JP3647778B2 - 遊技機 - Google Patents

遊技機 Download PDF

Info

Publication number
JP3647778B2
JP3647778B2 JP2001232963A JP2001232963A JP3647778B2 JP 3647778 B2 JP3647778 B2 JP 3647778B2 JP 2001232963 A JP2001232963 A JP 2001232963A JP 2001232963 A JP2001232963 A JP 2001232963A JP 3647778 B2 JP3647778 B2 JP 3647778B2
Authority
JP
Japan
Prior art keywords
data
power supply
specific area
gaming machine
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001232963A
Other languages
English (en)
Other versions
JP2003038823A (ja
JP2003038823A5 (ja
Inventor
詔八 鵜川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Co Ltd
Original Assignee
Sankyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Co Ltd filed Critical Sankyo Co Ltd
Priority to JP2001232963A priority Critical patent/JP3647778B2/ja
Publication of JP2003038823A publication Critical patent/JP2003038823A/ja
Application granted granted Critical
Publication of JP3647778B2 publication Critical patent/JP3647778B2/ja
Publication of JP2003038823A5 publication Critical patent/JP2003038823A5/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pinball Game Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、遊技者が所定の遊技を行い、所定条件の成立に応じて遊技者に所定の遊技価値を付与可能なパチンコ遊技機やスロットマシン等の遊技機に関する。
【0002】
【従来の技術】
遊技機として、遊技球などの遊技媒体を発射装置によって遊技領域に発射し、遊技領域に設けられている入賞口などの入賞領域に遊技媒体が入賞すると、所定個の賞球が遊技者に払い出されるものがある。さらに、表示状態が変化可能な可変表示装置が設けられ、始動口への遊技球の入賞(始動入賞)などの条件成立にもとづいて可変表示装置において可変表示がなされ、可変表示装置の表示結果があらかじめ定められた特定表示態様となった場合に所定の遊技価値を遊技者に与えるように構成されたものがある。
【0003】
なお、所定の遊技価値とは、例えば、遊技者に多数の景品としての遊技媒体を払い出しうる特定遊技状態になることであり、具体的には、遊技機の遊技領域に設けられた可変入賞球装置の状態が打球が入賞しやすい遊技者にとって有利な状態になることや、遊技者にとって有利な状態となるための権利を発生させたりすることや、賞球払出の条件が成立しやすくなる状態になることである。
【0004】
パチンコ遊技機では、識別情報を可変表示する可変表示装置の表示結果があらかじめ定められた特定表示態様の組合せとなることを、通常、「大当り」という。識別情報は例えば図柄であり、以下、識別情報として図柄(特別図柄ともいう。)を例にして説明を進める。また、可変表示とは可変表示装置における表示状態が変化することであり、以下、変動ともいう。大当りが発生すると、例えば、大入賞口が所定回数開放して打球が入賞しやすい大当り遊技状態に移行する。そして、各開放期間において、所定個(例えば10個)の大入賞口への入賞があると大入賞口は閉成する。そして、大入賞口の開放回数は、所定回数(例えば16ラウンド)に固定されている。なお、各開放について開放時間(例えば29.5秒)が決められ、入賞数が所定個に達しなくても開放時間が経過すると大入賞口は閉成する。また、大入賞口が閉成した時点で所定の条件(例えば、大入賞口内に設けられているVゾーンへの入賞)が成立していない場合には、大当り遊技状態は終了する。
【0005】
また、可変表示装置において最後に停止表示される最終停止図柄(例えば左右中図柄のうち中図柄)となる図柄以外の図柄が、所定時間継続して、特定表示態様と一致している状態で停止、揺動、拡大縮小もしくは変形している状態、または、複数の図柄が同一図柄で同期して変動したり、表示図柄の位置が入れ替わっていたりして、最終結果が表示される前で大当り発生の可能性が継続している状態(以下、これらの状態をリーチ状態という。)において行われる演出をリーチ演出という。また、リーチ演出を含む可変表示をリーチ可変表示という。リーチ状態において、変動パターンを通常状態における変動パターンとは異なるパターンにすることによって、遊技の興趣が高められている。そして、可変表示装置に可変表示される図柄の表示結果がリーチ状態となる条件を満たさない場合には「はずれ」となり、可変表示状態は終了する。遊技者は、大当りをいかにして発生させるかを楽しみつつ遊技を行う。
【0006】
遊技機には、遊技の全体的な進行を制御する遊技制御手段が搭載された遊技制御基板の他に種々の制御手段が搭載された制御基板が設けられている。そして、遊技制御手段は、遊技状況に応じて動作指示を示す制御コマンドを、各制御基板に搭載された各制御手段に送信する。以下、遊技制御手段その他の制御手段を電気部品制御手段といい、電気部品制御手段が搭載された基板を電気部品制御基板ということがある。
【0007】
一般に、各電気部品制御手段はマイクロコンピュータを含んだ構成とされる。すなわち、ROM等に格納されたプログラムに従ってCPUが制御を実行し、制御上一時的に発生するデータや制御進行に伴って変化するデータがRAMに格納される。すると、遊技機に停電等による電力供給停止状態が発生すると、RAM内のデータは失われてしまう。よって、停電等からの復旧時には、最初の状態(例えば、遊技店においてその日最初に遊技機に電源投入されたときの状態)に戻さざるを得ないので、遊技者に不利益がもたらされる可能性がある。例えば、大当たり遊技中において電力供給停止状態が発生し遊技機が最初の状態に戻ってしまうのでは、遊技者は大当たりの発生にもとづく利益を享受することができなくなってしまう。
【0008】
そのような不都合を回避するために、RAMを、遊技機に対する電力供給が停止しても所定期間は内容が保存されるバックアップRAMとして、電気部品制御手段が、遊技機に対する電力供給が停止することを検知して、必要なデータ(CPUのレジスタの値等)をバックアップRAMに格納するとともに、バックアップRAMに正確にデータが保存されていることを検知可能なチェックデータ(チェックサム等)も格納する制御が行われている。そして、電気部品制御手段は、電力供給が再開されたときに、チェックデータにもとづいてバックアップRAMに正確にデータが保存されているか否か確認し、正確にデータが保存されていると判断した場合には、保存されているデータにもとづいて、電力供給停止前の制御状態から制御を再開し、データが正確に保存されていないと判断した場合には、制御状態を初期化してから制御を開始する。
【0009】
【発明が解決しようとする課題】
ところで、RAMに格納されるデータには、正確に記憶されていれば遊技の進行に支障を来さないようなデータ(遊技の進行状況を示すデータ等)や遊技者の利益に関連するようなデータ(賞球払出に関わるデータ等)があるが、正確に記憶されていなくても遊技の進行にさほどの支障を来さないようなデータや遊技者の利益に関連しないようなデータもある。それらのデータ(正確に記憶されていなくても遊技の進行にさほどの支障を来さないようなデータや遊技者の利益に関連しないようなデータ)がバックアップRAMに格納され、また、電力供給が停止する際にそれらのデータも含めてチェックデータが作成されてバックアップRAMに格納されると、そのデータが正確に記憶されていなくても遊技の進行にさほどの支障を来さないようなデータや遊技者の利益に関連しないようなデータのみが破損された場合でも、電力供給が再開されたときにチェックデータにもとづいてデータが正確に保存されていないと判断されてしまう。すなわち、正確に記憶されていれば遊技の進行に支障を来さないようなデータや遊技者の利益に関連するようなデータがバックアップRAMに正確に保存されていて、保存されているそれらのデータにもとづいて電力供給停止前の制御状態から制御を再開できるような場合であっても、電気部品制御手段は制御状態を初期化してから制御を開始してしまう。
【0010】
そこで、本発明は、正確に記憶されていれば遊技の進行に支障を来さないようなデータや遊技者の利益に関連するようなデータがバックアップRAMに正確に保存されていた場合には、他のデータが正確に保存されていなくても、電力供給が再開されたときに電力供給停止前の制御状態から制御を再開させることができる遊技機を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明による遊技機は、表示状態が変化可能な表示領域を有する可変表示装置を含み、変動開始の条件の成立に応じて表示領域に表示される識別情報の変動を開始し、識別情報の表示結果があらかじめ定められた特定表示態様となったときに特定遊技状態に制御可能な遊技機であって、遊技機に設けられている電気部品(可変表示装置9等)を制御する電気部品制御マイクロコンピュータ(例えばCPU56を含む遊技制御手段)と、遊技進行に応じて変動する変動データを記憶し、遊技機への電力供給が停止しても所定期間は内容を保持可能な変動データ記憶手段(例えばバックアップRAM)とを備え、変動データ記憶手段が特定の領域を含む複数の領域を含み、特定の領域には、少なくとも特定遊技状態であるか否かを特定可能な変動データ(例えば特別図柄プロセスフラグ)が記憶され、電気部品制御マイクロコンピュータが、遊技機への電力供給が停止するときに、電力供給開始時に制御状態を復旧させるために必要なデータ(例えばレジスタ、スタックポインタ、割込フラグ)を変動データ記憶手段に記憶するための電力供給停止時処理を実行することが可能であり、電力供給停止時処理にて、特定の領域についてのチェックデータ(例えばチェックサム)を作成して特定の保存領域に保存した後、特定の領域と異なる領域である非特定の領域についてのチェックデータを作成して特定の保存領域と異なる領域である非特定の保存領域に保存する処理を実行し、遊技機への電力供給が開始されたときに、特定の領域に保存されていたデータが正当であるか否かを特定の保存領域に保存されていたチェックデータにもとづいて判定する特定領域チェック処理を実行し、特定領域チェック処理にて特定の領域に保存されていたデータが正当でないと判定したときには、変動データ記憶手段の全データを初期化する初期化処理(例えばステップS11)を実行し特定領域チェック処理にて特定の領域に保存されていたデータが正当であると判定したことを条件に、特定の領域を初期化せず、かつ、非特定の領域に保存されていたデータが正当であるか否かを非特定の保存領域に保存されていたチェックデータにもとづいて判定する非特定領域チェック処理を実行し、非特定領域チェック処理にて非特定の領域に保存されていたデータが正当であると判定したときには非特定の領域に記憶されたデータを初期化せず、電力供給停止時処理が開始されたときに実行されていたプログラムのアドレスからプログラムを実行する状態に戻る復旧処理(例えば遊技状態復旧処理)を実行し、非特定領域チェック処理にて非特定の領域に保存されていたデータが正当でないと判定したときには非特定の領域に記憶されたデータを初期化した後、電力供給停止時処理が開始されたときに実行されていたプログラムのアドレスからプログラムを実行する状態に戻る復旧処理を実行することを特徴とする。
【0012】
本発明による他の態様の遊技機は、遊技媒体を用いて遊技者が所定の遊技を行い、所定条件の成立に応じて遊技者に景品として遊技媒体を払い出すことが可能な遊技機であって、遊技機に設けられている電気部品(例えば球払出装置97)を制御する電気部品制御マイクロコンピュータ(例えば払出制御用CPU371)と、遊技進行に応じて変動する変動データを記憶し、遊技機への電力供給が停止しても所定期間は内容を保持可能な変動データ記憶手段(例えばバックアップRAM)とを備え、変動データ記憶手段が特定の領域を含む複数の領域を含み、特定の領域には、少なくとも未払出遊技媒体数に関する変動データ(例えば総合個数記憶)が記憶され、電気部品制御マイクロコンピュータが、遊技機への電力供給が停止するときに、電力供給開始時に制御状態を復旧させるために必要なデータ(例えばレジスタ、スタックポインタ、割込フラグ)を変動データ記憶手段に記憶するための電力供給停止時処理を実行し、電力供給停止時処理にて、特定の領域についてのチェックデータ(例えばチェックサム)を作成して特定の保存領域に保存した後、特定の領域と異なる領域である非特定の領域についてのチェックデータを作成して特定の保存領域と異なる領域である非特定の保存領域に保存する処理を実行し、遊技機への電力供給が開始されたときに、特定の領域に保存されていたデータが正当であるか否かを特定の保存領域に保存されていたチェックデータにもとづいて判定する特定領域チェック処理を実行し、特定領域チェック処理にて特定の領域に保存されていたデータが正当でないと判定したときには、変動データ記憶手段の全データを初期化する初期化処理(例えばステップS711)を実行し特定領域チェック処理にて特定の領域に保存されていたデータが正当であると判定したことを条件に、特定の領域を初期化せず、かつ、非特定の領域に保存されていたデータが正当であるか否かを非特定の保存領域に保存されていたチェックデータにもとづいて判定する非特定領域チェック処理を実行し、非特定領域チェック処理にて非特定の領域に保存されていたデータが正当であると判定したときには非特定の領域に記憶されたデータを初期化せず、電力供給停止時処理が開始されたときに実行されていたプログラムのアドレスからプログラムを実行する状態に戻る復旧処理(例えば払出状態復旧処理)を実行し、非特定領域チェック処理にて非特定の領域に保存されていたデータが正当でないと判定したときには非特定の領域に記憶されたデータを初期化した後、電力供給停止時処理が開始されたときに実行されていたプログラムのアドレスからプログラムを実行する状態に戻る復旧処理を実行することを特徴とする。
【0013】
電気部品制御マイクロコンピュータは、例えば、変動データ記憶手段に記憶されている変動データについて排他的論理和演算を施すことによってチェックデータを作成する。
【0014】
所定電位の電源の出力電圧を監視し電力供給停止に関わる検出条件が成立したときに検出信号を出力する電源監視手段(例えば電源監視用IC902)を備え、電気部品制御マイクロコンピュータが、電源監視手段の検出信号の入力にもとづいて電力供給停止時処理を行うように構成されていてもよい。
【0015】
電気部品制御マイクロコンピュータが搭載された電気部品制御基板と別個に設けられ、電気部品および電気部品制御マイクロコンピュータを駆動するための電源を供給する電力供給基板(例えば電源基板910)を備え、電源監視手段は電力供給基板に備えられていてもよい。
【0016】
遊技機への電力供給が停止しても所定期間は変動データ記憶手段に電力を供給することで記憶内容を保持させるための記憶保持用電力供給手段(例えばコンデンサ923)を備え、記憶保持用電力供給手段が、電力供給基板に備えられているように構成されていてもよい。
【0017】
電気部品制御マイクロコンピュータは、電力供給停止時処理にて、当該処理を実行したことを示す実行確認情報(例えばバックアップフラグ)を変動データ記憶手段に保存させ、電気部品制御マイクロコンピュータが、遊技機への電力供給が開始されたときに、実行確認情報が変動データ記憶手段に保存されていることを条件に特定領域チェック処理を実行し、実行確認情報が変動データ記憶手段に保存されていない場合には、変動データ記憶手段の全データを初期化するように構成されていてもよい。
【0018】
操作に応じて操作信号を出力することが可能な操作手段(例えばクリアスイッチ921)を備え、遊技機への電力供給が開始されたときに、操作手段から操作信号が出力されたときには、変動データ記憶手段の全データを初期化するように構成されていてもよい。
【0019】
【発明の実施の形態】
以下、本発明の一実施形態を図面を参照して説明する。
まず、遊技機の一例であるパチンコ遊技機の全体の構成について説明する。図1はパチンコ遊技機を正面からみた正面図、図2は遊技盤の前面を示す正面図である。
【0020】
パチンコ遊技機1は、縦長の方形状に形成された外枠(図示せず)と、外枠の内側に開閉可能に取り付けられた遊技枠とで構成される。また、パチンコ遊技機1は、遊技枠に開閉可能に設けられている額縁状に形成されたガラス扉枠2を有する。遊技枠は、外枠に対して開閉自在に設置される前面枠(図示せず)と、機構部品等が取り付けられる機構板と、それらに取り付けられる種々の部品(後述する遊技盤を除く。)とを含む構造体である。
【0021】
図1に示すように、パチンコ遊技機1は、額縁状に形成されたガラス扉枠2を有する。ガラス扉枠2の下部表面には打球供給皿(上皿)3がある。打球供給皿3の下部には、打球供給皿3に収容しきれない遊技球を貯留する余剰球受皿4と打球を発射する打球操作ハンドル(操作ノブ)5が設けられている。ガラス扉枠2の背面には、遊技盤6が着脱可能に取り付けられている。なお、遊技盤6は、それを構成する板状体と、その板状体に取り付けられた種々の部品とを含む構造体である。また、遊技盤6の前面には遊技領域7が形成されている。
【0022】
遊技領域7の中央付近には、それぞれが識別情報としての図柄を可変表示する可変表示部を含む表示領域150を有する可変表示装置9が設けられている。表示領域150には、例えば「左」、「中」、「右」の3つの図柄表示エリアがある。また、この実施の形態では、可変表示装置9の表示領域150において、普通図柄の可変表示も行われ、特別図柄始動記憶数(以下、単に始動記憶数ともいう。)および普通図柄始動記憶数の表示も行われる。また、可変表示装置9の周囲には、可変表示装置を装飾するための装飾部材(表飾り)が設けられている。
【0023】
可変表示装置9の下方には、始動入賞口14が設けられている。始動入賞口14に入った入賞球は、遊技盤6の背面に導かれ、始動口スイッチ14aによって検出される。また、始動入賞口14の下部には開閉動作を行う可変入賞球装置15が設けられている。可変入賞球装置15は、ソレノイド16によって開状態とされる。
【0024】
可変入賞球装置15の下部には、特定遊技状態(大当り状態)においてソレノイド21によって開状態とされる開閉板20が設けられている。開閉板20は大入賞口を開閉する手段である。開閉板20から遊技盤6の背面に導かれた入賞球のうち一方(V入賞領域)に入った入賞球はV入賞スイッチ22で検出され、開閉板20からの入賞球はカウントスイッチ23で検出される。遊技盤6の背面には、大入賞口内の経路を切り換えるためのソレノイド21Aも設けられている。また、可変表示装置9の上部には、始動入賞口14に入った有効入賞球数すなわち始動記憶数を表示する4個の表示部を有する始動記憶表示器18が設けられている。この例では、4個を上限として、有効始動入賞がある毎に、始動記憶表示器18は点灯している表示部を1つずつ増やす。そして、可変表示装置9の可変表示が開始される毎に、点灯している表示部を1つ減らす。
【0025】
ゲート32に遊技球が入賞しゲートスイッチ32aで検出されると、普通図柄始動記憶が上限に達していなければ、所定の乱数値が抽出される。そして、普通図柄表示器10において表示状態が変化する可変表示を開始できる状態であれば、普通図柄表示部の表示の可変表示が開始される。普通図柄表示器10の近傍には、ゲート32に入った入賞球数を表示する4個の表示部を有する普通図柄始動記憶表示器41が設けられている。この例では、4個を上限として、ゲート32への球通過がある毎に、普通図柄始動記憶表示器41は点灯している表示部を1つずつ増やす。そして、普通図柄表示器10の可変表示が開始される毎に、点灯している表示部を1つ減らす。
【0026】
この実施の形態では、可変表示装置9の表示領域150の一部において普通図柄の可変表示が行われ、可変表示は所定時間(例えば29秒)継続する。そして、可変表示の終了時に当り図柄が停止表示されると当りとなる。当りとするか否かは、ゲート32に遊技球が入賞したときに抽出された乱数の値が所定の当り判定値と一致したか否かによって決定される。普通図柄の可変表示の表示結果が当りである場合に、可変入賞球装置15が所定回数、所定時間だけ開状態になって遊技球が入賞しやすい状態になる。すなわち、可変入賞球装置15の状態は、普通図柄の停止図柄が当り図柄である場合に、遊技者にとって不利な状態から有利な状態に変化する。
【0027】
さらに、確変状態では、普通図柄の停止図柄が当り図柄になる確率が高められるとともに、可変入賞球装置15の開放時間と開放回数とのうちの一方または双方が高められ、遊技者にとってさらに有利になる。また、確変状態等の所定の状態では、普通図柄の可変表示期間(変動時間)が短縮されることによって、遊技者にとってさらに有利になるようにしてもよい。
【0028】
遊技盤6には、複数の入賞口29,30,33,39が設けられ、遊技球の入賞口29,30,33,39への入賞は、それぞれ入賞口スイッチ29a,30a,33a,39aによって検出される。遊技領域7の左右周辺には、遊技中に点滅表示される装飾ランプ25が設けられ、下部には、入賞しなかった打球を吸収するアウト口26がある。また、遊技領域7の外側の左右上部には、効果音を発する2つのスピーカ27が設けられている。遊技領域7の外周には、天枠ランプ28a、左枠ランプ28bおよび右枠ランプ28cが設けられている。さらに、遊技領域7における各構造物(大入賞口等)の周囲には装飾LEDが設置されている。天枠ランプ28a、左枠ランプ28bおよび右枠ランプ28cおよび装飾用LEDは、遊技機に設けられている装飾発光体の一例である。なお、図1に明示されている装飾ランプ25の他にも、可変表示装置9における周辺部分や開閉板20の周囲部分等には装飾用のランプやLEDが設置されている。
【0029】
そして、この例では、左枠ランプ28bの近傍に、賞球残数があるときに点灯する賞球ランプ51が設けられ、天枠ランプ28aの近傍に、補給球が切れたときに点灯する球切れランプ52が設けられている。さらに、図1には、パチンコ遊技機1に隣接して設置され、プリペイドカードが挿入されることによって球貸しを可能にするカードユニット50も示されている。
【0030】
カードユニット50には、使用可能状態であるか否かを示す使用可表示ランプ151、カードユニット50がいずれの側のパチンコ遊技機1に対応しているのかを示す連結台方向表示器153、カードユニット50内にカードが投入されていることを示すカード投入表示ランプ154、記録媒体としてのカードが挿入されるカード挿入口155、およびカード挿入口155の裏面に設けられているカードリーダライタの機構を点検する場合にカードユニット50を開放するためのカードユニット錠156が設けられている。
【0031】
打球発射装置から発射された遊技球は、打球レールを通って遊技領域7に入り、その後、遊技領域7を下りてくる。打球が始動入賞口14に入り始動口スイッチ14aで検出されると、特別図柄の可変表示を開始できる状態であれば、可変表示装置9の表示領域150において特別図柄が可変表示(変動)を始める。図柄の可変表示を開始できる状態でなければ、始動記憶数を1増やす。
【0032】
特別図柄の可変表示は、一定時間が経過したときに停止する。停止時の特別図柄の組み合わせが大当り図柄(特定表示態様)であると、大当り遊技状態に移行する。すなわち、開閉板20が、一定時間経過するまで、または、所定個数(例えば10個)の打球が入賞するまで開放する。そして、開閉板20の開放中に打球がV入賞領域に入賞しV入賞スイッチ22で検出されると、継続権が発生し開閉板20の開放が再度行われる。継続権の発生は、所定回数(例えば15ラウンド)許容される。
【0033】
停止時の特別図柄の組み合わせが確率変動を伴う大当り図柄(確変図柄)の組み合わせである場合には、次に大当りとなる確率が高くなる。すなわち、確変状態という遊技者にとってさらに有利な状態となる。
【0034】
なお、以下、遊技制御手段およびその他の制御手段を、それぞれ電気部品制御手段と呼び、電気部品制御手段を搭載した基板を電気部品制御基板と呼ぶことがある。また、電気部品とは、遊技機に設けられている部品(機構部品や回路等)であって電気的に動作するものである。
【0035】
次に、パチンコ遊技機1の裏面の構造について図3を参照して説明する。図3は、遊技機を裏面から見た背面図である。図4は、各種部材が取り付けられた機構板を遊技機背面側から見た背面図である。
【0036】
図3に示すように、遊技機裏面側では、可変表示装置9を制御する図柄制御基板80を含む可変表示制御ユニット49、遊技制御用マイクロコンピュータ等が搭載された遊技制御基板(主基板)31が設置されている。また、球払出制御を行う払出制御用マイクロコンピュータ等が搭載された払出制御基板37が設置されている。さらに、遊技盤6に設けられている各種装飾LED、装飾ランプ25、枠側に設けられている天枠ランプ28a、左枠ランプ28b、右枠ランプ28c、賞球ランプ51および球切れランプ52を点灯制御するランプ制御手段が搭載されたランプ制御基板35、スピーカ27からの音発生を制御する音制御手段が搭載された音制御基板70も設けられている。また、また、DC30V、DC21V、DC12VおよびDC5Vを作成する電源回路が搭載された電源基板910や発射制御基板91が設けられている。
【0037】
遊技機裏面において、上方には、各種情報を遊技機外部に出力するための各端子を備えたターミナル基板160が設置されている。ターミナル基板160には、少なくとも、球切れ検出スイッチの出力を導入して外部出力するための球切れ用端子、賞球個数信号を外部出力するための賞球用端子および球貸し個数信号を外部出力するための球貸し用端子が設けられている。また、中央付近には、主基板31からの各種情報を遊技機外部に出力するための各端子を備えた情報端子盤34が設置されている。
【0038】
さらに、各基板(主基板31や払出制御基板37等)に含まれる記憶内容保持手段(例えば、電力供給停止時にもその内容を保持可能な変動データ記憶手段すなわちバックアップRAM)に記憶されたバックアップデータをクリアするための操作手段としてのクリアスイッチ921が搭載されたスイッチ基板190が設けられている。スイッチ基板190には、クリアスイッチ921と、主基板31等の他の基板と接続されるコネクタ922が設けられている。
【0039】
貯留タンク38に貯留された遊技球は誘導レールを通り、賞球ケース40Aで覆われた球払出装置に至る。球払出装置の上部には、遊技媒体切れ検出手段としての球切れスイッチ187が設けられている。球切れスイッチ187が球切れを検出すると、球払出装置の払出動作が停止する。球切れスイッチ187は遊技球通路内の遊技球の有無を検出するスイッチであるが、貯留タンク38内の補給球の不足を検出する球切れ検出スイッチ167も誘導レールにおける上流部分(貯留タンク38に近接する部分)に設けられている。球切れ検出スイッチ167が遊技球の不足を検知すると、遊技機設置島に設けられている補給機構から遊技機に対して遊技球の補給が行われる。
【0040】
球払出装置から払い出された遊技球は、連絡口45を通ってパチンコ遊技機1の前面に設けられている打球供給皿3に誘導される。連絡口45の側方には、パチンコ遊技機1の前面に設けられている余剰球受皿4に連通する余剰球通路46が形成されている。
【0041】
入賞にもとづく景品としての遊技球や球貸し要求にもとづく遊技球が多数払い出されて打球供給皿3が満杯になり、ついには遊技球が連絡口45に到達した後さらに遊技球が払い出されると、遊技球は、余剰球通路46を経て余剰球受皿4に導かれる。さらに遊技球が払い出されると、感知レバー47が貯留状態検出手段としての満タンスイッチ48を押圧して、貯留状態検出手段としての満タンスイッチ48がオンする。その状態では、球払出装置内の払出モータの回転が停止して球払出装置の動作が停止するとともに発射装置の駆動も停止する。
【0042】
図4に示すように、球払出装置の側方には、カーブ樋186から遊技機下部の排出口192に至る球抜き通路191が形成されている。球抜き通路191の上部には球抜きレバー193が設けられ、球抜きレバー193が遊技店員等によって操作されると、誘導レール39から球抜き通路191への遊技球通路が形成され、貯留タンク38内に貯留されている遊技球は、排出口192から遊技機外に排出される。
【0043】
図5は、球払出装置97の構成例を示す分解斜視図である。この例では、賞球ケース40Aとしての3つのケース140,141,142の内部に球払出装置97が形成されている。ケース140,141の上部には、球切れスイッチ187の下部の球通路と連通する穴170,171が設けられ、遊技球は、穴170,171から球払出装置97に流入する。
【0044】
球払出装置97は駆動源となる払出モータ(例えばステッピングモータ)289を含む。払出モータ289の回転力は、払出モータ289の回転軸に嵌合しているギア290に伝えられ、さらに、ギア290と噛み合うギア291に伝えられる。ギア291の中心軸には、凹部を有するスプロケット292が嵌合している。穴170,171から流入した遊技球は、スプロケット292の凹部によって、スプロケット292の下方の球通路293に1個ずつ落下させられる。
【0045】
球通路293には遊技球の流下路を切り替えるための振分部材311が設けられている。振分部材311はソレノイド310によって駆動され、賞球払出時には、球通路293における一方の流下路を遊技球が流下するように倒れ、球貸し時には球通路293における他方の流下路を遊技球が流下するように倒れる。なお、払出モータ289およびソレノイド310は、払出制御基板37に搭載されている払出制御用CPUによって制御される。また、払出制御用CPUは、主基板31に搭載されている遊技制御用のCPUからの指令に応じて払出モータ289およびソレノイド310を制御する。
【0046】
賞球払出時に選択される流下路の下方には球払出装置によって払い出された遊技球を検出する賞球センサ(賞球カウントスイッチ)301Aが設けられ、球貸し時に選択される流下路の下方には球払出装置によって払い出された遊技球を検出する球貸しセンサ(球貸しカウントスイッチ)301Bが設けられている。賞球カウントスイッチ301Aの検出信号と球貸しカウントスイッチ301Bの検出信号は払出制御基板37の払出制御用CPUに入力される。払出制御用CPUは、それらの検出信号にもとづいて、実際に払い出された遊技球の個数を計数する。
【0047】
なお、ギア291の周辺部には、払出モータ位置センサを形成する複数の突起部295が形成されている。突起部295は、ギア291の回転すなわち払出モータ289の回転に伴って発光体(図示せず)からの光を、払出モータ位置センサの受光部(図示せず)に対して透過させたり遮蔽したりする。払出制御用CPUは、受光部からの検出信号によって払出モータ289の位置を認識することができる。
【0048】
また、この実施の形態では、払出手段としての球払出装置97は球貸しも賞球払出も実行可能な構成であるが、球貸しを行う機構と賞球払出を行う機構とが独立していても本発明を適用することができる。球貸しを行う機構と賞球払出を行う機構とが独立している場合には、賞球払出と球貸しとを同時実行可能なので、遊技球の相対的な払出速度を速くすることができる。また、遊技球の流下路を切り替えるための振分部材311およびソレノイド310は不要である。さらに、払出手段として、例えば、モータが正転すると賞球払出が行われモータが逆転すると球貸しが行われるような構造のものなど、他の構造のものを用いることもできる。
【0049】
図6は、遊技盤6に設置されているスイッチ基板190の部分を示す正面図である。図6に示すように、スイッチ基板190には、主基板31等の他の基板に、ケーブルを介してクリアスイッチ921の出力を接続するためのコネクタ922が搭載されている。
【0050】
図7は、スイッチ基板190に搭載されたクリアスイッチ921の構成の一例を示す構成図である。図7(A)には、押しボタン構造のクリアスイッチ921が示されている。クリアスイッチ921が押下されるとローレベル(オン状態)のクリアスイッチ信号(操作信号)が出力され、コネクタ922を介して主基板31および払出制御基板37等に出力される。すなわち、クリアスイッチ921から主基板31および払出制御基板37等に出力される操作信号がオン状態になる。また、クリアスイッチ921が押下されていなければハイレベル(オフ状態)の信号が出力される。なお、この実施の形態では、クリアスイッチ信号は少なくとも主基板31および払出制御基板37に出力されるので、コネクタ922として、主基板31へのクリアスイッチ信号を出力するためのコネクタと、払出制御基板37へのクリアスイッチ信号を出力するためのコネクタとを別個に設けてもよい。
【0051】
図7(B)は、クリアスイッチ921の他の構成例を示す構成図である。図7(B)に示すクリアスイッチ921は、「OFF」、「ON」および「クリア」の選択切り換えを行うための切換操作部921aを有する。切換操作部921aによって、「OFF」が選択されているときは何らの信号も発生しない。「ON」が選択されているときはハイレベルの信号を出力する。なお、クリアスイッチ921が、遊技機1に対する電源供給のオン/オフ切換のためのスイッチも兼ねていてもよい。その場合、「OFF」が選択されると、遊技機1に対する電源供給が停止された状態(遊技機の電源がオフの状態)になる。「ON」または「クリア」が選択されると、遊技機1に対して電源供給が行われる状態(遊技機の電源がオンの状態)になる。また、「クリア」が選択されているときに、ローレベルのクリアスイッチ信号が出力される。
【0052】
なお、この実施の形態では、クリアスイッチ921が搭載されたスイッチ基板190が他の基板(遊技制御基板等)とは別個に設けられているが、他の基板にクリアスイッチ921を搭載してもよい。例えば、電源基板910に搭載してもよい。クリアスイッチ921が電源基板910に搭載されている場合には、遊技盤6の入れ替え等の場合に入れ替え後の遊技盤6に対して電源基板910をそのまま使用しても、入れ替え後の遊技盤6において、そのままで遊技状態復旧処理等を実行することができる。すなわち、電源基板910の使い回しを行うことができる。
【0053】
また、クリアスイッチ921は、遊技盤6の側に設置されていてもよいが、遊技枠側に設置されていてもよい。
【0054】
後述するように、遊技制御手段や払出制御手段等の電気部品制御手段は、遊技機への電力供給の開始に関連して操作手段から操作信号が出力された場合には、変動データ記憶手段としてのバックアップRAMの内容を初期化するのであるが、電気部品制御手段を介さずに変動データ記憶手段の内容を初期化するように構成してもよい。例えば、バックアップRAMに電力を供給するバックアップ電源がコンデンサである場合には、クリアスイッチ921の押下に応じてコンデンサを放電させることによってバックアップRAMの内容を初期化することができる。
【0055】
図8は、主基板31における回路構成の一例を示すブロック図である。なお、図8には、払出制御基板37、ランプ制御基板35、音制御基板70、発射制御基板91および図柄制御基板80も示されている。主基板31には、プログラムに従ってパチンコ遊技機1を制御する基本回路53と、ゲートスイッチ32a、始動口スイッチ14a、V入賞スイッチ22、カウントスイッチ23、入賞口スイッチ29a,30a,33a,39a、満タンスイッチ48、球切れスイッチ187、賞球カウントスイッチ301Aおよびクリアスイッチ921からの信号を基本回路53に与えるスイッチ回路58と、可変入賞球装置15を開閉するソレノイド16、開閉板20を開閉するソレノイド21および大入賞口内の経路を切り換えるためのソレノイド21Aを基本回路53からの指令に従って駆動するソレノイド回路59とが搭載されている。
【0056】
なお、図8には示されていないが、カウントスイッチ短絡信号もスイッチ回路58を介して基本回路53に伝達される。また、ゲートスイッチ32a、始動口スイッチ14a、V入賞スイッチ22、カウントスイッチ23、入賞口スイッチ29a,30a,33a,39a、満タンスイッチ48、球切れスイッチ187、賞球カウントスイッチ301A等のスイッチは、センサと称されているものでもよい。すなわち、遊技球を検出できる遊技媒体検出手段(この例では遊技球検出手段)であれば、その名称を問わない。スイッチと称されているものがセンサと称されているもの等でもよいこと、すなわち、スイッチが遊技媒体検出手段の一例であることは、他の実施の形態でも同様である。
【0057】
また、基本回路53から与えられるデータに従って、大当りの発生を示す大当り情報、可変表示装置9における図柄の可変表示開始に利用された始動入賞球の個数を示す有効始動情報、確率変動が生じたことを示す確変情報等の情報出力信号をホールコンピュータ等の外部装置に対して出力する情報出力回路64が搭載されている。
【0058】
基本回路53は、ゲーム制御用のプログラム等を記憶するROM54、ワークメモリとして使用される記憶手段(変動データを記憶する手段)としてのRAM55、プログラムに従って制御動作を行うCPU56およびI/Oポート部57を含む。この実施の形態では、ROM54,RAM55はCPU56に内蔵されている。すなわち、CPU56は、1チップマイクロコンピュータである。なお、1チップマイクロコンピュータは、少なくともRAM55が内蔵されていればよく、ROM54およびI/Oポート部57は外付けであっても内蔵されていてもよい。なお、CPU56はROM54に格納されているプログラムに従って制御を実行するので、以下、CPU56が実行する(または、処理を行う)ということは、具体的には、CPU56がプログラムに従って制御を実行することである。このことは、主基板31以外の他の基板に搭載されているCPUについても同様である。
【0059】
また、RAM(CPU内蔵RAMであってもよい。)55の一部または全部が、電源基板910において作成されるバックアップ電源よってバックアップされているバックアップRAMである。すなわち、遊技機に対する電力供給が停止しても、所定期間は、RAM55の一部または全部の内容は保存される。
【0060】
遊技球を打撃して発射する打球発射装置は発射制御基板91上の回路によって制御される駆動モータ94で駆動される。そして、駆動モータ94の駆動力は、操作ノブ5の操作量に従って調整される。すなわち、発射制御基板91上の回路によって、操作ノブ5の操作量に応じた速度で打球が発射されるように制御される。
【0061】
この実施の形態では、ランプ制御基板35に搭載されているランプ制御手段が、遊技盤に設けられている始動記憶表示器18、普通図柄始動記憶表示器41および装飾ランプ25の表示制御を行うとともに、枠側に設けられている天枠ランプ28a、左枠ランプ28b、右枠ランプ28c、賞球ランプ51および球切れランプ52の表示制御を行う。なお、各ランプはLEDその他の種類の発光体でもよく、この実施の形態および他の実施の形態で用いられているLEDも他の種類の発光体でもよい。すなわち、ランプやLEDは発光体の一例である。また、可変表示装置9における周辺部分や開閉板20の周囲部分等に設置されている装飾用のランプやLEDも、ランプ制御手段によって制御される。従って、ランプ制御基板35に搭載されているランプ制御手段は、遊技機に設けられている発光体の制御を行う発光体制御手段に相当する。また、特別図柄を可変表示する可変表示装置9および普通図柄を可変表示する普通図柄表示器10の表示制御は、図柄制御基板80に搭載されている表示制御手段によって行われる。
【0062】
図9は、図柄制御基板80内の回路構成を、可変表示装置9の一実現例であるLCD(液晶表示装置)82、普通図柄表示器10、主基板31の出力ポート(ポート0,2)570,572および出力バッファ回路620,62Aとともに示すブロック図である。出力ポート(出力ポート2)572からは8ビットのデータが出力され、出力ポート570からは1ビットのストローブ信号(INT信号)が出力される。
【0063】
表示制御用CPU101は、制御データROM102に格納されたプログラムに従って動作し、主基板31からノイズフィルタ107および入力バッファ回路105Bを介してINT信号が入力されると、入力バッファ回路105Aを介して表示制御コマンドを受信する。入力バッファ回路105A,105Bとして、例えば汎用ICである74HC540,74HC14を使用することができる。なお、表示制御用CPU101がI/Oポートを内蔵していない場合には、入力バッファ回路105A,105Bと表示制御用CPU101との間に、I/Oポートが設けられる。
【0064】
そして、表示制御用CPU101は、受信した表示制御コマンドに従って、LCD82に表示される画面の表示制御を行う。具体的には、表示制御コマンドに応じた指令をVDP103に与える。VDP103は、キャラクタROM86から必要なデータを読み出す。VDP103は、入力したデータに従ってLCD82に表示するための画像データを生成し、R,G,B信号および同期信号をLCD82に出力する。
【0065】
なお、図9には、VDP103をリセットするためのリセット回路83、VDP103に動作クロックを与えるための発振回路85、および使用頻度の高い画像データを格納するキャラクタROM86も示されている。キャラクタROM86に格納される使用頻度の高い画像データとは、例えば、LCD82に表示される人物、動物、または、文字、図形もしくは記号等からなる画像などである。
【0066】
入力バッファ回路105A,105Bは、主基板31から表示制御基板80へ向かう方向にのみ信号を通過させることができる。従って、表示制御基板80側から主基板31側に信号が伝わる余地はない。すなわち、入力バッファ回路105A,105Bは、入力ポートとともに不可逆性情報入力手段を構成する。表示制御基板80内の回路に不正改造が加えられても、不正改造によって出力される信号が主基板31側に伝わることはない。
【0067】
高周波信号を遮断するノイズフィルタ107として、例えば3端子コンデンサやフェライトビーズが使用されるが、ノイズフィルタ107の存在によって、表示制御コマンドに基板間でノイズが乗ったとしても、その影響は除去される。また、主基板31のバッファ回路620,62Aの出力側にもノイズフィルタを設けてもよい。
【0068】
図10は、払出制御基板37および球払出装置97の構成要素などの払出に関連する構成要素を示すブロック図である。図10に示すように、満タンスイッチ48からの検出信号は、中継基板71を介して主基板31のI/Oポート部57に入力される。また、球切れスイッチ187からの検出信号も、中継基板72および中継基板71を介して主基板31のI/Oポート部57に入力される。
【0069】
主基板31のCPU56は、球切れスイッチ187からの検出信号が球切れ状態を示しているか、または、満タンスイッチ48からの検出信号が満タン状態を示していると、払出を停止すべき状態であることを指示する払出制御コマンドを送出する。払出を停止すべき状態であることを指示する払出制御コマンドを受信すると、払出制御基板37の払出制御用CPU371は球払出処理を停止する。
【0070】
さらに、賞球カウントスイッチ301Aからの検出信号は、中継基板72および中継基板71を介して主基板31のI/Oポート部57に入力されるとともに、中継基板72を介して払出制御基板37の入力ポート372bに入力される。賞球カウントスイッチ301Aは、球払出装置97の払出機構部分に設けられ、実際に払い出された賞球払出球を検出する。
【0071】
入賞があると、払出制御基板37には、主基板31の出力ポート(ポート0,1)570,571から賞球個数を示す払出制御コマンドが入力される。出力ポート(出力ポート1)571は8ビットのデータを出力し、出力ポート570は1ビットのINT信号を出力する。賞球個数を示す払出制御コマンドは、入力バッファ回路373Aを介してI/Oポート372aに入力される。INT信号は、入力バッファ回路373Bを介して払出制御用CPU371の割込端子に入力されている。払出制御用CPU371は、I/Oポート372aを介して払出制御コマンドを入力し、払出制御コマンドに応じて球払出装置97を駆動して賞球払出を行う。なお、この実施の形態では、払出制御用CPU371は、1チップマイクロコンピュータであり、少なくともRAMが内蔵されている。
【0072】
また、主基板31において、出力ポート570,571の外側にバッファ回路620,68Aが設けられている。バッファ回路620,68Aとして、例えば、汎用のCMOS−ICである74HC250,74HC14が用いられる。このような構成によれば、外部から主基板31の内部に入力される信号が阻止されるので、払出制御基板37から主基板31に信号が与えられる可能性がある信号ラインをさらに確実になくすことができる。なお、バッファ回路620,68Aの出力側にノイズフィルタを設けてもよい。
【0073】
払出制御用CPU371は、出力ポート372cを介して、貸し球数を示す球貸し個数信号をターミナル基板160に出力する。さらに、出力ポート372dを介して、エラー表示用LED374にエラー信号を出力する。
【0074】
さらに、払出制御基板37の入力ポート372bには、中継基板72を介して、球貸しカウントスイッチ301B、および払出モータ289の回転位置を検出するための払出モータ位置センサからの検出信号が入力される。球貸しカウントスイッチ301Bは、球払出装置97の払出機構部分に設けられ、実際に払い出された貸し球を検出する。払出制御基板37からの払出モータ289への駆動信号は、出力ポート372cおよび中継基板72を介して球払出装置97の払出機構部分における払出モータ289に伝えられ、振分ソレノイド310への駆動信号は、出力ポート372eおよび中継基板72を介して球払出装置97の払出機構部分における振分ソレノイド310に伝えられる。また、クリアスイッチ921の出力も、入力ポート372bに入力される。
【0075】
カードユニット50には、カードユニット制御用マイクロコンピュータが搭載されている。また、カードユニット50には、連結台方向表示器153、カード投入表示ランプ154およびカード挿入口155が設けられている(図1参照)。残高表示基板74には、打球供給皿3の近傍に設けられている度数表示LED、球貸しスイッチおよび返却スイッチが接続される。
【0076】
残高表示基板74からカードユニット50には、遊技者の操作に応じて、球貸しスイッチ信号および返却スイッチ信号が払出制御基板37を介して与えられる。また、カードユニット50から残高表示基板74には、プリペイドカードの残高を示すカード残高表示信号および球貸し可表示信号が払出制御基板37を介して与えられる。カードユニット50と払出制御基板37の間では、接続信号(VL信号)、ユニット操作信号(BRDY信号)、球貸し要求信号(BRQ信号)、球貸し完了信号(EXS信号)およびパチンコ機動作信号(PRDY信号)が入力ポート372bおよび出力ポート372eを介してやりとりされる。
【0077】
パチンコ遊技機1の電源が投入されると、払出制御基板37の払出制御用CPU371は、カードユニット50にPRDY信号を出力する。また、カードユニット制御用マイクロコンピュータは、VL信号を出力する。払出制御用CPU371は、VL信号の入力状態により接続状態/未接続状態を判定する。カードユニット50においてカードが受け付けられ、球貸しスイッチが操作され球貸しスイッチ信号が入力されると、カードユニット制御用マイクロコンピュータは、払出制御基板37にBRDY信号を出力する。この時点から所定の遅延時間が経過すると、カードユニット制御用マイクロコンピュータは、払出制御基板37にBRQ信号を出力する。
【0078】
そして、払出制御基板37の払出制御用CPU371は、カードユニット50に対するEXS信号を立ち上げ、カードユニット50からのBRQ信号の立ち下がりを検出すると、払出モータ289を駆動し、所定個の貸し球を遊技者に払い出す。このとき、振分ソレノイド310は駆動状態とされている。すなわち、球振分部材311を球貸し側に向ける。そして、払出が完了したら、払出制御用CPU371は、カードユニット50に対するEXS信号を立ち下げる。その後、カードユニット50からのBRDY信号がオン状態でなければ、賞球払出制御を実行する。
【0079】
以上のように、カードユニット50からの信号は全て払出制御基板37に入力される構成になっている。従って、球貸し制御に関して、カードユニット50から主基板31に信号が入力されることはなく、主基板31の基本回路53にカードユニット50の側から不正に信号が入力される余地はない。また、カードユニット50で用いられる電源電圧AC24Vは払出制御基板37から供給される。
【0080】
この実施の形態では、電源基板910から払出制御基板37に対して電源断信号も入力される。電源断信号は、払出制御用CPU371のマスク不能割込(NMI)端子に入力される。さらに、払出制御基板37に存在するRAM(CPU内蔵RAMであってもよい。)の少なくとも一部は、電源基板910において作成されるバックアップ電源によって、バックアップされている。すなわち、遊技機に対する電力供給が停止しても、所定期間は、RAMの少なくとも一部の内容は保存される。ただし、この実施の形態では、RAMは全てバックアップ電源によってバックアップされている。なお、変動データ記憶手段として電源バックアップされる揮発性のRAMではなく、EEPROMやフラッシュROM等の不揮発性記憶手段を用いてもよい。不揮発性記憶手段を用いた場合には、停電等の不測の電力供給停止が生ずる場合に、記憶手段の記憶情報への影響を低減させることができる。すなわち、記憶手段に記憶されている内容がより安全に保存される。また、不揮発性記憶手段を用いた場合には、電源基板910においてバックアップ電源を設けなくてもよい。
【0081】
なお、この実施の形態では、カードユニット50が遊技機とは別体として遊技機に隣接して設置されている場合を例にするが、カードユニット50は遊技機と一体化されていてもよい。また、コイン投入に応じてその金額に応じた遊技球が貸し出されるような場合でも本発明を適用できる。
【0082】
図11は、電力供給基板としての電源基板910の一構成例を示すブロック図である。電源基板910は、主基板31、図柄制御基板80、音制御基板70、ランプ制御基板35および払出制御基板37等の電気部品制御基板と独立して設置され、遊技機内の各電気部品制御基板および機構部品が使用する電圧を生成する。この例では、AC24V、VSL(DC+30V)、DC+21V、DC+12VおよびDC+5Vを生成する。また、バックアップ電源すなわち記憶保持用電力供給手段となるコンデンサ916は、DC+5Vすなわち各基板上のIC等を駆動する電源のラインから充電される。なお、VSLは、整流回路912において、整流素子でAC24Vを整流昇圧することによって生成される。VSLは、ソレノイド駆動電源となる。
【0083】
トランス911は、交流電源からの交流電圧を24Vに変換する。AC24V電圧は、コネクタ915に出力される。また、整流回路912は、AC24Vから+30Vの直流電圧を生成し、DC−DCコンバータ913およびコネクタ915に出力する。DC−DCコンバータ913は、1つまたは複数のコンバータIC922(図11では1つのみを示す。)を有し、VSLにもとづいて+21V、+12Vおよび+5Vを生成してコネクタ915に出力する。コンバータIC922の入力側には、比較的大容量のコンデンサ923が接続されている。従って、外部からの遊技機に対する電力供給が停止したときに、+30V、+12V、+5V等の直流電圧は、比較的緩やかに低下する。コネクタ915は例えば中継基板に接続され、中継基板から各電気部品制御基板および機構部品に必要な電圧の電力が供給される。
【0084】
ただし、電源基板910に各電気部品制御基板に至る各コネクタを設け、電源基板910から、中継基板を介さずにそれぞれの基板に至る各電圧を供給するようにしてもよい。また、図11には1つのコネクタ915が代表して示されているが、コネクタは、各電気部品制御基板対応に設けられている。
【0085】
DC−DCコンバータ913からの+5Vラインは分岐してバックアップ+5Vラインを形成する。バックアップ+5Vラインとグラウンドレベルとの間には大容量のコンデンサ916が接続されている。コンデンサ916は、遊技機に対する電力供給が停止したときの電気部品制御基板のバックアップRAMに対して記憶状態を保持できるように電力を供給するバックアップ電源となる。また、+5Vラインとバックアップ+5Vラインとの間に、逆流防止用のダイオード917が挿入される。なお、この実施の形態では、バックアップ用の+5Vは、主基板31および払出制御基板37に供給される。
【0086】
また、電源基板910には、電源監視回路としての電源監視用IC902が搭載されている。電源監視用IC902は、VSL電圧を導入し、VSL電圧を監視することによって遊技機への電力供給停止の発生を検出する。具体的には、VSL電圧が所定値(この例では+22V)以下になったら、電力供給の停止が生ずるとして電源断信号を出力する。なお、監視対象の電源電圧は、各電気部品制御基板に搭載されている回路素子の電源電圧(この例では+5V)よりも高い電圧であることが好ましい。この例では、交流から直流に変換された直後の電圧であるVSLが用いられている。電源監視用IC902からの電源断信号は、主基板31や払出制御基板37等に供給される。
【0087】
電源監視用IC902が電力供給の停止を検知するための所定値は、通常時の電圧より低いが、各電気部品制御基板上のCPUが暫くの間動作しうる程度の電圧である。また、電源監視用IC902が、CPU等の回路素子を駆動するための電圧(この例では+5V)よりも高く、また、交流から直流に変換された直後の電圧を監視するように構成されているので、CPUが必要とする電圧に対して監視範囲を広げることができる。従って、より精密な監視を行うことができる。さらに、監視電圧としてVSL(+30V)を用いる場合には、遊技機の各種スイッチに供給される電圧が+12Vであることから、電源瞬断時のスイッチオン誤検出の防止も期待できる。すなわち、+30V電源の電圧を監視すると、+30V作成の以降に作られる+12Vが落ち始める以前の段階でそれの低下を検出できる。
【0088】
+12V電源の電圧が低下するとスイッチ出力がオン状態を呈するようになるが、+12Vより早く低下する+30V電源電圧を監視して電力供給の停止を認識すれば、スイッチ出力がオン状態を呈する前に電力供給回復待ちの状態に入ってスイッチ出力を検出しない状態となることができる。
【0089】
また、電源監視用IC902は、電気部品制御基板とは別個の電源基板910に搭載されているので、電源監視回路から複数の電気部品制御基板に電源断信号を供給することができる。電源断信号を必要とする電気部品制御基板が幾つあっても電源監視手段は1つ設けられていればよいので、各電気部品制御基板における各電気部品制御手段が後述する復旧制御を行っても、遊技機のコストはさほど上昇しない。
【0090】
なお、図11に示された構成では、電源監視用IC902の検出信号(電源断信号)は、バッファ回路918,919を介してそれぞれの電気部品制御基板(例えば主基板31と払出制御基板37)に伝達されるが、例えば、1つの検出信号を中継基板に伝達し、中継基板から各電気部品制御基板に同じ信号を分配する構成でもよい。また、電源断信号を必要とする基板数に応じたバッファ回路を設けてもよい。さらに、主基板31と払出制御基板37とに出力される電源断信号について、電源断信号を出力することになる電源監視回路の監視電圧を異ならせてもよい。
【0091】
なお、この実施の形態では、電源監視手段は電源基板910に搭載されているが、電源監視手段は、遊技機における他の箇所に設置されていてもよい。
【0092】
図12は、主基板31におけるCPU56周りの一構成例を示すブロック図である。図12に示すように、電源基板910の電源監視回路(電源監視手段)からの電源断信号が、CPU56のマスク不能割込端子(XNMI端子)に接続されている。従って、CPU56は、マスク不能割込(NMI)処理によって遊技機への電力供給の停止の発生を確認することができる。
【0093】
図12には、システムリセット回路65も示されている。リセットIC651は、電源投入時に、外付けのコンデンサの容量で決まる所定時間だけ出力をローレベルとし、所定時間が経過すると出力をハイレベルにする。すなわち、リセット信号をハイレベルに立ち上げてCPU56を動作可能状態にする。また、リセットIC651は、電源監視回路が監視する電源電圧と等しい電源電圧であるVSLの電源電圧を監視して電圧値が所定値(電源監視回路が電源断信号を出力する電源電圧値よりも低い値)以下になると出力をローレベルにする。従って、CPU56は、電源監視回路からの電源断信号に応じて所定の電力供給停止時処理を行った後、システムリセットされる。
【0094】
図12に示すように、リセットIC651からのリセット信号は、NAND回路947に入力されるとともに、反転回路(NOT回路)944を介してカウンタIC941のクリア端子に入力される。カウンタIC941は、クリア端子への入力がローレベルになると、発振器943からのクロック信号をカウントする。そして、カウンタIC941のQ5出力がNOT回路945,946を介してNAND回路947に入力される。また、カウンタIC941のQ6出力は、フリップフロップ(FF)942のクロック端子に入力される。フリップフロップ942のD入力はハイレベルに固定され、Q出力は論理和回路(OR回路)949に入力される。OR回路949の他方の入力には、NAND回路947の出力がNOT回路948を介して導入される。そして、OR回路949の出力がCPU56のリセット端子に接続されている。このような構成によれば、電源投入時に、CPU56のリセット端子に2回のリセット信号(ローレベル信号)が与えられるので、CPU56は、確実に動作を開始する。
【0095】
そして、例えば、電源基板910の電源監視回路の検出電圧(電源断信号を出力することになる電圧)を+22Vとし、リセット信号をローレベルにするための検出電圧を+9Vとする。そのように構成した場合には、電源監視回路とシステムリセット回路65とが、同一の電源VSLの電圧を監視するので、電圧監視回路が電源断信号を出力するタイミングとシステムリセット回路65がシステムリセット信号を出力するタイミングの差を所望の所定期間に確実に設定することができる。所望の所定期間とは、電源監視回路からの電源断信号に応じて電力供給停止時処理を開始してから電力供給停止時処理が確実に完了するまでの期間である。
【0096】
なお、電源基板910の電源監視回路とシステムリセット回路65とが監視する電源の電圧は異なっていてもよい。
【0097】
CPU56等の駆動電源である+5V電源から電力が供給されていない間、RAMの少なくとも一部は、電源基板から供給されるバックアップ電源によってバックアップされ、遊技機に対する電力供給が停止しても内容は保存される。そして、+5V電源が復旧すると、システムリセット回路65からリセット信号が発せられるので、CPU56は、通常の動作状態に復旧する。そのとき、必要なデータがバックアップRAMに保存されているので、停電等からの復旧時に停電等の発生時の遊技状態に復旧させることができる。
【0098】
なお、図12に示す構成では、電源投入時にCPU56のリセット端子に2回のリセット信号(ローレベル信号)が与えられるが、リセット信号の立ち上がりタイミングが1回しかなくても確実にリセット解除されるCPUを使用する場合には、符号941〜949で示された回路素子は不要である。その場合、リセットIC651の出力がそのままCPU56のリセット端子に接続される。
【0099】
この実施の形態で用いられるCPU56は、I/Oポート(PIO)およびタイマ/カウンタ回路(CTC)も内蔵している。PIOは、PB0〜PB3の4ビットおよびPA0〜PA7の1バイトのポートを有する。PB0〜PB3およびPA0〜PA7のポートは、入力/出力いずれにも設定できる。
【0100】
図13および図14は、この実施の形態における出力ポートの割り当てを示す説明図である。図13に示すように、出力ポート0は各電気部品制御基板に送出される制御コマンドのINT信号の出力ポートである。また、払出制御基板37に送出される払出制御コマンドの8ビットのデータは(払出制御信号CD0〜CD7)出力ポート1から出力され、図柄制御基板80に送出される表示制御コマンドの8ビットのデータ(表示制御信号CD0〜CD7)は出力ポート2から出力され、ランプ制御基板35に送出されるランプ制御コマンドの8ビットのデータ(ランプ制御信号CD0〜CD7)は出力ポート3から出力される。そして、図14に示すように、音制御基板70に送出される音制御コマンドの8ビットのデータ(音声制御信号CD0〜CD7)は出力ポート4から出力される。
【0101】
また、出力ポート5から、情報出力回路64を介して情報端子板34やターミナル基板160に至る各種情報出力用信号すなわち制御に関わる情報の出力データが出力される。そして、出力ポート6から、可変入賞球装置15を開閉するためのソレノイド16、大入賞口の開閉板20を開閉するためのソレノイド21、および大入賞口内の経路を切り換えるためのソレノイド21Aに対する駆動信号が出力される。
【0102】
図13および図14に示すように、払出制御基板37、図柄制御基板80、ランプ制御基板35および音制御基板70に対して出力される各INT信号(払出制御信号INT、表示制御信号INT、ランプ制御信号INTおよび音声制御信号INT)を出力する出力ポート(出力ポート0)と、払出制御信号CD0〜CD7、表示制御信号CD0〜CD7、ランプ制御信号CD0〜CD7および音声制御信号CD0〜CD7を出力する出力ポート(出力ポート1〜4)とは、別ポートである。
【0103】
従って、INT信号を出力する際に、誤って払出制御信号CD0〜CD7、表示制御信号CD0〜CD7、ランプ制御信号CD0〜CD7および音声制御信号CD0〜CD7を変化させてしまう可能性が低減する。また、払出制御信号CD0〜CD7、表示制御信号CD0〜CD7、ランプ制御信号CD0〜CD7または音声制御信号CD0〜CD7を出力する際に、誤ってINT信号を変化させてしまう可能性が低減する。その結果、主基板31の遊技制御手段から各電気部品制御基板に対するコマンドは、より確実に送出されることになる。さらに、各INT信号は、全て出力ポート0から出力されるように構成されているので、遊技制御手段のINT信号出力処理の負担が軽減される。
【0104】
図15は、この実施の形態における入力ポートのビット割り当てを示す説明図である。図15に示すように、入力ポート0のビット0〜7には、それぞれ、入賞口スイッチ33a,39a,29a,30a、始動口スイッチ14a、カウントスイッチ23、V入賞スイッチ22、ゲートスイッチ32aの検出信号が入力される。また、入力ポート1のビット0〜4には、それぞれ、賞球カウントスイッチ301A、満タンスイッチ48、球切れスイッチ187の検出信号、カウントスイッチ短絡信号およびクリアスイッチ921の検出信号が入力される。なお、各スイッチからの検出信号は、スイッチ回路58において論理反転されている。このように、クリアスイッチ921の検出信号すなわち操作手段の操作入力は、遊技球を検出するためのスイッチの検出信号が入力される入力ポート(8ビット構成の入力部)と同一の入力ポートにおけるビット(入力ポート回路)に入力されている。
【0105】
図16は、バックアップRAM領域における作業領域(スタック領域を除く領域)の使用の仕方の一例を示す説明図である。図16に示す例では、バックアップRAM領域における作業領域の先頭はバックアップフラグの領域に割り当てられている。また、作業領域は、特定の領域(以下、特定領域という。)とその他の領域(以下、非特定領域という。)とに大別される。特定領域に記憶されるデータは、初期化されると遊技者にとって著しく不利になるような遊技者利益関連データであり、換言すれば、そのデータが正確に記憶されていれば遊技の進行に支障を来さないようなデータや遊技者の利益に関連するようなデータである。
【0106】
具体的には、特定遊技状態としての大当り遊技状態の進行状況を示す特別図柄プロセスフラグ、大当りが生じたか否かを示す大当りフラグ、大当り遊技状態においてラウンド継続の条件となる特定領域への遊技球の通過を示す特定領域通過フラグ、可変表示装置9における可変表示(図柄の変動)を開始させる条件の成立を記憶する始動入賞記憶、始動入賞発生時に抽出された乱数値等が格納される特別図柄判定用バッファ、可変表示の停止図柄を示す情報が格納される特定図柄バッファ、高確率状態であるか否かを示す確率変動フラグ、遊技球の入賞にもとづく賞球数を格納する賞球個数バッファ、未払出の賞球数の総数が格納される総賞球数バッファ等が、特定領域に記憶される。また、特定領域の最後部は、特定領域についてのチェックサムが格納されるチェックサムバッファに割り当てられている。なお、特別図柄プロセスフラグによって、特定遊技状態であるか否かを判定することができる。
【0107】
非特定領域には、例えば、後述するスイッチタイマ、乱数発生用カウンタ、遊技機外部に出力される情報信号を作成するための情報出力用タイマ等が記憶される。また、非特定領域の最後部は、非特定領域についてのチェックサムが格納されるチェックサムバッファに割り当てられている。
【0108】
次に遊技機の動作について説明する。図17は、主基板31における遊技制御手段(CPU56およびROM,RAM等の周辺回路)が実行するメイン処理を示すフローチャートである。遊技機に対して電源が投入され、リセット端子の入力レベルがハイレベルになると、CPU56は、ステップS1以降のメイン処理を開始する。メイン処理において、CPU56は、まず、必要な初期設定を行う。
【0109】
初期設定処理において、CPU56は、まず、割込禁止に設定する(ステップS1)。次に、割込モードを割込モード2に設定し(ステップS2)、スタックポインタにスタックポインタ指定アドレスを設定する(ステップS3)。そして、内蔵デバイスレジスタの初期化を行う(ステップS4)。また、内蔵デバイス(内蔵周辺回路)であるCTC(カウンタ/タイマ)およびPIO(パラレル入出力ポート)の初期化(ステップS5)を行った後、RAMをアクセス可能状態に設定する(ステップS6)。
【0110】
この実施の形態で用いられるCPU56は、I/Oポート(PIO)およびタイマ/カウンタ回路(CTC)も内蔵している。また、CTCは、2本の外部クロック/タイマトリガ入力CLK/TRG2,3と2本のタイマ出力ZC/TO0,1を備えている。
【0111】
この実施の形態で用いられているCPU56には、マスク可能な割込のモードとして以下の3種類のモードが用意されている。なお、マスク可能な割込が発生すると、CPU56は、自動的に割込禁止状態に設定するとともに、プログラムカウンタの内容をスタックにセーブする。
【0112】
割込モード0:割込要求を行った内蔵デバイスがRST命令(1バイト)またはCALL命令(3バイト)をCPUの内部データバス上に送出する。よって、CPU56は、RST命令に対応したアドレスまたはCALL命令で指定されるアドレスの命令を実行する。リセット時に、CPU56は自動的に割込モード0になる。よって、割込モード1または割込モード2に設定したい場合には、初期設定処理において、割込モード1または割込モード2に設定するための処理を行う必要がある。
【0113】
割込モード1:割込が受け付けられると、常に0038(h)番地に飛ぶモードである。
【0114】
割込モード2:CPU56の特定レジスタ(Iレジスタ)の値(1バイト)と内蔵デバイスが出力する割込ベクタ(1バイト:最下位ビット0)から合成されるアドレスが、割込番地を示すモードである。すなわち、割込番地は、上位アドレスが特定レジスタの値とされ下位アドレスが割込ベクタとされた2バイトで示されるアドレスである。従って、任意の(飛び飛びではあるが)偶数番地に割込処理を設置することができる。各内蔵デバイスは割込要求を行うときに割込ベクタを送出する機能を有している。
【0115】
よって、割込モード2に設定されると、各内蔵デバイスからの割込要求を容易に処理することが可能になり、また、プログラムにおける任意の位置に割込処理を設置することが可能になる。さらに、割込モード1とは異なり、割込発生要因毎のそれぞれの割込処理を用意しておくことも容易である。上述したように、この実施の形態では、初期設定処理のステップS2において、CPU56は割込モード2に設定される。
【0116】
次いで、CPU56は、入力ポート1を介して入力されるクリアスイッチ921の出力信号の状態を1回だけ確認する(ステップS7)。その確認においてオンを検出した場合には、CPU56は、通常の初期化処理を実行する(ステップS11〜ステップS15)。クリアスイッチ921がオンである場合(押下されている場合)には、ローレベルのクリアスイッチ信号が出力されている。なお、入力ポート1では、クリアスイッチ信号のオン状態はハイレベルである(図15参照)。また、例えば、遊技店員は、クリアスイッチ921をオン状態にしながら遊技機に対する電力供給を開始することによって、容易に初期化処理を実行させることができる。すなわち、RAMクリア等を行うことができる。
【0117】
クリアスイッチ921がオンの状態でない場合には、遊技機への電力供給が停止したときにバックアップRAM領域のデータ保護処理(例えばチェックデータの付加等の電力供給停止時処理)が行われたか否か確認する(ステップS8)。この実施の形態では、電力供給の停止が生じた場合には、バックアップRAM領域のデータを保護するための処理が行われている。そのような保護処理が行われていた場合をバックアップありとする。そのような保護処理が行われていないことを確認したら、CPU56は初期化処理を実行する。
【0118】
この実施の形態では、バックアップRAM領域にバックアップデータがあるか否かは、電力供給停止時処理においてバックアップRAM領域に設定される実行確認情報としてのバックアップフラグの状態によって確認される。この例では、図18に示すように、バックアップフラグ領域に「55H」が設定されていればバックアップあり(オン状態)を意味し、「55H」以外の値が設定されていればバックアップなし(オフ状態)を意味する。
【0119】
バックアップありを確認したら、CPU56は、バックアップRAMの特定領域のデータチェック(この例ではチェックサムによるチェック)を行う。まず、特定領域についてチェックサムの算出を行う(ステップS141)。図19は、チェックサム算出処理を示すフローチャートである。
【0120】
チェックサム算出処理において、CPU56は、クリアデータ(00)をチェックサムデータエリアにセットし(ステップS170)、チェックサム算出開始アドレスをポインタにセットする(ステップS171)。チェックサム算出開始アドレスは特定領域の先頭アドレスである。また、チェックサム算出回数をセットする(ステップS172)。チェックサム算出回数は、特定領域の先頭アドレスからチェックサムバッファの手前までのデータ数である。
【0121】
そして、チェックサムデータエリアの内容とポインタが指すバックアップRAM領域の内容との排他的論理和を演算する(ステップS173)。演算結果をチェックサムデータエリアにストアするとともに(ステップS174)、ポインタの値を1増やし(ステップS175)、チェックサム算出回数の値を1減算する(ステップS176)。ステップS173〜S176の処理が、チェックサム算出回数の値が0になるまで繰り返される(ステップS177)。
【0122】
チェックサム算出回数の値が0になったら、CPU56は、チェックサムデータエリアの内容の各ビットの値を反転する(ステップS178)。反転後のデータが、チェックの対象となる最終的なチェックサムである。
【0123】
電力供給停止時処理において、上記の処理と同様の処理によってチェックサムが算出され、チェックサムは特定領域のチェックサムバッファに保存されている。そこで、CPU56は、特定領域のチェックサムバッファの内容を読み出し(ステップS142)、ステップS178で得られたチェックサムとチェックサムバッファから読み出したチェックサムとを比較する(ステップS143)。比較結果が不一致であった場合には初期化処理を実行する。ステップS143のチェック結果が不一致(正常でない)ということは、バックアップRAMにおける特定領域のデータが、電力供給停止時のデータとは異なっていることを意味する。そのような場合には、バックアップRAM領域に保存されていたデータを用いて制御状態を電力供給停止時の状態に復旧させたのでは遊技者に著しく不利益を与えることになるので、電力供給の停止からの復旧時でない電源投入時に実行される初期化処理を実行する。
【0124】
ステップS143のチェック結果が正常であった場合には、CPU56は、バックアップRAMの非特定領域のデータチェック(この例ではチェックサムによるチェック)を行う。まず、非特定領域についてチェックサムの算出を行う(ステップS144)。チェックサムの算出の仕方は、チェックサム開始アドレスおよびチェックサム算出回数が異なるだけで、特定領域の場合と同様である。
【0125】
電力供給停止時処理において、非特定領域についてもチェックサムが算出され、チェックサムは非特定領域のチェックサムバッファに保存されている。そこで、CPU56は、非特定領域のチェックサムバッファの内容を読み出し(ステップS145)、ステップS144で得られたチェックサムとチェックサムバッファから読み出したチェックサムとを比較する(ステップS146)。比較結果が不一致であった場合にはバックアップRAMの非特定領域を初期化する(ステップS147)。そして、遊技状態復旧処理を実行する(ステップS10)。また、比較結果が一致であった場合にはバックアップRAMの非特定領域を初期化することなく、遊技状態復旧処理を実行する(ステップS10)。
【0126】
図20は、チェックサム算出方法の一例を説明するための説明図である。ただし、図20に示す例では、簡単のために、バックアップRAM領域のデータのサイズを3バイトとする。チェックサム算出処理において、図20に示すように、チェックサムデータとして初期データ(この例では00(H))が設定される。次に、「00(H)」と「F0(H)」の排他的論理和がとられ、その結果と「16(H)」の排他的論理和がとられる。さらに、その結果と「DF(H)」の排他的論理和がとられる。そして、その結果(この例では「39(H)」)を論理反転して得られた値(この例では「C6(H)」)がチェックサムとなる。
【0127】
なお、図20では、説明を容易にするために、論理反転前のデータ「39(H)」をチェックサムとする様子が示されている。なお、初期データとしての00(H)はステップS170で設定されるチェックサムデータに対するクリアデータに応じた値であるが、実際には、00(H)との排他的論理和は演算前と後とで値が変わらないので、00(H)との排他的論理和演算を行わなくてもよい。
【0128】
ステップS141〜S147の処理によって、遊技者の利益に関連が深いデータ(特定領域のデータ)のうちの1つでも、電力供給停止中に破損されていた場合には、遊技状態復旧処理が実行されることなく初期化処理が実行される。また、特定領域のデータが電力供給停止中に正しく保存されていた場合には、遊技状態復旧処理を実行する。その際に、非特定領域のデータが電力供給停止中に正しく保存されていた場合には非特定領域のデータを初期化しないが、非特定領域のデータのうちの1つでも電力供給停止中に破損されていた場合には非特定領域のデータを初期化する。
【0129】
従って、この実施の形態では、遊技者の利益に関連が深いデータが正しく保存されていたか否かによって、遊技状態復旧処理が実行されるか否かが決まる。そして、遊技状態復旧処理が実行されることに決定された場合には、非特定領域のデータが電力供給停止中に正しく保存されていたときには遊技状態復旧処理後も非特定領域のデータが継続して使用される。しかし、非特定領域のデータが電力供給停止中に正しく保存されていなかった場合には、遊技状態復旧処理後に非特定領域のデータが継続して使用されてしまうことはない。
【0130】
以上のような制御が実行されることによって、本来であれば電力供給停止前の状態に復旧することが好ましいのであるが、非特定領域のデータが電力供給停止中に正しく保存されていなかった場合に非特定領域のデータが遊技状態復旧処理後に継続して使用されることを防止しつつ、遊技者の利益にさほど関連が深くないデータ(非特定領域のデータ)が破損したことに起因して、遊技者の利益に関連が深いデータ(特定領域のデータ)が初期化されてしまうことが防止され、遊技者に不利益が与えられることを防止することができる。例えば、遊技者の利益にさほど関連が深くないデータが破損されてしまったことに起因して大当り状態であったことを示すデータも初期化されてしまって大当り遊技状態が消滅してしまうようなことが防止されている。
【0131】
この実施の形態では、それぞれのチェックサムバッファは、特定領域および非特定領域において最後のアドレスに格納されている。従って、例えば、チェックサム作成方法のプログラムに誤りがないかどうか確認する際に、容易にその確認を行うことができる。領域の最終アドレスの値が正しいか否か確認すればよいからである。また、領域の最後のアドレスをチェックサムバッファの領域にすれば、バックアップRAM領域において無駄が生ずることはない。
【0132】
なお、ここでは、特定領域および非特定領域の最後のアドレスをチェックサムバッファの領域にしたが、確認のしやすさやRAM領域の無駄防止を考慮すると、特定領域および非特定領域の最初のアドレスをチェックサムバッファの領域にしてもよい。また、特定領域および非特定領域の中途の領域にチェックサムバッファの領域を割り当ててもよい。さらに、この実施の形態では、作業領域のデータについてチェックサムが生成されているが、スタック領域のデータも含めて(例えばスタック領域も特別領域に含めて)チェックサムを生成するようにしてもよい。何れのデータにもとづいて生成する場合であっても、RAM領域に格納されているデータを用いて算出処理等が行われるので、チェックサムを容易かつ短時間で生成することが可能となる。
【0133】
なお、バックアップRAM領域における作業領域を単純に分割して、それぞれの領域についてデータチェックを行って、それぞれの領域について独立して、初期化する/初期化しないを決定するように構成した場合には、遊技者にとって不利な状態で遊技状態復旧処理が実行されてしまうおそれがある。例えば、特定領域についてデータチェックが異常であって、非特定領域についてデータチェックが正常である場合、それぞれの領域について独立してチェック結果にもとづく初期化する/初期化しないを実行するように構成した場合には、非特定領域のデータが遊技状態復旧処理後に継続して使用されるが、特定領域のデータが初期化された状態で遊技状態復旧処理が実行されてしまう。
【0134】
また、上記の例では、非特定領域は1つであったが、非特定領域は複数に分けられていてもよい。また、この実施の形態では、RAM領域は全てバックアップRAM領域であるが、バックアップRAM領域の他に、非バックアップRAM領域があってもよい。
【0135】
上記の例では、チェックデータとして、排他的論理和によるチェックサムをビット反転させたデータを用いたが、ビット反転させないデータを用いてもよい。さらに、チェックサムによるチェック方法として、まず、チェックサムバッファの内容を読み出し、読み出した値を初期値として、チェック対象領域のデータを順次排他的論理していって、最終的に得られた値が00(H)であったら、チェック結果が正常であると判定するようにしてもよい。さらに、上記の例では、チェックデータとして排他的論理和によるチェックサムを用いたが、チェックデータは排他的論理和によるものに限られず、他の手法によって作成されるものでもよい。ただし、排他的論理和によるチェックサムを用いた場合には、チェックデータが排他的論理和演算を施して算出されたデータであり、変動データ記憶手段のワードサイズが通常一定(1バイト)であることから、データの管理が容易になる。
【0136】
以上のように、バックアップフラグとチェックサム等のチェックデータとを用いてバックアップRAM領域のデータが保存されているか否かを確認することによって、遊技状態を電力供給停止時の状態に正確に戻すことができる。すなわち、バックアップRAM領域のデータにもとづく状態復旧処理の確実性が向上する。
【0137】
また、バックアップフラグの状態によって「バックアップあり」が確認されなかった場合には、遊技状態復旧処理を行うことなく後述する初期化処理を行うようにしているので、バックアップデータが存在しないのにもかかわらず遊技状態復旧処理が実行されてしまうことを防止することができ、初期化処理によって制御状態を初期状態に戻すことが可能となる。また、バックアップフラグの状態が「バックアップなし」であった場合には直ちに初期化処理を実行することができるので、制御が簡略化される。
【0138】
初期化処理では、CPU56は、まず、RAMの全領域をクリアするRAMの初期化処理を行う(ステップS11)。また、所定の作業領域(例えば、普通図柄判定用バッファ、特別図柄左中右図柄バッファ、特別図柄プロセスフラグ、払出コマンド格納ポインタ、賞球中フラグ、球切れフラグ、払出停止フラグなど制御状態に応じて選択的に処理を行うためのフラグ)に初期値を設定する作業領域設定処理を行う(ステップS12)。さらに、球払出装置97からの払出が可能であることを指示する払出許可状態指定コマンド(以下、払出可能状態指定コマンドという。)を払出制御基板37に対して送信する処理を行う(ステップS13)。また、他のサブ基板(ランプ制御基板35、音制御基板70、図柄制御基板80)を初期化するための初期化コマンドを各サブ基板に送信する処理を実行する(ステップS14)。初期化コマンドとして、可変表示装置9に表示される初期図柄を示すコマンド(図柄制御基板80に対して)や賞球ランプ51および球切れランプ52の消灯を指示するコマンド(ランプ制御基板35に対して)等がある。
【0139】
初期化処理では、払出制御基板37に対して常に払出可能状態指定コマンドが送信される。仮に、遊技機の状態が球払出装置97からの払出が可能でない状態であったとしても、直後に実行される遊技制御処理において、その旨が検出され、払出が可能でない状態であることを指示する払出禁止状態指定コマンド(以下、払出停止状態指定コマンドという。)が送信されるので問題はない。なお、払出可能状態指定コマンドおよび他のサブ基板に対する初期化コマンドの送信処理において、例えば、各コマンドが設定されているテーブル(ROM領域)のアドレスをポインタにセットし、後述するコマンド作成処理(図43参照)のような処理ルーチンをコールすればよい。
【0140】
そして、2ms毎に定期的にタイマ割込がかかるようにCPU56に設けられているCTCのレジスタの設定が行われる(ステップS15)。すなわち、初期値として2msに相当する値が所定のレジスタ(時間定数レジスタ)に設定される。
【0141】
初期化処理の実行(ステップS11〜S15)が完了すると、メイン処理で、表示用乱数更新処理(ステップS17)および初期値用乱数更新処理(ステップS18)が繰り返し実行される。表示用乱数更新処理および初期値用乱数更新処理が実行されるときには割込禁止状態とされ(ステップS16)、表示用乱数更新処理および初期値用乱数更新処理の実行が終了すると割込許可状態とされる(ステップS19)。表示用乱数とは、可変表示装置9に表示される図柄を決定するための乱数等であり、表示用乱数更新処理とは、表示用乱数を発生するための乱数生成用カウンタのカウント値を更新する処理である。また、初期値用乱数更新処理とは、初期値用乱数を発生するためのカウンタのカウント値を更新する処理である。初期値用乱数とは、大当りとするか否かを決定するための乱数を発生するためのカウンタ(大当り決定用乱数発生カウンタ)等のカウント値の初期値を決定するための乱数である。後述する遊技制御処理において、大当り決定用乱数発生カウンタのカウント値が1周すると、そのカウンタに初期値が設定される。
【0142】
なお、表示用乱数更新処理が実行されるときには割込禁止状態とされるのは、表示用乱数更新処理が後述するタイマ割込処理でも実行されることから、タイマ割込処理における処理と競合してしまうのを避けるためである。すなわち、ステップS17の処理中にタイマ割込が発生してタイマ割込処理中で表示用乱数を発生するためのカウンタのカウント値を更新してしまったのでは、カウント値の連続性が損なわれる場合がある。しかし、ステップS17の処理中では割込禁止状態にしておけば、そのような不都合が生ずることはない。
【0143】
図21は、遊技状態復旧処理の一例を示すフローチャートである。遊技状態復旧処理において、CPU56は、まず、スタックポインタの復旧処理を行う(ステップS81)。スタックポインタの値は、後で詳述する電力供給停止時処理において、バックアップRAM領域の所定の領域に退避している。よって、ステップS81では、その領域の値をスタックポインタに設定することによって復旧させる。なお、復旧されたスタックポインタが指す領域(すなわちスタック領域)には、電力供給が停止したときのレジスタ値やプログラムカウンタ(PC)の値が退避している。
【0144】
次いで、CPU56は、払出停止状態であったか否か確認する(ステップS82)。払出停止状態であったか否かは、バックアップRAM領域の特定領域における払出状態データとしての払出停止フラグによって確認される。払出停止状態であった場合には、払出制御基板37に搭載されている払出制御手段に対して、払出の停止を指示する払出制御コマンド(払出停止状態指定コマンド)を送信する(ステップS83)。払出停止状態でなかった場合には、払出制御手段に対して払出が可能であることを指示する払出制御コマンド(払出可能状態指定コマンド)を送信する(ステップS84)。
【0145】
補給球の不足や余剰球受皿4の満タンについて払出制御手段は認識できないので、遊技制御手段から通知しないと、停電等からの復旧時に、補給球の不足や余剰球受皿4の満タンであるにもかかわらず遊技球の払出処理を開始してしまうおそれがある。しかし、この実施の形態では、遊技状態復旧処理において、払出の停止を指示する払出制御コマンドまたは払出が可能であること指示する払出制御コマンドが送信されるので、払出制御手段が、補給球の不足や余剰球受皿4の満タンであるにもかかわらず遊技球の払出処理を開始してしまうことはない。
【0146】
なお、ここでは、遊技媒体の払い出しが可能であるか否かを判定する払出状態判定手段(遊技制御手段の一部)が払出可能でないことを検出したら、原因の如何に関わらず、1種類の払出停止状態指定コマンドが送信されるようにしたが、原因別のコマンド(この例では、補給球の不足を示すコマンドと下皿満タンを示すコマンド)に分けて送信してもよい。さらに、遊技球の払出が可能でない場合に、遊技の継続を禁止するために遊技球の発射を禁止することを指示するコマンドを払出制御基板37に対して送信してもよい。払出制御基板37に搭載された払出制御手段は、遊技球の発射を禁止することを指示するコマンドを受信したら、打球発射装置の駆動を停止する。また、遊技球の払出が可能でない場合に、遊技制御手段が発射制御手段に対して、直接、遊技球の発射を禁止することを指示する信号を与えてもよい。また、払出制御手段は、払出停止状態指定コマンドを受信した場合に、打球発射装置の駆動を停止するようにしてもよい。
【0147】
次いで、CPU56は、電力供給が停止したときに可変表示装置9において特別図柄変動中であったか否か確認する(ステップS85)。電力供給が停止したときに特別図柄変動中であったか否かは、例えばバックアップRAM領域の特定領域に格納されている特別図柄プロセスフラグの値等によって確認することができる。特別図柄変動中であった場合には、図柄制御基板80に搭載されている表示制御手段に対して、特別図柄停電復旧コマンドおよび左右中の図柄を指定する表示制御コマンドを送信する(ステップS86,S87)。ここで、表示制御コマンドで指定される左右中の図柄は、電力供給が停止したときに行われていた特別図柄変動で停止表示されるはずであった図柄である。
【0148】
表示制御手段は、特別図柄停電復旧コマンドを受信すると、所定の報知処理を行う。例えば、可変表示装置9に停電が生じた旨の表示を行う。電源バックアップされていた各種情報にもとづいて、遊技状態が電力供給停止前の状態に戻るのであるが、その後、特別図柄の変動期間が終了すると、遊技制御手段は表示制御手段に対して確定コマンドを送信する。表示制御手段は、確定コマンドを受信したことにもとづいて、次の特別図柄の変動を行える状態になる。
【0149】
特別図柄変動中でなかった場合には、CPU56は、表示制御手段に対して、左右中の図柄を指定する表示制御コマンド、確定コマンドおよび客待ちデモコマンドを送信する処理を行う(ステップS88〜S90)。表示制御コマンドで指定される左右中の図柄は、電力供給が停止したときに可変表示装置9において表示されていた図柄である。
【0150】
表示制御手段は、確定コマンドを受信すると、左右中の図柄を指定する表示制御コマンドで指定された特別図柄を可変表示装置9に表示させる制御を行う。また、客待ちデモコマンドを受信すると、可変表示装置9の背景等の表示状態を待機状態の表示状態にする制御を行う。
【0151】
その後、CPU56は、バックアップフラグをクリアする(ステップS91)すなわち、前回の電力供給停止時に所定の記憶保護処理が実行されたことを示すフラグをリセットする。よって、制御状態の復旧後に不必要な情報が残存しないようにすることができる。また、スタック領域から各種レジスタの退避値を読み出して、各種レジスタ(IXレジスタ、HLレジスタ、DEレジスタ、BCレジスタ)に設定する(ステップS92)。すなわち、レジスタ復元処理を行う。なお、各レジスタが復元させる毎に、スタックポインタの値が減らされる。すなわち、スタックポインタの値が、スタック領域の1つ前のアドレスを指すように更新される。そして、パリティフラグがオンしていない場合には割込許可状態にする(ステップS93,S94)。最後に、AFレジスタ(アキュミュレータとフラグのレジスタ)をスタック領域から復元する(ステップS95)。
【0152】
そして、RET命令が実行される。RET命令が実行されるときには、CPU56は、スタックポインタが指す領域に格納されているデータをプログラムカウンタに設定することによってプログラムのリターン動作を実現する。ただし、ここでのリターン先は、遊技状態復旧処理をコールした部分ではない。なぜなら、ステップS81においてスタックポインタの復旧処理がなされ、ステップS92でレジスタの復元処理が終了した後では、スタック領域を指すスタックポインタは、NMIによる電力供給停止時処理が開始されたときに実行されていたプログラムのアドレスが退避している領域を指している。すなわち、復旧されたスタックポインタが指すスタック領域に格納されているリターンアドレスは、プログラムにおける前回の電力供給停止時にNMIが発生したアドレスである。従って、ステップS95の次のRET命令によって、電力供給停止時にNMIが発生したアドレスにリターンする。すなわち、スタック領域に退避されていたアドレスにもとづいて復旧制御が実行されている。
【0153】
タイマ割込が発生すると、図22に示すように、CPU56は、レジスタの退避処理(ステップS20)を行った後、ステップS21〜S31の遊技制御処理を実行する。遊技制御処理において、CPU56は、まず、スイッチ回路58を介して、ゲートスイッチ32a、始動口スイッチ14a、カウントスイッチ23および入賞口スイッチ29a,30a,33a,39a等のスイッチの検出信号を入力し、それらの状態判定を行う(スイッチ処理:ステップS21)。
【0154】
次に、遊技制御に用いられる大当り判定用の乱数等の各判定用乱数を生成するための各乱数生成用カウンタのカウント値を更新する処理を行う(ステップS23)。CPU56は、さらに、表示用乱数および初期値用乱数を生成するための乱数生成用カウンタのカウント値を更新する処理を行う(ステップS24,S25)。
【0155】
さらに、CPU56は、特別図柄プロセス処理を行う(ステップS25)。特別図柄プロセス制御では、遊技状態に応じてパチンコ遊技機1を所定の順序で制御するための特別図柄プロセスフラグに従って該当する処理が選び出されて実行される。そして、特別図柄プロセスフラグの値は、遊技状態に応じて各処理中に更新される。また、普通図柄プロセス処理を行う(ステップS26)。普通図柄プロセス処理では、普通図柄の表示状態を所定の順序で制御するための普通図柄プロセスフラグに従って該当する処理が選び出されて実行される。そして、普通図柄プロセスフラグの値は、遊技状態に応じて各処理中に更新される。
【0156】
次いで、CPU56は、特別図柄に関する表示制御コマンドを送信する処理を行う(特別図柄コマンド制御処理:ステップS27)。また、普通図柄に関する表示制御コマンドを送信する処理を行う(普通図柄コマンド制御処理:ステップS28)。
【0157】
さらに、CPU56は、例えばホールコンピュータに供給される大当り情報、始動情報、確率変動情報などのデータを出力する情報出力処理を行う(ステップS29)。
【0158】
また、CPU56は、所定の条件が成立したときにソレノイド回路59に駆動指令を行う(ステップS30)。可変入賞球装置15または開閉板20を開状態または閉状態としたり、大入賞口内の遊技球通路を切り替えたりするために、ソレノイド回路59は、駆動指令に応じてソレノイド16,21,21Aを駆動する。
【0159】
そして、CPU56は、入賞口スイッチ29a,30a,33a,39aの検出信号にもとづく賞球個数の設定などを行う賞球処理を実行する(ステップS31)。具体的には、入賞口スイッチ29a,30a,33a,39aがオンしたことにもとづく入賞検出に応じて、払出制御基板37に賞球個数を示す払出制御コマンドを出力する。払出制御基板37に搭載されている払出制御用CPU371は、賞球個数を示す払出制御コマンドに応じて球払出装置97を駆動する。その後、レジスタの内容を復旧させ(ステップS32)、割込許可状態に設定する(ステップS33)。
【0160】
以上の制御によって、この実施の形態では、遊技制御処理は2ms毎に定期的に起動されることになる。なお、この実施の形態では、タイマ割込処理で遊技制御処理が実行されているが、タイマ割込処理では例えば割込が発生したことを示すフラグのセットのみがなされ、遊技制御処理はメイン処理において実行されるようにしてもよい。
【0161】
図23,図24は、電源基板910からの電源断信号に応じて実行されるマスク不能割込処理(電力供給停止時処理)の処理例を示すフローチャートである。マスク不能割込が発生すると、CPU56に内蔵されている割込制御機構は、マスク不能割込発生時に実行されていたプログラムのアドレス(具体的には実行完了後の次のアドレス)を、スタックポインタが指すスタック領域に退避させるとともに、スタックポインタの値を増やす。すなわち、スタックポインタの値がスタック領域の次のアドレスを指すように更新する。なお、この実施の形態では、XNMI端子にローレベルからハイレベルへの変化が生ずると割込が生ずるが、他の態様のレベル変化に応じて割込が発生するマイクロコンピュータを用いても、以下のような制御を実行することができる。
【0162】
電力供給停止時処理において、CPU56は、AFレジスタ(アキュミュレータとフラグのレジスタ)を所定のバックアップRAM領域に退避する(ステップS451)。また、割込フラグをパリティフラグにコピーする(ステップS452)。パリティフラグはバックアップRAM領域に形成されている。割込フラグは、割込許可状態であるのか割込禁止状態であるのかを示すフラグであって、CPU56が内蔵する制御レジスタ中にある。割込フラグのオン状態が割込禁止状態であることを示す。上述したように、パリティフラグは遊技状態復旧処理(図17のステップS92参照)で参照される。そして、遊技状態復旧処理において、パリティフラグがオン状態であれば、割込許可状態には設定されない。つまり、電力供給停止時処理において、割込処理の実行を禁止する割込禁止状態、または、割込処理の実行を許可する割込許可状態を示す割込状態情報が、パリティフラグとしてバックアップRAMに保存される。そして、遊技状態復旧処理において、保存されている割込状態情報にもとづいて、電力供給が停止したときの割込禁止状態または割込許可状態も復旧する。
【0163】
また、BCレジスタ、DEレジスタ、HLレジスタ、IXレジスタおよびスタックポインタをバックアップRAM領域のスタック領域に退避させる(ステップS454〜S458)。なお、ステップS451〜S458の処理は、電源監視手段の検出信号に応じて制御状態を復旧させるために必要なデータを変動データ記憶手段に保存させるためのデータ退避処理に相当する。
【0164】
次に、バックアップあり指定値(この例では「55H」)を実行確認情報としてのバックアップフラグにストアする(ステップS459)。バックアップフラグはバックアップRAM領域に形成されている。次いで、バックアップRAMの特定領域についてチェックサムを算出し(ステップS460)、チェックサムデータエリアの内容を特定領域のチェックサムバッファに格納する(ステップS461)。また、バックアップRAMの非特定領域についてチェックサムを算出し(ステップS462)、チェックサムデータエリアの内容を非特定領域のチェックサムバッファに格納する(ステップS463)。なお、ステップS460およびS462の処理は、図19に示されたように実行される。次いで、CPU56は、RAMアクセスレジスタにアクセス禁止値を設定する(ステップS470)。以後、内蔵RAM55のアクセスができなくなる。従って、電圧低下に伴ってプログラムの暴走が生じても、RAMの記憶内容が破損されるようなことはない。
【0165】
さらに、CPU56は、クリアデータ(00)を適当なレジスタにセットし(ステップS471)、処理数(この例では「7」)を別のレジスタにセットする(ステップS472)。また、出力ポート0のアドレスをIOポインタに設定する(ステップS473)。IOポインタとして、さらに別のレジスタが用いられる。
【0166】
そして、IOポインタが指すアドレスにクリアデータをセットするとともに(ステップS474)、IOポインタの値を1増やし(ステップS475)、処理数の値を1減算する(ステップS477)。ステップS474〜S476の処理が、処理数の値が0になるまで繰り返される。その結果、全ての出力ポート0〜6(図13および図14参照)にクリアデータが設定される。図13および図14に示すように、この例では、「1」がオン状態であり、クリアデータである「00」が各出力ポートにセットされるので、全ての出力ポートがオフ状態になる。
【0167】
従って、遊技状態を保存するための処理(この例では、チェックサムの生成およびRAMアクセス防止)が実行された後、各出力ポートは直ちにオフ状態になる。なお、この実施の形態では、遊技制御処理において用いられるデータが格納されるRAM領域は全て電源バックアップされている。従って、その内容が正しく保存されているか否かを示すチェックサムの生成処理、およびその内容を書き換えないようにするためのRAMアクセス防止処理が、遊技状態を保存するための処理に相当する。
【0168】
遊技状態を保存するための処理が実行された後、直ちに各出力ポートがオフ状態になるので、保存される遊技状態と整合しない状況が発生することは確実に防止される。つまり、パチンコ遊技機のように可変入賞球装置を有している遊技機において、実装の関係上、可変入賞球装置における可変入賞口の位置と入賞を検出する入賞口スイッチの設置位置とを、ある程度離さざるを得ない。出力ポート、特に可変入賞球装置を開放状態にするための信号が出力される出力ポートを直ちにオフ状態にしないと、電力供給停止時に、可変入賞口に入賞したにもかかわらず、電力供給停止時処理の実行が開始されて入賞口スイッチの検出がなされない状況が起こりうる。その場合、可変入賞口に入賞があったことは保存されない。すなわち、実際に生じている遊技状態(入賞があったこと)と保存される遊技状態とが整合しない。しかし、この実施の形態では、出力ポートがクリアされて可変入賞球装置が閉じられるので、保存される遊技状態と整合しない状況が発生することは確実に防止される。
【0169】
また、電気部品の駆動が不能になる状態になる前に実行される電力供給停止時処理の際に、出力ポートをクリアすることができるので、電気部品の駆動が不能になる状態となる前に遊技制御手段によって制御される各電気部品を、適切な動作停止状態にすることができる。例えば、開放中の大入賞口を閉成させ、また開放中の可変入賞球装置15を閉成させるなど、電気部品についての作動を停止させたあとに電気部品の駆動が不能になる状態とすることができる。従って、適切な停止状態で電力供給の復旧を待つことが可能となる。そして、出力ポートに対するクリア処理が完了すると、CPU56は、待機状態(ループ状態)に入る。従って、システムリセットされるまで、何もしない状態になる。
【0170】
なお、この実施の形態では、NMIに応じて電力供給停止時処理が実行されたが、電源断信号をCPU56のマスク可能端子に接続し、マスク可能割込処理によって電力供給停止時処理を実行してもよい。また、電源断信号を入力ポートに入力し、入力ポートのチェック結果に応じて電力供給停止時処理を実行してもよい。
【0171】
また、この実施の形態では、電力供給停止時処理が、当該処理を実行したことを示す実行確認情報を変動データ記憶手段の特定領域に保存させるための処理を含んでいるが、実行確認情報は、非特定領域にも保存させるようにしてもよい。
【0172】
図25は、遊技機への電力供給停止時の電源電圧低下やNMI信号(=電源断信号:電力供給停止時信号)の様子を示すタイミング図である。遊技機に対する電力供給が停止すると、最も高い直流電源電圧であるVSLの電圧値は徐々に低下する。そして、この例では、+22Vにまで低下すると、電源基板910に搭載されている電源監視用IC902から電源断信号が出力される(ローレベルになる)。
【0173】
電源断信号は、電気部品制御基板(この実施の形態では主基板31および払出制御基板37)に導入され、CPU56および払出制御用CPU371のNMI端子に入力される。CPU56および払出制御用CPU371は、NMI処理によって、所定の電力供給停止時処理を実行する。
【0174】
VSLの電圧値がさらに低下して所定値(この例では+9V)にまで低下すると、主基板31や払出制御基板37に搭載されているシステムリセット回路の出力がローレベルになり、CPU56および払出制御用CPU371がシステムリセット状態になる。なお、CPU56および払出制御用CPU371は、システムリセット状態とされる前に、電力供給停止時処理を完了している。
【0175】
VSLの電圧値がさらに低下してVcc(各種回路を駆動するための+5V)を生成することが可能な電圧を下回ると、各基板において各回路が動作できない状態となる。しかし、少なくとも主基板31や払出制御基板37では、電力供給停止時処理が実行され、CPU56および払出制御用CPU371がシステムリセット状態とされている。
【0176】
以上のように、この実施の形態では、電源監視回路は、遊技機で使用される直流電圧のうちで最も高い電源VSLの電圧を監視して、その電源の電圧が所定値を下回ったら電圧低下信号(電源断検出信号)を発生する。図25に示すように、電源断信号が出力されるタイミングでは、IC駆動電圧は、まだ各種回路素子を十分駆動できる電圧値になっている。従って、IC駆動電圧で動作する主基板31のCPU56が所定の電力供給停止時処理を行うための動作時間が確保されている。
【0177】
なお、ここでは、電源監視回路は、遊技機で使用される直流電圧のうちで最も高い電源VSLの電圧を監視したが、電源断信号を発生するタイミングが、IC駆動電圧で動作する電気部品制御手段が所定の電力供給停止時処理を行うための動作時間が確保されるようなタイミングであれば、監視対象電圧は、最も高い電源VSLの電圧でなくてもよい。すなわち、少なくともIC駆動電圧よりも高い電圧を監視すれば、電気部品制御手段が所定の電力供給停止時処理を行うための動作時間が確保されるようなタイミングで電源断信号を発生することができる。
【0178】
その場合、上述したように、監視対象電圧は、電力供給停止時のスイッチオン誤検出の防止も期待できる電圧であることが好ましい。すなわち、遊技機の各種スイッチに供給される電圧(スイッチ電圧)が+12Vであることから、+12V電源電圧が落ち始める以前の段階で、電圧低下を検出できることが好ましい。よって、少なくともスイッチ電圧よりも高い電圧を監視することが好ましい。
【0179】
図26は、CPU56が実行する特別図柄プロセス処理のプログラムの一例を示すフローチャートである。図26に示す特別図柄プロセス処理は、図22のフローチャートにおけるステップS25の具体的な処理でもある。CPU56は、特別図柄プロセス処理を行う際に、変動短縮タイマ減算処理(ステップS310)および始動口スイッチ通過確認処理(ステップS311)を行った後に、内部状態(この例では特別図柄プロセスフラグ)に応じて、ステップS300〜S309のうちのいずれかの処理を行う。
【0180】
変動短縮タイマ減算処理は、始動記憶(始動口スイッチ14aがオンしたことの記憶)の記憶可能最大数に対応した個数設けられている変動短縮タイマを減算する処理である。そして、後述する特別図柄大当り判定処理(ステップS301)において、例えば、変動短縮タイマの値が0になっていて、かつ、低確率状態(通常状態)では始動記憶数が始動記憶の最大値、確変状態では始動記憶数が「2」以上であれば、図柄の変動パターンとして変動時間が短縮されたパターンを用いることに決定される。また、始動口スイッチ通過確認処理は、始動口スイッチ14aがオンしたときに所定の各乱数値を取得して記憶する処理である。
【0181】
ステップS300〜S309において、以下のような処理が行われる。
【0182】
特別図柄通常処理(ステップS300):始動記憶数を確認し、始動記憶数が0でなければ、ステップS301に移行するように特別図柄プロセスフラグの値を変更する。
【0183】
特別図柄大当り判定処理(ステップS301):始動入賞があったときに記憶された各種乱数を格納するバッファ等の内容をシフトする。シフトの結果、押し出されたバッファの内容にもとづいて大当りとするか否かを決定する。なお、バッファは、始動入賞の記憶可能最大数だけ用意されている。また、シフトによって押し出されたバッファの内容は、最も前に生じた始動入賞に応じた内容である。そして、大当りとすることに決定した場合には、大当りフラグをセットする。その後、ステップS302に移行するように特別図柄プロセスフラグの値を変更する。
【0184】
停止図柄設定処理(ステップS302):特別図柄の可変表示の表示結果である左右中図柄の停止図柄を決定する。そして、ステップS303に移行するように特別図柄プロセスフラグの値を変更する。
【0185】
変動パターン設定処理(ステップS303):特別図柄の可変表示のパターンすなわち可変表示パターン(変動パターン)を決定する。そして、決定された変動パターンおよび停止図柄等を通知するための表示制御コマンドを図柄制御基板80等に対して出力するための処理を行う。その後、ステップS304に移行するように特別図柄プロセスフラグの値を変更する。
【0186】
特別図柄変動処理(ステップS304):変動パターンに応じて決められている変動時間が経過したか否か確認する。経過していれば、ステップS305に移行するように特別図柄プロセスフラグの値を変更する。
【0187】
特別図柄図柄停止処理(ステップS305):一定時間(例えば1.000秒)が経過した後、大当りとすることに決定されている場合には、ステップS306に移行するように特別図柄プロセスフラグの値を変更する。そうでなければ、ステップS300に移行するように特別図柄プロセスフラグの値を変更する。
【0188】
大入賞口開放前処理(ステップS306):大入賞口を開放する制御を開始する。具体的には、カウンタやフラグを初期化するとともに、ソレノイド54を駆動して大入賞口を開放する。そして、ステップS307に移行するように特別図柄プロセスフラグの値を変更する。
【0189】
大入賞口開放中処理(ステップS307):大入賞口の閉成条件の成立を確認する処理等を行う。大入賞口の閉成条件が成立したら、ステップS308に移行するように特別図柄プロセスフラグの値を変更する。
【0190】
特定領域有効時間処理(ステップS308):V入賞スイッチ22の通過の有無を監視して、大当り遊技状態継続条件の成立を確認する処理を行う。大当り遊技状態継続の条件が成立し、かつ、まだ残りラウンドがある場合には、ステップS307に移行するように特別図柄プロセスフラグの値を変更する。また、所定の有効時間内に大当り遊技状態継続条件が成立しなかった場合、または、全てのラウンドを終えた場合には、ステップS309に移行するように特別図柄プロセスフラグの値を変更する。
【0191】
大当り終了処理(ステップS309):大当り遊技状態が終了したことを遊技者に報知するための表示をランプ制御手段等に行わせる制御を行う。そして、ステップS300に移行するように特別図柄プロセスフラグの値を変更する。
【0192】
図27は、始動口スイッチ通過確認処理(ステップS311)を示すフローチャートである。打球が遊技盤に設けられている始動入賞口14に入賞すると、始動口スイッチ14aがオンする。CPU56は、スイッチ回路58を介して始動口スイッチ14aがオンしたことを判定すると(ステップS41)、始動記憶数が上限値(この例では4)に達しているかどうか確認する(ステップS42)。始動記憶数が上限値に達していなければ、始動記憶数を1増やし(ステップS43)、大当り判定用乱数等の各乱数の値を抽出する。そして、それらを始動記憶数の値に対応した乱数値格納エリア(特別図柄判定用バッファ)に格納する(ステップS44)。
【0193】
また、始動記憶数指定コマンドの送出要求のための処理を行う(ステップS45)。始動記憶数指定コマンドとは、ランプ制御基板35に搭載されているランプ制御手段に対して送信される、新たな始動記憶数を通知するためのランプ制御コマンドであり、具体的には、後述するコマンド送信テーブルを指定する処理が行われる。なお、始動記憶数が上限値に達している場合には、始動記憶数を増やす処理を行わない。
【0194】
CPU56は、ステップS25の特別図柄プロセス処理において、図28に示すように始動記憶数の値を確認する(ステップS51)。始動記憶数が0でなければ、始動記憶;1(1番目の始動記憶)に対応する乱数値格納エリアに格納されている値を読み出すとともに(ステップS52)、始動記憶数の値を1減らし、かつ、各乱数値格納エリアの値をシフトする(ステップS53)。すなわち、始動記憶;n(n=2,・・・,4)に対応する乱数値格納エリアに格納されている各値を、始動記憶:n−1に対応する乱数値格納エリアに格納する。なお、そのときの始動記憶数に対応した乱数値格納エリアの内容をクリアする。例えば、始動記憶数が4であった場合には、始動記憶;4に対応した特別図柄乱数値格納エリアの内容をクリアする。
【0195】
また、始動記憶数が1減らされたので、新たな始動記憶数を表示制御手段等に通知するために、始動記憶数指定コマンドの送出要求のための処理を行う(ステップS65)。
【0196】
そして、CPU56は、ステップS52で読み出した値、すなわち抽出されている大当り判定用乱数(特別図柄判定用乱数)の値にもとづいて当り/はずれを決定する(ステップS54)。ここでは、大当り判定用乱数は0〜316の範囲の値をとることにする。そして、図29に示すように、通常状態では、例えばその値が「3」である場合に「大当り」と決定し、それ以外の値である場合には「はずれ」と決定する。また、高確率状態(確変状態)では、例えばその値が「3」,「7」,「79」,「103」,「107」のいずれかである場合に「大当り」と決定し、それ以外の値である場合には「はずれ」と決定する。
【0197】
図30は、各乱数を示す説明図である。各乱数は、以下のように使用される。
(1)ランダム1:大当りを発生させるか否か決定する(大当り判定用)
(2)ランダム2−1〜2−3:特別図柄の左右中のはずれ図柄決定用(特別図柄左右中)
(3)ランダム3:大当りを発生させる特別図柄の組合せを決定する(大当り図柄決定用)
(4)ランダム4:特別図柄の変動パターンを決定する(変動パターン決定用)
(5)ランダム5:普通図柄にもとづく当りを発生させるか否か決定する(普通図柄当り判定用)
(6)ランダム6:ランダム1の初期値を決定する(ランダム1初期値決定用)
(7)ランダム7:ランダム5の初期値を決定する(ランダム5初期値決定用)
【0198】
なお、図22に示された遊技制御処理におけるステップS23では、CPU56は、(1)の大当り判定用乱数、(3)の大当り図柄決定用乱数、および(5)の普通図柄当り判定用乱数を生成するためのカウンタのカウントアップ(1加算)を行う。すなわち、それらが判定用乱数であり、それら以外の乱数が表示用乱数または初期値用乱数である。なお、遊技効果を高めるために、上記(1)〜(7)の乱数以外の普通図柄に関する乱数等も用いられている。
【0199】
図28に示すステップS54において、大当りと判定されたときには、大当り図柄用乱数(ランダム3)の値に従って大当り図柄を決定する(ステップS55)。この実施の形態では、ランダム3の値に応じた大当り図柄テーブルに設定されている図柄番号の各図柄が、大当り図柄として決定される。大当り図柄テーブルには、複数種類の大当り図柄の組み合わせのそれぞれに対応した左右中の図柄番号が設定されている。また、変動パターン決定用乱数(ランダム4)を抽出し、ランダム4の値にもとづいて特別図柄の変動パターンを決定する(ステップS56)。
【0200】
はずれと判定された場合には、CPU56は、大当りとしない場合の停止図柄の決定を行う。この実施の形態では、ステップS52で読み出した値、すなわち抽出されているランダム2−1の値に従って左図柄を決定する(ステップS57)。また、ランダム2−2の値に従って中図柄を決定する(ステップS58)。そして、ランダム2−3の値に従って右図柄を決定する(ステップS59)。ここで、決定された中図柄が左右図柄と一致した場合には、中図柄に対応した乱数の値に1加算した値に対応する図柄を中図柄の停止図柄として、大当り図柄と一致しないようにする。
【0201】
さらに、CPU56は、リーチすることに決定されたか否か(左右の停止図柄が揃っているか否か)を確認し(ステップS60)、リーチすることに決定されている場合には、変動パターン決定用乱数(ランダム4)の値を抽出し、ランダム4にもとづいて図柄の変動パターンを決定する(ステップS61)。
【0202】
リーチすることに決定されていない場合には、確変状態か否かを確認する(ステップS62)。確変状態であれば変動パターンをはずれ時短縮変動パターンとすることに決定する(ステップS63)。確変状態でなければ変動パターンをはずれ時の通常変動パターンとすることに決定する(ステップS64)。なお、はずれ時短縮変動パターンは、左右中の図柄の変動時間が例えば4.0秒という通常変動パターンよりも変動期間が短い変動パターンである。
【0203】
以上のようにして、始動入賞にもとづく図柄の変動態様を、リーチ態様とするか、はずれ態様とするか決定され、それぞれの停止図柄の組合せが決定される。すなわち、特別図柄の変動態様として、リーチ演出を行うのか行わないのかが決定されるとともに停止図柄の組合せが決定される。
【0204】
なお、図28に示された処理は、図26に示された特別図柄プロセス処理におけるステップS301〜S303の処理をまとめて示した場合の処理に相当する。また、この実施の形態では、左右中図柄の停止図柄が揃った場合に大当りが発生する。左右図柄のみが揃った場合にリーチとなる。
【0205】
次に、メイン処理におけるスイッチ処理(ステップS21)の具体例を説明する。この実施の形態では、各スイッチの検出信号のオン状態が所定時間継続すると、確かにスイッチがオンしたと判定されスイッチオンに対応した処理が開始される。所定時間を計測するために、スイッチタイマが用いられる。スイッチタイマは、バックアップRAM領域に形成された1バイトのカウンタであり、検出信号がオン状態を示している場合に2ms毎に+1される。図31に示すように、スイッチタイマは検出信号の数N(クリアスイッチ921の検出信号を除く)だけ設けられている。この実施の形態ではN=12である。また、RAM55において、各スイッチタイマのアドレスは、入力ポートのビット配列順(図15に示された上から下への順)と同じ順序で並んでいる。
【0206】
図32は、遊技制御処理におけるステップS21のスイッチ処理の処理例を示すフローチャートである。なお、スイッチ処理は、図22に示すように遊技制御処理において最初に実行される。スイッチ処理において、CPU56は、まず、入力ポート0に入力されているデータを入力する(ステップS101)。次いで、処理数として「8」を設定し(ステップS102)、入賞口スイッチ33aのためのスイッチタイマのアドレスをポインタにセットする(ステップS103)。そして、スイッチチェック処理サブルーチンをコールする(ステップS104)。
【0207】
図33は、スイッチチェック処理サブルーチンを示すフローチャートである。スイッチチェック処理サブルーチンにおいて、CPU56は、ポート入力データ、この場合には入力ポート0からの入力データを「比較値」として設定する(ステップS121)。また、クリアデータ(00)をセットする(ステップS122)。そして、ポインタ(スイッチタイマのアドレスが設定されている)が指すスイッチタイマをロードするとともに(ステップS123)、比較値を右(上位ビットから下位ビットへの方向)にシフトする(ステップS124)。比較値には入力ポート0のデータ設定されている。そして、この場合には、入賞口スイッチ33aの検出信号がキャリーフラグに押し出される。
【0208】
キャリーフラグの値が「1」であれば(ステップS125)、すなわち入賞口スイッチ33aの検出信号がオン状態であれば、スイッチタイマの値を1加算する(ステップS127)。加算後の値が0でなければ加算値をスイッチタイマに戻す(ステップS128,S129)。加算後の値が0になった場合には加算値をスイッチタイマに戻さない。すなわち、スイッチタイマの値が既に最大値(255)に達している場合には、それよりも値を増やさない。
【0209】
キャリーフラグの値が「0」であれば、すなわち入賞口スイッチ33aの検出信号がオフ状態であれば、スイッチタイマにクリアデータをセットする(ステップS126)。すなわち、スイッチがオフ状態であれば、スイッチタイマの値が0に戻る。
【0210】
その後、CPU56は、ポインタ(スイッチタイマのアドレス)を1加算するとともに(ステップS130)、処理数を1減算する(ステップS131)。処理数が0になっていなければステップS122に戻る。そして、ステップS122〜S132の処理が繰り返される。
【0211】
ステップS122〜S132の処理は、処理数分すなわち8回繰り返され、その間に、入力ポート0の8ビットに入力されるスイッチの検出信号について、順次、オン状態かオフ状態か否かのチェック処理が行われ、オン状態であれば、対応するスイッチタイマの値が1増やされる。
【0212】
CPU56は、スイッチ処理のステップS105において、入力ポート1に入力されているデータを入力する。次いで、処理数として「4」を設定し(ステップS106)、賞球カウントスイッチ301Aのためのスイッチタイマのアドレスをポインタにセットする(ステップS107)。そして、スイッチチェック処理サブルーチンをコールする(ステップS108)。
【0213】
スイッチチェック処理サブルーチンでは、上述した処理が実行されるので、ステップS122〜S132の処理が、処理数分すなわち4回繰り返され、その間に、入力ポート1の4ビットに入力されるスイッチの検出信号について、順次、オン状態かオフ状態か否かのチェック処理が行われ、オン状態であれば、対応するスイッチタイマの値が1増やされる。
【0214】
なお、この実施の形態では、遊技制御処理が2ms毎に起動されるので、スイッチ処理も2msに1回実行される。従って、スイッチタイマは、2ms毎に+1される。
【0215】
図34〜図36は、遊技制御処理におけるステップS32の賞球処理の一例を示すフローチャートである。この実施の形態では、賞球処理では、賞球払出の対象となる入賞口スイッチ33a,24a,29a,30a、カウントスイッチ23および始動口スイッチ14aが確実にオンしたか否か判定されるとともに、オンしたら賞球個数を示す払出制御コマンドが払出制御基板37に送出されるように制御し、また、満タンスイッチ48および球切れスイッチ187が確実にオンしたか否か判定されるとともに、オンしたら所定の払出制御コマンドが払出制御基板37に送出されるように制御する等の処理が行われる。
【0216】
賞球処理において、CPU56は、入力判定値テーブルのオフセットとして「1」を設定し(ステップS150)、スイッチタイマのアドレスのオフセットとして「9」を設定する(ステップS151)。入力判定値テーブル(図38参照)のオフセット「1」は、入力判定値テーブルの2番目のデータ「50」を使用することを意味する。また、各スイッチタイマは、図15に示された入力ポートのビット順と同順に並んでいるので、スイッチタイマのアドレスのオフセット「9」は満タンスイッチ48に対応したスイッチタイマが指定されることを意味する。そして、スイッチオンチェックルーチンがコールされる(ステップS152)。
【0217】
入力判定値テーブルとは、各スイッチについて、連続何回のオンが検出されたら確かにスイッチがオンしたと判定するための判定値が設定されているROM領域である。入力判定値テーブルの構成例は図38に示されている。図38に示すように、入力判定値テーブルには、上から順に、すなわちアドレス値が小さい領域から順に、「2」、「50」、「250」、「30」、「250」、「1」の判定値が設定されている。また、スイッチオンチェックルーチンでは、入力判定値テーブルの先頭アドレスとオフセット値とで決まるアドレスに設定されている判定値と、スイッチタイマの先頭アドレスとオフセット値とで決まるスイッチタイマの値とが比較され、一致した場合には、例えばスイッチオンフラグがセットされる。
【0218】
スイッチオンチェックルーチンの一例が図37に示されている。スイッチオンチェックルーチンにおいて、満タンスイッチ48に対応するスイッチタイマの値が満タンスイッチオン判定値「50」に一致していればスイッチオンフラグがセットされるので(ステップS153)、満タンフラグがセットされる(ステップS154)。なお、図34には明示されていないが、満タンスイッチ48に対応したスイッチタイマの値が0になると、満タンフラグはリセットされる。
【0219】
また、CPU56は、入力判定値テーブルのオフセットとして「2」を設定し(ステップS156)、スイッチタイマのアドレスのオフセットとして「0A(H)」を設定する(ステップS157)。入力判定値テーブルのオフセット「2」は、入力判定値テーブルの3番目のデータ「250」を使用することを意味する。また、各スイッチタイマは、図15に示された入力ポートのビット順と同順に並んでいるので、スイッチタイマのアドレスのオフセット「0A(H)」は球切れスイッチ187に対応したスイッチタイマが指定されることを意味する。そして、スイッチオンチェックルーチンがコールされる(ステップS158)。
【0220】
スイッチオンチェックルーチンにおいて、球切れスイッチ187に対応するスイッチタイマの値が球切れスイッチオン判定値「250」に一致していればスイッチオンフラグがセットされるので(ステップS159)、球切れフラグがセットされる(ステップS160)。なお、図34には明示されていないが、球切れスイッチ187に対応したスイッチオフタイマが用意され、その値が50になると、球切れフラグはリセットされる。
【0221】
そして、CPU56は、払出停止状態であるか否か確認する(ステップS201)。払出停止状態は、払出制御基板37に対して払出を停止すべき状態であることを指示する払出制御コマンドである払出停止状態指定コマンドを送出した後の状態であり、具体的には、作業領域における払出停止フラグがセットされている状態である。払出停止状態でなければ、上述した球切れ状態フラグまたは満タンフラグがオンになったか否かを確認する(ステップS202)。
【0222】
いずれかがオン状態に変化したときには、払出停止状態フラグをセットするとともに(ステップS203)、払出停止状態指定コマンドに関するコマンド送信テーブルをセットし(ステップS204)、後述するコマンド送信処理(図44参照)をコールする(ステップS205)。ステップS204では、払出停止状態指定コマンドの払出制御コマンドが格納されているコマンド送信テーブル(ROM)の先頭アドレスが、コマンド送信テーブルのアドレスとして設定される。払出停止状態指定コマンドに関するコマンド送信テーブルには、後述するINTデータ、払出制御コマンドの1バイト目のデータ、および払出制御コマンドの2バイト目のデータが設定されている。なお、ステップS202において、いずれか一方のフラグが既にオン状態であったときに他方のフラグがオン状態になったときには、ステップS203〜ステップS205の処理は行われない。
【0223】
また、払出停止状態であれば、球切れ状態フラグおよび満タンフラグがともにオフ状態になったか否かを確認する(ステップS206)。ともにオフ状態となったときには、払出停止フラグをリセットするとともに(ステップS207)、払出可能状態指定コマンドに関するコマンド送信テーブルをセットし(ステップS208)、後述するコマンド送信処理をコールする(ステップS209)。ステップS208では、払出可能状態指定コマンドの払出制御コマンドが格納されているコマンド送信テーブル(ROM)の先頭アドレスが、コマンド送信テーブルのアドレスとして設定される。払出可能状態指定コマンドに関するコマンド送信テーブルには、後述するINTデータ、払出制御コマンドの1バイト目のデータ、および払出制御コマンドの2バイト目のデータが設定されている。
【0224】
さらに、CPU56は、入力判定値テーブルのオフセットとして「0」を設定し(ステップS221)、スイッチタイマのアドレスのオフセットとして「0」を設定する(ステップS222)。入力判定値テーブルのオフセット「0」は、入力判定値テーブルの最初のデータを使用することを意味する。また、各スイッチタイマは、図15に示された入力ポートのビット順と同順に並んでいるので、スイッチタイマのアドレスのオフセット「0」は入賞口スイッチ33aに対応したスイッチタイマが指定されることを意味する。また、繰り返し数として「4」をセットする(ステップS223)。そして、スイッチオンチェックルーチンがコールされる(ステップS224)。
【0225】
スイッチオンチェックルーチンにおいて、CPU56は、入力判定値テーブル(図38参照)の先頭アドレスを設定する(ステップS281)。そして、そのアドレスにオフセットを加算し(ステップS282)、加算後のアドレスからスイッチオン判定値をロードする(ステップS283)。
【0226】
次いで、CPU56は、スイッチタイマの先頭アドレスを設定し(ステップS284)、そのアドレスにオフセットを加算し(ステップS285)、加算後のアドレスからスイッチタイマの値をロードする(ステップS286)。各スイッチタイマは、図15に示された入力ポートのビット順と同順に並んでいるので、スイッチに対応したスイッチタイマの値がロードされる。
【0227】
そして、CPU56は、ロードしたスイッチタイマの値とスイッチオン判定値とを比較する(ステップS287)。それらが一致すれば、スイッチオンフラグをセットする(ステップ128)。
【0228】
この場合には、スイッチオンチェックルーチンにおいて、入賞口スイッチ33aに対応するスイッチタイマの値がスイッチオン判定値「2」に一致していればスイッチオンフラグがセットされる(ステップS225)。そして、スイッチオンチェックルーチンは、スイッチタイマのアドレスのオフセットが更新されつつ(ステップS230)、最初に設定された繰り返し数分だけ実行されるので(ステップS228,S229)、結局、入賞口スイッチ33a,24a,29a,30aについて、対応するスイッチタイマの値がスイッチオン判定値「2」と比較されることになる。
【0229】
スイッチオンフラグがセットされたら、払い出すべき賞球個数としての「10」をリングバッファに設定する(ステップS226)。そして、総賞球数格納バッファの格納値に10を加算する(ステップS227)。なお、リングバッファにデータを書き込んだときには、書込ポインタをインクリメントし、リングバッファの最後の領域にデータを書き込まれたときには、書込ポインタを、リングバッファの最初の領域を指すように更新する。
【0230】
総賞球数格納バッファは、払出制御手段に対して指示した賞球個数の累積値(ただし、払い出しがなされると減算される)が格納されるバッファであり、バックアップRAMに形成されている。なお、この実施の形態では、リングバッファにデータを書き込んだ時点で総賞球数格納バッファの格納値に対する加算処理が行われるが、払い出すべき賞球個数を指示する払出制御コマンドを出力ポートに出力した時点で総賞球数格納バッファの格納値に対する、出力する払出制御コマンドに対応した賞球数の加算処理を行ってもよい。
【0231】
次に、CPU56は、入力判定値テーブルのオフセットとして「0」を設定し(ステップS231)、スイッチタイマのアドレスのオフセットとして「4」を設定する(ステップS232)。入力判定値テーブルのオフセット「0」は、入力判定値テーブルの最初のデータを使用することを意味する。また、各スイッチタイマは、図15に示された入力ポートのビット順と同順に並んでいるので、スイッチタイマのアドレスのオフセット「4」は始動口スイッチ14aに対応したスイッチタイマが指定されることを意味する。そして、スイッチオンチェックルーチンがコールされる(ステップS233)。
【0232】
スイッチオンチェックルーチンにおいて、始動口スイッチ14aに対応するスイッチタイマの値がスイッチオン判定値「2」に一致していればスイッチオンフラグがセットされる(ステップS234)。スイッチオンフラグがセットされたら、払い出すべき賞球個数としての「6」をリングバッファに設定する(ステップS235)。また、総賞球数格納バッファの格納値に6を加算する(ステップS236)。
【0233】
次いで、CPU56は、入力判定値テーブルのオフセットとして「0」を設定し(ステップS241)、スイッチタイマのアドレスのオフセットとして「5」を設定する(ステップS242)。入力判定値テーブルのオフセット「0」は、入力判定値テーブルの最初のデータを使用することを意味する。また、各スイッチタイマは、図15に示された入力ポートのビット順と同順に並んでいるので、スイッチタイマのアドレスのオフセット「5」はカウントスイッチ23に対応したスイッチタイマが指定されることを意味する。そして、スイッチオンチェックルーチンがコールされる(ステップS243)。
【0234】
スイッチオンチェックルーチンにおいて、カウントスイッチ23に対応するスイッチタイマの値がスイッチオン判定値「2」に一致していればスイッチオンフラグがセットされる(ステップS244)。スイッチオンフラグがセットされたら、払い出すべき賞球個数としての「15」をリングバッファに設定する(ステップS245)。また、総賞球数格納バッファの格納値に15を加算する(ステップS246)。
【0235】
そして、リングバッファにデータが存在する場合には(ステップS247)、読出ポインタが指すリングバッファの内容を送信バッファにセットするとともに(ステップS248)、読出ポインタの値を更新(リングバッファの次の領域を指すように更新)し(ステップS249)、賞球個数に関するコマンド送信テーブルをセットし(ステップS250)、後述するコマンド送信処理をコールする(ステップS251)。
【0236】
ステップS250では、賞球個数に関する払出制御コマンドが格納されているコマンド送信テーブル(ROM)の先頭アドレスが、コマンド送信テーブルのアドレスとして設定される。賞球個数に関するコマンド送信テーブルには、後述するINTデータ(01(H))、払出制御コマンドの1バイト目のデータ(F0(H))、および払出制御コマンドの2バイト目のデータが設定されている。ただし、2バイト目のデータとして「80(H)」が設定されている。
【0237】
以上のように、遊技制御手段から払出制御基板37に賞球個数を指示する払出制御コマンドを出力しようとするときに、賞球個数に関するコマンド送信テーブルのアドレス設定と送信バッファの設定とが行われる。そして、コマンド送信処理によって、賞球個数に関するコマンド送信テーブルと送信バッファの設定内容とにもとづいて払出制御コマンドが払出制御基板37に送出される。なお、ステップS247において、書込ポインタと読出ポインタとの差によってデータがあるか否か確認することができるが、リングバッファ内の未処理のデータ個数を示すカウンタを設け、カウント値によってデータがあるか否か確認するようにしてもよい。
【0238】
そして、総賞球数格納バッファの内容が0でない場合、すなわち、まだ賞球残がある場合には、CPU56は、賞球払出中フラグをオンする(ステップS252,S253)。
【0239】
また、CPU56は、賞球払出中フラグがオンしているときには(ステップS254)、球払出装置97から実際に払い出された賞球個数を監視して総賞球数格納バッファの格納値を減算する賞球個数減算処理を行う(ステップS255)。なお、賞球払出中フラグがオンからオフに変化したときには、ランプ制御基板35に対して、賞球ランプ51の点灯を指示するランプ制御コマンドが送出される。
【0240】
この実施の形態では、払出停止中であっても(ステップS201,S206)、ステップS221〜S251の処理が実行される。すなわち、遊技制御手段は、払出停止状態であっても、賞球個数を指示するための払出制御コマンドを送出することができる。すなわち、賞球個数を指示するためのコマンドが、払出停止状態であっても払出制御手段に伝達され、払出停止状態が解除されたときに、早めに賞球払出を開始することができる。また、遊技制御手段において、払出停止状態における入賞にもとづく賞球個数を記憶するための大きな記憶領域は必要とされない。
【0241】
次に、遊技制御手段から各電気部品制御手段に対する制御コマンドの送出方式について説明しておく。遊技制御手段から他の電気部品制御基板(サブ基板)に制御コマンドを出力しようとするときに、コマンド送信テーブルの先頭アドレスの設定が行われる。図39(A)は、コマンド送信テーブルの一構成例を示す説明図である。1つのコマンド送信テーブルは3バイトで構成され、1バイト目にはINTデータが設定される。また、2バイト目のコマンドデータ1には、制御コマンドの1バイト目のMODEデータが設定される。そして、3バイト目のコマンドデータ2には、制御コマンドの2バイト目のEXTデータが設定される。
【0242】
なお、EXTデータそのものがコマンドデータ2の領域に設定されてもよいが、コマンドデータ2には、EXTデータが格納されているテーブルのアドレスを指定するためのデータが設定されるようにしてもよい。例えば、コマンドデータ2のビット7(ワークエリア参照ビット)が0であれば、コマンドデータ2にEXTデータそのものが設定されていることを示す。そのようなEXTデータはビット7が0であるデータである。この実施の形態では、ワークエリア参照ビットが1であれば、EXTデータとして、送信バッファの内容を使用することを示す。なお、ワークエリア参照ビットが1であれば、他の7ビットが、EXTデータが格納されているテーブルのアドレスを指定するためのオフセットであることを示すように構成することもできる。
【0243】
図39(B)INTデータの一構成例を示す説明図である。INTデータにおけるビット0は、払出制御基板37に払出制御コマンドを送出すべきか否かを示す。ビット0が「1」であるならば、払出制御コマンドを送出すべきことを示す。従って、CPU56は、例えば賞球処理(遊技制御処理のステップS31)において、INTデータに「01(H)」を設定する。また、INTデータにおけるビット1は、図柄出制御基板80に表示制御コマンドを送出すべきか否かを示す。ビット1が「1」であるならば、表示制御コマンドを送出すべきことを示す。従って、CPU56は、例えば特別図柄コマンド制御処理(遊技制御処理のステップS27)において、INTデータに「02(H)」を設定する。
【0244】
INTデータのビット2,3は、それぞれ、ランプ制御コマンド、音制御コマンドを送出すべきか否かを示すビットであり、CPU56は、それらのコマンドを送出すべきタイミングになったら、特別図柄プロセス処理等で、ポインタが指しているコマンド送信テーブルに、INTデータ、コマンドデータ1およびコマンドデータ2を設定する。それらのコマンドを送出するときには、INTデータの該当ビットが「1」に設定され、コマンドデータ1およびコマンドデータ2にMODEデータおよびEXTデータが設定される。
【0245】
この実施の形態では、払出制御コマンドについて、図39(C)に示すように、リングバッファおよび送信バッファが用意されている。そして、賞球処理において、賞球払出条件が成立すると、成立した条件に応じた賞球個数が順次リングバッファに設定される。また、賞球個数に関する払出制御コマンド送出する際に、リングバッファから1個のデータが送信バッファに転送される。なお、図39(C)に示す例では、リングバッファには、12個分の払出制御コマンドに相当するデータが格納可能になっている。すなわち、12個のバッファがある。なお、リングバッファにおけるバッファの数は、賞球を発生させる入賞口の数に対応した数であればよい。同時入賞が発生した場合でも、それぞれの入賞にもとづく払出制御コマンドのデータの格納が可能だからである。
【0246】
図40は、主基板31から他の電気部品制御基板に送出される制御コマンドのコマンド形態の一例を示す説明図である。この実施の形態では、制御コマンドは2バイト構成であり、1バイト目はMODE(コマンドの分類)を表し、2バイト目はEXT(コマンドの種類)を表す。MODEデータの先頭ビット(ビット7)は必ず「1」とされ、EXTデータの先頭ビット(ビット7)は必ず「0」とされる。このように、電気部品制御基板へのコマンドとなる制御コマンドは、複数のデータで構成され、先頭ビットによってそれぞれを区別可能な態様になっている。なお、図40に示されたコマンド形態は一例であって他のコマンド形態を用いてもよい。例えば、1バイトや3バイト以上で構成される制御コマンドを用いてもよい。また、図40では払出制御基板37に送出される払出制御コマンドを例示するが、他の電気部品制御基板に送出される制御コマンドも同一構成である。
【0247】
図41は、各電気部品制御手段に対する制御コマンドを構成する8ビットの制御信号CD0〜CD7とINT信号との関係を示すタイミング図である。図41に示すように、MODEまたはEXTのデータが出力ポート(出力ポート1〜出力ポート4のうちのいずれか)に出力されてから、Aで示される期間が経過すると、CPU56は、データ出力を示す信号であるINT信号をハイレベル(オンデータ)にする。また、そこからBで示される期間が経過するとINT信号をローレベル(オフデータ)にする。さらに、次に送出すべきデータがある場合には、すなわち、MODEデータ送出後では、Cで示される期間をおいてから2バイト目のデータを出力ポートに送出する。2バイト目のデータに関して、A,Bの期間は、1バイト目の場合と同様である。このように、取込信号はMODEおよびEXTのデータのそれぞれについて出力される。
【0248】
Aの期間は、CPU56が、コマンドの送出準備の期間すなわちバッファに送出コマンドを設定する処理に要する期間であるとともに、制御信号線におけるデータの安定化のための期間である。すなわち、制御信号線において制御信号CD0〜CD7が出力された後、所定期間(Aの期間:オフ出力期間の一部)経過後に、取込信号としてのINT信号が出力される。また、Bの期間(オン出力期間)は、INT信号安定化のための期間である。そして、Cの期間(オフ出力期間の一部)は、電気部品制御手段が確実にデータを取り込めるように設定されている期間である。B,Cの期間では、信号線上のデータは変化しない。すなわち、B,Cの期間が経過するまでデータ出力が維持される。
【0249】
この実施の形態では、払出制御基板37への払出制御コマンド、図柄制御基板80への表示制御コマンド、ランプ制御基板35へのランプ制御コマンドおよび音制御基板70への音制御コマンドは、同一のコマンド送信処理ルーチン(共通モジュール)を用いて送出される。そこで、B,Cの期間すなわち1バイト目に関するINT信号が立ち上がってから2バイト目のデータが送出開始されるまでの期間は、コマンド受信処理に最も時間がかかる電気部品制御手段における受信処理時間よりも長くなるように設定される。
【0250】
なお、各電気部品制御手段は、INT信号が立ち上がったことを検知して、例えば割込処理によって1バイトのデータの取り込み処理を開始する。
【0251】
B,Cの期間が、コマンド受信処理に最も時間がかかる電気部品制御手段における受信処理時間よりも長いので、遊技制御手段が、各電気部品制御手段に対するコマンド送出処理を共通モジュールで制御しても、いずれの電気部品制御手段でも遊技制御手段からの制御コマンドを確実に受信することができる。
【0252】
CPU56は、INT信号出力処理を実行した後に所定期間が経過すると次のデータを送出できる状態になるが、その所定期間(B,Cの期間)は、INT信号出力処理の前にデータを送出してからINT信号を出力開始するまでの期間(Aの期間)よりも長い。上述したように、Aの期間はコマンドの信号線における安定化期間であり、B,Cの期間は受信側がデータを取り込むのに要する時間を確保するための期間である。従って、Aの期間をB,Cの期間よりも短くすることによって、受信側の電気部品制御手段が確実にコマンドを受信できる状態になるという効果を得ることができるとともに、1つのコマンドの送出完了に要する期間が短縮される効果もある。
【0253】
図42は、払出制御コマンドの内容の一例を示す説明図である。図42に示された例において、MODE=FF(H),EXT=00(H)のコマンドFF00(H)は、払出が可能であることを指示する払出制御コマンド(払出可能状態指定コマンド)である。MODE=FF(H),EXT=01(H)のコマンドFF01(H)は、払出を停止すべき状態であることを指示する払出制御コマンド(払出停止状態指定コマンド)である。また、MODE=F0(H)のコマンドF0XX(H)は、賞球個数を指定する払出制御コマンドである。EXTである「XX」が払出個数を示す。
【0254】
払出制御手段は、主基板31の遊技制御手段からFF01(H)の払出制御コマンドを受信すると賞球払出および球貸しを停止する状態となり、FF00(H)の払出制御コマンドを受信すると賞球払出および球貸しができる状態になる。また、賞球個数を指定する払出制御コマンドを受信すると、受信したコマンドで指定された個数に応じた賞球払出制御を行う。
【0255】
なお、払出制御コマンドは、払出制御手段が認識可能に1回だけ送出される。認識可能とは、この例では、INT信号のレベルが変化することであり、認識可能に1回だけ送出されるとは、この例では、払出制御信号の1バイト目および2バイト目のそれぞれに応じてINT信号が1回だけパルス状(矩形波状)に出力されることである。
【0256】
各電気部品制御基板への制御コマンドを、対応する出力ポート(出力ポート1〜4)に出力する際に、出力ポート0のビット0〜3のうちのいずれかのビットが所定期間「1」(ハイレベル)になるのであるが、INTデータにおけるビット配列と出力ポート0におけるビット配列とは対応している。従って、各電気部品制御基板に制御コマンドを送出する際に、INTデータにもとづいて、容易にINT信号の出力を行うことができる。
【0257】
図43は、コマンド作成処理の処理例を示すフローチャートである。コマンド作成処理は、コマンド出力処理とINT信号出力処理とを含む処理である。コマンド作成処理は、遊技制御処理では、ステップS25の特別図柄プロセス処理、ステップS27の特別図柄コマンド制御処理、ステップS28の普通図柄コマンド制御処理において、制御コマンドを作成する際にコールされる。
【0258】
コマンド作成処理において、CPU56は、まず、コマンド送信テーブルのアドレスをスタック等に退避する(ステップS331)。そして、ポインタが指していたコマンド送信テーブルのINTデータを引数1にロードする(ステップS332)。引数1は、後述するコマンド送信処理に対する入力情報になる。また、コマンド送信テーブルを指すアドレスを+1する(ステップS333)。従って、コマンド送信テーブルを指すアドレスは、コマンドデータ1のアドレスに一致する。
【0259】
次いで、CPU56は、コマンドデータ1を読み出して引数2に設定する(ステップS334)。引数2も、後述するコマンド送信処理に対する入力情報になる。そして、コマンド送信処理ルーチンをコールする(ステップS335)。
【0260】
図44は、コマンド送信処理ルーチンを示すフローチャートである。コマンド送信処理ルーチンにおいて、CPU56は、まず、引数1に設定されているデータすなわちINTデータを、比較値として決められているワークエリアに設定する(ステップS351)。次いで、送信回数=4を、処理数として決められているワークエリアに設定する(ステップS352)。そして、ポート1のアドレスをIOアドレスにセットする(ステップS353)。この実施の形態では、ポート1のアドレスは払出制御コマンドデータを出力するための出力ポートのアドレスであり、ポート2〜4のアドレスが、表示制御コマンドデータ、ランプ制御コマンドデータ、音制御コマンドデータを出力するための出力ポートのアドレスであるとする。
【0261】
次に、CPU56は、比較値を1ビット右にシフトする(ステップS354)。シフト処理の結果、キャリービットが1になったか否か確認する(ステップS355)。キャリービットが1になったということは、INTデータにおける最も右側のビットが「1」であったことを意味する。この実施の形態では4回のシフト処理が行われるのであるが、例えば、表示制御コマンドを送出すべきことが指定されているときには、2回目のシフト処理でキャリービットが1になる。
【0262】
キャリービットが1になった場合には、引数2に設定されているデータ、この場合にはコマンドデータ1(すなわちMODEデータ)を、IOアドレスとして設定されているアドレスに出力する(ステップS356)。2回目のシフト処理が行われたときにはIOアドレスにポート2のアドレスが設定されているので、そのときに、表示制御コマンドのMODEデータがポート2に出力される。
【0263】
次いで、CPU56は、IOアドレスを1加算するとともに(ステップS357)、処理数を1減算する(ステップS358)。加算前にポート2を示していた場合には、IOアドレスに対する加算処理によって、IOアドレスにはポート3のアドレスが設定される。ポート3は、ランプ制御コマンドを出力するためのポートである。そして、CPU56は、処理数の値を確認し(ステップS359)、値が0になっていなければ、ステップS354に戻る。ステップS354で再度シフト処理が行われる。
【0264】
2回目のシフト処理ではINTデータにおけるビット1の値が押し出され、ビット1の値に応じてキャリーフラグが「1」または「0」になる。従って、表示制御コマンドを送出すべきことが指定されているか否かのチェックが行われる。同様に、3回目および4回目のシフト処理によって、ランプ制御コマンドおよび音制御コマンドを送出すべきことが指定されているか否かのチェックが行われる。このように、それぞれのシフト処理が行われるときに、IOアドレスには、シフト処理によってチェックされるコマンド(払出制御コマンド、表示制御コマンド、ランプ制御コマンド、音制御コマンド)に対応したIOアドレスが設定されている。
【0265】
よって、キャリーフラグが「1」になったときには、対応する出力ポート(ポート1〜ポート4)に制御コマンドが送出される。すなわち、1つの共通モジュールで、各サブ基板の制御手段に対する制御コマンドの送出処理を行うことができる。
【0266】
また、このように、シフト処理のみによってどの各サブ基板の制御手段に対して制御コマンドを出力すべきかが判定されるので、いずれの制御手段に対して制御コマンドを出力すべきか判定する処理が簡略化されている。従って、コマンド送信モジュールを複数のモジュールで共通に使用することが容易になっている。
【0267】
次に、CPU56は、シフト処理開始前のINTデータが格納されている引数1の内容を読み出し(ステップS360)、読み出したデータをポート0に出力する(ステップS361)。この実施の形態では、ポート0のアドレスは、各制御信号についてのINT信号を出力するためのポートであり、ポート0のビット0〜4が、それぞれ、払出制御INT信号、表示制御INT信号、ランプ制御INT信号、音声制御INT信号を出力するためのポートである。INTデータでは、ステップS351〜S359の処理で出力された制御コマンド(払出制御コマンド、表示制御コマンド、ランプ制御コマンド、音制御コマンド)に応じたINT信号の出力ビットに対応したビットが「1」になっている。従って、ポート1〜ポート4のいずれかに出力された制御コマンド(払出制御コマンド、表示制御コマンド、ランプ制御コマンド、音制御コマンド)に対応したINT信号がオフ状態(ローレベル)になる。
【0268】
次いで、CPU56は、ウェイトカウンタに所定値を設定し(ステップS362)、その値が0になるまで1ずつ減算する(ステップS363,S364)。ウェイトカウンタの値が0になると、クリアデータ(00)を設定して(ステップS365)、そのデータをポート0に出力する(ステップS366)。よって、INT信号はオフ状態になる。そして、ウェイトカウンタに所定値を設定し(ステップS362)、その値が0になるまで1ずつ減算する(ステップS368,S369)。
【0269】
以上のようにして、制御コマンドの1バイト目のMODEデータが送出される。そこで、CPU56は、図43に示すステップS336で、コマンド送信テーブルを指す値を1加算する。従って、3バイト目のコマンドデータ2の領域が指定される。CPU56は、指し示されたコマンドデータ2の内容を引数2にロードする(ステップS337)。また、コマンドデータ2のビット7(ワークエリア参照ビット)の値が「0」であるか否か確認する(ステップS339)。0でなければ、コマンド拡張データアドレステーブルの先頭アドレスをポインタにセットし(ステップS339)、そのポインタにコマンドデータ2のビット6〜ビット0の値を加算してアドレスを算出する(ステップS340)。そして、そのアドレスが指すエリアのデータを引数2にロードする(ステップS341)。
【0270】
コマンド拡張データアドレステーブルには、各サブ基板の制御手段に送出されうるEXTデータが順次設定されている。よって、以上の処理によって、ワークエリア参照ビットの値が「1」であれば、コマンドデータ2の内容に応じたコマンド拡張データアドレステーブル内のEXTデータが引数2にロードされ、ワークエリア参照ビットの値が「0」であれば、コマンドデータ2の内容がそのまま引数2にロードされる。なお、コマンド拡張データアドレステーブルからEXTデータが読み出される場合でも、そのデータのビット7は「0」である。
【0271】
次に、CPU56は、コマンド送信処理ルーチンをコールする(ステップS342)。従って、MODEデータの送出の場合と同様のタイミングでEXTデータが送出される。その後、CPU56は、コマンド送信テーブルのアドレスを復旧し(ステップS343)、コマンド送信テーブルを指す読出ポインタの値を更新する(ステップS344)。そして、さらに送出すべきコマンドがあれば(ステップS345)、ステップS331に戻る。
【0272】
以上のようにして、2バイト構成の制御コマンド(払出制御コマンド、表示制御コマンド、ランプ制御コマンド、音制御コマンド)が、対応する各サブ基板の制御手段に送信される。各サブ基板の制御手段ではINT信号のレベル変化を検出すると制御コマンドの取り込み処理を開始するのであるが、いずれの制御手段についても、取り込み処理が完了する前に遊技制御手段からの新たな信号が信号線に出力されることはない。すなわち、表示制御手段等の各制御手段において、確実なコマンド受信処理が行われる。なお、INT信号の極性を図41に示された場合と逆にしてもよい。
【0273】
図45は、賞球個数減算処理の一例を示すフローチャートである。賞球個数減算処理において、CPU56は、まず、総賞球数格納バッファの格納値をロードする(ステップS381)。そして、格納値が0であるか否か確認する(ステップS382)。0であれば処理を終了する。
【0274】
0でなければ、賞球カウントスイッチ用のスイッチタイマをロードし(ステップS383)、ロード値とオン判定値(この場合は「2」)とを比較する(ステップS384)。一致したら(ステップS385)、賞球カウントスイッチ301Aが確かにオンしたとして、すなわち、確かに1個の遊技球が球払出装置97から払い出されたとして、総賞球数格納バッファの格納値を1減算する(ステップS386)。
【0275】
また、賞球情報カウンタの値を+1する(ステップS387)。そして、賞球情報カウンタの値が10以上であれば(ステップS388)、賞球情報出力カウンタの値を+1するとともに(ステップS389)、賞球情報カウンタの値を−10する(ステップS390)。なお、賞球情報出力カウンタの値は、図22に示された遊技制御処理における情報出力処理(ステップS29)で参照され、その値が1以上であれば、賞球情報信号(出力ポート5のビット7:図14参照)として1パルスが出力される。よって、この実施の形態では、10個の遊技球が賞球として払い出される度に、1つの賞球信号が遊技機外部に出力される。
【0276】
そして、総賞球数格納バッファの格納値が0になったら(ステップS391)、賞球払出中フラグをクリアし(ステップS392)、賞球残数がないことを報知するために、ランプ制御コマンド用のコマンド送信テーブルに賞球ランプ51の消灯を示すコマンドデータを設定した後(ステップS393)、ランプ制御コマンドを送信するためにコマンド送信処理ルーチンをコールする(ステップS394)。
【0277】
以上のように、この実施の形態では、バックアップRAMには未払出の景品遊技媒体数を特定可能なデータ(この例では総賞球数バッファ)が記憶され、遊技制御手段が、入賞の発生にもとづいて入賞に応じた払出予定数を用いてデータの内容を更新するとともに、賞球カウントスイッチ301Aからの検出信号にもとづいてデータを更新する。具体的には、入賞の発生にもとづいて入賞に応じた払出予定数をデータに加算し(図35,図36におけるステップS227,S236,S245参照)、賞球カウントスイッチ301Aからの検出信号にもとづいて特定される払出数をデータから減算する(ステップS385,S386参照)。
【0278】
次に、遊技制御手段以外の電気部品制御手段の例として、払出制御手段について説明する。
【0279】
図46は、払出制御用CPU371周りの一構成例を示すブロック図である。図46に示すように、電源基板910の電源監視回路(電源監視手段)からの電源断信号が、バッファ回路960を介して払出制御用CPU371のマスク不能割込端子(XNMI端子)に接続されている。従って、払出制御用CPU371は、マスク不能割込処理によって遊技機への電力供給停止の発生を確認することができる。
【0280】
払出制御用CPU371のCLK/TRG2端子には、主基板31からのINT信号が接続されている。CLK/TRG2端子にクロック信号が入力されると、払出制御用CPU371に内蔵されているタイマカウンタレジスタCLK/TRG2の値がダウンカウントされる。そして、レジスタ値が0になると割込が発生する。従って、タイマカウンタレジスタCLK/TRG2の初期値を「1」に設定しておけば、INT信号の入力に応じて割込が発生することになる。
【0281】
払出制御基板37には、システムリセット回路975も搭載されているが、この実施の形態では、システムリセット回路975におけるリセットIC976は、電源投入時に、外付けのコンデンサに容量で決まる所定時間だけ出力をローレベルとし、所定時間が経過すると出力をハイレベルにする。また、リセットIC976は、VSLの電源電圧を監視して電圧値が所定値(例えば+9V)以下になると出力をローレベルにする。従って、遊技機への電力供給停止時には、リセットIC976からの信号がローレベルになることによって払出制御用CPU371がシステムリセットされる。
【0282】
リセットIC976が電力供給停止を検知するための所定値は、通常時の電圧より低いが、払出制御用CPU371が暫くの間動作しうる程度の電圧である。また、リセットIC976が、払出制御用CPU371が必要とする電圧(この例では+5V)よりも高い電圧を監視するように構成されているので、払出制御用CPU371が必要とする電圧に対して監視範囲を広げることができる。従って、より精密な監視を行うことができる。
【0283】
+5V電源から電力が供給されていない間、払出制御用CPU371の内蔵RAMの少なくとも一部は、電源基板から供給されるバックアップ電源がバックアップ端子に接続されることによってバックアップされ、停電等の遊技機に対する電力供給停止が発生しても内容は保存される。そして、+5V電源が復旧すると、システムリセット回路975からリセット信号が発せられるので、払出制御用CPU371は、通常の動作状態に復旧する。そのとき、必要なデータがバックアップされているので、停電等からの復旧時には停電発生時の払出制御状態に復旧させることができる。なお、電力供給停止中でも内容を保存可能な変動データ記憶手段として電源バックアップされる揮発性のRAMではなく、EEPROMやフラッシュROM等の不揮発性記憶手段を用いてもよい。不揮発性記憶手段を用いた場合には、停電等の不測の電力供給停止が生ずる場合に、記憶手段の記憶情報への影響を低減させることができる。すなわち、記憶手段に記憶されている内容がより安全に保存される。また、不揮発性記憶手段を用いた場合には、電源基板910においてバックアップ電源を設けなくてもよい。
【0284】
なお、図46に示された構成では、システムリセット回路975は、電源投入時に、コンデンサの容量で決まる期間のローレベルを出力し、その後ハイレベルを出力する。すなわち、リセット解除タイミングは1回だけである。しかし、図9に示された主基板31の場合と同様に、複数回のリセット解除タイミングが発生するような回路構成を用いてもよい。
【0285】
図47は、この実施の形態における出力ポートの割り当てを示す説明図である。図47に示すように、出力ポートC(アドレス00H)は、払出モータ289に出力される駆動信号等の出力ポートである。また、出力ポートD(アドレス01H)は、7セグメントLEDであるエラー表示LED374に出力される表示制御信号の出力ポートである。そして、出力ポートE(アドレス02H)は、振分ソレノイド310に出力される駆動信号、およびカードユニット50に対するEXS信号とPRDY信号とを出力するための出力ポートである。
【0286】
図48は、この実施の形態における入力ポートのビット割り当てを示す説明図である。図48に示すように、入力ポートA(アドレス06H)は、主基板31から送出された払出制御コマンドの8ビットの払出制御信号を取り込むための入力ポートである。また、入力ポートB(アドレス07H)のビット0〜1には、それぞれ、賞球カウントスイッチ301Aおよび球貸しカウントスイッチ301Bの検出信号が入力される。ビット2〜5には、カードユニット50からのBRDY信号、BRQ信号、VL信号およびクリアスイッチ921の検出信号が入力される。
【0287】
図49は、払出制御基板37に搭載されているバックアップRAM領域における作業領域(スタック領域を除く領域)の使用の仕方の一例を示す説明図である。図49に示す例では、バックアップRAM領域における作業領域の先頭はバックアップフラグの領域に割り当てられている。また、作業領域は、特定領域と非特定領域とに大別される。特定領域に記憶されるデータは、初期化されると遊技者にとって著しく不利になるようなデータであり、遊技者の利益に関連するような遊技者利益関連データである。
【0288】
具体的には、未払出の賞球数の総数が格納される賞球未払出個数カウンタ(総合個数記憶)や未払出の貸し球数の総数が格納される球貸し未払出個数カウンタ(球貸し個数記憶)が、特定領域に記憶される。また、特定領域の最後部は、特定領域についてのチェックサムが格納されるチェックサムバッファに割り当てられている。
【0289】
非特定領域には、例えば、後述するスイッチ通過フラグ、エラー状態を示すエラー状態フラグ、エラー番号指定コード等が記憶される。また、非特定領域の最後部は、非特定領域についてのチェックサムが格納されるチェックサムバッファに割り当てられている。
【0290】
図50は、払出制御手段(払出制御用CPU371およびROM,RAM等の周辺回路)のメイン処理を示すフローチャートである。メイン処理では、払出制御用CPU371は、まず、必要な初期設定を行う。すなわち、払出制御用CPU371は、まず、割込禁止に設定する(ステップS701)。次に、割込モードを割込モード2に設定し(ステップS702)、スタックポインタにスタックポインタ指定アドレスを設定する(ステップS703)。また、払出制御用CPU371は、内蔵デバイスレジスタの初期化を行い(ステップS704)、CTCおよびPIOの初期化(ステップS705)を行った後に、RAMをアクセス可能状態に設定する(ステップS706)。
【0291】
この実施の形態では、内蔵CTCのうちの一つのチャネルがタイマモードで使用される。従って、ステップS704の内蔵デバイスレジスタの設定処理およびステップS705の処理において、使用するチャネルをタイマモードに設定するためのレジスタ設定、割込発生を許可するためのレジスタ設定および割込ベクタを設定するためのレジスタ設定が行われる。そして、そのチャネルによる割込がタイマ割込として用いられる。タイマ割込を例えば2ms毎に発生させたい場合は、初期値として2msに相当する値が所定のレジスタ(時間定数レジスタ)に設定される。
【0292】
なお、タイマモードに設定されたチャネル(この実施の形態ではチャネル3)に設定される割込ベクタは、タイマ割込処理の先頭アドレスに相当するものである。具体的は、Iレジスタに設定された値と割込ベクタとでタイマ割込処理の先頭アドレスが特定される。タイマ割込処理では、払出制御処理が実行される。
【0293】
また、内蔵CTCのうちの他の一つのチャネル(この実施の形態ではチャネル2)が、遊技制御手段からの払出制御コマンド受信のための割込発生用のチャネルとして用いられ、そのチャネルがカウンタモードで使用される。従って、ステップS704の内蔵デバイスレジスタの設定処理およびステップS705の処理において、使用するチャネルをカウンタモードに設定するためのレジスタ設定、割込発生を許可するためのレジスタ設定および割込ベクタを設定するためのレジスタ設定が行われる。
【0294】
カウンタモードに設定されたチャネル(チャネル2)に設定される割込ベクタは、後述するコマンド受信割込処理の先頭アドレスに相当するものである。具体的は、Iレジスタに設定された値と割込ベクタとでコマンド受信割込処理の先頭アドレスが特定される。
【0295】
この実施の形態では、払出制御用CPU371でも割込モード2が設定される。従って、内蔵CTCのカウントアップにもとづく割込処理を使用することができる。また、CTCが送出した割込ベクタに応じた割込処理開始アドレスを設定することができる。
【0296】
CTCのチャネル2(CH2)のカウントアップにもとづく割込は、上述したタイマカウンタレジスタCLK/TRG2の値が「0」になったときに発生する割込である。従って、例えばステップS705において、特定レジスタとしてのタイマカウンタレジスタCLK/TRG2に初期値「1」が設定される。さらに、CLK/TRG2端子に入力される信号の立ち上がりまたは立ち下がりで特定レジスタとしてのタイマカウンタレジスタCLK/TRG2のカウント値が−1されるのであるが、所定の特定レジスタの設定によって、立ち上がり/立ち下がりの選択を行うことができる。この実施の形態では、CLK/TRG2端子に入力される信号の立ち上がりで、タイマカウンタレジスタCLK/TRG2のカウント値が−1されるような設定が行われる。
【0297】
また、CTCのチャネル3(CH3)のカウントアップにもとづく割込は、CPUの内部クロック(システムクロック)をカウントダウンしてレジスタ値が「0」になったら発生する割込であり、後述する2msタイマ割込として用いられる。具体的には、CPU371の動作クロックを分周したクロックがCTCに与えられ、クロックの入力によってレジスタの値が減算され、レジスタの値が0になるとタイマ割込が発生する。例えば、CH3のレジスタ値はシステムクロックの1/256周期で減算される。分周したクロックにもとづいて減算が行われるので、レジスタの初期値は大きくならない。ステップS705において、CH3のレジスタには、初期値として2msに相当する値が設定される。
【0298】
CTCのCH2のカウントアップにもとづく割込は、CH3のカウントアップにもとづく割込よりも優先順位が高い。従って、同時にカウントアップが生じた場合に、CH2のカウントアップにもとづく割込、すなわち、コマンド受信割込処理の実行契機となる割込の方が優先される。
【0299】
次いで、払出制御用CPU371は、入力ポートB(図48参照)を介して入力されるクリアスイッチ921の出力信号の状態を1回だけ確認する(ステップS707)。その確認においてオンを検出した場合には、払出制御用CPU371は、通常の初期化処理を実行する(ステップS711〜ステップS713)。クリアスイッチ921がオンである場合(押下されている場合)には、ローレベルのクリアスイッチ信号が出力されている。なお、入力ポート372では、クリアスイッチ信号のオン状態はハイレベルである。
【0300】
なお、払出制御用CPU371も、主基板31のCPU56と同様に、スイッチの検出信号のオン判定を行う場合には、例えば、オン状態が少なくとも2ms(2ms毎に起動される処理の1回目の処理における検出直前に検出信号がオンした場合)継続しないとスイッチオンとは見なさないが、クリアスイッチ921のオン検出の場合には、1回のオン判定でオン/オフが判定される。すなわち、操作手段としてのクリアスイッチ921が所定の操作状態であるか否かを払出制御用CPU371が判定するための初期化要求検出判定期間は、遊技媒体検出手段としての賞球カウントスイッチ等が遊技媒体を検出したことを判定するための遊技媒体検出判定期間とは異なる期間とされている。
【0301】
クリアスイッチ921がオンの状態でない場合には、払出制御用CPU371は、払出制御用のバックアップRAM領域にバックアップデータが存在しているか否かの確認を行う(ステップS708)。例えば、主基板31のCPU56の処理と同様に、遊技機への電力供給停止時にセットされるバックアップフラグがセット状態になっているか否かによって、バックアップデータが存在しているか否か確認する。バックアップフラグがセット状態になっている場合には、バックアップデータありと判断する。
【0302】
バックアップありを確認したら、払出制御用CPU371は、まず、特定領域についてチェックサムの算出を行う(ステップS771)。チェックサムの算出の仕方は、遊技制御手段の場合と同様である(図19参照)。電力供給停止時処理において、チェックサムが算出されチェックサムは特定領域のチェックサムバッファに保存されている。そこで、払出制御用CPU371は、特定領域のチェックサムバッファの内容を読み出し(ステップS772)、ステップS771で得られたチェックサムとチェックサムバッファから読み出したチェックサムとを比較する(ステップS773)。比較結果が不一致であった場合には初期化処理を実行する。ステップS773のチェック結果が不一致(正常でない)ということは、バックアップRAMにおける特定領域のデータが、電力供給停止時のデータとは異なっていることを意味する。そのような場合には、バックアップRAM領域に保存されていたデータを用いて制御状態を電力供給停止時の状態に復旧させたのでは遊技者に著しく不利益を与えることになるので、電力供給の停止からの復旧時でない電源投入時に実行される初期化処理を実行する。
【0303】
ステップS773のチェック結果が正常であった場合には、払出制御用CPU371は、バックアップRAMの非特定領域のデータチェック(この例ではチェックサムによるチェック)を行う。まず、非特定領域についてチェックサムの算出を行う(ステップS774)。チェックサムの算出の仕方は、チェックサム開始アドレスおよびチェックサム算出回数が異なるだけで、特定領域の場合と同様である。
【0304】
電力供給停止時処理において、非特定領域についてもチェックサムが算出され、チェックサムは非特定領域のチェックサムバッファに保存されている。そこで、払出制御用CPU371は、非特定領域のチェックサムバッファの内容を読み出し(ステップS775)、ステップS774で得られたチェックサムとチェックサムバッファから読み出したチェックサムとを比較する(ステップS776)。比較結果が不一致であった場合にはバックアップRAMの非特定領域を初期化する(ステップS147)。そして、払出状態復旧処理を実行する(ステップS710)。また、比較結果が一致であった場合にはバックアップRAMの非特定領域を初期化することなく、払出状態復旧処理を実行する(ステップS710)。
【0305】
ステップS771〜S777の処理によって、遊技者の利益に関連が深いデータ(特定領域のデータ)のうちの1つでも、電力供給停止中に破損されていた場合には、払出状態復旧処理が実行されることなく初期化処理が実行される。また、特定領域のデータが電力供給停止中に正しく保存されていた場合には、払出状態復旧処理を実行する。その際に、非特定領域のデータが電力供給停止中に正しく保存されていた場合には非特定領域のデータを初期化しないが、非特定領域のデータのうちの1つでも電力供給停止中に破損されていた場合には非特定領域のデータを初期化する。
【0306】
従って、この実施の形態では、遊技者の利益に関連が深いデータが正しく保存されていたか否かによって、払出状態復旧処理が実行されるか否かが決まる。そして、払出状態復旧処理が実行されることに決定された場合には、非特定領域のデータが電力供給停止中に正しく保存されていたときには払出状態復旧処理後も非特定領域のデータが継続して使用される。しかし、非特定領域のデータが電力供給停止中に正しく保存されていなかった場合には、払出状態復旧処理後に非特定領域のデータが継続して使用されてしまうことはない。
【0307】
以上のような制御が実行されることによって、本来であれば電力供給停止前の状態に復旧することが好ましいのであるが、非特定領域のデータが電力供給停止中に正しく保存されていなかった場合に払出状態復旧処理後に継続して使用されることを防止しつつ、遊技者の利益にさほど関連が深くないデータ(非特定領域のデータ)が破損したことに起因して、遊技者の利益に関連が深いデータ(特定領域のデータ)が初期化されてしまうことが防止され、遊技者に不利益が与えられることを防止することができる。例えば、遊技者の利益にさほど関連が深くないデータのみが破損しているにもかかわらず未払出の賞球払出に関するデータが初期化されてしまい遊技者に不利益を与えてしまうようなことは防止される。
【0308】
遊技制御手段の場合と同様に、それぞれのチェックサムバッファは、特定領域および非特定領域において最後のアドレスに格納されている。従って、例えば、チェックサム作成方法のプログラムに誤りがないかどうか確認する際に、容易にその確認を行うことができる。領域の最終アドレスの値が正しいか否か確認すればよいからである。また、領域の最後のアドレスをチェックサムバッファの領域にすれば、バックアップRAM領域において無駄が生ずることはない。
【0309】
なお、ここでは、特定領域および非特定領域の最後のアドレスをチェックサムバッファの領域にしたが、確認のしやすさやRAM領域の無駄防止を考慮すると、バックアップRAM領域の最初のアドレスをチェックサムバッファの領域にしてもよい。また、バックアップRAM領域の中途の領域にチェックサムバッファの領域を割り当ててもよい。さらに、この実施の形態では、作業領域のデータについてチェックサムが生成されているが、スタック領域のデータも含めて(例えばスタック領域も特別領域に含めて)チェックサムを生成するようにしてもよい。何れのデータにもとづいて生成する場合であっても、RAM領域に格納されているデータを用いて算出処理等が行われるので、チェックサムを容易かつ短時間で生成することが可能となる。
【0310】
また、上記の例では、非特定領域は1つであったが、非特定領域は複数に分けられていてもよい。また、この実施の形態では、RAM領域は全てバックアップRAM領域であるが、バックアップRAM領域の他に、非バックアップRAM領域があってもよい。
【0311】
上記の例では、チェックデータとして、排他的論理和によるチェックサムをビット反転させたデータを用いたが、ビット反転させないデータを用いてもよい。さらに、チェックサムによるチェック方法として、まず、チェックサムバッファの内容を読み出し、読み出した値を初期値として、チェック対象領域のデータを順次排他的論理していって、最終的に得られた値が00(H)であったら、チェック結果が正常であると判定するようにしてもよい。また、上記の例では、チェックデータとして排他的論理和によるチェックサムを用いたが、チェックデータは排他的論理和によるものに限られず、他の手法によって作成されるものでもよい。ただし、排他的論理和によるチェックサムを用いた場合には、チェックデータが排他的論理和演算を施して算出されたデータであり、変動データ記憶手段のワードサイズが通常一定(1バイト)であることから、データの管理が容易になる。
【0312】
初期化処理では、払出制御用CPU371は、まず、全ての作業領域を初期化する処理を行う(ステップS711)。そして、2ms毎に定期的にタイマ割込がかかるように払出制御用CPU371に設けられているCTCのレジスタの設定が行われる(ステップS712)。すなわち、初期値として2msに相当する値が所定のレジスタ(時間定数レジスタ)に設定される。そして、初期設定処理のステップS701において割込禁止とされているので、初期化処理を終える前に割込が許可される(ステップS713)。
【0313】
この実施の形態では、払出制御用CPU371の内蔵CTCが繰り返しタイマ割込を発生するように設定される。この実施の形態では、繰り返し周期は2msに設定される。そして、タイマ割込が発生すると、図52に示すように、タイマ割込があったことを示すタイマ割込フラグがセットされる(ステップS782)。そして、メイン処理において、払出制御用CPU371は、タイマ割込フラグがセットされたことを検出したら(ステップS714)、タイマ割込フラグをリセットするとともに(ステップS751)、払出制御処理(ステップS752〜S760)を実行する。
【0314】
なお、タイマ割込では、図52に示すように、最初に割込許可状態に設定される(ステップS781)。よって、タイマ割込処理中では割込許可状態になり、INT信号の入力にもとづく払出制御コマンド受信処理を優先して実行することができる。
【0315】
払出制御処理において、払出制御用CPU371は、まず、入力ポート372bに入力される賞球カウントスイッチ301Aや球貸しカウントスイッチ301B等のスイッチがオンしたか否かを判定する(スイッチ処理:ステップS752)。
【0316】
次に、払出制御用CPU371は、主基板31から払出停止状態指定コマンドを受信していたら払出停止状態に設定し、払出可能状態指定コマンドを受信していたら払出停止状態の解除を行う(払出停止状態設定処理:ステップS753)。また、受信した払出制御コマンドを解析し、解析結果に応じた処理を実行する(コマンド解析実行処理:ステップS754)。さらに、プリペイドカードユニット制御処理を行う(ステップS755)。
【0317】
次いで、払出制御用CPU371は、球貸し要求に応じて貸し球を払い出す制御を行う(ステップS756)。このとき、払出制御用CPU371は、振分ソレノイド310によって球振分部材311を球貸し側に設定する。
【0318】
さらに、払出制御用CPU371は、総合個数記憶に格納された個数の賞球を払い出す賞球制御処理を行う(ステップS757)。このとき、払出制御用CPU371は、振分ソレノイド310によって球振分部材311を賞球側に設定する。そして、出力ポート372cおよび中継基板72を介して球払出装置97の払出機構部分における払出モータ289に対して駆動信号を出力し、所定の回転数分払出モータ289を回転させる払出モータ制御処理を行う(ステップS758)。
【0319】
なお、この実施の形態では、払出モータ289としてステッピングモータが用いられ、それらを制御するために1−2相励磁方式が用いられる。従って、具体的には、払出モータ制御処理において、8種類の励磁パターンデータが繰り返し払出モータ289に出力される。また、この実施の形態では、各励磁パターンデータが4msずつ出力される。
【0320】
次いで、エラー検出処理が行われ、その結果に応じてエラー表示LED374に所定の表示を行う(エラー処理:ステップS759)。また、遊技機外部に出力される球貸し個数信号を出力する処理等を行う(出力処理:ステップS760)。
【0321】
なお、図47に示す出力ポートCは、払出制御処理における払出モータ制御処理(ステップS758)でアクセスされる。また、出力ポートDは、払出制御処理におけるエラー処理(ステップS759)でアクセスされる。そして、出力ポートEは、払出制御処理における球貸し制御処理(ステップS756)および賞球制御処理(ステップS757)でアクセスされる。
【0322】
図53は、ステップS710の払出状態復旧処理の一例を示すフローチャートである。払出状態復旧処理において、払出制御用CPU371は、まず、スタックポインタの復旧処理を行う(ステップS731)。スタックポインタの値は、後述する電力供給停止時処理において、バックアップRAM領域の所定の領域に退避している。よって、ステップS731では、そのRAMエリアの値をスタックポインタに設定することによって復旧させる。なお、復旧されたスタックポインタが指す領域(すなわちスタック領域)には、電力供給が停止したときのレジスタ値やプログラムカウンタ(PC)の値が退避している。
【0323】
次いで、払出制御用CPU371は、バックアップフラグをクリアする(ステップS732)すなわち、前回の電力供給停止時に所定の記憶保護処理が実行されたことを示すフラグをリセットする。また、スタック領域から各種レジスタの退避値を読み出して、各種レジスタに設定する(ステップS733)。すなわち、レジスタ復元処理を行う。そして、パリティフラグがオンしていない場合には割込許可状態にする(ステップS734,S735)。最後に、AFレジスタ(アキュミュレータとフラグのレジスタ)をスタック領域から復元する(ステップS736)。
【0324】
そして、RET命令が実行されるのであるが、ここでのリターン先は、払出状態復旧処理をコールした部分ではない。なぜなら、ステップS731においてスタックポインタの復旧処理がなされ、復旧されたスタックポインタが指すスタック領域に格納されているリターンアドレスは、プログラムにおける前回の電力供給停止時にNMIが発生したアドレスである。従って、ステップS736の次のRET命令によって、電力供給停止時にNMIが発生したアドレスにリターンする。すなわち、スタック領域に退避されていたアドレスにもとづいて復旧制御が実行されている。
【0325】
図54および図55は、電源基板910からの電源断信号に応じて実行されるマスク不能割込処理(NMI処理:電力供給停止時処理)の処理例を示すフローチャートである。
【0326】
電力供給停止時処理において、払出制御用CPU371は、AFレジスタを所定のバックアップRAM領域に退避する(ステップS801)。また、割込フラグをパリティフラグにコピーする(ステップS802)。パリティフラグはバックアップRAM領域に形成されている。割込フラグは、割込許可状態であるのか割込禁止状態であるのかを示すフラグであって、払出制御用CPU371が内蔵する制御レジスタ中にある。割込フラグのオン状態が割込禁止状態であることを示す。上述したように、パリティフラグは遊技状態復旧処理で参照される。そして、払出状態復旧処理において、パリティフラグがオン状態であれば、割込許可状態には設定されない。
【0327】
また、BCレジスタ、DEレジスタ、HLレジスタ、IXレジスタおよびスタックポインタをバックアップRAM領域に退避する(ステップS804〜S808)。
【0328】
次に、バックアップあり指定値(この例では「55H」)をバックアップフラグにストアする(ステップS809)。実行確認情報としてのバックアップフラグはバックアップRAM領域に形成されている。次いで、主基板31の遊技制御手段と同様に、バックアップRAMの特定領域についてチェックサムを算出し(ステップS810)、チェックサムデータエリアの内容を特定領域のチェックサムバッファに格納する(ステップS811)。また、バックアップRAMの非特定領域についてチェックサムを算出し(ステップS812)、チェックサムデータエリアの内容を非特定領域のチェックサムバッファに格納する(ステップS813)。なお、ステップS810およびS812の処理は、図19に示されたように実行される。そして、RAMアクセスレジスタにアクセス禁止値を設定する(ステップS820)。以後、内蔵RAMのアクセスができなくなる。
【0329】
さらに、払出制御用CPU371は、クリアデータ(00)を適当なレジスタにセットし(ステップS821)、処理数(この例では「3」)を別のレジスタにセットする(ステップS822)。また、出力ポートCのアドレス(この例では「00H」)をIOポインタに設定する(ステップS823)。IOポインタとして、さらに別のレジスタが用いられる。
【0330】
そして、IOポインタが指すアドレスにクリアデータをセットするとともに(ステップS824)、IOポインタの値を1増やし(ステップS825)、処理数の値を1減算する(ステップS827)。ステップS824〜S826の処理が、処理数の値が0になるまで繰り返される。その結果、全ての出力ポートC〜E(図47参照)にクリアデータが設定される。図47に示すように、この例では、「1」がオン状態であり、クリアデータである「00」が各出力ポートにセットされるので、全ての出力ポートがオフ状態になる。
【0331】
従って、制御状態を保存するための処理(この例では、チェックサムの生成およびRAMアクセス防止)が実行された後、各出力ポートは直ちにオフ状態になる。従って、その内容が正しく保存されているか否かを示すチェックサムの生成処理、およびその内容を書き換えないようにするためのRAMアクセス防止処理が、払出制御状態を保存するための処理に相当する。
【0332】
制御状態を保存するための処理が実行された後、直ちに各出力ポートがオフ状態になるので、保存される遊技状態と整合しない状況が発生することは確実に防止される。また、電気部品の駆動が不能なる状態になる前に電力供給停止処理の際に出力ポートをクリアすることができるので、電気部品の駆動が不能なる状態となる前に払出制御手段により制御される各電気部品を、適切な動作停止状態にすることができる。例えば、駆動状態にある払出モータ289の作動を停止させるなど電気部品についての作動を停止させたあとに電気部品の駆動が不能なる状態とすることができる。従って、適切な停止状態で電力供給の復旧を待つことができる。
【0333】
出力ポートに対するクリア処理が完了すると、払出制御用CPU371は、待機状態(ループ状態)に入る。従って、システムリセットされるまで、何もしない状態になる。
【0334】
なお、この実施の形態では、電力供給停止時処理が、当該処理を実行したことを示す実行確認情報を変動データ記憶手段の特定領域に保存させるための処理を含んでいるが、実行確認情報は、非特定領域にも保存させるようにしてもよい。
【0335】
図56は、主基板31から受信した払出制御コマンドを格納するための受信バッファの一構成例を示す説明図である。この例では、2バイト構成の払出制御コマンドを6個格納可能なリングバッファ形式の受信バッファが用いられる。従って、受信バッファは、受信コマンドバッファ1〜12の12バイトの領域で構成される。そして、受信したコマンドをどの領域に格納するのかを示すコマンド受信個数カウンタが用いられる。コマンド受信個数カウンタは、0〜11の値をとる。
【0336】
図57は、割込処理による払出制御コマンド受信処理を示すフローチャートである。主基板31からの払出制御用のINT信号は払出制御用CPU371のCLK/TRG2端子に入力されている。よって、主基板31からのINT信号が立ち上がると、払出制御用CPU371に割込がかかり、図57に示す払出制御コマンドの受信処理が開始される。なお、払出制御用CPU371は、割込が発生すると、ソフトウェアで割込許可にしない限り、マスク可能割込がさらに生ずることはないような構造のCPUである。
【0337】
なお、ここでは払出制御手段のコマンド受信処理について説明するが、表示制御手段、ランプ制御手段および音制御手段でも、同様のコマンド受信処理が実行されている。また、この実施の形態では、CLK/TRG2端子の入力が立ち上がるとタイマカウンタレジスタCLK/TRG2の値が−1されるような初期設定を行ったが、すなわち、INT信号の立ち上がりで割込が発生するような初期設定を行ったが、CLK/TRG2端子の入力が立ち下がるとタイマカウンタレジスタCLK/TRG2の値が−1されるような初期設定を行ってもよい。換言すれば、INT信号の立ち下がりで割込が発生するような初期設定を行ってもよい。
【0338】
すなわち、取込信号としてのパルス状(矩形波状)のINT信号のレベル変化タイミング(エッジ)で割込が発生するように構成すれば、エッジは立ち上がりエッジであっても立ち下がりエッジであってもよい。いずれにせよ、取込信号としてのパルス状(矩形波状)のINT信号のレベル変化タイミング(エッジ)で割込が発生するように構成される。このようにすることで、コマンドの取込が指示された段階でいち早くコマンド受信を行うことが可能になる。また、Aの期間(図41)が経過するまでINT信号の出力が待機されるので、INT信号の出力時に、制御信号CD0〜CD7のライン上のコマンドデータの出力状態は安定している。よって、払出制御手段において、払出制御コマンドは良好に受信される。
【0339】
払出制御コマンドの受信処理において、払出制御用CPU371は、まず、各レジスタをスタックに退避する(ステップS850)。次いで、払出制御コマンドデータの入力に割り当てられている入力ポート372a(図10参照)からデータを読み込む(ステップS851)。そして、2バイト構成の払出制御コマンドのうちの1バイト目であるか否か確認する(ステップS852)。1バイト目であるか否かは、受信したコマンドの先頭ビットが「1」であるか否かによって確認される。先頭ビットが「1」であるのは、2バイト構成である払出制御コマンドのうちのMODEバイト(1バイト目)のはずである(図40参照)。そこで、払出制御用CPU371は、先頭ビットが「1」であれば、有効な1バイト目を受信したとして、受信したコマンドを受信バッファ領域におけるコマンド受信個数カウンタが示す受信コマンドバッファに格納する(ステップS853)。
【0340】
払出制御コマンドのうちの1バイト目でなければ、1バイト目を既に受信したか否か確認する(ステップS854)。既に受信したか否かは、受信バッファ(受信コマンドバッファ)に有効なデータが設定されているか否かによって確認される。
【0341】
1バイト目を既に受信している場合には、受信した1バイトのうちの先頭ビットが「0」であるか否か確認する。そして、先頭ビットが「0」であれば、有効な2バイト目を受信したとして、受信したコマンドを、受信バッファ領域におけるコマンド受信個数カウンタ+1が示す受信コマンドバッファに格納する(ステップS855)。先頭ビットが「0」であるのは、2バイト構成である払出制御コマンドのうちのEXTバイト(2バイト目)のはずである(図40参照)。なお、ステップS854における確認結果が1バイト目を既に受信したである場合には、2バイト目として受信したデータのうちの先頭ビットが「0」でなければ処理を終了する。なお、ステップS854で「N」と判断された場合には、ステップS856の処理が行われないので、次に受信したコマンドは、今回受信したコマンドが格納されるはずであったバッファ領域に格納される。
【0342】
ステップS855において、2バイト目のコマンドデータを格納すると、コマンド受信個数カウンタに2を加算する(ステップS856)。そして、コマンド受信カウンタが12以上であるか否か確認し(ステップS857)、12以上であればコマンド受信個数カウンタをクリアする(ステップS858)。その後、退避されていたレジスタを復旧し(ステップS859)、最後に割込許可に設定する(ステップS859)。
【0343】
コマンド受信割込処理中は割込禁止状態になっている。上述したように、2msタイマ割込処理中は割込許可状態になっているので、2msタイマ割込中にコマンド受信割込が発生した場合には、コマンド受信割込処理が優先して実行される。また、コマンド受信割込処理中に2msタイマ割込が発生しても、その割込処理は待たされる。このように、この実施の形態では、主基板31からのコマンド受信処理の処理優先度が高くなっている。また、コマンド受信処理中には他の割込処理が実行されないので、コマンド受信処理に要する最長時間は決まる。コマンド受信処理中に他の割込処理が実行可能であるように構成したのでは、コマンド受信処理に要する最長の時間を見積もることは困難である。コマンド受信処理に要する最長時間が決まるので、遊技制御手段のコマンド送出処理におけるCの期間(図41参照)をどの程度にすればよいのかを正確に判断することができる。
【0344】
また、払出制御コマンドは2バイト構成であって、1バイト目(MODE)と2バイト目(EXT)とは、受信側で直ちに区別可能に構成されている。すなわち、先頭ビットによって、MODEとしてのデータを受信したのかEXTとしてのデータを受信したのかを、受信側において直ちに検出できる。よって、上述したように、適正なデータを受信したのか否かを容易に判定することができる。
【0345】
なお、この実施の形態では、コマンド受信割込処理では、受信したコマンドを受信バッファに格納する制御が行われるが、後述する払出停止状態設定処理(図59参照)やコマンド解析実行処理(図60参照)を、コマンド受信割込処理において実行するように構成してもよい。そのように、受信バッファ内のコマンドについて判定するコマンド判定処理までもコマンド受信割込処理において実行する場合には、コマンドの判定も迅速に実行される。
【0346】
図58は、ステップS751のスイッチ処理の一例を示すフローチャートである。スイッチ処理において、払出制御用CPU371は、賞球カウントスイッチ301Aがオン状態を示しているか否か確認する(ステップS751a)。オン状態を示していれば、払出制御用CPU371は、賞球カウントスイッチオンカウンタを+1する(ステップS751b)。賞球カウントスイッチオンカウンタは、賞球カウントスイッチ301Aのオン状態を検出した回数を計数するためのカウンタである。
【0347】
そして、賞球カウントスイッチオンカウンタの値をチェックし(ステップS751c)、その値が2になっていれば、1個の賞球の払出が行われたと判断する。1個の賞球の払出が行われたと判断した場合には、払出制御用CPU371は、賞球未払出カウンタ(総合個数記憶に格納されている賞球個数)を−1する(ステップS751d)。
【0348】
ステップS751aにおいて賞球カウントスイッチ301Aがオン状態でないことが確認されると、払出制御用CPU371は、賞球カウントスイッチオンカウンタをクリアする(ステップS751e)。そして、この実施の形態では、球貸しカウントスイッチ301Bがオン状態を示しているか否か確認する(ステップS751f)。オン状態を示していれば、払出制御用CPU371は、球貸しカウントスイッチオンカウンタを+1する(ステップS751g)。球貸しカウントスイッチオンカウンタは、球貸しカウントスイッチ301Bのオン状態を検出した回数を計数するためのカウンタである。
【0349】
そして、球貸しカウントスイッチオンカウンタの値をチェックし(ステップS751h)、その値が2になっていれば、1個の貸し球の払出が行われたと判断する。1個の貸し球の払出が行われたと判断した場合には、払出制御用CPU371は、貸し球未払出個数カウンタ(貸し球個数記憶に格納されている貸し球数)を−1する(ステップS751i)。
【0350】
ステップS751fにおいて球貸しカウントスイッチ301Bがオン状態でないことが確認されると、払出制御用CPU371は、球貸しカウントスイッチオンカウンタをクリアする(ステップS751j)。
【0351】
図59は、ステップS753の払出停止状態設定処理の一例を示すフローチャートである。払出停止状態設定処理において、払出制御用CPU371は、受信バッファ中に受信コマンドがあるか否かの確認を行う(ステップS753a)。受信バッファ中に受信コマンドがあれば、受信した払出制御コマンドが払出停止状態指定コマンドであるか否かの確認を行う(ステップS753b)。払出停止状態指定コマンドであれば、払出制御用CPU371は、払出停止状態に設定する(ステップS753c)。
【0352】
ステップS753bで受信コマンドが払出停止状態指定コマンドでないことを確認すると、受信した払出制御コマンドが払出可能状態指定コマンドであるか否かの確認を行う(ステップS753d)。払出可能状態指定コマンドであれば、払出停止状態を解除する(ステップS753e)。
【0353】
図60は、ステップS754のコマンド解析実行処理の一例を示すフローチャートである。コマンド解析実行処理において、払出制御用CPU371は、受信バッファに受信コマンドがあるか否かの確認を行う(ステップS754a)。受信コマンドがあれば、受信した払出制御コマンドが賞球個数を指定するための払出制御コマンドであるか否かの確認を行う(ステップS754b)。なお、払出制御用CPU371は、コマンド指示手段としての読出ポインタが指す受信バッファ中のアドレスに格納されている受信コマンドについてステップS754bの判断を行う。また、その判断後、読出ポインタの値は+1される。読出ポインタが指すアドレスが受信コマンドバッファ12(図56参照)のアドレスを越えた場合には、読出ポインタの値は、受信コマンドバッファ1を指すように更新される。
【0354】
受信した払出制御コマンドが賞球個数を指定するための払出制御コマンドであれば、払出制御コマンドで指示された個数を総合個数記憶に加算する(ステップS754c)。すなわち、払出制御用CPU371は、主基板31のCPU56から送られた払出制御コマンドに含まれる賞球個数をバックアップRAM領域(総合個数記憶)に記憶する。
【0355】
なお、払出制御用CPU371は、必要ならば、コマンド受信個数カウンタの減算や受信バッファにおける受信コマンドシフト処理を行う。また、払出停止状態設定処理およびコマンド解析実行処理が、読出ポインタの値と受信バッファにおける最新コマンド格納位置とが一致するまで繰り返すように構成されていてもよい。例えば、読出ポインタの値と受信バッファにおける最新コマンド格納位置との差が「3」であれば未処理の受信済みコマンドが3つあることになるが、一致するまで繰り返し処理が実行されることによって、未処理の受信済みコマンドがなくなる。すなわち、受信バッファに格納されている受信済みコマンドが、一度の処理で、全て読み出されて処理される。
【0356】
図61は、ステップS755のプリペイドカードユニット制御処理の一例を示すフローチャートである。プリペイドカードユニット制御処理において、払出制御用CPU371は、カードユニット制御用マイクロコンピュータより入力されるVL信号を検知したか否かを確認する(ステップS755a)。VL信号を検知していなければ、VL信号非検知カウンタを+1する(ステップS755b)。また、払出制御用CPU371は、VL信号非検知カウンタの値が本例では125であるか否か確認する(ステップS755c)。VL信号非検知カウンタの値が125であれば、払出制御用CPU371は、発射制御基板91への発射制御信号出力を停止して、駆動モータ94を停止させる(ステップS755d)。
【0357】
以上の処理によって、125回(2ms×125=250ms)継続してVL信号のオフが検出されたら、球発射禁止状態に設定される。
【0358】
ステップS755aにおいてVL信号を検知していれば、払出制御用CPU371は、VL信号非検知カウンタをクリアする(ステップS755e)。そして、払出制御用CPU371は、発射制御信号出力を停止していれば(ステップS755f)、発射制御基板91への発射制御信号出力を開始して駆動モータ94を動作可能状態にする(ステップS755g)。
【0359】
図62および図63は、ステップS756の球貸し制御処理の一例を示すフローチャートである。なお、この実施の形態では、連続的な払出数の最大値を貸し球の一単位(例えば25個)とするが、連続的な払出数の最大値は他の数であってもよい。
【0360】
球貸し制御処理において、払出制御用CPU371は、貸し球払出中であるか否かの確認を行い(ステップS511)、貸し球払出中であれば図63に示す球貸し中の処理に移行する。なお、貸し球払出中であるか否かは、後述する球貸し処理中フラグの状態によって判断される。貸し球払出中でなければ、賞球の払出中であるか否か確認する(ステップS512)。賞球の払出中であるか否は、後述する賞球処理中フラグの状態によって判断される。
【0361】
貸し球払出中でも賞球払出中でもなければ、払出制御用CPU371は、カードユニット50から球貸し要求があったか否かを確認する(ステップS513)。要求があれば、球貸し処理中フラグをオンするとともに(ステップS514)、25(球貸し一単位数:ここでは100円分)をバックアップRAM領域の貸し球個数記憶に設定する(ステップS515)。そして、払出制御用CPU371は、EXS信号をオンする(ステップS516)。また、球払出装置97の下方の球振分部材311を球貸し側に設定するために振分用ソレノイド310を駆動する(ステップS517)。さらに、払出モータ289をオンして(ステップS518)、図63に示す球貸し中の処理に移行する。
【0362】
なお、払出モータ289をオンするのは、厳密には、カードユニット50が受付を認識したことを示すためにBRQ信号をOFFとしてからである。なお、球貸し処理中フラグはバックアップRAM領域に設定される。
【0363】
図63は、払出制御用CPU371による払出制御処理における球貸し中の処理を示すフローチャートである。球貸し処理では、払出モータ289がオンしていなければオンする。なお、この実施の形態では、ステップS751のスイッチ処理で、球貸しカウントスイッチ301Bの検出信号による遊技球の払出がなされたか否かの確認を行うので、球貸し制御処理では貸し球個数記憶の減算などは行われない。
【0364】
球貸し制御処理において、払出制御用CPU371は、貸し球通過待ち時間中であるか否かの確認を行う(ステップS519)。貸し球通過待ち時間中でなければ、貸し球の払出を行い(ステップS520)、払出モータ289の駆動を終了すべきか(一単位の払出動作が終了したか)否かの確認を行う(ステップS521)。具体的には、所定個数の払出に対応した回転が完了したか否かを確認する。所定個数の払出に対応した回転が完了した場合には、払出制御用CPU371は、払出モータ289の駆動を停止し(ステップS522)、貸し球通過待ち時間の設定を行う(ステップS523)。
【0365】
ステップS519で貸し球通過待ち時間中であれば、払出制御用CPU371は、貸し球通過待ち時間が終了したか否かの確認を行う(ステップS524)。貸し球通過待ち時間は、最後の払出球が払出モータ289によって払い出されてから球貸しカウントスイッチ301Bを通過するまでの時間である。貸し球通過待ち時間の終了を確認すると、一単位の貸し球は全て払い出された状態であるので、カードユニット50に対して次の球貸し要求の受付が可能になったことを示すためにEXS信号をオフにする(ステップS525)。また、振分ソレノイドをオフするとともに(ステップS526)、球貸し処理中フラグをオフする(ステップS527)。なお、貸し球通過待ち時間が経過するまでに最後の払出球が球貸しカウントスイッチ301Bを通過しなかった場合には、球貸し経路エラーとされる。また、この実施の形態では、賞球も球貸しも同じ払出装置で行われる。
【0366】
なお、球貸し要求の受付を示すEXS信号をオフにした後、所定期間内に再び球貸し要求信号であるBRQ信号がオンしたら、振分ソレノイドおよび払出モータをオフせずに球貸し処理を続行するようにしてもよい。すなわち、所定単位(この例では100円単位)毎に球貸し処理を行うのではなく、球貸し処理を連続して実行するように構成することもできる。
【0367】
貸し球個数記憶の内容は、遊技機への電力供給が停止しても、所定期間電源基板910のバックアップ電源によって保存される。従って、所定期間中に電力供給が復旧すると、払出制御用CPU371は、貸し球個数記憶の内容にもとづいて球貸し処理を継続することができる。
【0368】
図64および図65は、ステップS757の賞球制御処理の一例を示すフローチャートである。なお、この例では、連続的な払出数の最大値を貸し球の一単位と同数(例えば25個)とするが、連続的な払出数の最大値は他の数であってもよい。
【0369】
賞球制御処理において、払出制御用CPU371は、貸し球払出中であるか否か確認する(ステップS531)。貸し球払出中であるか否かは、球貸し処理中フラグの状態によって判断される。貸し球払出中でなければ賞球の払出中であるか否か確認し(ステップS532)、賞球の払出中であれば図65に示す賞球中の処理に移行する。賞球の払出中であるか否かは、後述する賞球処理中フラグの状態によって判断される。
【0370】
貸し球払出中でも賞球払出中でもなければ、払出制御用CPU371は、カードユニット50からの球貸し準備要求があるか否か確認する(ステップS533)。球貸し準備要求があるか否かは、カードユニット50から入力されるBRDY信号のオン(要求あり)またはオフ(要求なし)を確認することによって行われる。
【0371】
カードユニット50からの球貸し準備要求がなければ、払出制御用CPU371は、総合個数記憶に格納されている賞球個数(未払出の賞球個数)が0でないか否か確認する(ステップS534)。総合個数記憶に格納されている賞球個数が0でなければ、賞球制御用CPU371は、賞球処理中フラグをオンし(ステップS535)、総合個数記憶の値が25以上であるか否か確認する(ステップS536)。なお、賞球処理中フラグは、バックアップRAM領域に設定される。
【0372】
総合個数記憶に格納されている賞球個数が25以上であると、払出制御用CPU371は、25個分の遊技球を払い出すまで払出モータ289を回転させるように払出モータ289に対して駆動信号を出力するために、25個払出動作の設定を行う(ステップS537)。総合個数記憶に格納されている賞球個数が25以上でなければ、払出制御用CPU371は、総合個数記憶に格納されている全ての遊技球を払い出すまで払出モータ289を回転させるように駆動信号を出力するために、全個数払出動作の設定を行う(ステップS538)。次いで、払出モータ289をオンする(ステップS539)。なお、振分ソレノイドはオフ状態であるから、球払出装置97の下方の球振分部材は賞球側に設定されている。そして、図65に示す賞球制御処理における賞球払出中の処理に移行する。
【0373】
図65は、払出制御用CPU371による払出制御処理における賞球中の処理の一例を示すフローチャートである。賞球制御処理では、払出モータ289がオンしていなければオンする。なお、この実施の形態では、ステップS751のスイッチ処理で、賞球カウントスイッチ301Aの検出信号による遊技球の払出がなされたか否かの確認を行うので、賞球制御処理では総合個数記憶の減算などは行われない。
【0374】
賞球中の処理において、払出制御用CPU371は、賞球通過待ち時間中であるか否かの確認を行う(ステップS540)。賞球通過待ち時間中でなければ、賞球払出を行い(ステップS541)、払出モータ289の駆動を終了すべきか(25個または25個未満の所定の個数の払出動作が終了したか)否かの確認を行う(ステップS542)。具体的には、所定個数の払出に対応した回転が完了したか否かを確認する。所定個数の払出に対応した回転が完了した場合には、払出制御用CPU371は、払出モータ289の駆動を停止し(ステップS543)、賞球通過待ち時間の設定を行う(ステップS544)。賞球通過待ち時間は、最後の払出球が払出モータ289によって払い出されてから賞球カウントスイッチ301Aを通過するまでの時間である。
【0375】
ステップS540で賞球通過待ち時間中であれば、払出制御用CPU371は、賞球通過待ち時間が終了したか否かの確認を行う(ステップS545)。賞球通過待ち時間が終了した時点は、ステップS537またはステップS538で設定された賞球が全て払い出された状態である。そこで、払出制御用CPU371は、賞球通過待ち時間が終了していれば、賞球処理中フラグをオフする(ステップS546)。賞球通過待ち時間が経過するまでに最後の払出球が賞球カウントスイッチ301Aを通過しなかった場合には、賞球経路エラーとされる。
【0376】
なお、この実施の形態では、ステップS511、ステップS531の判断によって球貸しが賞球処理よりも優先されることになるが、賞球処理が球貸しに優先するようにしてもよい。
【0377】
総合個数記憶および貸し球個数記憶の内容は、遊技機への電力供給が停止しても、所定期間電源基板910のバックアップ電源によって保存される。従って、所定期間中に電力供給が復旧すると、払出制御用CPU371は、総合個数記憶の内容にもとづいて払出処理を継続することができる。
【0378】
なお、払出制御用CPU371は、主基板31から指示された賞球個数を賞球個数記憶で総数として管理したが、賞球個数毎(例えば15個、10個、6個)に管理してもよい。例えば、賞球個数毎に対応した個数カウンタを設け、払出個数指定コマンドを受信すると、そのコマンドで指定された個数に対応する個数カウンタを+1する。そして、個数カウンタに対応した賞球払出が行われると、その個数カウンタを−1する(この場合、払出制御処理にて減算処理を行うようにする)。その場合にも、各個数カウンタはバックアップRAM領域における特定領域に形成される。よって、遊技機への電力供給が停止しても、所定期間中に電源が復旧すれば、払出制御用CPU371は、各個数カウンタの内容にもとづいて賞球払出処理を継続することができる。
【0379】
この実施の形態では、払出制御手段は、払出制御信号に関するINT信号が立ち上がったことを検知して、例えば割込処理によって1バイトのデータの取り込み処理を開始する。そして、複数の払出制御コマンドを格納可能な受信リングバッファ(この例では受信バッファ)が設けられているので、払出制御コマンドを受信後、そのコマンドにもとづく制御が開始されないうちに次の払出制御コマンドを受信しても、そのコマンドが、払出制御手段において受信されないということはない。
【0380】
また、図34〜図36のフローチャートに示されたように、遊技制御手段は、払出停止状態であっても(ステップS201)、ステップS251のコマンドセット処理が実行可能であるように構成されている。よって、払出停止状態であっても、入賞検出がなされると払出個数を示す払出制御コマンドが払出制御手段に対して送出される。
【0381】
払出制御手段において、払出停止状態であっても割込処理は起動されるので、払出制御手段は、払出停止中であっても、払出制御コマンドを受信することができる。そして、払出停止中では受信した払出制御コマンドに応じた払出処理は停止しているのであるが、複数の払出制御コマンドを格納可能な受信リングバッファが設けられているので、遊技制御手段から送出された払出制御コマンドは、払出制御手段において消失してしまうようなことはない。
【0382】
そして、払出制御手段において、送出コマンドを受信リングバッファにおけるどの領域に格納するのかを示すアドレス指示手段としてのコマンド受信個数カウンタが用いられる。よって、どの領域を使用すればよいのかの判断は容易である。
【0383】
なお、上記の実施の形態では、変動データ記憶手段として電源バックアップされる揮発性のRAMを用いた場合を示したが、変動データ記憶手段として、EEPROMやフラッシュROM等の不揮発性記憶手段を用いてもよい。不揮発性記憶手段を用いた場合には、停電等の不測の電力供給停止が生ずる場合に、記憶手段の記憶情報への影響を低減させることができる。すなわち、記憶手段に記憶されている内容がより安全に保存される。また、不揮発性記憶手段を用いた場合には、電源基板910においてバックアップ電源を設けなくてもよい。
【0384】
以上に説明したように、上記の実施の形態では、変動データ記憶手段が特定の領域を含む複数の領域を含み、特定領域に少なくとも特定遊技状態であるか否かを特定可能な変動データまたは未払出遊技媒体数に関する変動データが記憶され、遊技制御手段または払出制御手段が、遊技機への電力供給が停止する場合に制御状態を復旧させるために必要なデータを変動データ記憶手段に記憶するための電力供給停止時処理を実行することが可能であって、電力供給停止時処理において変動データ記憶手段の各領域毎にチェックデータを作成して保存する処理を実行し、遊技機への電力供給が開始された場合に少なくとも特定の領域に保存されていたチェックデータが正当であると判定したことを条件に変動データ記憶手段に保持されていた変動データにもとづいて制御状態を復旧させる制御を行い、少なくとも特定の領域に保存されていたチェックデータが正当でないと判定した場合には変動データ記憶手段の内容を初期化する制御を行うように構成されている。従って、本来であれば電力供給停止前の状態に復旧することが好ましいのであるが、非特定領域のデータが電力供給停止中に正しく保存されていなかった場合に、遊技者の利益にさほど関連が深くないデータが破損されてしまったことに起因して大当り状態であったことを示すデータも初期化されてしまって大当り遊技状態が消滅してしまうようなことが防止される。また、遊技者の利益にさほど関連が深くないデータのみが破損しているにもかかわらず未払出の賞球払出に関するデータが初期化されてしまい遊技者に不利益を与えてしまうようなことを防止できる効果がある。
【0385】
なお、遊技制御手段および払出制御手段におけるRAMと同様に、音制御手段、ランプ制御手段および表示制御手段におけるRAMも、電源バックアップされる変動データ記憶手段があるようにしてもよい。そして、変動データ記憶手段に関して、遊技制御手段や払出制御手段と同様の制御を行ってもよい。
【0386】
さらに、上記の実施の形態では、電源監視手段が電源基板910に設けられ、システムリセットのための信号を発生する回路は電気部品制御基板に設けられたが、それらがともに電気部品制御基板に設けられていてもよい。
【0387】
電気部品制御手段は、電力供給停止時処理において、電力供給停止時処理を行ったことを示すバックアップフラグをセットするとともに、チェックサムを生成して保存する処理を行い、電力供給が再開されたときに、バックアップフラグの状態、およびチェックサムのチェック結果に応じて、状態復旧処理を行うのか初期化処理を行うのか決定するので、簡易な方法によって、確実に、状態復旧処理を行うのか否か決定することができる。その結果、電力供給停止時処理によって保存された制御状態を確実に活用することができる。
【0388】
電力供給停止時処理が行われることなく電力供給停止状態とされていた場合には、バックアップフラグがセットされていない状態となっている。よって、復旧させるためのデータが存在しないにもかかわらず、状態復旧処理が実行されてしまうことは防止される。また、バックアップフラグがセットされていない場合には直ちに初期化処理を実行することができるので、制御が簡略化される。
【0389】
電力供給停止中に、バックアップ電源でバックアップされる変動データ記憶手段の記憶内容が変化してしまった場合には、チェックサムのチェック結果がチェックOKとはならない(すなわち、電力供給が再開されたとにきに生成されたチェックサムと保存されているチェックサムとは一致しない)。よって、誤った記憶内容にもとづいて状態復旧処理が実行されてしまうことは防止される。
【0390】
また、上述したように、所定の電源(各電気部品制御基板に搭載されている回路素子の電源電圧(この例では+5V)よりも高い電圧であることが好ましく、本例では、交流から直流に変換された直後の電圧であるVSLが用いられている。)の状態を監視して、その電源の出力が低下し電力供給停止に関わる検出条件が成立した場合(この例では、VSL電圧が所定値(この例では+22V)以下になった場合)に検出信号(電源断信号)を出力する電源監視手段(電源監視用IC902)が設けられているので、遊技機への電力供給の停止の発生を検出することができる。電力供給停止に関わる検出条件は、本例では電源電圧が所定値以下になった場合であるが、例えば、電流値が所定時間以上検出されなくなったような他の検出条件を用いてもよい。
【0391】
また、上述したように、チェックデータが、変動データ記憶手段の記憶内容のうちの少なくとも一部の内容(例えば、ポインタが指すRAM領域の内容)にもとづいて所定の論理演算(例えば、チェックサムデータエリアの内容とポインタが指すRAM領域の内容との排他的論理和など)を行って算出されたデータであるから、チェックデータを容易に、かつ短時間で生成することができる。
【0392】
さらに、上述したように、バックアップRAMには、所定条件(例えば、電力供給停止時処理が実行されるための条件)の成立に応じてデータを退避させるための退避領域(スタック領域)が含まれ、チェックデータは作業領域の内容にもとづいて生成され、レジスタの内容が退避領域に保存されるように構成されているので、チェックデータ生成の対象となる領域を狭めることができチェックデータを短時間で生成することができる。
【0393】
なお、上記の実施の形態では、電力供給開始時に、遊技制御手段が、払出制御手段に対して払出停止状態指定コマンドまたは払出可能状態指定コマンドを送信したが、他のコマンドを送信してもよい。例えば、打球操作ハンドル5による打球発射の可否や、エラーとエラー解除に関する情報などを通知する。そのように構成することで、電力供給開始後において、遊技制御手段と払出制御手段との間に、現在状況の認識の食い違いが生じてしまうことを回避することができる。その結果、適正な遊技制御をおこなうことができる。
【0394】
また、上記の実施の形態では、払出制御手段は払出停止状態指定コマンドを受信すると球貸しも賞球払出も共に停止し、払出可能状態指定コマンドに応じて球貸しも賞球払出も共に可能な状態に戻したが、賞球に関する払出停止指示と球貸しに関する払出停止指示とを別コマンドとし、賞球に関する払出停止解除指示と球貸しに関する払出停止解除指示とを別コマンドとしてもよい。そのように構成した場合には、電力供給開始後において、遊技制御手段と払出制御手段との間に、賞球停止/停止解除および球貸し停止/停止解除についての現在状況の認識の食い違いが生じてしまうことを回避することができる。
【0395】
なお、上記の実施の形態では、払出手段は球貸しも賞球払出も実行可能な構成であったが、球貸しを行う機構と賞球払出を行う機構とが独立していても本発明を適用することができる。その場合、球貸しを行う機構と賞球払出を行う機構とが独立していても、払出制御手段が両方の機構を制御するように構成されていれば、上記の実施の形態のように1つのコマンドで球貸しも賞球払出も停止/停止解除を指示するように構成することができる。
【0396】
さらに、電気部品制御手段は、電力供給が開始されたときに、電力供給停止時処理において保存された制御状態が残っていても、操作手段が操作されている場合には、状態復旧処理を実行せず初期化処理を実行する。よって、遊技店員等が保存状態を容易にクリアすることができる。
【0397】
また、電気部品制御手段におけるマイクロコンピュータは、状態復旧処理が完了したら、電力供給停止時処理が実行されたときにスタック領域に保存されていたアドレスに戻ってプログラムの実行を再開する。従って、容易に電力供給停止時に実行していた制御状態に復旧することができるとともに、確実に電力供給停止時に実行していた制御状態に復旧することができる。
【0398】
なお、上記の各実施の形態のパチンコ遊技機1は、主として、始動入賞にもとづいて可変表示装置9に可変表示される特別図柄の停止図柄が所定の図柄の組み合わせになると所定の遊技価値が遊技者に付与可能になる第1種パチンコ遊技機であったが、始動入賞にもとづいて開放する電動役物の所定領域への入賞があると所定の遊技価値が遊技者に付与可能になる第2種パチンコ遊技機や、始動入賞にもとづいて可変表示される図柄の停止図柄が所定の図柄の組み合わせになると開放する所定の電動役物への入賞があると所定の権利が発生または継続する第3種パチンコ遊技機であっても、本発明を適用できる。また、パチンコ遊技機に限られず、スロットマシン等においても本発明を適用することができる。
【0399】
【発明の効果】
以上のように、請求項1記載の発明では、遊技機を、変動データ記憶手段が特定の領域を含む複数の領域を含み、特定の領域には少なくとも特定遊技状態であるか否かを特定可能な変動データが記憶され、電気部品制御マイクロコンピュータが、遊技機への電力供給が停止するときに、電力供給開始時に制御状態を復旧させるために必要なデータを変動データ記憶手段に記憶するための電力供給停止時処理を実行し、電力供給停止時処理にて、特定の領域についてのチェックデータを作成して特定の保存領域に保存した後、特定の領域と異なる領域である非特定の領域についてのチェックデータを作成して特定の保存領域と異なる領域である非特定の保存領域に保存する処理を実行し、遊技機への電力供給が開始されたときに、特定の領域に保存されていたデータが正当であるか否かを特定の保存領域に保存されていたチェックデータにもとづいて判定する特定領域チェック処理を実行し、特定領域チェック処理にて特定の領域に保存されていたデータが正当でないと判定したときには、変動データ記憶手段の全データを初期化する初期化処理を実行し特定領域チェック処理にて特定の領域に保存されていたデータが正当であると判定したことを条件に、特定の領域を初期化せず、かつ、非特定の領域に保存されていたデータが正当であるか否かを非特定の保存領域に保存されていたチェックデータにもとづいて判定する非特定領域チェック処理を実行し、非特定領域チェック処理にて非特定の領域に保存されていたデータが正当であると判定したときには非特定の領域に記憶されたデータを初期化せず、電力供給停止時処理が開始されたときに実行されていたプログラムのアドレスからプログラムを実行する状態に戻る復旧処理を実行し、非特定領域チェック処理にて非特定の領域に保存されていたデータが正当でないと判定したときには非特定の領域に記憶されたデータを初期化した後、電力供給停止時処理が開始されたときに実行されていたプログラムのアドレスからプログラムを実行する状態に戻る復旧処理を実行するように構成にしたので、特定遊技状態であるか否かを特定可能なデータという遊技者の利益に関連するようなデータがバックアップRAMに正確に保存されていた場合には、他のデータが正確に保存されていなくても、電力供給が再開されたときに電力供給停止前の制御状態から制御を再開させることができる。すなわち、変動データ記憶手段の内容の一部に破損が生じても、できる限り電力供給停止前の制御状態から制御を再開させることができる遊技機を提供することができる。例えば、遊技者の利益にさほど関連が深くないデータが破損されてしまったことに起因して大当り状態であったことを示すデータも初期化されてしまって大当り遊技状態が消滅してしまうようなことが防止される効果がある。
【0400】
請求項2記載の発明では、遊技機を、変動データ記憶手段が特定の領域を含む複数の領域を含み、特定の領域には少なくとも未払出遊技媒体数に関する変動データが記憶され、電気部品制御マイクロコンピュータが、遊技機への電力供給が開始されたときに、特定の領域に保存されていたデータが正当であるか否かを特定の保存領域に保存されていたチェックデータにもとづいて判定する特定領域チェック処理を実行し、特定領域チェック処理にて特定の領域に保存されていたデータが正当でないと判定したときには、変動データ記憶手段の全データを初期化する初期化処理を実行し特定領域チェック処理にて特定の領域に保存されていたデータが正当であると判定したことを条件に、特定の領域を初期化せず、かつ、非特定の領域に保存されていたデータが正当であるか否かを非特定の保存領域に保存されていたチェックデータにもとづいて判定する非特定領域チェック処理を実行し、非特定領域チェック処理にて非特定の領域に保存されていたデータが正当であると判定したときには非特定の領域に記憶されたデータを初期化せず、電力供給停止時処理が開始されたときに実行されていたプログラムのアドレスからプログラムを実行する状態に戻る復旧処理を実行し、非特定領域チェック処理にて非特定の領域に保存されていたデータが正当でないと判定したときには非特定の領域に記憶されたデータを初期化した後、電力供給停止時処理が開始されたときに実行されていたプログラムのアドレスからプログラムを実行する状態に戻る復旧処理を実行するように構成したので、未払出遊技媒体数に関するデータという遊技者の利益に関連するようなデータがバックアップRAMに正確に保存されていた場合には、他のデータが正確に保存されていなくても、電力供給が再開されたときに電力供給停止前の制御状態から制御を再開させることができる。すなわち、変動データ記憶手段の内容の一部に破損が生じても、できる限り電力供給停止前の制御状態から制御を再開させることができる遊技機を提供することができる。例えば、遊技者の利益にさほど関連が深くないデータのみが破損しているにもかかわらず未払出の賞球払出に関するデータが初期化されてしまい遊技者に不利益を与えてしまうようなことを防止できる効果がある。
【0401】
請求項3記載の発明では、電気部品制御マイクロコンピュータが、変動データ記憶手段に記憶されている変動データについて排他的論理和演算を施すことによってチェックデータを作成し、変動データ記憶手段のワードサイズが通常一定(1バイト)であることから、データの管理が容易になる。
【0402】
請求項4記載の発明では、所定電位の電源の出力電圧を監視し電力供給停止に関わる検出条件が成立したときに検出信号を出力する電源監視手段を備え、電気部品制御マイクロコンピュータが、電源監視手段の検出信号の入力にもとづいて電力供給停止時処理を行うように構成されているので、停電等による不測の電力供給停止が発生しても、そのことを速やかに検出して電力供給停止時処理を開始することが可能となる。
【0403】
請求項5記載の発明では、電気部品制御マイクロコンピュータが搭載された電気部品制御基板と別個に設けられ、電気部品および電気部品制御マイクロコンピュータを駆動するための電源を供給する電力供給基板を備え、電源監視手段は電力供給基板に備えられているので、監視電源の近傍に電源監視手段を設けることができる。また、電源監視手段の検出信号を必要とする電気部品制御マイクロコンピュータが複数あっても、電源監視手段を複数設ける必要がなくなる。
【0404】
請求項6記載の発明では、遊技機への電力供給が停止しても所定期間は変動データ記憶手段に電力を供給することで記憶内容を保持させるための記憶保持用電力供給手段を備え、記憶保持用電力供給手段が電力供給基板に備えられているので、別に記憶保持用電力供給手段を搭載する基板を設ける必要はない。
【0405】
請求項7記載の発明では、電気部品制御マイクロコンピュータが、遊技機への電力供給が開始されたときに、実行確認情報が変動データ記憶手段に保存されていることを条件に特定領域チェック処理を実行し、実行確認情報が変動データ記憶手段に保存されていないときには、変動データ記憶手段の全データを初期化するように構成されているので、電力供給停止時処理が実行されなかった場合や、記憶内容が変化してしまった場合には制御状態の復旧処理は実行されず、不完全な状態にて制御状態が復旧されてしまうようなことが防止される。
【0406】
請求項8記載の発明では、遊技機への電力供給が開始されたときに、操作手段から操作信号が出力されたときには、変動データ記憶手段の全データを初期化するように構成されているので、遊技機が設置されている遊技店の遊技店員等が変動データ記憶手段の保存状態を容易にクリアすることができる。
【図面の簡単な説明】
【図1】 パチンコ遊技機を正面からみた正面図である。
【図2】 ガラス扉枠を取り外した状態での遊技盤の前面を示す正面図である。
【図3】 遊技機を裏面から見た背面図である。
【図4】 各種部材が取り付けられた機構板を遊技機背面側から見た背面図である。
【図5】 球払出装置の構成例を示す分解斜視図である。
【図6】 遊技盤に設置されているスイッチ基板の部分を示す正面図である。
【図7】 クリアスイッチの構成の一例を示す構成図である。
【図8】 遊技制御基板(主基板)の回路構成例を示すブロック図である。
【図9】 図柄制御基板の回路構成例を示すブロック図である。
【図10】 払出制御基板の回路構成例を示すブロック図である。
【図11】 電源基板の回路構成例を示すブロック図である。
【図12】 電源監視および電源バックアップのためのCPU周りの一構成例を示すブロック図である。
【図13】 出力ポートのビット割り当ての一例を示す説明図である。
【図14】 出力ポートのビット割り当ての一例を示す説明図である。
【図15】 入力ポートのビット割り当ての一例を示す説明図である。
【図16】 バックアップRAM領域における作業領域の使用の仕方の一例を示す説明図である。
【図17】 主基板におけるCPUが実行するメイン処理を示すフローチャートである。
【図18】 バックアップフラグと遊技状態復旧処理を実行するか否かとの関係の一例を示す説明図である。
【図19】 チェックサム算出処理を示すフローチャートである。
【図20】 チェックサム算出方法の一例を説明するための説明図である。
【図21】 遊技状態復旧処理の一例を示すフローチャートである。
【図22】 2msタイマ割込処理を示すフローチャートである。
【図23】 マスク不能割込処理(電力供給停止時処理)を示すフローチャートである。
【図24】 マスク不能割込処理(電力供給停止時処理)を示すフローチャートである。
【図25】 遊技機への電力供給停止時の電源低下やNMI信号の様子を示すタイミング図である。
【図26】 特別図柄プロセス処理を示すフローチャートである。
【図27】 始動口スイッチ通過確認処理を示すフローチャートである。
【図28】 可変表示の停止図柄を決定する処理およびリーチ種類を決定する処理を示すフローチャートである。
【図29】 大当りとするか否かを決定する処理を示すフローチャートである。
【図30】 乱数の一例を示す説明図である。
【図31】 RAMにおけるスイッチタイマの形成例を示す説明図である。
【図32】 スイッチ処理の一例を示すフローチャートである。
【図33】 スイッチチェック処理の一例を示すフローチャートである。
【図34】 賞球処理の一例を示すフローチャートである。
【図35】 賞球処理の一例を示すフローチャートである。
【図36】 賞球処理の一例を示すフローチャートである。
【図37】 スイッチオンチェック処理を示すフローチャートである。
【図38】 入力判定値テーブルの構成例を示す説明図である。
【図39】 コマンド送信テーブル等の一構成例を示す説明図である。
【図40】 制御コマンドのコマンド形態の一例を示す説明図である。
【図41】 制御コマンドを構成する8ビットの制御信号とINT信号との関係を示すタイミング図である。
【図42】 払出制御コマンドの内容の一例を示す説明図である。
【図43】 コマンド作成処理の処理例を示すフローチャートである。
【図44】 コマンド送信処理ルーチンを示すフローチャートである。
【図45】 賞球個数減算処理の一例を示すフローチャートである。
【図46】 電源監視および電源バックアップのための払出制御用CPU周りの一構成例を示すブロック図である。
【図47】 出力ポートのビット割り当ての一例を示す説明図である。
【図48】 入力ポートのビット割り当ての一例を示す説明図である。
【図49】 バックアップRAM領域における作業領域の使用の仕方の一例を示す説明図である。
【図50】 払出制御基板におけるCPUが実行するメイン処理を示すフローチャートである。
【図51】 払出制御基板におけるCPUが実行するメイン処理を示すフローチャートである。
【図52】 2msタイマ割込処理を示すフローチャートである。
【図53】 払出状態復旧処理を示すフローチャートである。
【図54】 マスク不能割込処理(電力供給停止時処理)を示すフローチャートである。
【図55】 マスク不能割込処理(電力供給停止時処理)を示すフローチャートである。
【図56】 受信コマンドバッファの一構成例を示す説明図である。
【図57】 払出制御用CPUのコマンド受信処理の例を示すフローチャートである。
【図58】 スイッチ処理の例を示すフローチャートである。
【図59】 払出停止状態設定処理の例を示すフローチャートである。
【図60】 コマンド解析実行処理の例を示すフローチャートである。
【図61】 プリペイドカードユニット制御処理の例を示すフローチャートである。
【図62】 球貸し制御処理の例を示すフローチャートである。
【図63】 球貸し制御処理の例を示すフローチャートである。
【図64】 賞球制御処理の例を示すフローチャートである。
【図65】 賞球制御処理の例を示すフローチャートである。
【符号の説明】
1 パチンコ遊技機
9 可変表示装置
31 主基板
37 払出制御基板
54 ROM
55 RAM
56 CPU
97 球払出装置
371 払出制御用CPU
902 電源監視用IC
910 電源基板
921 クリアスイッチ

Claims (10)

  1. 表示状態が変化可能な表示領域を有する可変表示装置を含み、変動開始の条件の成立に応じて前記表示領域に表示される識別情報の変動を開始し、識別情報の表示結果があらかじめ定められた特定表示態様となったときに特定遊技状態に制御可能な遊技機であって、
    遊技機に設けられている電気部品を制御する電気部品制御マイクロコンピュータと、
    遊技進行に応じて変動する変動データを記憶し、遊技機への電力供給が停止しても所定期間は内容を保持可能な変動データ記憶手段とを備え、
    前記変動データ記憶手段は、特定の領域を含む複数の領域を含み、
    前記特定の領域には、少なくとも前記特定遊技状態であるか否かを特定可能な変動データが記憶され、
    前記電気部品制御マイクロコンピュータは、
    遊技機への電力供給が停止するときに、電力供給開始時に制御状態を復旧させるために必要なデータを前記変動データ記憶手段に記憶するための電力供給停止時処理を実行し、
    前記電力供給停止時処理にて、前記特定の領域についてのチェックデータを作成して特定の保存領域に保存した後、前記特定の領域と異なる領域である非特定の領域についてのチェックデータを作成して前記特定の保存領域と異なる領域である非特定の保存領域に保存する処理を実行し、
    遊技機への電力供給が開始されたときに、前記特定の領域に保存されていたデータが正当であるか否かを前記特定の保存領域に保存されていたチェックデータにもとづいて判定する特定領域チェック処理を実行し、
    前記特定領域チェック処理にて前記特定の領域に保存されていたデータが正当でないと判定したときには、前記変動データ記憶手段の全データを初期化する初期化処理を実行し、
    前記特定領域チェック処理にて前記特定の領域に保存されていたデータが正当であると判定したことを条件に、前記特定の領域を初期化せず、かつ、前記非特定の領域に保存されていたデータが正当であるか否かを前記非特定の保存領域に保存されていたチェックデータにもとづいて判定する非特定領域チェック処理を実行し、
    前記非特定領域チェック処理にて前記非特定の領域に保存されていたデータが正当であると判定したときには該非特定の領域に記憶されたデータを初期化せず、前記電力供給停止時処理が開始されたときに実行されていたプログラムのアドレスからプログラムを実行する状態に戻る復旧処理を実行し、前記非特定領域チェック処理にて前記非特定の領域に保存されていたデータが正当でないと判定したときには該非特定の領域に記憶されたデータを初期化した後、前記電力供給停止時処理が開始されたときに実行されていたプログラムのアドレスからプログラムを実行する状態に戻る復旧処理を実行する
    ことを特徴とする遊技機。
  2. 遊技媒体を用いて遊技者が所定の遊技を行い、所定条件の成立に応じて遊技者に景品として遊技媒体を払い出すことが可能な遊技機であって、
    遊技機に設けられている電気部品を制御する電気部品制御マイクロコンピュータと、
    遊技進行に応じて変動する変動データを記憶し、遊技機への電力供給が停止しても所定期間は内容を保持可能な変動データ記憶手段とを備え、
    前記変動データ記憶手段は、特定の領域を含む複数の領域を含み、
    前記特定の領域には、少なくとも未払出遊技媒体数に関する変動データが記憶され、
    前記電気部品制御マイクロコンピュータは、
    遊技機への電力供給が停止するときに、電力供給開始時に制御状態を復旧させるために必要なデータを前記変動データ記憶手段に記憶するための電力供給停止時処理を実行し、
    前記電力供給停止時処理にて、前記特定の領域についてのチェックデータを作成して特定の保存領域に保存した後、前記特定の領域と異なる領域である非特定の領域についてのチェックデータを作成して前記特定の保存領域と異なる領域である非特定の保存領域に保存する処理を実行し、
    遊技機への電力供給が開始されたときに、前記特定の領域に保存されていたデータが正当であるか否かを前記特定の保存領域に保存されていたチェックデータにもとづいて判定する特定領域チェック処理を実行し、
    前記特定領域チェック処理にて前記特定の領域に保存されていたデータが正当でないと判定したときには、前記変動データ記憶手段の全データを初期化する初期化処理を実行し、
    前記特定領域チェック処理にて前記特定の領域に保存されていたデータが正当であると判定したことを条件に、前記特定の領域を初期化せず、かつ、前記非特定の領域に保存されていたデータが正当であるか否かを前記非特定の保存領域に保存されていたチェックデータにもとづいて判定する非特定領域チェック処理を実行し、
    前記非特定領域チェック処理にて前記非特定の領域に保存されていたデータが正当であると判定したときには該非特定の領域に記憶されたデータを初期化せず、前記電力供給停止時処理が開始されたときに実行されていたプログラムのアドレスからプログラムを実行する状態に戻る復旧処理を実行し、前記非特定領域チェック処理にて前記非特定の領域に保存されていたデータが正当でないと判定したときには該非特定の領域に記憶されたデータを初期化した後、前記電力供給停止時処理が開始されたときに実行されていたプログラムのアドレスからプログラムを実行する状態に戻る復旧処理を実行する
    ことを特徴とする遊技機。
  3. 電気部品制御マイクロコンピュータは、変動データ記憶手段に記憶されている変動データについて排他的論理和演算を施すことによってチェックデータを作成する
    請求項1または請求項2記載の遊技機。
  4. 所定電位の電源の出力電圧を監視し電力供給停止に関わる検出条件が成立したときに検出信号を出力する電源監視手段がさらに備えられた遊技機であって、
    電気部品制御マイクロコンピュータは、前記検出信号の入力にもとづいて電力供給停止時処理を行う
    請求項1から請求項3のうちのいずれかに記載の遊技機。
  5. 電気部品制御マイクロコンピュータが搭載された電気部品制御基板と別個に設けられ、かつ、電気部品および電気部品制御マイクロコンピュータを駆動するための電源を供給する電力供給基板がさらに備えられた遊技機であって、
    電源監視手段は、前記電力供給基板に備えられている
    請求項4記載の遊技機。
  6. 遊技機への電力供給が停止しても所定期間は変動データ記憶手段に電力を供給することで記憶内容を保持させるための記憶保持用電力供給手段がさらに備えられた遊技機であって、
    前記記憶保持用電力供給手段は、電力供給基板に備えられている
    請求項5記載の遊技機。
  7. 電気部品制御マイクロコンピュータは、電力供給停止時処理にて、当該処理を実行したことを示す実行確認情報を変動データ記憶手段に保存させ、
    前記電気部品制御マイクロコンピュータは、
    遊技機への電力供給が開始されたときに、前記実行確認情報が前記変動データ記憶手段に保存されていることを条件に特定領域チェック処理を実行し、
    前記実行確認情報が前記変動データ記憶手段に保存されていない場合には、前記変動データ記憶手段の全データを初期化する
    請求項1から請求項6のうちのいずれかに記載の遊技機。
  8. 操作に応じて操作信号を出力することが可能な操作手段がさらに備えられた遊技機であって、
    遊技機への電力供給が開始されたときに、前記操作手段から操作信号が出力されたときには、変動データ記憶手段の全データを初期化する
    請求項1から請求項7のうちのいずれかに記載の遊技機。
  9. 電気部品制御マイクロコンピュータは、
    遊技機への電力供給が開始されたときに、定期的にタイマ割込が発生するように設定し、
    前記タイマ割込が生じたことにもとづいて電気部品を制御する電気部品制御処理を実行するとともに、前記電気部品制御処理に要する時間の余り時間で、前記電気部品制御処理で用いられるカウンタを更新する処理を実行し、前記余り時間でカウンタを更新する処理中では前記電気部品制御処理の実行を禁止する割込禁止状態に設定し、
    電力供給停止時処理において、電力供給停止時の割込禁止状態または前記電気部品制御処理の実行を許可する割込許可状態を変動データ記憶手段に保存し、
    遊技機への電力供給が開始され、電力供給停止時処理が開始されたときに実行されていたプログラムのアドレスからプログラムを実行する状態に戻る前に、前記変動データ記憶手段に保存されていた電力供給停止時の割込禁止状態または割込許可状態を復帰させる
    請求項1から請求項8のうちのいずれかに記載の遊技機。
  10. 特定の領域はスタック領域を含み、
    電気部品制御マイクロコンピュータは、電力供給停止時処理にて、前記スタック領域にレジスタのデータを退避させる処理を実行し、前記スタック領域のデータも含めて前記特定の領域のチェックデータを作成する
    請求項1から請求項9のうちのいずれかに記載の遊技機。
JP2001232963A 2001-07-31 2001-07-31 遊技機 Expired - Fee Related JP3647778B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001232963A JP3647778B2 (ja) 2001-07-31 2001-07-31 遊技機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001232963A JP3647778B2 (ja) 2001-07-31 2001-07-31 遊技機

Publications (3)

Publication Number Publication Date
JP2003038823A JP2003038823A (ja) 2003-02-12
JP3647778B2 true JP3647778B2 (ja) 2005-05-18
JP2003038823A5 JP2003038823A5 (ja) 2005-05-26

Family

ID=19064798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001232963A Expired - Fee Related JP3647778B2 (ja) 2001-07-31 2001-07-31 遊技機

Country Status (1)

Country Link
JP (1) JP3647778B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020054877A (ja) * 2017-07-07 2020-04-09 株式会社藤商事 遊技機
JP2020199357A (ja) * 2020-09-23 2020-12-17 株式会社藤商事 遊技機

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043684A (ja) * 2006-08-21 2008-02-28 Olympia:Kk 遊技機、遊技機の乱数発生方法及びプログラム
JP5116163B2 (ja) * 2008-10-22 2013-01-09 サミー株式会社 弾球遊技機
JP5738114B2 (ja) * 2011-08-02 2015-06-17 株式会社ニューギン 遊技機
JP6642945B2 (ja) * 2017-07-07 2020-02-12 株式会社藤商事 遊技機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4411446B2 (ja) * 2000-01-06 2010-02-10 株式会社大一商会 パチンコ機
JP3583339B2 (ja) * 2000-01-13 2004-11-04 株式会社三共 遊技機
JP4159221B2 (ja) * 2000-02-07 2008-10-01 株式会社ソフィア 遊技システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020054877A (ja) * 2017-07-07 2020-04-09 株式会社藤商事 遊技機
JP2020199357A (ja) * 2020-09-23 2020-12-17 株式会社藤商事 遊技機
JP7083378B2 (ja) 2020-09-23 2022-06-10 株式会社藤商事 遊技機

Also Published As

Publication number Publication date
JP2003038823A (ja) 2003-02-12

Similar Documents

Publication Publication Date Title
JP3647752B2 (ja) 遊技機
JP2002355432A (ja) 遊技機
JP3647778B2 (ja) 遊技機
JP3828367B2 (ja) 遊技機
JP2010137087A (ja) 遊技機
JP4302330B2 (ja) 遊技機
JP4772206B2 (ja) 遊技機
JP3640613B2 (ja) 遊技機
JP4166803B2 (ja) 遊技機
JP3670216B2 (ja) 遊技機
JP4130304B2 (ja) 遊技機
JP4919551B2 (ja) 遊技機
JP4875178B2 (ja) 遊技機
JP3647750B2 (ja) 遊技機
JP2002191825A (ja) 遊技機
JP3677209B2 (ja) 遊技機
JP4166797B2 (ja) 遊技機
JP4166801B2 (ja) 遊技機
JP4166800B2 (ja) 遊技機
JP4166802B2 (ja) 遊技機
JP4166773B2 (ja) 遊技機
JP4166798B2 (ja) 遊技機
JP4166799B2 (ja) 遊技機
JP4130308B2 (ja) 遊技機
JP3647751B2 (ja) 遊技機

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040721

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040721

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3647778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees