylation.
The purified r-MtL shows 100-140 kdal MW on S-300 gel filtration and 85 kdal MW on SDS-PAGE. An increase in r-MtL mobility on SDS-PAGE after deglycosylation indicates that carbohydrate accounts for 14% of its total mass. Natural IEF showed a major band of pi-4.2 active in the ABTS overlay assay.
Direct sequencing of the N-terminus of purified r-MtL from either desalted solution or PVDF membrane samples was unsuccessful. However, treatment of r-MtL with pyroglutamate aminopeptidase resulted in a protein with a deblocked N-terminus. This is not observed in the processing of propeptides during r-MtL maturation, ie other laccases such as Rhizoctonia solani, but a post-translational phenomenon similar to that of N. crassa laccase To suggest. Possible schemes are outlined below.
Figure 0003649338
The blue r-MtL spectrum had maximum absorption at 276 and 589 nm.
The activity of laccase is tested using either syringaldazine or ABTS as a substrate. Abs276Expressed as per or per mg, the laccase had a value of 20 or 45 units for SOU, respectively, at pH 6.5. LACU assay is Abs276This gave a value of 10 or 22 units per or mg.
The pH profile of r-MtL activity is quite close to that of wild type, with an optimum pH of 6.5. The temperature value for full activity retained after the 20 minute pre-incubation observed for r-MtL is about 60 ° C. Purified r-MtL showed no activity loss after freezing at -20 ° C in Q-Sepharose elution buffer and storing for 5 weeks.
When comparing the two forms of r-MtL obtained from fermentation broth isolated with Q-Sepharose, SDS-PAGE, natural PAGE, natural IEF, S-300 gel filtration, UV-visible spectrum, syringaldazine and There was no significant difference in terms of specific activity against ABTS, as well as deblocked N-terminal sequencing scale. Similarly, the different elution patterns on Q-Sepaharose are derived from several different glycosylation.
IV. Myseriophora laccase in hair dyeing Use of
The dyeing effect of Myserioftra laccase was tested on the basis of various dye precursors and also on 0.1% p-phenylenediamine contrasted with some modifiers.
material:
Dye precursor:
0.1% p-phenylene-diamine in 0.1M K-phosphate buffer (pH 7.0)
0.1% aminophenol in 0.1M K-phosphate buffer (pH 7.0)
enzyme:
Recombinant Myserioftra thermophila laccase 16LACU / ml (in final staining solution).
apparatus:
Datacolor Textflash 2000 (CIE-Lab)
Evaluation of hair color
The qualitative color of curly hair is Datacolor Textflash 2000, CIE-Lab parameter L*("0" = black and "100" = white) and a*(“−” = Green, and “+” = red).
result:
Dyeing effect
European blond curly hair (1 g) is used to test Myseri offtra thermophila laccase for oxidative hair dyeing. P-Phenylenediamine and o-aminophenol are used as dye precursors.
Hair dyeing
4 ml of dye precursor solution is mixed with 1 ml of laccase in a Whirley mixer, applied to curly hair and kept at 30 ° C. for 60 minutes. Rinse the curly hair with tap water approximately 3 times, hold it between two fingers, pass the comb, and air dry.
The results of the dyeing effect test are shown in Tables 1 and 2 below.
Figure 0003649338
Figure 0003649338
Test results
From Tables 1 and 2, it can be seen that Myserioftra thermophila laccase can be used for oxidative dyeing of hair.
Deposit of biological materials
The following biological materials were deposited under the Budapest Treaty on May 25, 1994 at the Agricultural Research Service Patent Culture Collection, Other Regional Research Center, 1815 University Street, Peoria, Illinois, 61604, and the following accession numbers: Is given.
Deposit              Accession number
E. coli JM101 NRRL B-21261 containing pRaMB5
Sequence listing
(1) General information:
(I) Applicant:
(A) Name: Novo Nordisk Biotech, Inc.
(B) Street: 1445 Drew Avenue
(C) City: Davis, California
(D) Country: United States of America
(E) Zip code: 95616-4880
(F) Phone number: (916) 757-8100
(G) Fax number: (916) 758-0317
(I) Applicant:
(A) Name: Novo Nordisk A / S
(B) Street: Novo Alle
(C) City: Bagsv rd
(D) Country: Denmark
(E) Zip code: DK-2880
(F) Phone number: +45 4444 8888
(G) Fax number: +45 4449 3256
(Ii) Title of invention: Purified Myserioftra laccase and nucleic acid encoding the same
(Iii) Number of sequences: 2
(Iv) Contact information:
(A) Name: Novo Nordisk of North America, Inc.
(B) Street: 405 Lexington Avenue, Suite 6400
(C) City and state: New York, New York
(D) Country: U.S.A.
(E) Zip code: 10174-6401
(V) Computer reading form:
(A) Media type: Floppy disk
(B) Computer: IBM PC compatible
(C) Operating system: PC-DOS / MS-DOS
(D) Software: PatentIn Release # 1.0, Version # 1.25 (EPO)
(Vi) Current applicant data:
(A) Application number: Before certification
(B) Application date: May 31, 1995
(C) Classification:
(Vii) Previous application data:
(A) Application number: US 08 / 253,781
(B) Application date: June 3, 1994
(Viii) Agent / Agent Information:
(A) Name: Lowney, Karen A.
(B) Registration number: 31,274
(C) Reference / case number: 4184.204-WO
(Ix) Communication information:
(A) Phone number: 212 867 0123
(B) Fax number: 212 867 0298
(2) Information about SEQ ID NO: 1:
(I) Sequence features:
(A) Length: 3187 base pairs
(B) Type: Nucleic acid
(C) Number of strands: double strand
(D) Topology: straight chain
(Ii) Molecular type: DNA (genome)
(Vi) Origin:
(A) Organism: Myseri offtra thermophila
(Ix) Features:
(A) Name / Key: Intron
(B) Location: 833 ... 917
(Ix) Features:
(A) Name / Key: Intron
(B) Location: 996 ... 1077
(Ix) Features:
(A) Name / Key: Intron
(B) Position: 1090 ... 1188
(Ix) Features:
(A) Name / Key: Intron
(B) Position: 1261 ... 1332
(Ix) Features:
(A) Name / Key: Intron
(B) Position: 2305 ... 2451
(Ix) Features:
(A) Name / Key: Intron
(B) Position: 2521 ... 2613
(Ix) Features:
(A) Name / Key: CDS
(B) Location: Communication (587..832,918..995,1078..1089,1189..1260,1333..2304,2452..2520,2614..3024)
(Xi) Sequence details: SEQ ID NO: 1:
Figure 0003649338
Figure 0003649338
Figure 0003649338
Figure 0003649338
(2) Information about SEQ ID NO: 2:
(I) Sequence features:
(A) Length: 620 amino acids
(B) Type: amino acid
(C) Number of chains: single chain
(D) Topology: straight chain
(Ii) Molecular type: protein
(Vi) Origin:
(A) Organism: Myseri offtra thermophila
(Xi) Sequence details: SEQ ID NO: 2:
Figure 0003649338
Figure 0003649338
Figure 0003649338

Claims (42)

SEQ ID NO.2に記載のアミノ酸配列と90%以上相同であるアミノ酸配列から成る、マイセリオフトラ・ラッカーゼ。Myserioftra laccase comprising an amino acid sequence that is 90% or more homologous to the amino acid sequence described in SEQ ID NO.2. SEQ ID NO.2に記載のアミノ酸配列と95%以上相同であるアミノ酸配列から成る、マイセリオフトラ・ラッカーゼ。Myserioftra laccase comprising an amino acid sequence that is 95% or more homologous to the amino acid sequence described in SEQ ID NO.2. マイセリオフトラ・サーモフィラ・ラッカーゼである請求項1記載のラッカーゼ。The laccase according to claim 1, which is Myserioftra thermophila laccase. SEQ ID NO.2に記載のアミノ酸配列から成 る、請求項1記載のマイセリオフトラ・ラッカーゼ。 Ru comprising the amino acid sequence of SEQ ID NO.2, Myceliophthora, laccase according to claim 1, wherein. 至適pHにおいてシリンガルダジンに対して30SOU/mg以上の比活性を有する請求項1記載のラッカーゼ。The laccase according to claim 1, having a specific activity of 30 SOU / mg or more with respect to syringaldazin at an optimum pH. 請求項1記載のマイセリオフトラ・ラッカーゼをコードする核酸を含んで成るDNA構築体。A DNA construct comprising a nucleic acid encoding the myserioftra laccase according to claim 1. 請求項2記載のマイセリオフトラ・ラッカーゼをコードする核酸を含んで成るDNA構築体。A DNA construct comprising a nucleic acid encoding the myserioftra laccase according to claim 2. 請求項3記載のマイセリオフトラ・ラッカーゼをコードする核酸を含んで成るDNA構築体。A DNA construct comprising a nucleic acid encoding the myserioftra laccase according to claim 3. 請求項4記載のマイセリオフトラ・ラッカーゼをコードする核酸を含んで成るDNA構築体。A DNA construct comprising a nucleic acid encoding the myserioftra laccase according to claim 4. 請求項5記載のマイセリオフトラ・ラッカーゼをコードする核酸を含んで成るDNA構築体。A DNA construct comprising a nucleic acid encoding the myserioftra laccase according to claim 5. 請求項6記載のDNA構築体を含んで成る組換ベクター。A recombinant vector comprising the DNA construct according to claim 6. 前記構築体がプロモーター配列に作用可能式に連結されている、請求項11記載のベクター。12. The vector of claim 11, wherein the construct is operably linked to a promoter sequence. 前記プロモーターが菌類又は酵母プロモーターである、請求項12記載のベクター。13. The vector according to claim 12, wherein the promoter is a fungal or yeast promoter. 前記プロモーターがアスペルギルス・オリザのTAKAアミラーゼプロモーターである、請求項13記載のベクター。14. The vector of claim 13, wherein the promoter is an Aspergillus oryzae TAKA amylase promoter. 前記プロモーターがアスペルギルス・ニガー又はアスペルギルス・アワモリのグルコアミラーゼ(gluA)プロモーターである、請求項13記載のベクター。14. The vector of claim 13, wherein the promoter is an Aspergillus niger or Aspergillus awamori glucoamylase (gluA) promoter. 選択マーカーも含んで成る、請求項11記載のベクター。12. A vector according to claim 11, which also comprises a selectable marker. 前記選択マーカーがamds,pyrG,argB,niaD,sC及びhygより成る群から選ばれる、請求項16記載のベクター。17. The vector of claim 16, wherein the selectable marker is selected from the group consisting of amds, pyrG, argB, niaD, sC and hyg B. 前記選択マーカーがアスペルギルス・ニドゥランスもしくはアスペルギルス・オリザのamdSマーカー、又はアスペルギルス・ニドゥランス、アスペルギルス・ニガー、アスペルギルス・アワモリもしくはアスペルギルス・オリザのpyrGマーカーである、請求項16記載のベクター。The vector according to claim 16, wherein the selection marker is an amdS marker of Aspergillus nidulans or Aspergillus oryza, or a pyrG marker of Aspergillus nidulans, Aspergillus niger, Aspergillus awamori or Aspergillus oryzae. アスペルギルス・オリザのTAKAアミラーゼプロモーターと、アスペルギルス・ニドゥランス又はアスペルギルス・オリザのamdS又はpyrGマーカーの双方を含んで成る、請求項16記載のベクター。 And TAKA amylase promoters Aspergillus oryzae, comprising both the amdS or pyrG marker of Aspergillus nidulans or Aspergillus oryzae, vector of claim 16, wherein. 請求項6記載の異種DNA構築体を含んで成る組換宿主細胞。A recombinant host cell comprising the heterologous DNA construct of claim 6. 菌類細胞である請求項20記載の細胞。21. The cell according to claim 20, which is a fungal cell. アスペルギルス細胞である請求項20記載の細胞。21. The cell according to claim 20, which is an Aspergillus cell. 前記構築体が宿主細胞のゲノムの中に組込まれている、請求項20記載の細胞。21. The cell of claim 20, wherein the construct is integrated into the genome of the host cell. 前記構築体がベクター上に含まれている、請求項20記載の細胞。21. The cell of claim 20, wherein the construct is contained on a vector. 前記核酸がSEQ ID NO.2に示されているアミノ酸配列から成るラッカーゼをコードする、請求項20記載の細胞。It said nucleic acid encodes a laccase having the amino acid sequence shown in SEQ ID NO.2, claim 20 of the cell. 請求項6又は7記載のラッカーゼをコー ドする核酸を含んで成るDNA構築体を含んで成る組換宿主細胞を該ラッカーゼの発現を誘導する条件下で培養し、次いでその培養物からこの酵素を回収することを含んで成る、請求項1〜5のいずれか1項記載のラッカーゼを獲得するための方法。The recombinant host cells comprising a laccase according to claim 6 or 7, wherein comprising a DNA construct comprising a nucleic acid encoding cultured under conditions that induce expression of the laccase, then the enzyme from the culture A process for obtaining laccase according to any one of claims 1 to 5 , comprising recovering. 銅含有酵素をコードする配列を含むDNA構築体を含んで成る組換宿主細胞を該酵素の発現を誘導する条件下で、0.05〜0.5mMの銅の存在下で培養することを含んで成る、請求項1〜5のいずれか1項記載の活性組換ラッカーゼの収量を高める方法。Culturing a recombinant host cell comprising a DNA construct comprising a sequence encoding a copper-containing enzyme in the presence of 0.05 to 0.5 mM copper under conditions that induce expression of the enzyme. A method for increasing the yield of active recombinant laccase according to any one of claims 1-5 . リグニン又はリグノスルフェート基質を溶液重合するための方法であって、前記基質を請求項1 〜5のいずれか1項記載のラッカーゼと接触させることを含んで成る方法。6. A method for solution polymerization of a lignin or lignosulfate substrate comprising contacting the substrate with a laccase according to any one of claims 1-5. クラフトパルプにおけるin situ脱重合のための方法であって、前記パルプを請求項1〜5のい ずれか1項記載のラッカーゼと接触させることを含んで成る方法。A method for in situ depolymerization in Kraft pulp, the method comprising contacting said pulp with laccase of claims 1 to 5 gall Zureka preceding claim. 染料又は染料前駆体を酸化するための方法であって、前記染料を請求項1〜5のいずれか1項記載のラッカーゼと接触させることを含んで成る方法。A method for oxidizing a dye or dye precursor comprising contacting said dye with a laccase according to any one of claims 1-5 . 毛髪を染色するための方法であって、 求項1〜5のいずれか1項記載のラッカーゼを、少なくとも一種の改質剤の存在下又は非存在下で、少なくとも一種の染料前駆体と、その染料前駆体が染料へと酸化するのに足りる時間及び条件下で接触させることを含んで成る、方法。A method for dyeing hair, the laccase according to any one of Motomeko 1-5, the presence of at least one modifying agent or in the absence, and at least one dye precursor, Contacting the dye precursor for a time and under conditions sufficient to oxidize the dye precursor. 前記染料前駆体がジアミン、アミノフェノール及びフェノールより成る群から選ばれる、請求項31記載の方法。32. The method of claim 31, wherein the dye precursor is selected from the group consisting of diamine, aminophenol and phenol. 前記改質剤が、使用する場合、メタ−ジアミン、メタ−アミノフェノール又はポリフェノールである、請求項31記載の方法。32. The method of claim 31, wherein the modifier, if used, is meta-diamine, meta-aminophenol or polyphenol. 前記染料前駆体がオルト−もしくはパラ−ジアミン又はアミノフェノールより成る群から選ばれる一次中間体である、請求項32記載の方法。33. The method of claim 32, wherein the dye precursor is a primary intermediate selected from the group consisting of ortho- or para-diamine or aminophenol. 一種より多くの染料前駆体を使用する、請求項31記載の方法。32. The method of claim 31, wherein more than one dye precursor is used. 一種より多くの改質剤を使用する、請求項31記載の方法。32. The method of claim 31, wherein more than one modifier is used. 一次中間体及び改質剤の双方を使用する、請求項31記載の方法。32. The method of claim 31, wherein both a primary intermediate and a modifier are used. 少なくとも一種の染料前駆体と組合された請求項1〜5のいずれか1項記載のマイセリオフトラ・ラッカーゼを含んで成る染料組成物。6. A dye composition comprising Myserioftra laccase according to any one of claims 1 to 5, in combination with at least one dye precursor. 少なくとも一種の一次中間体及び少なくとも一種の改質剤を更に含んで成る請求項38記載の染料組成物。40. The dye composition of claim 38, further comprising at least one primary intermediate and at least one modifier. 請求項38記載の染料組成物を無酸素雰囲気下で含む容器。39. A container comprising the dye composition according to claim 38 in an oxygen-free atmosphere. 少なくとも一種の改質剤と組合された少なくとも一種の一次中間染料前駆体を更に含んで成る請求項40記載の容器。41. The container of claim 40, further comprising at least one primary intermediate dye precursor combined with at least one modifier. フェノール系又はアニリン化合物を重合又は酸化するための方法であって、フェノール系又はアニリン化合物を請求項1〜5のいずれか1項記載のマイセリオフトラ・ラッカーゼと接触させることを含んで成る方法。A method for polymerizing or oxidizing a phenolic or aniline compound comprising contacting the phenolic or aniline compound with the myserioftra laccase according to any one of claims 1-5 .
JP50113296A 1994-06-03 1995-05-31 Purified Myserioftra laccase and nucleic acid encoding it Expired - Fee Related JP3649338B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US25378194A 1994-06-03 1994-06-03
US44114695A 1995-05-15 1995-05-15
US08/441,146 1995-05-15
US08/253,781 1995-05-15
PCT/US1995/006815 WO1995033836A1 (en) 1994-06-03 1995-05-31 Phosphonyldipeptides useful in the treatment of cardiovascular diseases

Publications (2)

Publication Number Publication Date
JPH10501137A JPH10501137A (en) 1998-02-03
JP3649338B2 true JP3649338B2 (en) 2005-05-18

Family

ID=26943561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50113296A Expired - Fee Related JP3649338B2 (en) 1994-06-03 1995-05-31 Purified Myserioftra laccase and nucleic acid encoding it

Country Status (16)

Country Link
US (2) US5795760A (en)
EP (1) EP0765394B1 (en)
JP (1) JP3649338B2 (en)
KR (1) KR970703426A (en)
CN (1) CN1192108C (en)
AT (1) ATE206460T1 (en)
AU (1) AU694954B2 (en)
BR (1) BR9507817A (en)
CA (1) CA2191718A1 (en)
DE (1) DE69523052T2 (en)
DK (1) DK0765394T3 (en)
ES (1) ES2165420T3 (en)
FI (1) FI964808A0 (en)
MX (1) MX9606013A (en)
PT (1) PT765394E (en)
WO (1) WO1995033836A1 (en)

Families Citing this family (723)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051431A (en) * 1994-07-22 2000-04-18 Dsm N.V. Selection marker gene free recombinant strains: a method for obtaining them and the use of these strains
ZA967411B (en) * 1995-09-01 1997-04-16 Novo Nordisk Biotech Inc Blue copper oxidase mutants with enhanced activity
ES2159765T3 (en) * 1995-11-30 2001-10-16 Novozymes As LACASA WITH IMPROVED COLORING PROPERTIES.
AU7691296A (en) * 1995-11-30 1997-06-19 Novo Nordisk A/S An enzyme for dying keratinous fibres
US5948121A (en) * 1995-11-30 1999-09-07 Novo Nordisk A/S Laccases with improved dyeing properties
US5972042A (en) * 1995-12-22 1999-10-26 Novo Nordisk A/S Method for dyeing a material with a dyeing system which contains an enzymatic oxidizing agent
US6805718B2 (en) 1995-12-22 2004-10-19 Novozymes A/S Enzymatic method for textile dyeing
US6036729A (en) * 1995-12-22 2000-03-14 Novo Nordisk A/S Enzymatic method for textile dyeing
US6296672B1 (en) 1995-12-22 2001-10-02 Novozymes A/S Patents Enzymatic method for textile dyeing
AU1750697A (en) 1996-01-19 1997-08-11 Novo Nordisk Biotech, Inc. Morphological mutants of filamentous fungi
DE69708276D1 (en) * 1996-04-03 2001-12-20 Novozymes As COLORING KERATINE FIBERS WITH THE ENZYME
JP3320307B2 (en) * 1996-06-06 2002-09-03 株式会社エス・ディー・エス バイオテック Method for polymerizing phenolic compounds and its use
EP0938605A1 (en) * 1996-08-02 1999-09-01 Novo Nordisk Biochem North America, Inc. Enzymatic method for overdyeing cellulosic textiles
US5770419A (en) * 1996-08-30 1998-06-23 Novo Nordisk Biotech, Inc. Mutants of Myceliophthora laccase with enhanced activity
US5998353A (en) * 1996-12-19 1999-12-07 Novo Nordisk A/S Laccase mutants
AU5310198A (en) * 1996-12-19 1998-07-15 Novo Nordisk A/S Laccase mutants
AU7738698A (en) * 1996-12-19 1998-07-15 Novo Nordisk A/S Myceliophthora and scytalidium laccase variants having improved stability
US5925554A (en) * 1996-12-19 1999-07-20 Novo Nordisk A/S Myceliophthora and scytalidium laccase variants
US6060442A (en) 1998-02-24 2000-05-09 Novo Nordisk A/S Laccase mutants
EP0977833A1 (en) 1997-02-28 2000-02-09 Novo Nordisk A/S Laccase mutants
WO1998038286A1 (en) * 1997-02-28 1998-09-03 Novo Nordisk A/S Laccase mutants
WO1998040471A1 (en) * 1997-03-12 1998-09-17 Novo Nordisk A/S Storage-stable liquid formulation comprising a laccase
DE69840230D1 (en) 1997-05-16 2009-01-02 Novozymes Inc POLYPEPTIDES WITH PROLYLDIPEPTIDYLAMINOPEPTIDASE ACTIVITY AND NUCLEIC ACIDS THAT CODE FOR IT
AU757773B2 (en) * 1997-11-26 2003-03-06 Sds Biotech K.K. Method for the treatment of wood with metallic treatment and wood treated by the method
FR2773476B1 (en) 1998-01-13 2001-02-23 Oreal TINCTORIAL COMPOSITION AND METHODS FOR DYEING KERATINIC FIBERS USING THE SAME
US7060112B2 (en) 1998-01-13 2006-06-13 L'oreal Composition for the oxidation dyeing of keratinous fibers containing a laccase and dyeing method using this composition
FR2773482B1 (en) 1998-01-13 2001-04-20 Oreal KERATINIC FIBER OXIDATION DYE COMPOSITION AND DYEING METHOD USING THE SAME
FR2773480B1 (en) 1998-01-13 2000-05-12 Oreal KERATINIC FIBER OXIDATION DYE COMPOSITION AND DYEING METHOD USING THE SAME
FR2773475B1 (en) 1998-01-13 2001-02-02 Oreal TINCTORIAL COMPOSITION AND METHODS FOR DYEING KERATINIC FIBERS USING THE SAME
FR2773477B1 (en) 1998-01-13 2001-02-23 Oreal TINCTORIAL COMPOSITION AND METHODS FOR DYEING KERATINIC FIBERS USING THE SAME
FR2773474B1 (en) 1998-01-13 2002-10-11 Oreal TINCTORIAL COMPOSITION AND METHODS FOR DYEING KERATINIC FIBERS USING THE SAME
FR2773478B1 (en) 1998-01-13 2000-02-25 Oreal KERATINIC FIBER OXIDATION DYE COMPOSITION AND DYEING METHOD USING THE SAME
US6152966A (en) * 1998-05-13 2000-11-28 Novo Nordisk A/S Treatment of cork with a phenol oxidizing enzyme
DE69932345T2 (en) 1998-10-26 2007-07-19 Novozymes A/S PREPARATION AND SCALING OF INTERESTING DNA BANKS IN CELLS OF FILAMENTOUS MUSHROOMS
US6129769A (en) * 1998-11-24 2000-10-10 Novo Nordisk Biotech, Inc. Enzymatic methods for dyeing with reduced vat and sulfur dyes
JP2000186020A (en) * 1998-12-22 2000-07-04 Lion Corp Composition for hair dyeing
US6084166A (en) * 1999-02-09 2000-07-04 Lee; David G. Tremolo device
CN100482801C (en) 1999-03-22 2009-04-29 诺沃奇梅兹有限公司 Promoters for expressing genes in fungal cell
FR2791256B1 (en) 1999-03-26 2001-08-31 Oreal OXIDATION DYEING PROCESS USING N-ACETYLCYSTEINE AS A REDUCING AGENT AND A LACCASE AS AN OXIDIZING AGENT
FR2791885B1 (en) 1999-04-07 2003-05-30 Oreal OXIDATION DYEING PROCESS USING A CETOSE AS A REDUCING AGENT AND A LACCASE AS AN OXIDIZING AGENT
WO2000078273A2 (en) * 1999-06-22 2000-12-28 Lion Corporation Process for producing a hairdye composition
DE60029783T2 (en) 1999-06-22 2007-10-31 Lion Corp. HAIR COLORING AGENT INDOLIN AND / OR AN INDOLIN COMPOUND AND LACCASE CONTAINING
EP2206786A1 (en) 1999-08-31 2010-07-14 Novozymes A/S Novel proteases and variants thereof
FR2798854B1 (en) 1999-09-24 2001-11-16 Oreal KERATINIC FIBER OXIDATION DYE COMPOSITION AND DYEING METHOD USING THE SAME
CN1425068B (en) 2000-03-14 2011-05-18 诺维信公司 Fungal transcriptional activator useful in methods for producing polypeptides
AU2001239217A1 (en) * 2000-03-17 2001-09-24 Novozymes A/S Method for dyeing dry hair
FR2806908B1 (en) 2000-03-30 2002-12-20 Oreal KERATINIC FIBER OXIDATION DYE COMPOSITION AND DYEING METHOD USING THE SAME
FI113879B (en) * 2000-05-23 2004-06-30 Valtion Teknillinen A new coating enzyme
EP1297170B1 (en) 2000-06-23 2016-03-02 Novozymes A/S Method for stable chromosomal multi-copy integration of genes
WO2002016547A2 (en) 2000-08-21 2002-02-28 Novozymes A/S Subtilase enzymes
AU2002221587A1 (en) * 2000-12-21 2002-07-01 Novozymes A/S Method for tanning of hides by means of tanning agents
WO2003000941A2 (en) 2001-06-26 2003-01-03 Novozymes A/S Polypeptides having cellobiohydrolase i activity and polynucleotides encoding same
US7063962B2 (en) 2001-07-20 2006-06-20 Novozymes A/S DNA sequences for regulating transcription
EP1497431A2 (en) 2002-04-10 2005-01-19 Novozymes A/S Improved bacillus host cell
ATE522614T1 (en) 2002-04-10 2011-09-15 Novozymes As MUTATED BACILLUS licheniformis host cell
DK1499733T3 (en) 2002-04-22 2010-07-12 Novozymes Inc Methods for preparing variants of a DNA sequence in filamentous fungi
US8148155B2 (en) 2002-04-22 2012-04-03 Novozymes, Inc. Methods for increasing homologous recombination of a nucleic acid sequence
JP4116620B2 (en) 2002-08-29 2008-07-09 株式会社マンダム Culture with phenol oxidase-like activity
DE60335640D1 (en) 2002-10-01 2011-02-17 Novozymes As POLYPEPTIDES OF THE GH-61 FAMILY
CN101497908B (en) 2002-11-18 2014-05-21 诺维信股份有限公司 Promoter variants for expressing genes in a fungal cell
EP1578964B2 (en) 2002-12-20 2013-09-04 Novozymes A/S Polypeptides having cellobiohydrolase ii activity and polynucleotides encoding same
JP4156625B2 (en) * 2003-03-07 2008-09-24 株式会社マンダム Neutral phenol oxidase
ATE441664T1 (en) 2003-03-31 2009-09-15 Novozymes Inc METHOD FOR PRODUCING BIOLOGICAL SUBSTANCES IN ENZYME DEFICIENCY MUTANTS OF ASPERGILLUS NIGER
EP1622921B1 (en) 2003-05-02 2010-06-16 Novozymes Inc. Variants of beta-glucosidases
EP1639107B1 (en) 2003-06-19 2013-08-14 Novozymes A/S Improved proteases and methods for producing them
ATE469214T1 (en) 2003-06-19 2010-06-15 Novozymes As PROTEASES
AU2004252572B2 (en) 2003-06-25 2011-09-08 Novozymes A/S Polypeptides having alpha-amylase activity and polypeptides encoding same
CA2535526C (en) 2003-08-11 2015-09-29 Diversa Corporation Laccases, nucleic acids encoding them and methods for making and using them
EP2377931B1 (en) 2003-08-25 2013-05-08 Novozymes Inc. Variants of glycoside hydrolases
CN102994486A (en) 2003-10-23 2013-03-27 诺维信公司 Protease with improved stability in detergents
ES2437198T3 (en) 2003-10-28 2014-01-09 Novozymes Inc. Polypeptides with beta-glucosidase activity and isolated polynucleotides encoding the polypeptides
ATE441705T1 (en) 2003-10-30 2009-09-15 Novozymes As CARBOHYDRATE BINDING MODULES
DK1694846T3 (en) 2003-12-10 2014-11-17 Novozymes As Cell with enhanced secretion mediated by MrgA protein or a homolog
WO2005066339A2 (en) 2004-01-06 2005-07-21 Novozymes A/S Polypeptides of alicyclobacillus sp.
CN1980953B (en) 2004-01-30 2014-12-24 诺维信股份有限公司 Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
DK2322630T3 (en) 2004-02-12 2017-02-13 Novozymes Inc Polypeptides with xylanase activity and polynucleotides encoding them
DK3219806T3 (en) 2004-03-25 2020-07-13 Novozymes Inc PROCEDURES FOR DECOMPOSITION OR TRANSFORMATION OF PLANT CELL WALL POLYSACCHARIDES
CN102286483B (en) 2004-04-16 2014-06-04 中化帝斯曼制药有限公司荷兰公司 Fungal promoters for expressing a gene in a fungal cell
US7148404B2 (en) 2004-05-04 2006-12-12 Novozymes A/S Antimicrobial polypeptides
DK1766040T3 (en) 2004-05-27 2017-11-13 Novozymes Inc Methods for transforming and expressing screening of filamentous fungal cells with a DNA library
WO2005121333A1 (en) 2004-06-14 2005-12-22 Novozymes A/S Signal peptide for producing a polypeptide
JP5623691B2 (en) 2004-06-21 2014-11-12 ノボザイムスアクティーゼルスカブ Protease
WO2005123915A1 (en) 2004-06-21 2005-12-29 Novozymes A/S Stably maintained multiple copies of at least two orf in the same orientation
EP1769070A4 (en) 2004-06-29 2007-12-12 Novozymes Inc Polypeptides having alpha-glucosidase activity and polynucleotides encoding same
CN103181400B (en) 2004-09-10 2016-08-10 诺维信北美公司 Prevent, remove, reduce or the method for disrupting biofilm
FI118339B (en) 2004-09-21 2007-10-15 Ab Enzymes Oy Novel laccase capable by single treatment, in suitable conditions, of increasing lightness of desized denim at least or above as many units as sodium hypochlorite, useful for e.g. treating denim, removing stains and bleaching pulp
WO2006032724A2 (en) 2004-09-21 2006-03-30 Ab Enzymes Oy Novel laccase enzymes and their uses
EP2302042A3 (en) 2004-09-30 2011-08-10 Novozymes A/S Polypeptides having lipase activity and polynucleotides encoding same
AR050895A1 (en) 2004-10-04 2006-11-29 Novozymes As POLYPEPTIDES THAT HAVE FITASA ACTIVITY AND POLYUCLEOTIDES THAT CODE THEM
EP1809747B1 (en) 2004-10-04 2016-12-14 Novozymes A/S Polypeptides having phytase activity and polynucleotides encoding same
EP1814996A2 (en) 2004-11-19 2007-08-08 Novozymes A/S Polypeptides having antimicrobial activity and polynucleotides encoding same
EP2365068B1 (en) 2004-12-22 2017-03-01 Novozymes A/S Enzymes for starch processing
WO2006097464A1 (en) 2005-03-16 2006-09-21 Novozymes A/S Recombinant expression of defensins in filamentous fungi
ATE473999T1 (en) 2005-03-22 2010-07-15 Novozymes As POLYPEPTIDES AND NUCLEIC ACIDS THAT ENCOD THEM
AR053066A1 (en) 2005-04-26 2007-04-18 Novozymes As ARABINOFURANOSIDASAS
BRPI0610031A2 (en) 2005-04-27 2010-05-18 Novozymes Inc isolated polypeptide, isolated polynucleotide, nucleic acid construction, recombinant host cell, methods for making the polypeptide and for producing a mutant precursor cell, mutant cell, methods for making a protein, and for producing a polynucleotide, polynucleotide, mutant, composition detergent, and method for degrading biomass containing cellulose and hemi-cellulose
EP1922333B1 (en) 2005-08-26 2010-03-31 Novozymes Adenium Biotech A/S Polypeptides having antimicrobial activity and polynucleotides encoding same
EP1941023B1 (en) 2005-09-30 2017-04-05 Novozymes Inc. Methods for enhancing the degradation or conversion of cellulosic material
EP1961812B1 (en) 2005-12-02 2010-08-04 National University Corporation Kanazawa University IMPROVED MULTI-COPPER OXIDASE CueO WITH DYEABILITY
CN103740674A (en) 2006-03-20 2014-04-23 诺维信股份有限公司 Polypeptides having endoglucanase activity and polynucleotides encoding same
EP2004817A2 (en) 2006-03-30 2008-12-24 Novozymes, Inc. Polypeptides having endoglucanase activity and polynucleotides encoding same
EP2044203B1 (en) 2006-07-14 2013-10-09 Novozymes, Inc. Methods for increasing expression of genes in a fungal cell
CN103451164A (en) 2006-07-14 2013-12-18 诺维信股份有限公司 Methods for producing secreted polypeptides having biological activity
CA2661882C (en) 2006-09-01 2015-06-23 Verenium Corporation Laccases for pulp bio-bleaching
EP2431470B1 (en) 2006-11-30 2017-11-29 Novozymes A/S Dnase expression in recombinant host cells
US8105812B2 (en) 2006-12-18 2012-01-31 Danisco Us Inc. Laccases, compositions and methods of use
AU2008214663B2 (en) 2007-02-15 2013-10-03 Dsm Ip Assets B.V. A recombinant host cell for the production of a compound of interest
JP5643083B2 (en) 2007-03-26 2014-12-17 ノボザイムス アクティーゼルスカブ Hafnia phytase
DE102007016139A1 (en) 2007-03-30 2008-10-02 Jenabios Gmbh Method for regioselective oxygenation of N-heterocycles
CN101668863B (en) 2007-04-24 2014-12-03 诺维信北美公司 Detoxifying pre-treated lignocellulose-containing materials
US20100221783A1 (en) 2007-05-09 2010-09-02 Novozymes A/S Expression Cloning Method Suitable for Selecting Library Clones Producing a Polypeptide of Interest
CN101784669B (en) 2007-08-24 2015-02-18 科德克希思公司 Improved ketoreductase polypeptides for the stereoselective production of (R)-3-hydroxythiolane
WO2009037253A2 (en) 2007-09-18 2009-03-26 Novozymes A/S Polypeptides having tyrosinase activity and polynucleotides encoding same
BRPI0820552A2 (en) 2007-11-27 2014-10-14 Novozymes As ISOLATED POLYPETIDE, ISOLATED POLYNUCLEOTIDE, NUCLEIC ACID CONSTRUCTION, RECOMBINANT EXPRESSION VECTOR, RECOMBINANT HOST STONE CELL, METHODS FOR PRODUCTING AND PROTEREGAL VESTERETA MATERIALS, METHOD, COMPOSITION, E. USE OF THE POLYPEPTIDE.
WO2009068554A1 (en) 2007-11-29 2009-06-04 Novozymes A/S Synthase inhibitor screening method
ES2490608T3 (en) 2007-12-06 2014-09-04 Novozymes A/S Polypeptides with acetyloxylane esterase activity and polynucleotides encoding them
CA2709490A1 (en) 2007-12-19 2009-07-09 Novozymes A/S Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2010008828A2 (en) 2008-06-24 2010-01-21 Codexis, Inc. Biocatalytic processes for the preparation of substantially stereomerically pure fused bicyclic proline compounds
EP2329013B1 (en) 2008-08-27 2015-10-28 Codexis, Inc. Ketoreductase polypeptides for the production of a 3-aryl-3-hydroxypropanamine from a 3-aryl-3-ketopropanamine
ES2526867T3 (en) 2008-11-20 2015-01-16 Novozymes Inc. Polypeptide having amylolytic enhancer activity and polynucleotides encoding it
CA2745760A1 (en) 2008-12-04 2010-06-10 Novozymes A/S Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
US9493759B2 (en) 2008-12-12 2016-11-15 Novozymes, Inc. Polypeptides having aspartic endopeptidase activity and polynucleotides encoding same
US20110296557A1 (en) 2008-12-12 2011-12-01 Novozymes, Inc. Polypeptides Having Lipase Activity And Polynucleotides Encoding Same
US20110269206A1 (en) 2008-12-15 2011-11-03 Novozymes, Inc Polypeptides Having Catalase Activity And Polynucleotides Encoding Same
US8633030B2 (en) 2008-12-16 2014-01-21 Novozymes, Inc. Polypeptides having carboxypeptidase activity and polynucleotides encoding same
EP2379716A1 (en) 2008-12-16 2011-10-26 Novozymes Inc. Polypeptides having alpha-mannosidase activity and polynucleotides encoding same
WO2010080407A2 (en) 2008-12-19 2010-07-15 Novozymes, Inc. Methods for increasing hydrolysis of cellulosic material
DK2379712T3 (en) 2008-12-19 2017-05-08 Novozymes Inc Methods for Increasing Hydrolysis of Cellulosic Material in the Presence of Cellobiose Dehydrogenase
WO2010080527A1 (en) 2008-12-19 2010-07-15 Novozymes, Inc. Methods for determining cellulolytic enhancing activity of a polypeptide
CN102325893A (en) 2008-12-19 2012-01-18 诺维信股份有限公司 Methods for increasing enzymatic hydrolysis of cellulosic material in the presence of a peroxidase
FI20086236A0 (en) 2008-12-23 2008-12-23 Valtion Teknillinen Conversion of hexuronic acid to hexaric acid
EP2382309B1 (en) 2008-12-23 2015-12-23 DuPont Nutrition Biosciences ApS Polypeptides with xylanase activity
BRPI0924180A8 (en) 2008-12-24 2017-12-05 Danisco Us Inc LACCASES AND METHODS OF USE IN LOW TEMPERATURES
CN102341494B (en) 2009-01-08 2014-10-15 科德克希思公司 Transaminase polypeptides
EP2389437B1 (en) 2009-01-21 2015-10-21 Novozymes A/S Polypeptides having esterase activity and nucleic acids encoding the same
US8604277B2 (en) 2009-01-28 2013-12-10 Novozymes, Inc. Polypeptides having beta-glucosidase activity and polynucleotides encoding same
WO2010088463A2 (en) 2009-01-30 2010-08-05 Novozymes, Inc. Polypeptides having expansin activity and polynucleotides encoding same
US8563268B2 (en) 2009-03-17 2013-10-22 Novozymes A/S Polypeptide having tyrosinase activity
US8658409B2 (en) 2009-03-24 2014-02-25 Novozymes A/S Polypeptides having acetyl xylan esterase activity and polynucleotides encoding same
WO2010120557A1 (en) 2009-03-31 2010-10-21 Codexis, Inc. Improved endoglucanases
EP2248893A1 (en) 2009-05-06 2010-11-10 Novozymes A/S DFPase Enzymes from Octopus Vulgaris
EP2432890B1 (en) 2009-05-22 2015-09-02 Codexis, Inc. Engineered biosynthesis of fatty alcohols
AU2010253848C1 (en) 2009-05-29 2015-02-19 Novozymes, Inc. Methods for enhancing the degradation or conversion of cellulosic material
ES2534078T3 (en) 2009-06-02 2015-04-17 Novozymes Inc. Polypeptides with cellobiohydrolase activity and polynucleotides encoding them
WO2011005527A2 (en) 2009-06-22 2011-01-13 Codexis, Inc. Ketoreductase-mediated stereoselective route to alpha chloroalcohols
WO2010151787A1 (en) 2009-06-26 2010-12-29 Novozymes North America, Inc. Heat-stable carbonic anhydrases and their use
CA2767169A1 (en) 2009-07-07 2011-01-13 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2011009747A1 (en) 2009-07-24 2011-01-27 Novozymes A/S Carbohydrate oxidases
WO2011014458A1 (en) 2009-07-28 2011-02-03 Novozymes, Inc. Polypeptides having phytase activity and polynucleotides encoding same
EP2462156A1 (en) 2009-08-07 2012-06-13 Novozymes A/S Method of producing a sweet protein
WO2011020910A1 (en) 2009-08-21 2011-02-24 Novozymes A/S Polypeptides having isoamylase activity and polynucleotides encoding same
WO2011028643A1 (en) 2009-09-01 2011-03-10 Novozymes, Inc. Methods for improving malic acid production in filamentous fungi
WO2011035027A2 (en) 2009-09-17 2011-03-24 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
CN102712916B (en) 2009-09-18 2015-11-25 诺维信股份有限公司 There are the polypeptide of beta-glucosidase activity and the polynucleotide of this polypeptide of coding
JP5947213B2 (en) 2009-09-25 2016-07-06 ノボザイムス アクティーゼルスカブ Use of protease variants
RU2639534C2 (en) 2009-09-25 2017-12-21 Новозимс А/С Application of protease versions
CN102648276A (en) 2009-09-29 2012-08-22 诺维信股份有限公司 Polypeptides having xylanase activity and polynucleotides encoding same
ES2560805T3 (en) 2009-09-29 2016-02-22 Novozymes Inc. Polypeptides with cellulolytic enhancing activity and polynucleotides that encode them
EP2977382A3 (en) 2009-09-30 2016-05-11 Novozymes Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
CN102666846A (en) 2009-09-30 2012-09-12 诺维信公司 Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2011050037A1 (en) 2009-10-23 2011-04-28 Novozymes, Inc. Cellobiohydrolase variants and polynucleotides encoding same
US20120260371A1 (en) 2009-10-29 2012-10-11 Novozymes A/S Polypeptides Having Cellobiohydrolase Activity and Polynucleotides Encoding Same
DK2496694T3 (en) 2009-11-06 2017-06-06 Novozymes Inc COMPOSITIONS FOR SACCHARIFYING CELLULOS MATERIAL
CN102639697B (en) 2009-11-06 2015-03-25 诺维信股份有限公司 Polypeptides having xylanase activity and polynucleotides encoding same
EP2496693B1 (en) 2009-11-06 2017-10-25 Novozymes, Inc. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
EP2507369A1 (en) 2009-12-03 2012-10-10 Novozymes A/S Variants of a polypeptide with lipolytic activity and improved stability
EP2509427B1 (en) 2009-12-09 2017-08-02 Novozymes A/S Methods of producing gh8 xylanase variants
BR112012013205B1 (en) 2009-12-18 2020-11-03 Novozymes, Inc. mutant of a parental strain of trichoderma reesei, and methods to produce a polypeptide of interest and to obtain a mutant of a parental strain of trichoderma
EP2501792A2 (en) 2009-12-29 2012-09-26 Novozymes A/S Gh61 polypeptides having detergency enhancing effect
CN102884183B (en) 2010-01-04 2015-09-16 诺维信公司 Be tending towards the stabilization of the α-amylase of calcium depletion and acid pH
WO2011104284A1 (en) 2010-02-25 2011-09-01 Novozymes A/S Polypeptides having antimicrobial activity
CA2791353A1 (en) 2010-03-03 2011-09-09 Novozymes, Inc. Xylanase variants and polynucleotides encoding same
US8828701B2 (en) 2010-03-31 2014-09-09 Novozymes, Inc. Cellobiohydrolase variants and polynucleotides encoding same
MX338068B (en) 2010-04-14 2016-04-01 Novozymes As Polypeptides having glucoamylase activity and polynucleotides encoding same.
ES2370216B1 (en) * 2010-05-17 2012-10-19 Consejo Superior De Investigaciones Científicas (Csic) REDOX HIGH POTENTIAL LACASA.
DK2576606T3 (en) 2010-06-04 2015-02-23 Novozymes Inc Preparation of C4 dicarboxylic acid in filamentous fungi
US8835604B2 (en) 2010-06-12 2014-09-16 Adenium Biotech Aos Antimicrobial peptide variants and polynucleotides encoding same
DK2769985T3 (en) 2010-06-21 2018-01-29 Novozymes Inc Polypeptides from Aspergillus aculeatus with C4 dicarboxylic acid transporter activity and polynucleotides encoding the same
IN2013CN00459A (en) 2010-06-21 2015-07-03 Novozymes Inc
CN103068978B (en) 2010-06-25 2017-01-18 诺维信公司 Polynucleotides having leader sequence function
DK2588604T3 (en) 2010-06-30 2016-09-26 Novozymes Inc Polypeptides having beta-glucosidase activity and polynucleotides encoding them
CA2803541A1 (en) 2010-07-01 2012-01-05 Novozymes A/S Bleaching of pulp
US8865448B2 (en) 2010-07-30 2014-10-21 Cleanvantage Llc Aspergillus containing beta-glucosidase, beta-glucosidases and nucleic acids encoding the same
US9057086B2 (en) 2010-08-12 2015-06-16 Novozymes, Inc. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicycle compound and uses thereof
WO2012025577A1 (en) 2010-08-24 2012-03-01 Novozymes A/S Heat-stable persephonella carbonic anhydrases and their use
EP2611901B1 (en) 2010-08-30 2016-05-11 Novozymes A/S Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same
WO2012030811A1 (en) 2010-08-30 2012-03-08 Novozymes A/S Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
EP2611914A1 (en) 2010-08-30 2013-07-10 Novozymes A/S Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
US20130212746A1 (en) 2010-08-30 2013-08-15 Novoyzmes A/S Polypeptides Having Hemicellulolytic Activity And Polynucleotides Encoding Same
US9267126B2 (en) 2010-08-30 2016-02-23 Novozymes, Inc. Polypeptides having endoglucanase activity and polynucleotides encoding same
WO2012030849A1 (en) 2010-08-30 2012-03-08 Novozymes A/S Polypeptides having xylanase activity and polynucleotides encoding same
CN103282489B (en) 2010-09-30 2016-12-14 诺维信股份有限公司 There is polypeptide variants and the coded polynucleotide thereof of cellulolytic enhancing activity
ES2599613T3 (en) 2010-09-30 2017-02-02 Novozymes, Inc. Variants of polypeptides that have cellulolytic enhancement activity and polynucleotides encoding them
CA2809916A1 (en) 2010-10-01 2012-04-05 Novozymes A/S Polypeptides having endopeptidase activity and polynucleotides encoding same
MX2013002586A (en) 2010-10-01 2013-03-21 Novozymes Inc Beta-glucosidase variants and polynucleotides encoding same.
BR112013009817B1 (en) 2010-10-26 2020-02-04 Novozymes As methods to degrade or convert sugar cane refuse, to produce a fermentation product, and to ferment sugar cane refuse
US8728804B2 (en) 2010-10-29 2014-05-20 Novozymes A/S Polypeptides having succinyl-CoA: acetoacetate transferase activity and polynucleotides encoding same
US20130280775A1 (en) 2010-10-29 2013-10-24 Novozymes, Inc. Recombinant N-propanol and Isopropanol Production
BR112013010008B1 (en) 2010-11-02 2020-09-08 Novozymes, Inc. METHODS FOR DEGRADING AND FERMENTING A CELLULOSIC MATERIAL, AND FOR PRODUCING A FERMENTATION PRODUCT
US9212354B2 (en) 2010-11-04 2015-12-15 Novozymes Inc. Polypeptides having cellobiohydrolase activitiy and polynucleotides encoding same
US9139823B2 (en) 2010-11-12 2015-09-22 Novozymes, Inc. Polypeptides having endoglucanase activity and polynucleotides encoding same
MX356647B (en) 2010-11-12 2018-06-07 Novozymes As Polypeptides having phospholipase c activity and polynucleotides encoding same.
WO2012068509A1 (en) 2010-11-18 2012-05-24 Novozymes, Inc. Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
EP2646558B1 (en) 2010-11-30 2016-07-20 Novozymes, Inc. Promoters for expressing genes in a fungal cell
EP2649188A1 (en) 2010-12-06 2013-10-16 Novozymes North America, Inc. Methods of hydrolyzing oligomers in hemicellulosic liquor
WO2012078712A2 (en) 2010-12-07 2012-06-14 Vnomics Corp. System and method for measuring and reducing vehicle fuel waste
US9284588B2 (en) 2010-12-16 2016-03-15 Novozymes, Inc. Promoters for expressing genes in a fungal cell
MX337942B (en) 2011-01-26 2016-03-29 Novozymes As Polypeptides having endoglucanase activity and polynucleotides encoding same.
US9506048B2 (en) 2011-01-26 2016-11-29 Novozymes, Inc. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
WO2012103288A1 (en) 2011-01-26 2012-08-02 Novozymes A/S Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
MX2013007720A (en) 2011-01-26 2013-08-09 Novozymes As Polypeptides having cellobiohydrolase activity and polynucleotides encoding same.
WO2012103293A1 (en) 2011-01-26 2012-08-02 Novozymes A/S Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
DK2670853T3 (en) 2011-01-31 2017-08-28 Novozymes North America Inc Process for enzymatic refining of pretreated cellulosic material for sugars
EP2678427A2 (en) 2011-02-23 2014-01-01 DuPont Nutrition Biosciences ApS Method for producing recombinant enzymes capable of hydrolysing chlorophyll or a chlorophyll derivative
EP2678352B1 (en) 2011-02-23 2017-12-06 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
BR112013019036A2 (en) 2011-02-28 2017-04-04 Novozymes Inc recombinant host cell, and method for producing a dicarboxylic acid.
CN103608461B (en) 2011-03-09 2016-08-03 诺维信公司 The method increasing the cellulolytic enhancing activity of polypeptide
US9409958B2 (en) 2011-03-10 2016-08-09 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2012127001A1 (en) 2011-03-23 2012-09-27 Novozymes A/S Methods for producing secreted polypeptides
DK2689011T3 (en) 2011-03-25 2018-01-22 Novozymes As PROCEDURE FOR DEGRADATION OR CONVERSION OF CELLULOSE-SUBSTANCING MATERIAL
WO2012135659A2 (en) 2011-03-31 2012-10-04 Novozymes A/S Methods for enhancing the degradation or conversion of cellulosic material
WO2012135719A1 (en) 2011-03-31 2012-10-04 Novozymes, Inc. Cellulose binding domain variants and polynucleotides encoding same
US9926547B2 (en) 2011-04-28 2018-03-27 Novozymes, Inc. Polypeptides having endoglucanase activity and polynucleotides encoding same
BR112013027463A2 (en) 2011-04-29 2017-09-26 Novozymes Inc methods for degrading or converting, and for fermenting a cellulolysis material, for producing a fermentation product, and for cleaning or washing a hard surface or dirty laundry, and detergent composition
WO2012159009A1 (en) 2011-05-19 2012-11-22 Novozymes, Inc. Methods for enhancing the degradation of cellulosic material with chitin binding proteins
US20140141471A1 (en) 2011-05-19 2014-05-22 Novozymes, Inc. Methods for Enhancing the Degradation of Cellulosic Material with Chitin Binding Proteins
CN103620029B (en) 2011-06-24 2017-06-09 诺维信公司 Polypeptide and their polynucleotides of coding with proteinase activity
JP6204352B2 (en) 2011-06-30 2017-09-27 ノボザイムス アクティーゼルスカブ α-Amylase mutant
US20140206026A1 (en) 2011-06-30 2014-07-24 Novozymes A/S Method for Screening Alpha-Amylases
EA201490216A1 (en) 2011-07-06 2014-07-30 Новозимс А/С ALPHA-AMILASE VARIANTS AND THEIR POLYNUCLEOTIDE CODE
EP2732033A1 (en) 2011-07-15 2014-05-21 Novozymes A/S Lipase variants and polynucleotides encoding same
FR2978040B1 (en) 2011-07-22 2015-01-30 Oreal METHOD FOR TREATING HUMAN TRANSPIRATION USING POLYPHENOLS AND CATALYTIC ENZYMATIC AND / OR CHEMICAL OXIDATION SYSTEM
US20140147895A1 (en) 2011-07-22 2014-05-29 Novozymes A/S Processes for Pretreating Cellulosic Material and Improving Hydrolysis Thereof
BR112014002401B1 (en) 2011-08-04 2021-08-03 Novozymes A/S FILAMENTAL FUNGUS TRANSGENIC HOST CELL, METHODS FOR PRODUCING A POLYPEPTIDE AND A PROTEIN, AND, NUCLEIC ACID CONSTRUCT OR AN EXPRESSION VECTOR
BR112014002405A2 (en) 2011-08-04 2017-04-04 Novozymes As isolated polypeptide and polynucleotide, composition, nucleic acid construct or expression vector, recombinant host cell, transgenic plant, part of the plant or plant cell, methods for making a polypeptide and a protein, and processes for degrading a cellulosic material, to produce a fermentation product, and to ferment a cellulosic material
WO2013021065A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
CN103827297B (en) 2011-08-10 2018-06-22 诺维信公司 Polypeptide with peroxidase activity and the polynucleotides for encoding the polypeptide
WO2013021062A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013021059A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
CN103732740B (en) 2011-08-10 2018-07-31 诺维信公司 Polypeptide with peroxidase activity and the polynucleotides for encoding the polypeptide
WO2013021064A1 (en) 2011-08-10 2013-02-14 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
US9506044B2 (en) 2011-08-10 2016-11-29 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
WO2013024021A1 (en) 2011-08-15 2013-02-21 Novozymes A/S Polypeptides having cellulase activity and polynucleotides encoding same
US20140295027A1 (en) 2011-08-19 2014-10-02 Novozymes A/S Polypeptides Having Protease Activity
CN103917649A (en) 2011-08-19 2014-07-09 诺维信股份有限公司 Recombinant microorganisms for production C4-dicarboxylic acids
AU2012298713B2 (en) 2011-08-24 2017-11-23 Novozymes, Inc. Methods for obtaining positive transformants of a filamentous fungal host cell
CN103890165A (en) 2011-08-24 2014-06-25 诺维信股份有限公司 Cellulolytic enzyme compositions and uses thereof
BR112014004190A2 (en) 2011-08-24 2017-03-01 Novozymes Inc method for constructing a filamentous fungal strain, filamentous fungal strain, method for producing multiple recombinant polypeptides, and tandem construct
EP2748314B1 (en) 2011-08-24 2016-12-28 Novozymes, Inc. Aspergillus fumigatus cellulolytic enzyme compositions and uses thereof
CA2846690A1 (en) 2011-08-26 2013-03-07 Novozymes A/S Polypeptides having glucoamylase activity and polynucleotides encoding same
IN2014CN02469A (en) 2011-09-06 2015-06-19 Novozymes As
US9109209B2 (en) 2011-09-08 2015-08-18 Codexis, Inc. Biocatalysts and methods for the synthesis of substituted lactams
CA2847879C (en) 2011-09-09 2020-06-23 Novozymes A/S Improving properties of paper materials
US9994834B2 (en) 2011-09-09 2018-06-12 Novozymes A/S Polynucleotides encoding polypeptides having alpha-amylase activity and methods of making the same
CN103930555A (en) 2011-09-13 2014-07-16 诺维信北美公司 Methods of hydrolyzing and fermenting cellulosic material
WO2013043910A1 (en) 2011-09-20 2013-03-28 Novozymes A/S Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
ES2628190T3 (en) 2011-09-22 2017-08-02 Novozymes A/S Polypeptides with protease activity and polynucleotides encoding them
CN103930438A (en) 2011-09-30 2014-07-16 诺维信股份有限公司 Chimeric polypeptides having beta-glucosidase activity and polynucleotides encoding same
WO2013044867A1 (en) 2011-09-30 2013-04-04 Novozymes A/S Polypeptides having alpha-amylase activity and polynucleotides encoding same
US8728788B1 (en) 2011-09-30 2014-05-20 Novozymes A/S Dehydrogenase variants and polynucleotides encoding same
MX351762B (en) 2011-10-11 2017-10-26 Novozymes As Glucoamylase variants and polynucleotides encoding same.
MX354704B (en) 2011-10-17 2018-03-16 Novozymes As Alpha-amylase variants and polynucleotides encoding same.
CN103857794B (en) 2011-10-17 2018-03-20 诺维信公司 Alpha-amylase variants and the polynucleotides for encoding them
EP2773656B1 (en) 2011-10-31 2019-06-19 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2013068309A1 (en) 2011-11-08 2013-05-16 Novozymes A/S Methods for production of archeae protease in yeast
BR112014011902A2 (en) 2011-11-18 2017-05-16 Novozymes As isolated polypeptide and polynucleotide, recombinant host cell, methods for making a polypeptide, and for producing a parent cell mutant, processes for making a protein, for degrading or converting a cellulosic material or xylan-containing material, for producing a fermentation product, and to ferment a cellulosic material or xylan-containing material, and, integral broth formulation or cell culture composition
EP2802651B1 (en) 2011-11-21 2017-03-08 Novozymes, Inc. Gh61 polypeptide variants and polynucleotides encoding same
DK2782998T3 (en) 2011-11-22 2018-04-16 Novozymes Inc POLYPEPTIDES WITH BETA-XYLOSIDASE ACTIVITY AND POLYNUCLEOTIDES CODING THEM
WO2013076269A1 (en) 2011-11-25 2013-05-30 Novozymes A/S Subtilase variants and polynucleotides encoding same
CN107090445A (en) 2011-11-25 2017-08-25 诺维信公司 The polynucleotides of polypeptide and coding said polypeptide with lysozyme activity
EP2785732B1 (en) 2011-12-01 2017-04-12 Novozymes, Inc. Polypeptides having beta-xylosidase activity and polynucleotides encoding same
WO2013079533A1 (en) 2011-12-02 2013-06-06 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
US9169469B2 (en) 2011-12-02 2015-10-27 Novozymes A/S Polypeptides having peroxygenase activity and polynucleotides encoding same
EP3272862A1 (en) 2011-12-16 2018-01-24 Novozymes, Inc. Polypeptides having laccase activity and polynucleotides encoding same
EP2794870A4 (en) 2011-12-19 2015-06-17 Novozymes Inc Polypeptides having catalase activity and polynucleotides encoding same
MX2014007446A (en) 2011-12-20 2014-08-01 Novozymes As Subtilase variants and polynucleotides encoding same.
CA2878019A1 (en) 2011-12-20 2013-06-27 Novozymes, Inc. Cellobiohydrolase variants and polynucleotides encoding same
CN104024408B (en) 2011-12-28 2019-04-19 诺维信公司 Polypeptide with proteinase activity
EP2807254B1 (en) 2012-01-26 2017-08-02 Novozymes A/S Use of polypeptides having protease activity in animal feed and detergents
MX353896B (en) 2012-02-03 2018-02-01 Procter & Gamble Compositions and methods for surface treatment with lipases.
ES2794644T3 (en) 2012-02-03 2020-11-18 Novozymes As Lipase variants and polynucleotides that encode them
CN104114698A (en) 2012-02-17 2014-10-22 诺维信公司 Subtilisin variants and polynucleotides encoding same
WO2013123871A1 (en) 2012-02-20 2013-08-29 Novozymes A/S Polypeptides having endoglucanase activity and polynucleotides encoding same
WO2013142770A1 (en) 2012-03-23 2013-09-26 Codexis, Inc. Biocatalysts and methods for synthesizing derivatives of tryptamine and tryptamine analogs
EP2831255A2 (en) 2012-03-26 2015-02-04 Novozymes North America, Inc. Methods of preconditioning cellulosic material
WO2013149858A1 (en) 2012-04-02 2013-10-10 Novozymes A/S Lipase variants and polynucleotides encoding same
US9394556B2 (en) 2012-04-23 2016-07-19 Novozymes A/S Polypeptides having glucuronyl esterase activity and polynucleotides encoding same
CN104245929A (en) 2012-04-23 2014-12-24 诺维信公司 Polypeptides having alpha-glucuronidase activity and polynucleotides encoding same
CN113234695A (en) 2012-04-27 2021-08-10 诺维信股份有限公司 GH61 polypeptide variants and polynucleotides encoding same
AR090971A1 (en) 2012-05-07 2014-12-17 Novozymes As POLYPEPTIDES THAT HAVE XANTANE DEGRADATION ACTIVITY AND POLYCINOCYLODES THAT CODE THEM
SG11201407295YA (en) 2012-05-08 2014-12-30 Codexis Inc Biocatalysts and methods for hydroxylation of chemical compounds
WO2013170050A1 (en) 2012-05-11 2013-11-14 Codexis, Inc. Engineered imine reductases and methods for the reductive amination of ketone and amine compounds
WO2013178808A2 (en) 2012-05-31 2013-12-05 Novozymes A/S Polypeptides having organophosphorous hydrolase activity
WO2013178674A1 (en) 2012-05-31 2013-12-05 Novozymes A/S Improved selection in fungi
WO2013189878A1 (en) 2012-06-19 2013-12-27 Dsm Ip Assets B.V. Promoters for expressing a gene in a cell
MX364390B (en) 2012-06-20 2019-04-25 Novozymes As Use of polypeptides having protease activity in animal feed and detergents.
CN104471048B (en) 2012-07-12 2018-11-16 诺维信公司 Polypeptide with lipase active and the polynucleotides for encoding it
EP2885409A1 (en) 2012-08-17 2015-06-24 Novozymes A/S Methods for co-silencing expression of genes in filamentous fungal strains and uses thereof
CN104540394A (en) 2012-08-17 2015-04-22 诺维信公司 Thermostable asparaginase variants and polynucleotides encoding same
MX2015002211A (en) 2012-08-22 2015-05-08 Novozymes As Metalloprotease from exiguobacterium.
EP2888360B1 (en) 2012-08-22 2017-10-25 Novozymes A/S Metalloproteases from alicyclobacillus sp.
CN104884615B (en) 2012-09-05 2019-07-12 诺维信公司 Polypeptide with proteinase activity
BR112015005884A2 (en) 2012-09-19 2017-08-08 Novozymes Inc E Novozymes As processes for degradation of a cellulosic material, for production of a fermentation product, and fermentation of a cellulosic material, composition, and whole broth formulation or cell culture composition
EP2903412B1 (en) 2012-10-08 2019-09-11 Novozymes A/S Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2014056916A2 (en) 2012-10-12 2014-04-17 Novozymes A/S Polypeptides having peroxygenase activity
WO2014056919A2 (en) 2012-10-12 2014-04-17 Novozymes A/S Polypeptides having peroxygenase activity
US9499801B2 (en) 2012-10-12 2016-11-22 Novozymes A/S Polypeptides having peroxygenase activity
WO2014056920A2 (en) 2012-10-12 2014-04-17 Novozymes A/S Polypeptides having peroxygenase activity
EP2906688B1 (en) 2012-10-12 2018-08-29 Novozymes A/S Polypeptides having peroxygenase activity
CN104718286B (en) 2012-10-12 2018-10-30 诺维信公司 With the active polypeptide of peroxygenases
WO2014056917A2 (en) 2012-10-12 2014-04-17 Novozymes A/S Polypeptides having peroxygenase activity
US20150275194A1 (en) 2012-10-24 2015-10-01 Novozymes A/S Polypeptides Having Cellulolytic Enhancing Activity And Polynucleotides Encoding Same
WO2014068010A1 (en) 2012-10-31 2014-05-08 Novozymes A/S Isopropanol production by bacterial hosts
WO2014086706A1 (en) 2012-12-07 2014-06-12 Novozymes A/S Method for generating site-specific mutations in filamentous fungi
EP2740840A1 (en) 2012-12-07 2014-06-11 Novozymes A/S Improving drainage of paper pulp
EP2931744B1 (en) 2012-12-11 2021-08-18 Novozymes A/S Polypeptides having phospholipase c activity and polynucleotides encoding same
WO2014093835A1 (en) 2012-12-14 2014-06-19 Novozymes A/S Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
US9765317B2 (en) 2012-12-17 2017-09-19 Novozymes A/S Alpha-amylases and polynucleotides encoding same
WO2014099798A1 (en) 2012-12-19 2014-06-26 Novozymes A/S Polypeptides having cellulolytic enhancinc activity and polynucleotides encoding same
DK2935572T3 (en) 2012-12-21 2020-11-16 Codexis Inc MODIFIED BIOCATALYSTERS AND CHIRALE AMINE SYNTHESIZATION METHODS
ES2655032T3 (en) 2012-12-21 2018-02-16 Novozymes A/S Polypeptides that possess protease activity and polynucleotides that encode them
EP2938628A4 (en) 2012-12-24 2016-10-19 Novozymes As Polypeptides having endoglucanase activity and polynucleotides encoding same
EP3321360A3 (en) 2013-01-03 2018-06-06 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
CN105051180B (en) 2013-01-18 2020-06-12 科德克希思公司 Engineered biocatalysts for carbapenem synthesis
WO2014122161A2 (en) 2013-02-06 2014-08-14 Novozymes A/S Polypeptides having protease activity
SI2961844T1 (en) 2013-02-28 2018-11-30 Codexis, Inc. Engineered transaminase polypeptides for industrial biocatalysis
CN105164254B (en) 2013-03-08 2019-06-28 诺维信公司 Cellobiohydrolase variant and the polynucleotides for encoding them
US20160024440A1 (en) 2013-03-14 2016-01-28 Novozymes A/S Enzyme and Inhibitor Containing Water-Soluble Films
DK2976423T3 (en) 2013-03-21 2019-03-18 Novozymes As Polypeptides with phospholipase A activity and polynucleotides encoding them
MX360759B (en) 2013-03-21 2018-11-15 Novozymes As Polypeptides with lipase activity and polynucleotides encoding same.
KR102218930B1 (en) 2013-04-18 2021-02-23 코덱시스, 인코포레이티드 Engineered phenylalanine ammonia lyase polypeptides
WO2014170218A1 (en) 2013-04-18 2014-10-23 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
CN105164147B (en) 2013-04-23 2020-03-03 诺维信公司 Liquid automatic dishwashing detergent composition with stabilized subtilisin
WO2014177541A2 (en) 2013-04-30 2014-11-06 Novozymes A/S Glucoamylase variants and polynucleotides encoding same
DK3372680T3 (en) 2013-04-30 2021-01-11 Novozymes As GLUCOAMYLASE VARIANTS AND POLYNUCLEOTIDES ENCODING THEM
EP3461881A1 (en) 2013-05-03 2019-04-03 Novozymes A/S Microencapsulation of detergent enzymes
CN105283546A (en) 2013-05-10 2016-01-27 诺维信公司 Polypeptides having xylanase activity and polynucleotides encoding same
CN105209612A (en) 2013-05-14 2015-12-30 诺维信公司 Detergent compositions
EP2997143A1 (en) 2013-05-17 2016-03-23 Novozymes A/S Polypeptides having alpha amylase activity
EP3786269A1 (en) 2013-06-06 2021-03-03 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2014202793A1 (en) 2013-06-21 2014-12-24 Novozymes A/S Production of polypeptides without secretion signal in bacillus
EP3013952A1 (en) 2013-06-24 2016-05-04 Novozymes A/S Method for producing a food product
WO2014206915A1 (en) 2013-06-24 2014-12-31 Novozymes A/S Method for producing a food product
WO2014206913A1 (en) 2013-06-24 2014-12-31 Novozymes A/S Method for producing a food product
WO2014207227A1 (en) 2013-06-27 2014-12-31 Novozymes A/S Subtilase variants and polynucleotides encoding same
EP3013955A1 (en) 2013-06-27 2016-05-04 Novozymes A/S Subtilase variants and polynucleotides encoding same
US20160152925A1 (en) 2013-07-04 2016-06-02 Novozymes A/S Polypeptides Having Anti-Redeposition Effect and Polynucleotides Encoding Same
EP3019603A1 (en) 2013-07-09 2016-05-18 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
DK3022300T3 (en) 2013-07-17 2018-10-22 Novozymes As : Pullulan chimeras and polynucleotides encoding them
EP3027747B1 (en) 2013-07-29 2018-02-07 Novozymes A/S Protease variants and polynucleotides encoding same
CN117904081A (en) 2013-07-29 2024-04-19 诺维信公司 Protease variants and polynucleotides encoding same
WO2015022429A1 (en) 2013-08-15 2015-02-19 Novozymes A/S Polypeptides having beta-1,3-galactanase activity and polynucleotides encoding same
CA2919157A1 (en) 2013-09-04 2015-03-12 Novozymes A/S Processes for increasing enzymatic hydrolysis of cellulosic material
WO2015059133A1 (en) 2013-10-22 2015-04-30 Novozymes A/S Cellobiose dehydrogenase variants and polynucleotides encoding same
CN111851077A (en) 2013-10-25 2020-10-30 诺维信公司 Polypeptides having endoglucanase activity and polynucleotides encoding same
CN106232619B (en) 2013-11-13 2022-09-09 科德克希思公司 Engineered imine reductases and methods for reductive amination of ketone and amine compounds
CN103820401B (en) * 2013-11-14 2017-05-03 湖北大学 High-throughput expression method of alkaline bacterial laccase in yeast
EP3074513A1 (en) 2013-11-26 2016-10-05 Novozymes A/S Enzyme compositions and uses thereof
EP3074509B1 (en) 2013-11-29 2019-03-06 Novozymes A/S Peroxygenase variants
WO2015085920A1 (en) 2013-12-11 2015-06-18 Novozymes A/S Cutinase variants and polynucleotides encoding same
EP3453757B1 (en) 2013-12-20 2020-06-17 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2015109972A1 (en) 2014-01-22 2015-07-30 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
DK3097192T3 (en) 2014-01-22 2018-11-19 Novozymes As PULLULANASE VARIATIONS AND POLYNUCLEOTIDES CODING THEM
WO2015134729A1 (en) 2014-03-05 2015-09-11 Novozymes A/S Compositions and methods for improving properties of non-cellulosic textile materials with xyloglucan endotransglycosylase
US10123535B2 (en) 2014-03-05 2018-11-13 Novozymes A/S Compositions and methods for improving post-harvest properties of agricultural crops
US20170027167A1 (en) 2014-03-05 2017-02-02 Novozymes Bioag A/S Formulations comprising polymeric xyloglucan as a carrier for agriculturally beneficial agents
US20170073890A1 (en) 2014-03-05 2017-03-16 Novozymes A/S Compositions and Methods for Functionalizing and Linking Materials
EP3114272A1 (en) 2014-03-05 2017-01-11 Novozymes A/S Compositions and methods for improving properties of cellulosic textile materials with xyloglucan endotransglycosylase
US10155935B2 (en) 2014-03-12 2018-12-18 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
EP4163354A3 (en) 2014-03-19 2023-08-30 Novozymes A/S Polypeptides having phospholipase c activity and polynucleotides encoding same
US20170015950A1 (en) 2014-04-01 2017-01-19 Novozymes A/S Polypeptides having alpha amylase activity
EP3129478B1 (en) 2014-04-10 2019-03-27 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
US10131863B2 (en) 2014-04-11 2018-11-20 Novozymes A/S Detergent composition
EP3131921B1 (en) 2014-04-15 2020-06-10 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
EP3928787A1 (en) 2014-04-16 2021-12-29 Codexis, Inc. Engineered tyrosine ammonia lyase
EP3760713A3 (en) 2014-05-27 2021-03-31 Novozymes A/S Lipase variants and polynucleotides encoding same
CN106459937A (en) 2014-05-27 2017-02-22 诺维信公司 Methods for producing lipases
CA2950273C (en) 2014-05-30 2022-06-21 Novozymes A/S Variants of gh family 11 xylanase and polynucleotides encoding same
MY182924A (en) 2014-06-06 2021-02-05 Novozymes As Enzyme compositions and uses thereof
US20170121695A1 (en) 2014-06-12 2017-05-04 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
ES2712402T3 (en) 2014-06-25 2019-05-13 Novozymes As Variants of xylanase and polynucleotides that encode them
CN106471110A (en) 2014-07-03 2017-03-01 诺维信公司 Improved non-protein enzyme enzyme stabilization
CN106661566A (en) 2014-07-04 2017-05-10 诺维信公司 Subtilase variants and polynucleotides encoding same
EP3739029A1 (en) 2014-07-04 2020-11-18 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2016007309A1 (en) 2014-07-07 2016-01-14 Novozymes A/S Use of prehydrolysate liquor in engineered wood
US9708587B2 (en) 2014-07-09 2017-07-18 Codexis, Inc. P450-BM3 variants with improved activity
US20170267980A1 (en) 2014-08-20 2017-09-21 Novozymes A/S Xyloglucan Endotransglycosylase variants and Polynucleotides Encoding Same
US10793887B2 (en) 2014-08-21 2020-10-06 Novozymes A/S Process for saccharifying cellulosic material under oxygen addition
US11390898B2 (en) 2014-09-05 2022-07-19 Novozymes A/S Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
WO2016050680A1 (en) 2014-09-29 2016-04-07 Novozymes A/S Yoqm-inactivation in bacillus
ES2743515T3 (en) 2014-10-23 2020-02-19 Novozymes As Variants of glucoamylase and polynucleotides encoding them
WO2016079110A2 (en) 2014-11-19 2016-05-26 Novozymes A/S Use of enzyme for cleaning
US10287562B2 (en) 2014-11-20 2019-05-14 Novoszymes A/S Alicyclobacillus variants and polynucleotides encoding same
SG11201703258PA (en) 2014-11-25 2017-05-30 Codexis Inc Engineered imine reductases and methods for the reductive amination of ketone and amine compounds
WO2016090059A1 (en) 2014-12-02 2016-06-09 Novozymes A/S Laccase variants and polynucleotides encoding same
EP3227444B1 (en) 2014-12-04 2020-02-12 Novozymes A/S Subtilase variants and polynucleotides encoding same
MX2017007103A (en) 2014-12-05 2017-08-24 Novozymes As Lipase variants and polynucleotides encoding same.
US20180000076A1 (en) 2014-12-16 2018-01-04 Novozymes A/S Polypeptides Having N-Acetyl Glucosamine Oxidase Activity
US10400230B2 (en) 2014-12-19 2019-09-03 Novozymes A/S Protease variants and polynucleotides encoding same
CN107002061A (en) 2014-12-19 2017-08-01 诺维信公司 Ease variants and the polynucleotides encoded to it
CN114717217A (en) 2014-12-19 2022-07-08 诺维信公司 Compositions comprising a polypeptide having xylanase activity and a polypeptide having arabinofuranosidase activity
EP3256577B1 (en) 2015-02-10 2020-08-26 Codexis, Inc. Ketoreductase polypeptides for the synthesis of chiral compounds
WO2016138167A2 (en) 2015-02-24 2016-09-01 Novozymes A/S Cellobiohydrolase variants and polynucleotides encoding same
DK3268482T3 (en) 2015-03-09 2020-03-09 Novozymes As Methods for introducing a plurality of expression constructs into a eukaryotic cell
DK3271477T3 (en) 2015-03-20 2020-09-14 Novozymes As Drop-based selection by injection
US20180073017A1 (en) 2015-04-07 2018-03-15 Novozymes A/S Methods for selecting enzymes having enhanced activity
EP3280818A2 (en) 2015-04-07 2018-02-14 Novozymes A/S Methods for selecting enzymes having lipase activity
EP3280800A1 (en) 2015-04-10 2018-02-14 Novozymes A/S Detergent composition
CN107567489A (en) 2015-04-10 2018-01-09 诺维信公司 The purposes of laundry process, DNA enzymatic and detergent composition
EP3292136B1 (en) 2015-05-07 2021-02-17 Codexis, Inc. Penicillin-g acylases
WO2016180928A1 (en) 2015-05-12 2016-11-17 Novozymes A/S Bacillus licheniformis host cell with deleted lantibiotic gene(s)
WO2016184944A1 (en) 2015-05-19 2016-11-24 Novozymes A/S Odor reduction
CN116676293A (en) 2015-05-27 2023-09-01 国投生物科技投资有限公司 Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
WO2016196202A1 (en) 2015-05-29 2016-12-08 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2016202739A1 (en) 2015-06-16 2016-12-22 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
CN107922095A (en) 2015-06-17 2018-04-17 诺维信公司 Container
CA2981342A1 (en) 2015-06-18 2016-12-22 Novozymes A/S Polypeptides having trehalase activity and the use thereof in process of producing fermentation products
US11162089B2 (en) 2015-06-18 2021-11-02 Novozymes A/S Subtilase variants and polynucleotides encoding same
US10392742B2 (en) 2015-06-26 2019-08-27 Novozymes A/S Biofinishing system
WO2016207384A1 (en) 2015-06-26 2016-12-29 Novozymes A/S Method for producing a coffee extract
WO2016207373A1 (en) 2015-06-26 2016-12-29 Novozymes A/S Polypeptides having peroxygenase activity
WO2016135351A1 (en) 2015-06-30 2016-09-01 Novozymes A/S Laundry detergent composition, method for washing and use of composition
CA2987160C (en) 2015-07-01 2022-12-13 Novozymes A/S Methods of reducing odor
AU2016286612B2 (en) 2015-07-02 2021-01-28 Novozymes A/S Animal feed compositions and uses thereof
CN107969136B (en) 2015-07-06 2021-12-21 诺维信公司 Lipase variants and polynucleotides encoding same
EP3319987B1 (en) 2015-07-07 2021-05-05 Codexis, Inc. Novel p450-bm3 variants with improved activity
US20180208916A1 (en) 2015-07-23 2018-07-26 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
US20180216089A1 (en) 2015-07-24 2018-08-02 Novozymes, Inc. Polypeptides Having Beta-Xylosidase Activity And Polynucleotides Encoding Same
CN108138153A (en) 2015-07-24 2018-06-08 诺维信股份有限公司 Polypeptide with nofuranosidase activity and encode their polynucleotides
EP3344761A1 (en) 2015-09-04 2018-07-11 Novozymes A/S Methods of inhibiting aa9 lytic polysaccharide monooxygenase catalyzed inactivation of enzyme compositions
ES2794837T3 (en) 2015-09-17 2020-11-19 Henkel Ag & Co Kgaa Detergent Compositions Comprising Polypeptides Having Xanthan Degrading Activity
CN108350443B (en) 2015-09-17 2022-06-28 诺维信公司 Polypeptides having xanthan degrading activity and polynucleotides encoding same
CN108350044B (en) 2015-09-22 2022-05-24 诺维信公司 Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
WO2017060493A1 (en) 2015-10-07 2017-04-13 Novozymes A/S Polypeptides
EP3362574B1 (en) 2015-10-14 2021-07-07 Novozymes A/S Glucoamylase variants and polynucleotides encoding same
BR112018007474A2 (en) 2015-10-14 2018-10-30 Novozymes A/S ? cleaning water filtration membranes?
EP4324919A2 (en) 2015-10-14 2024-02-21 Novozymes A/S Polypeptide variants
CN108291215A (en) 2015-10-14 2018-07-17 诺维信公司 Polypeptide with proteinase activity and encode their polynucleotides
WO2017070219A1 (en) 2015-10-20 2017-04-27 Novozymes A/S Lytic polysaccharide monooxygenase (lpmo) variants and polynucleotides encoding same
WO2017075426A1 (en) 2015-10-30 2017-05-04 Novozymes A/S Polynucleotide constructs for in vitro and in vivo expression
WO2017089304A1 (en) * 2015-11-23 2017-06-01 Novozymes A/S Enzymatic epoxydation of natural rubber
EP3380608A1 (en) 2015-11-24 2018-10-03 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2017093318A1 (en) 2015-12-01 2017-06-08 Novozymes A/S Methods for producing lipases
US20190002819A1 (en) 2015-12-28 2019-01-03 Novozymes Bioag A/S Heat priming of bacterial spores
WO2017114891A1 (en) 2015-12-30 2017-07-06 Novozymes A/S Enzyme variants and polynucleotides encoding the same
JP2019504625A (en) 2016-01-29 2019-02-21 ノボザイムス アクティーゼルスカブ β-glucanase variant and polynucleotide encoding the same
WO2017140807A1 (en) 2016-02-16 2017-08-24 Monaghan Mushrooms Group Fungal polypeptides having lysozyme activity
EP3420104A1 (en) 2016-02-23 2019-01-02 Novozymes A/S Improved next-generation sequencing
CN109415712A (en) 2016-03-02 2019-03-01 诺维信公司 Cellobiohydrolase variant and the polynucleotides for encoding them
CN105778550B (en) * 2016-03-07 2018-05-25 周霞萍 Matrix membrane, humic acid-containing composition, preparation method and application of humic acid-containing composition, and prepared product
BR112018069220A2 (en) 2016-03-23 2019-01-22 Novozymes As use of polypeptide that has dnase activity for tissue treatment
DK3433358T3 (en) 2016-03-24 2022-09-26 Novozymes As Cellobiohydrolase variants and polynucleotides encoding them
CN109312333A (en) 2016-04-07 2019-02-05 诺维信公司 The method for selecting that there is the enzyme of proteinase activity
DK3445776T3 (en) 2016-04-19 2021-04-19 Novozymes As RLMA-inactivated filamentous fungal host cell
WO2017186943A1 (en) 2016-04-29 2017-11-02 Novozymes A/S Detergent compositions and uses thereof
CN109415421B (en) 2016-05-03 2023-02-28 诺维信公司 Alpha-amylase variants and polynucleotides encoding same
KR102382489B1 (en) 2016-05-05 2022-04-01 코덱시스, 인코포레이티드 Penicillin G acylase
CN109312319B (en) 2016-05-09 2023-05-16 诺维信公司 Variant polypeptides with improved properties and uses thereof
EP3464580A1 (en) 2016-05-24 2019-04-10 Novozymes A/S Compositions comprising polypeptides having galactanase activity and polypeptides having beta-galactosidase activity
EP3464579A1 (en) 2016-05-24 2019-04-10 Novozymes A/S Compositions comprising polypeptides having galactanase activity and polypeptides having beta-galactosidase activity
BR112018073875A2 (en) 2016-05-24 2019-02-26 Novozymes As isolated polypeptide, composition, granule, animal feed additive, liquid formulation, animal feed, methods for releasing galactose from plant-based material, to improve one or more performance parameters of an animal and the nutritional value of an animal feed, for prepare an animal feed and to produce the polypeptide, use, polynucleotide, nucleic acid construct or expression vector, and recombinant host cell.
US11058129B2 (en) 2016-05-24 2021-07-13 Novozymes A/S Animal feed additives
WO2017205535A1 (en) 2016-05-27 2017-11-30 Novozymes, Inc. Polypeptides having endoglucanase activity and polynucleotides encoding same
WO2017210188A1 (en) 2016-05-31 2017-12-07 Novozymes A/S Stabilized liquid peroxide compositions
CA3024276A1 (en) 2016-06-03 2017-12-07 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2017211803A1 (en) 2016-06-07 2017-12-14 Novozymes A/S Co-expression of heterologous polypeptides to increase yield
SG11201809575TA (en) 2016-06-09 2018-11-29 Codexis Inc Biocatalysts and methods for hydroxylation of chemical compounds
WO2017218325A1 (en) 2016-06-15 2017-12-21 Codexis, Inc. Engineered beta-glucosidases and glucosylation methods
US11001787B2 (en) 2016-06-23 2021-05-11 Novozymes A/S Use of enzymes, composition and method for removing soil
WO2018002261A1 (en) 2016-07-01 2018-01-04 Novozymes A/S Detergent compositions
WO2018007435A1 (en) 2016-07-05 2018-01-11 Novozymes A/S Pectate lyase variants and polynucleotides encoding same
CN109312353A (en) 2016-07-06 2019-02-05 诺维信公司 Improve microorganism by CRISPR- inhibition
WO2018007573A1 (en) 2016-07-08 2018-01-11 Novozymes A/S Detergent compositions with galactanase
BR112019000125A2 (en) 2016-07-08 2019-07-09 Novozymes As granule, isolated polypeptide, composition, animal feed additive, pelleted animal feed, methods for improving one or more animal performance parameters, preparing an animal feed, to enhance the nutritional value of an animal feed, solubilizing xylan from plant-based material and production of polypeptide, polynucleotide, nucleic acid construct or expression vector, recombinant host cell, and use of the granule
JP2019524081A (en) 2016-07-08 2019-09-05 ノボザイムス アクティーゼルスカブ Xylanase variant and polynucleotide encoding the same
WO2018011276A1 (en) 2016-07-13 2018-01-18 The Procter & Gamble Company Bacillus cibi dnase variants and uses thereof
EP4357453A2 (en) 2016-07-18 2024-04-24 Novozymes A/S Lipase variants, polynucleotides encoding same and the use thereof
WO2018017792A1 (en) 2016-07-20 2018-01-25 Novozymes A/S Heat-stable metagenomic carbonic anhydrases and their use
CN109642225A (en) 2016-07-21 2019-04-16 诺维信公司 Serine protease variants and the polynucleotides that it is encoded
WO2018015303A1 (en) 2016-07-21 2018-01-25 Novozymes A/S Serine protease variants and polynucleotides encoding same
CN109476714A (en) 2016-07-22 2019-03-15 诺维信公司 Improved filamentous fungi host
WO2018015444A1 (en) 2016-07-22 2018-01-25 Novozymes A/S Crispr-cas9 genome editing with multiple guide rnas in filamentous fungi
WO2018026868A1 (en) 2016-08-01 2018-02-08 Novozymes, Inc. Polypeptides having endoglucanase activity and polynucleotides encoding same
WO2018037065A1 (en) 2016-08-24 2018-03-01 Henkel Ag & Co. Kgaa Detergent composition comprising gh9 endoglucanase variants i
WO2018037062A1 (en) 2016-08-24 2018-03-01 Novozymes A/S Gh9 endoglucanase variants and polynucleotides encoding same
EP3504331A1 (en) 2016-08-24 2019-07-03 Henkel AG & Co. KGaA Detergent compositions comprising xanthan lyase variants i
CA3032248A1 (en) 2016-08-24 2018-03-01 Novozymes A/S Xanthan lyase variants and polynucleotides encoding same
IL264686B1 (en) 2016-08-26 2024-03-01 Codexis Inc Engineered imine reductases and methods for the reductive amination of ketone and amine compounds
EP3512953A1 (en) 2016-09-15 2019-07-24 Novozymes A/S Genomic integration of dna fragments in fungal host cells
US20190284647A1 (en) 2016-09-29 2019-09-19 Novozymes A/S Spore Containing Granule
WO2018060216A1 (en) 2016-09-29 2018-04-05 Novozymes A/S Use of enzyme for washing, method for washing and warewashing composition
WO2018077796A1 (en) 2016-10-25 2018-05-03 Novozymes A/S Flp-mediated genomic integrationin bacillus licheniformis
EP3532592A1 (en) 2016-10-25 2019-09-04 Novozymes A/S Detergent compositions
EP3535377B1 (en) 2016-11-01 2022-02-09 Novozymes A/S Multi-core granules
WO2018094181A1 (en) 2016-11-21 2018-05-24 Novozymes A/S Yeast cell extract assisted construction of dna molecules
EP3545086A1 (en) 2016-11-23 2019-10-02 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
RU2019120191A (en) 2016-12-01 2021-01-11 Басф Се STABILIZATION OF ENZYMES IN COMPOSITIONS
WO2018108865A1 (en) 2016-12-12 2018-06-21 Novozymes A/S Use of polypeptides
AU2018205718B2 (en) 2017-01-05 2023-09-28 Codexis, Inc. Penicillin-G acylases
CA3051426C (en) 2017-02-01 2023-10-17 The Procter & Gamble Company Cleaning compositions comprising amylase variants
EP3577219B1 (en) 2017-02-01 2023-08-23 Novozymes A/S Alpha-amylase variants
WO2018144679A2 (en) 2017-02-03 2018-08-09 Codexis, Inc. Engineered glycosyltransferases and steviol glycoside glucosylation methods
JP2020505942A (en) 2017-02-13 2020-02-27 コデクシス, インコーポレイテッド Phenylalanine ammonia lyase polypeptide
WO2018167153A1 (en) 2017-03-17 2018-09-20 Novozymes A/S Improved filamentous fungal host cell
WO2018172155A1 (en) 2017-03-23 2018-09-27 Novozymes A/S Improved filamentous fungal host cells
CN110651039A (en) 2017-03-31 2020-01-03 诺维信公司 Polypeptides having rnase activity
WO2018177938A1 (en) 2017-03-31 2018-10-04 Novozymes A/S Polypeptides having dnase activity
WO2018177936A1 (en) 2017-03-31 2018-10-04 Novozymes A/S Polypeptides having dnase activity
US20200109352A1 (en) 2017-04-04 2020-04-09 Novozymes A/S Polypeptide compositions and uses thereof
CN110651029B (en) 2017-04-04 2022-02-15 诺维信公司 Glycosyl hydrolase
WO2018185150A1 (en) 2017-04-04 2018-10-11 Novozymes A/S Polypeptides
US10968416B2 (en) 2017-04-06 2021-04-06 Novozymes A/S Cleaning compositions and uses thereof
EP3607042A1 (en) 2017-04-06 2020-02-12 Novozymes A/S Cleaning compositions and uses thereof
EP3478811B1 (en) 2017-04-06 2019-10-16 Novozymes A/S Cleaning compositions and uses thereof
BR112019020960A2 (en) 2017-04-06 2020-05-05 Novozymes As cleaning compositions and their uses
EP3607043A1 (en) 2017-04-06 2020-02-12 Novozymes A/S Cleaning compositions and uses thereof
CA3058520A1 (en) 2017-04-06 2018-10-11 Novozymes A/S Detergent compositions and uses thereof
EP3607044A1 (en) 2017-04-06 2020-02-12 Novozymes A/S Cleaning compositions and uses thereof
MX2019011900A (en) 2017-04-11 2019-12-05 Novozymes As Glucoamylase variants and polynucleotides encoding same.
EP3615058A4 (en) 2017-04-27 2021-06-02 Codexis, Inc. Ketoreductase polypeptides and polynucleotides
WO2018202846A1 (en) 2017-05-05 2018-11-08 Novozymes A/S Compositions comprising lipase and sulfite
CA3058095A1 (en) 2017-05-08 2018-11-15 Novozymes A/S Mannanase variants and polynucleotides encoding same
CA3062550A1 (en) 2017-05-08 2018-11-15 Codexis, Inc. Engineered ligase variants
EP3401385A1 (en) 2017-05-08 2018-11-14 Henkel AG & Co. KGaA Detergent composition comprising polypeptide comprising carbohydrate-binding domain
CA3058092A1 (en) 2017-05-08 2018-11-15 Novozymes A/S Mannanase variants and polynucleotides encoding same
WO2018206535A1 (en) 2017-05-08 2018-11-15 Novozymes A/S Carbohydrate-binding domain and polynucleotides encoding the same
CN111032682B (en) 2017-06-14 2024-04-12 科德克希思公司 Engineered transaminase polypeptides for industrial biocatalysis
EP3642339A1 (en) 2017-06-22 2020-04-29 Novozymes A/S Xylanase variants and polynucleotides encoding same
EP3645713A4 (en) 2017-06-27 2021-06-30 Codexis, Inc. Penicillin-g acylases
US11584783B2 (en) 2017-06-28 2023-02-21 Novozymes A/S Processes for producing a fermentation product
EP3645692A1 (en) 2017-06-30 2020-05-06 Novozymes A/S Enzyme slurry composition
JP7391827B2 (en) 2017-07-24 2023-12-05 ノボザイムス アクティーゼルスカブ GH5 and GH30 in wet milling
US11220679B2 (en) 2017-08-08 2022-01-11 Novozymes A/S Polypeptides having trehalase activity
WO2019038057A1 (en) 2017-08-24 2019-02-28 Novozymes A/S Xanthan lyase variants and polynucleotides encoding same
WO2019038060A1 (en) 2017-08-24 2019-02-28 Henkel Ag & Co. Kgaa Detergent composition comprising xanthan lyase variants ii
WO2019038059A1 (en) 2017-08-24 2019-02-28 Henkel Ag & Co. Kgaa Detergent compositions comprising gh9 endoglucanase variants ii
EP3673058A1 (en) 2017-08-24 2020-07-01 Novozymes A/S Gh9 endoglucanase variants and polynucleotides encoding same
WO2019046703A1 (en) 2017-09-01 2019-03-07 Novozymes A/S Methods for improving genome editing in fungi
CA3070193A1 (en) 2017-09-01 2019-03-07 Novozymes A/S Animal feed additives comprising a polypeptide having protease activity and uses thereof
EP3675646A1 (en) 2017-09-01 2020-07-08 Novozymes A/S Animal feed additives comprising polypeptide having protease activity and uses thereof
CN111247235A (en) 2017-09-20 2020-06-05 诺维信公司 Use of enzymes to improve water absorption and/or whiteness
US11414814B2 (en) 2017-09-22 2022-08-16 Novozymes A/S Polypeptides
US11332725B2 (en) 2017-09-27 2022-05-17 Novozymes A/S Lipase variants and microcapsule compositions comprising such lipase variants
CN111108195A (en) 2017-09-27 2020-05-05 宝洁公司 Detergent compositions comprising lipase
US11732221B2 (en) 2017-10-02 2023-08-22 Novozymes A/S Polypeptides having mannanase activity and polynucleotides encoding same
WO2019068713A1 (en) 2017-10-02 2019-04-11 Novozymes A/S Polypeptides having mannanase activity and polynucleotides encoding same
EP3692150A1 (en) 2017-10-04 2020-08-12 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
US20200318037A1 (en) 2017-10-16 2020-10-08 Novozymes A/S Low dusting granules
WO2019076800A1 (en) 2017-10-16 2019-04-25 Novozymes A/S Cleaning compositions and uses thereof
CN111448302A (en) 2017-10-16 2020-07-24 诺维信公司 Low dusting particles
WO2019083818A1 (en) 2017-10-23 2019-05-02 Novozymes A/S Improving expression of a protease by co-expression with propeptide
EP3701016A1 (en) 2017-10-27 2020-09-02 Novozymes A/S Dnase variants
HUE057471T2 (en) 2017-10-27 2022-05-28 Procter & Gamble Detergent compositions comprising polypeptide variants
DE102017125560A1 (en) 2017-11-01 2019-05-02 Henkel Ag & Co. Kgaa CLEANSING COMPOSITIONS CONTAINING DISPERSINE III
DE102017125559A1 (en) 2017-11-01 2019-05-02 Henkel Ag & Co. Kgaa CLEANSING COMPOSITIONS CONTAINING DISPERSINE II
CN111527190A (en) 2017-11-01 2020-08-11 诺维信公司 Polypeptides and compositions comprising such polypeptides
WO2019086532A1 (en) 2017-11-01 2019-05-09 Novozymes A/S Methods for cleaning medical devices
CN111479919A (en) 2017-11-01 2020-07-31 诺维信公司 Polypeptides and compositions comprising such polypeptides
DE102017125558A1 (en) 2017-11-01 2019-05-02 Henkel Ag & Co. Kgaa CLEANING COMPOSITIONS CONTAINING DISPERSINE I
SG11202003094PA (en) 2017-11-07 2020-05-28 Codexis Inc Transglutaminase variants
WO2019092042A1 (en) 2017-11-10 2019-05-16 Novozymes A/S Temperature-sensitive cas9 protein
WO2019096903A1 (en) 2017-11-20 2019-05-23 Novozymes A/S New galactanases (ec 3.2.1.89) for use in soy processing
EP3485734A1 (en) 2017-11-21 2019-05-22 Technische Universität München Method for preparing food products comprising rye
EP3488854A1 (en) 2017-11-22 2019-05-29 Technische Universität München Method for preparing xyloglucan-oligosaccharides
US11725197B2 (en) 2017-12-04 2023-08-15 Novozymes A/S Lipase variants and polynucleotides encoding same
BR112020011278A2 (en) 2017-12-08 2020-11-17 Novozymes A/S alpha-amylase variant, composition, polynucleotide, nucleic acid construct, expression vector, host cell, methods for producing an alpha-amylase variant and for increasing the stability of a parent alpha-amylase, use of the variant, and, process for producing a syrup from material containing starch
AU2018383752A1 (en) 2017-12-13 2020-05-21 Codexis, Inc. Carboxyesterase polypeptides for amide coupling
EP3502242A1 (en) 2017-12-20 2019-06-26 Technische Universität München New xylanase with improved thermostability and increased enzyme activity on arabinoxylan
US20210017544A1 (en) 2017-12-22 2021-01-21 Novozymes A/S Counter-Selection by Inhibition of Conditionally Essential Genes
US20210071156A1 (en) 2018-02-08 2021-03-11 Novozymes A/S Lipase Variants and Compositions Thereof
EP3749761A1 (en) 2018-02-08 2020-12-16 Novozymes A/S Lipases, lipase variants and compositions thereof
CN111770788B (en) 2018-03-13 2023-07-25 诺维信公司 Microencapsulation using amino sugar oligomers
CN112004931A (en) 2018-03-26 2020-11-27 诺维信公司 Fungal chaperone proteins
WO2019185726A1 (en) 2018-03-29 2019-10-03 Novozymes A/S Mannanase variants and polynucleotides encoding same
EP3775191A1 (en) 2018-04-09 2021-02-17 Novozymes A/S Polypeptides having alpha-amylase activity and polynucleotides encoding same
CN112262207B (en) 2018-04-17 2024-01-23 诺维信公司 Polypeptides comprising carbohydrate binding activity in detergent compositions and their use for reducing wrinkles in textiles or fabrics
EP3781680A1 (en) 2018-04-19 2021-02-24 Novozymes A/S Stabilized cellulase variants
CN112272701A (en) 2018-04-19 2021-01-26 诺维信公司 Stabilized cellulase variants
CA3095431A1 (en) 2018-05-31 2019-12-05 Novozymes A/S Method for treating dissolving pulp using lytic polysaccharide monooxygenase
EP3807409A4 (en) 2018-06-12 2022-08-03 Codexis, Inc. Engineered tyrosine ammonia lyase
WO2019238761A1 (en) 2018-06-15 2019-12-19 Basf Se Water soluble multilayer films containing wash active chemicals and enzymes
EP3814472A1 (en) 2018-06-28 2021-05-05 Novozymes A/S Detergent compositions and uses thereof
WO2020002575A1 (en) 2018-06-28 2020-01-02 Novozymes A/S Polypeptides having pectin lyase activity and polynucleotides encoding same
EP3814473A1 (en) 2018-06-29 2021-05-05 Novozymes A/S Detergent compositions and uses thereof
WO2020007863A1 (en) 2018-07-02 2020-01-09 Novozymes A/S Cleaning compositions and uses thereof
WO2020007875A1 (en) 2018-07-03 2020-01-09 Novozymes A/S Cleaning compositions and uses thereof
WO2020008024A1 (en) 2018-07-06 2020-01-09 Novozymes A/S Cleaning compositions and uses thereof
SG11202012107RA (en) 2018-07-09 2021-01-28 Codexis Inc Engineered deoxyribose-phosphate aldolases
MX2021000323A (en) 2018-07-09 2021-03-25 Codexis Inc Engineered pantothenate kinase variant enzymes.
EP3821000A4 (en) 2018-07-09 2022-07-20 Codexis, Inc. Engineered galactose oxidase variant enzymes
CA3103718A1 (en) 2018-07-09 2020-01-16 Codexis, Inc. Engineered purine nucleoside phosphorylase variant enzymes
US11034948B2 (en) 2018-07-09 2021-06-15 Codexis, Inc. Engineered phosphopentomutase variant enzymes
CA3105916A1 (en) 2018-07-12 2020-01-16 Codexis, Inc. Engineered phenylalanine ammonia lyase polypeptides
WO2020012266A1 (en) 2018-07-12 2020-01-16 Novartis Ag Biocatalytic synthesis of olodanrigan (ema401) from 3-(2-(benzyloxy)-3-methoxyphenyl)propenoic acid with phenylalanine ammonia lyase
JP2021532757A (en) 2018-07-30 2021-12-02 コデクシス, インコーポレイテッド Engineered Glycosyltransferase and Steviol Glycoside Glycosylation Methods
EP3830261A1 (en) 2018-08-02 2021-06-09 Novozymes A/S Preparation of combinatorial libraries of dna constructs using introns
BR112021003244A2 (en) 2018-08-31 2021-05-18 Novozymes A/S isolated or purified polypeptide, use, method for improving the nutritional value of an animal feed, animal feed additive, animal feed, isolated or purified polynucleotide, nucleic acid construct or expression vector, and, recombinant host cell
WO2020058248A1 (en) 2018-09-18 2020-03-26 Dsm Ip Assets B.V. Process for enzymatic hydrolysis of carbohydrate material and fermentation of sugars
WO2020058249A1 (en) 2018-09-18 2020-03-26 Dsm Ip Assets B.V. Process for enzymatic hydrolysis of carbohydrate material and fermentation of sugars
WO2020058253A1 (en) 2018-09-18 2020-03-26 Dsm Ip Assets B.V. Process for enzymatic hydrolysis of carbohydrate material and fermentation of sugars
US20210340466A1 (en) 2018-10-01 2021-11-04 Novozymes A/S Detergent compositions and uses thereof
WO2020070014A1 (en) 2018-10-02 2020-04-09 Novozymes A/S Cleaning composition comprising anionic surfactant and a polypeptide having rnase activity
CN112969775A (en) 2018-10-02 2021-06-15 诺维信公司 Cleaning composition
WO2020070209A1 (en) 2018-10-02 2020-04-09 Novozymes A/S Cleaning composition
WO2020070249A1 (en) 2018-10-03 2020-04-09 Novozymes A/S Cleaning compositions
WO2020070199A1 (en) 2018-10-03 2020-04-09 Novozymes A/S Polypeptides having alpha-mannan degrading activity and polynucleotides encoding same
CN113056552A (en) 2018-10-09 2021-06-29 诺维信公司 Modified filamentous fungal host cells
WO2020074498A1 (en) 2018-10-09 2020-04-16 Novozymes A/S Cleaning compositions and uses thereof
WO2020074499A1 (en) 2018-10-09 2020-04-16 Novozymes A/S Cleaning compositions and uses thereof
EP3864036A1 (en) 2018-10-10 2021-08-18 Novozymes A/S Chymotrypsin inhibitor variants and the use thereof
CN112996894A (en) 2018-10-11 2021-06-18 诺维信公司 Cleaning composition and use thereof
KR20210084590A (en) 2018-10-29 2021-07-07 코덱시스, 인코포레이티드 engineered DNA polymerase variants
EP3647398A1 (en) 2018-10-31 2020-05-06 Henkel AG & Co. KGaA Cleaning compositions containing dispersins v
EP3874051A1 (en) 2018-10-31 2021-09-08 Novozymes A/S Genome editing by guided endonuclease and single-stranded oligonucleotide
EP3647397A1 (en) 2018-10-31 2020-05-06 Henkel AG & Co. KGaA Cleaning compositions containing dispersins iv
WO2020099490A1 (en) 2018-11-14 2020-05-22 Novozymes A/S Oral care composition comprising enzymes
EP3887524A1 (en) 2018-11-28 2021-10-06 Novozymes A/S Modified filamentous fungal host cells
EP3887391A1 (en) 2018-11-28 2021-10-06 Novozymes A/S Improved filamentous fungal host cells
CN113302270A (en) 2018-12-03 2021-08-24 诺维信公司 Low pH powder detergent compositions
WO2020120420A1 (en) 2018-12-10 2020-06-18 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method for preparation of primary amine compounds
CN113302305A (en) 2018-12-12 2021-08-24 诺维信公司 Methods of increasing productivity of filamentous fungal cells in the production of polypeptides
EP3894551A1 (en) 2018-12-12 2021-10-20 Novozymes A/S Polypeptides having xylanase activity and polynucleotides encoding same
US11473077B2 (en) 2018-12-14 2022-10-18 Codexis, Inc. Engineered tyrosine ammonia lyase
WO2020127775A1 (en) 2018-12-21 2020-06-25 Novozymes A/S Detergent pouch comprising metalloproteases
CN113366103A (en) 2018-12-21 2021-09-07 诺维信公司 Polypeptides having peptidoglycan degrading activity and polynucleotides encoding same
DK3898985T3 (en) 2018-12-21 2023-04-17 Novozymes As PROTEIN EXPRESSION IN TANDEM
WO2020160126A1 (en) 2019-01-31 2020-08-06 Novozymes A/S Polypeptides having xylanase activity and use thereof for improving the nutritional quality of animal feed
WO2020173817A1 (en) 2019-02-28 2020-09-03 Novozymes A/S Calcite binding proteins
US20220154226A1 (en) 2019-03-18 2022-05-19 Novozymes A/S Polypeptides Having Pullulanase Activity Suitable For Use In Liquefaction
EP3942032A1 (en) 2019-03-21 2022-01-26 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
US20220169953A1 (en) 2019-04-03 2022-06-02 Novozymes A/S Polypeptides having beta-glucanase activity, polynucleotides encoding same and uses thereof in cleaning and detergent compositions
WO2020207944A1 (en) 2019-04-10 2020-10-15 Novozymes A/S Polypeptide variants
US20220186151A1 (en) 2019-04-12 2022-06-16 Novozymes A/S Stabilized glycoside hydrolase variants
US20220275354A1 (en) 2019-05-15 2022-09-01 Novozymes A/S TEMPERATURE-SENSITIVE RNA- Guided Endonuclease
EP3987022A1 (en) 2019-06-24 2022-04-27 Novozymes A/S Alpha-amylase variants
EP3986996A1 (en) 2019-06-24 2022-04-27 The Procter & Gamble Company Cleaning compositions comprising amylase variants
US20220298517A1 (en) 2019-06-25 2022-09-22 Novozymes A/S Counter-selection by inhibition of conditionally essential genes
EP3994255A1 (en) 2019-07-02 2022-05-11 Novozymes A/S Lipase variants and compositions thereof
EP4004187A1 (en) 2019-07-26 2022-06-01 Novozymes A/S Modified filamentous fungal host cell
EP4004029A1 (en) 2019-07-26 2022-06-01 Novozymes A/S Microorganisms with improved nitrogen transport for ethanol production
WO2021018751A1 (en) 2019-07-26 2021-02-04 Novozymes A/S Enzymatic treatment of paper pulp
BR112022002203A2 (en) 2019-08-05 2022-09-06 Novozymes As ENZYME MIXTURES AND PROCESSES FOR PRODUCTION OF A FOOD INGREDIENT WITH HIGH PROTEIN CONTENT FROM A COMPLETE VINAGE BY-PRODUCT
MX2021015818A (en) 2019-08-06 2022-02-03 Novozymes As Fusion proteins for improved enzyme expression.
CN114787329A (en) 2019-08-27 2022-07-22 诺维信公司 Detergent composition
EP4031661A1 (en) 2019-09-16 2022-07-27 Novozymes A/S Polypeptides having beta-glucanase activity and polynucleotides encoding same
EP4031644A1 (en) 2019-09-19 2022-07-27 Novozymes A/S Detergent composition
US20210094986A1 (en) 2019-09-27 2021-04-01 The Procter & Gamble Company Consumer product compositions comprising fatty acid photodecarboxyalases
US20220340843A1 (en) 2019-10-03 2022-10-27 Novozymes A/S Polypeptides comprising at least two carbohydrate binding domains
US20210139879A1 (en) 2019-10-31 2021-05-13 The Procter & Gamble Company Consumer Product Compositions Comprising P450 Fatty Acid Decarboxylases
WO2021105336A1 (en) 2019-11-29 2021-06-03 Basf Se Compositions comprising polymer and enzyme
BR112022011271A2 (en) 2019-12-10 2022-09-06 Novozymes As RECOMBINANT HOST CELL, COMPOSITION, METHODS FOR PRODUCING A CELL DERIVATIVE AND FERMENTATION PRODUCT, AND, USE OF A RECOMBINANT HOST CELL
EP4077654A2 (en) 2019-12-19 2022-10-26 Novozymes A/S Xylanase variants and polynucleotides encoding same
WO2021122121A1 (en) 2019-12-20 2021-06-24 Henkel Ag & Co. Kgaa Cleaning compositions comprising dispersins ix
US20220411773A1 (en) 2019-12-20 2022-12-29 Novozymes A/S Polypeptides having proteolytic activity and use thereof
WO2021122120A2 (en) 2019-12-20 2021-06-24 Henkel Ag & Co. Kgaa Cleaning compositions comprising dispersins viii
WO2021122118A1 (en) 2019-12-20 2021-06-24 Henkel Ag & Co. Kgaa Cleaning compositions comprising dispersins vi
AU2020410142A1 (en) 2019-12-20 2022-08-18 Henkel Ag & Co. Kgaa Cleaning composition coprising a dispersin and a carbohydrase
WO2021130167A1 (en) 2019-12-23 2021-07-01 Novozymes A/S Enzyme compositions and uses thereof
EP3842052A1 (en) * 2019-12-23 2021-06-30 Senzyme GmbH Composition and methods for stabilising intestinal flora and improving hygiene
WO2021148364A1 (en) 2020-01-23 2021-07-29 Novozymes A/S Enzyme compositions and uses thereof
US20230242960A1 (en) 2020-01-24 2023-08-03 Novozymes A/S Mutants of a filamentous fungal cell having increased productivity in the production of a polypeptide
EP4097226A1 (en) 2020-01-31 2022-12-07 Novozymes A/S Mannanase variants and polynucleotides encoding same
WO2021152123A1 (en) 2020-01-31 2021-08-05 Novozymes A/S Mannanase variants and polynucleotides encoding same
US20230088815A1 (en) 2020-02-04 2023-03-23 Novozymes A/S Solid stabilized laccase compositions
WO2021163011A2 (en) 2020-02-10 2021-08-19 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2021163015A1 (en) 2020-02-10 2021-08-19 Novozymes A/S Process for producing ethanol from raw starch using alpha-amylase variants
EP4103709A2 (en) 2020-02-10 2022-12-21 Novozymes A/S Polypeptides having alpha-amylase activity and polynucleotides encoding same
US20230220366A1 (en) 2020-02-26 2023-07-13 Novozymes A/S Polypeptide Variants
WO2021183622A1 (en) 2020-03-12 2021-09-16 Novozymes A/S Crispr-aid using catalytically inactive rna-guided endonuclease
EP3892708A1 (en) 2020-04-06 2021-10-13 Henkel AG & Co. KGaA Cleaning compositions comprising dispersin variants
EP4133066A1 (en) 2020-04-08 2023-02-15 Novozymes A/S Carbohydrate binding module variants
US11788071B2 (en) 2020-04-10 2023-10-17 Codexis, Inc. Engineered transaminase polypeptides
US20230167384A1 (en) 2020-04-21 2023-06-01 Novozymes A/S Cleaning compositions comprising polypeptides having fructan degrading activity
EP3907271A1 (en) 2020-05-07 2021-11-10 Novozymes A/S Cleaning composition, use and method of cleaning
EP4158097A1 (en) 2020-05-29 2023-04-05 Novozymes A/S Method for controlling slime in a pulp or paper making process
EP3936593A1 (en) 2020-07-08 2022-01-12 Henkel AG & Co. KGaA Cleaning compositions and uses thereof
CN116322625A (en) 2020-08-24 2023-06-23 诺维信公司 Oral care compositions comprising levanase
WO2022043321A2 (en) 2020-08-25 2022-03-03 Novozymes A/S Variants of a family 44 xyloglucanase
MX2023002095A (en) 2020-08-28 2023-03-15 Novozymes As Protease variants with improved solubility.
BR112023005128A2 (en) 2020-09-22 2023-04-25 Basf Se COMPOSITION, DETERGENT COMPOSITION, METHOD FOR PROVIDING A DETERGENT COMPOSITION WITH IMPROVED STABILITY AND/OR WASHING PERFORMANCE, AND, USE OF A COMPOSITION
CN116507725A (en) 2020-10-07 2023-07-28 诺维信公司 Alpha-amylase variants
US20220112446A1 (en) 2020-10-09 2022-04-14 The Procter & Gamble Company Cleaning composition comprising an alpha-dioxygenase
US20230407273A1 (en) 2020-10-13 2023-12-21 Novozymes A/S Glycosyltransferase variants for improved protein production
WO2022084303A2 (en) 2020-10-20 2022-04-28 Novozymes A/S Use of polypeptides having dnase activity
EP4237525A1 (en) 2020-10-28 2023-09-06 Novozymes A/S Use of lipoxygenase
BR112023008326A2 (en) 2020-10-29 2023-12-12 Novozymes As LIPASE VARIANTS AND COMPOSITIONS COMPRISING SUCH LIPASE VARIANTS
MX2023004938A (en) 2020-11-02 2023-05-17 Novozymes As Glucoamylase variants and polynucleotides encoding same.
WO2022090555A1 (en) 2020-11-02 2022-05-05 Novozymes A/S Leader peptides and polynucleotides encoding the same
WO2022106404A1 (en) 2020-11-18 2022-05-27 Novozymes A/S Combination of proteases
WO2022106400A1 (en) 2020-11-18 2022-05-27 Novozymes A/S Combination of immunochemically different proteases
EP4262804A2 (en) 2020-12-18 2023-10-25 Codexis, Inc. Engineered uridine phosphorylase variant enzymes
WO2022162043A1 (en) 2021-01-28 2022-08-04 Novozymes A/S Lipase with low malodor generation
CN116829709A (en) 2021-02-12 2023-09-29 诺维信公司 Alpha-amylase variants
AR124921A1 (en) 2021-02-18 2023-05-17 Novozymes As INACTIVE HEME-CONTAINING POLYPEPTIDES
EP4305146A1 (en) 2021-03-12 2024-01-17 Novozymes A/S Polypeptide variants
EP4060036A1 (en) 2021-03-15 2022-09-21 Novozymes A/S Polypeptide variants
CA3199985A1 (en) 2021-03-15 2022-09-22 Lars Lehmann Hylling Christensen Cleaning compositions containing polypeptide variants
US20240060061A1 (en) 2021-03-15 2024-02-22 Novozymes A/S Dnase variants
EP4314222A1 (en) 2021-03-26 2024-02-07 Novozymes A/S Detergent composition with reduced polymer content
US20220325284A1 (en) 2021-04-02 2022-10-13 Codexis, Inc. Engineered guanylate kinase variant enzymes
CN117222735A (en) 2021-04-02 2023-12-12 科德克希思公司 Engineered acetate kinase variant enzymes
IL305919A (en) 2021-04-02 2023-11-01 Codexis Inc Engineered adenylate kinase variant enzymes
US20220325285A1 (en) 2021-04-02 2022-10-13 Codexis, Inc. ENGINEERED CYCLIC GMP-AMP SYNTHASE (cGAS) VARIANT ENZYMES
BR112023024706A2 (en) 2021-05-27 2024-02-15 Novozymes As TRANSCRIPTION REGULATORS AND POLYNUCLEOTIDES THAT CODE THEM
BR112023025624A2 (en) 2021-06-07 2024-02-27 Novozymes As RECOMBINANT YEAST CELL, RECOMBINANT HOST CELL, COMPOSITION, COCULTURE, METHODS OF PRODUCING A DERIVATIVE OF A RECOMBINANT HOST CELL AND PRODUCING A FERMENTATION PRODUCT, AND, USE OF A RECOMBINANT HOST CELL
WO2022263553A1 (en) 2021-06-16 2022-12-22 Novozymes A/S Method for controlling slime in a pulp or paper making process
EP4359518A1 (en) 2021-06-23 2024-05-01 Novozymes A/S Alpha-amylase polypeptides
WO2023288294A1 (en) 2021-07-16 2023-01-19 Novozymes A/S Compositions and methods for improving the rainfastness of proteins on plant surfaces
US20230089159A1 (en) 2021-09-16 2023-03-23 The Procter & Gamble Company Cleaning composition comprising an engineered fatty acid alpha-dioxygenase
CA3234510A1 (en) * 2021-10-15 2023-04-20 Idexx Laboratories Inc Homogenous enzyme immunoassay
WO2023104846A1 (en) 2021-12-10 2023-06-15 Novozymes A/S Improved protein production in recombinant bacteria
WO2023152220A1 (en) 2022-02-10 2023-08-17 Novozymes A/S Improved expression of recombinant proteins
WO2023165507A1 (en) 2022-03-02 2023-09-07 Novozymes A/S Use of xyloglucanase for improvement of sustainability of detergents
WO2023165950A1 (en) 2022-03-04 2023-09-07 Novozymes A/S Dnase variants and compositions
WO2023194388A1 (en) 2022-04-07 2023-10-12 Novozymes A/S Fusion proteins and their use against eimeria
WO2023194204A1 (en) 2022-04-08 2023-10-12 Novozymes A/S Hexosaminidase variants and compositions
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections
WO2023247348A1 (en) 2022-06-21 2023-12-28 Novozymes A/S Mannanase variants and polynucleotides encoding same
WO2023247514A1 (en) 2022-06-22 2023-12-28 Novozymes A/S Recombinant mannanase expression
WO2023247664A2 (en) 2022-06-24 2023-12-28 Novozymes A/S Lipase variants and compositions comprising such lipase variants
WO2024003143A1 (en) 2022-06-30 2024-01-04 Novozymes A/S Mutanases and oral care compositions comprising same
WO2024056643A1 (en) 2022-09-15 2024-03-21 Novozymes A/S Fungal signal peptides
EP4273249A2 (en) 2023-07-07 2023-11-08 Novozymes A/S Improved expression of recombinant proteins

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3251742A (en) * 1962-05-14 1966-05-17 Revlon Method for coloring human hair with polyhydric aromatic compound, aromatic amine andan oxidation enzyme
JPH07114709B2 (en) * 1987-11-13 1995-12-13 協和メデックス株式会社 Enzyme activity quantification method
PE14291A1 (en) * 1989-10-13 1991-04-27 Novo Nordisk As PROCEDURE TO INHIBIT THE TRANSFER OF DYES
FI903443A (en) * 1990-07-06 1992-01-07 Valtion Teknillinen FRAMSTAELLNING AV LACKAS GENOM REKOMBINANTORGANISMER.
FR2673534B1 (en) * 1991-03-08 1995-03-03 Perma COMPOSITION FOR THE ENZYMATIC COLORING OF KERATINIC FIBERS, ESPECIALLY HAIR, AND ITS APPLICATION IN A COLORING PROCESS.
DK77393D0 (en) * 1993-06-29 1993-06-29 Novo Nordisk As ENZYMER ACTIVATION
US5770418A (en) * 1994-06-24 1998-06-23 Novo Nordisk A/S Purified polyporus laccases and nucleic acids encoding same

Also Published As

Publication number Publication date
MX9606013A (en) 1997-12-31
PT765394E (en) 2002-03-28
AU694954B2 (en) 1998-08-06
FI964808A (en) 1996-12-02
ATE206460T1 (en) 2001-10-15
DE69523052T2 (en) 2002-06-20
DE69523052D1 (en) 2001-11-08
KR970703426A (en) 1997-07-03
FI964808A0 (en) 1996-12-02
CN1157008A (en) 1997-08-13
EP0765394A1 (en) 1997-04-02
WO1995033836A1 (en) 1995-12-14
ES2165420T3 (en) 2002-03-16
BR9507817A (en) 1997-09-16
US5795760A (en) 1998-08-18
DK0765394T3 (en) 2001-12-10
EP0765394B1 (en) 2001-10-04
CN1192108C (en) 2005-03-09
CA2191718A1 (en) 1995-12-14
JPH10501137A (en) 1998-02-03
AU2656595A (en) 1996-01-04
US5981243A (en) 1999-11-09

Similar Documents

Publication Publication Date Title
JP3649338B2 (en) Purified Myserioftra laccase and nucleic acid encoding it
EP0763115B1 (en) Purified scytalidium laccases and nucleic acids encoding same
WO1995033836A9 (en) Phosphonyldipeptides useful in the treatment of cardiovascular diseases
JP3510263B2 (en) Purified polyporus laccase and nucleic acid encoding the same
AU698423B2 (en) Purified pH neutral rhizoctonia laccases and nucleic acids encoding same
US6242232B1 (en) Purified Coprinus laccases and nucleic acids encoding same
US5770418A (en) Purified polyporus laccases and nucleic acids encoding same
EP0850306B1 (en) LACCASES WITH AN ALTERED pH ACTIVITY PROFILE
US5667531A (en) Dye compositions containing purified polyporus laccases and nucleic acids encoding same
US5770419A (en) Mutants of Myceliophthora laccase with enhanced activity
EP1789541B1 (en) Overexpressed and purified aspergillus ficuum oxidase and nucleic acid encoding the same
MX2007003186A (en) Overexpressed and purified aspergillus ficuum oxidase and nucleic acid encoding the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees