JP3645439B2 - Thermocouple device - Google Patents

Thermocouple device Download PDF

Info

Publication number
JP3645439B2
JP3645439B2 JP01252099A JP1252099A JP3645439B2 JP 3645439 B2 JP3645439 B2 JP 3645439B2 JP 01252099 A JP01252099 A JP 01252099A JP 1252099 A JP1252099 A JP 1252099A JP 3645439 B2 JP3645439 B2 JP 3645439B2
Authority
JP
Japan
Prior art keywords
protective tube
outer protective
hole
diameter
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01252099A
Other languages
Japanese (ja)
Other versions
JP2000213996A (en
Inventor
憲保 大江
博司 田辺
幹夫 堀口
靖彦 古城
定和 高山
慎道 梶田
幸二 小川
真也 長江
啓介 堀
Original Assignee
独立行政法人中小企業基盤整備機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人中小企業基盤整備機構 filed Critical 独立行政法人中小企業基盤整備機構
Priority to JP01252099A priority Critical patent/JP3645439B2/en
Publication of JP2000213996A publication Critical patent/JP2000213996A/en
Application granted granted Critical
Publication of JP3645439B2 publication Critical patent/JP3645439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は測温用の熱電対装置に関する。本発明は、例えば、金属溶湯(鋳鉄溶湯、鋳鋼溶湯、銅溶湯、アルミ溶湯、亜鉛溶湯など)やガスの温度を測定する際に使用できる。
【0002】
【従来の技術】
従来より、測温用の熱電対装置が提供されている。この熱電対装置は、先端が閉鎖された挿入孔を備え耐熱性をもつ材料で形成された外側保護管と、外側保護管の挿入孔に挿入され電気絶縁性をもつ材料で形成された絶縁管と、絶縁管の熱電対挿入孔に挿入され先端側に測温接点を備えた熱電対とをもつ。
【0003】
熱電対の測温接点により、金属溶湯等の測温対象物の温度を測定する。
【0004】
【発明が解決しようとする課題】
この熱電対装置においては、熱電対をもつ絶縁管の外壁面と外側保護管の挿入孔の内壁面との間の隙間がかなり大きく存在する。そのため測温の際の時定数は大きく、測温の応答性は必ずしも満足できるものできるものではなかった。
本発明は上記した実情に鑑みなされたものであり、測温応答性を改善するのに有利な熱電対装置を提供することを課題とするにある。
【0005】
【課題を解決するための手段】
本発明に係る熱電対装置は、先端が閉鎖された挿入孔を備え耐熱性をもつ材料で形成された外側保護管と、外側保護管の挿入孔に挿入され熱電対挿入孔を備え電気絶縁性をもつ材料で形成された絶縁管と、熱電対挿入孔に挿入され先端側に測温接点を備えた熱電対と、通孔をもつ中間保護管とをもつ熱電対装置であって、
外側保護管は、金属相と耐火物相とを有するサーメット材料で形成されており、
外側保護管の挿入孔は、外側保護管の先端側の内径が外側保護管の基端側の内径よりも小さくされた径小孔と、径小孔に連通すると共に径小孔の内径よりも大きな内径をもつ主孔と、前記径小孔に向かうにつれて内径が収縮する円錐壁面とを備えており、
測温接点をもつ熱電対を備えた絶縁管は、中間保護管の通孔に挿通されており、且つ、中間保護管と共に外側保護管の挿入孔に挿入されており、更に、
絶縁管の先端部が中間保護管の一端開口から突出し、外側保護管の挿入孔の径小孔に挿入されていることを特徴とするものである。
【0006】
本発明装置によれば、前述したように、外側保護管の挿入孔は、外側保護管の先端側の内径が外側保護管の基端側の内径よりも小さくされた径小孔と、径小孔に連通すると共に径小孔の内径よりも大きな内径をもつ主孔とを備えている。
そして、測温接点をもつ熱電対を備えた絶縁管の先端部が外側保護管の挿入孔の先端側の径小孔に挿入されている。
【0007】
本発明装置によれば、外側保護管の挿入孔の先端側は径小孔であるため、従来技術に比較して、径小孔の内壁面と絶縁管との外壁面との隙間幅を小さくできる。そのため、測温接点への熱伝達性が向上する。故に、測温の際の時定数が小さくなり、熱電対の測温接点の応答性の改善に有利となる。
【0008】
【発明の実施の形態】
本発明装置によれば、外側保護管の挿入孔は、外側保護管の先端側の内径が外側保護管の基端側の内径よりも小さくされた径小孔と、径小孔に連通すると共に径小孔の内径よりも大きな内径をもつ主孔とを備えている。主孔の平均内径を100として相対表示したとき、径小孔の平均内径を30〜90程度、特に40〜60程度として相対表示できるが、これに限定されるものではない。
【0009】
外側保護管は、耐熱性をもつ材料で形成されている。外側保護管を構成する材料としては、サーメット材料を採用する。サーメット材料は、金属相に粒子状の耐火物相を分散させて構成されている。
本発明装置によれば、測温接点をもつ熱電対を備えた絶縁管の先端部が挿入孔の先端側の径小孔に挿入されている。
【0010】
本発明装置の好ましい態様によれば、外側保護管は、外側保護管の先端側の外径が外側保護管の基端側の外径よりも小さくされた径小筒部を備えている。この場合には、外側保護管の先端の周壁の肉厚が薄くなるため、熱電対による測温の応答性を高めるのに有利となる。
本発明装置の好ましい態様によれば、挿入孔の径小孔の内壁面と絶縁管の外壁面との間には、熱伝導性が良好な金属で形成されまたは金属を主要成分とする伝熱金属キャップが配置されている構成を採用することができる。
【0011】
この場合には、伝熱金属キャップが配置されているため、熱電対による測温の応答性を高めるのに有利となる。
使用の際の熱などによって、外側保護管の構成材料と熱電対とが反応するおそれがある場合がある。あるいは、外側保護管の構成材料から発生するガスと熱電対とが反応するおそれがある場合がある。これらの場合には、伝熱金属キャップが、熱電対、特に熱電対の測温接点を包囲して保護する役割を果たすことを期待できる。
【0012】
上記した伝熱金属キャップを構成する金属としては、熱伝導率、耐高温性、ガスバリヤ性、耐破損性等の性質の確保を考慮し、熱電対装置の使用環境などに応じて選択でき、例えば、白金系、金系等の貴な金属系を採用でき、あるいは場合によっては、鉄系、ニッケル系、銅系、アルミ系等も採用できる。伝熱金属キャップを構成する金属は、純度が高い金属であっても良いし、合金であっても良い。
伝熱金属キャップは薄肉の筒形状が好ましいが、厚肉の筒形状であっても良い。
【0013】
熱電対としては、測温できるものであれば良く、使用条件によって選択でき、白金-白金ロジウム系であっても、アルメル-クロメル系であっても、クロメル-コンスタンタン系であっても、鉄-コンスタンタン系であっても、銅-コンスタンタン系であっても良い。
本発明装置は、使用の際には、測温対象物に外側保護管の先端部を接触させ、測温対象物の温度を測定する。測温対象物としては、金属溶湯などの液体、雰囲気ガスなどの気体、金属物や耐火物等の固体などを採用できる。
【0014】
金属溶湯等の液体を本発明装置によって測温する場合には、金属溶湯等の液体の液面に上方から、本発明装置の先端を浸漬させても良い。あるいは、金属溶湯などの液体を貯留している容器の壁部(例えば底部や側壁部)から、本発明装置の先端を浸漬させても良い。
【0015】
【実施例】
(第1実施例)
以下、図1,図2を参照して第1実施例を説明する。
本実施例に係る熱電対装置においては、円筒パイプ状の外側保護管1が軸長方向に延設されて設けられている。外側保護管1は、耐熱性をもつ材料の1種であるサーメット材料により形成されている。サーメット材料は、金属相に粒子状の耐火物相を分散させて構成されている。本実施例では、モリブデン相に粒子状のジルコニア相を分散させて構成されている。つまりMo相−ZrO2相の混合材料で構成されている。これは耐溶損性、耐高温性、熱伝導性等の特性の確保を考慮したものである。外側保護管1は外壁面1aをもつ。
【0016】
外側保護管1の内部には、横断面円形状の挿入孔2が軸長方向に沿って延設されて形成されている。外側保護管1の挿入孔2の先端は、閉鎖部10により閉鎖されている。閉鎖部10は、ほぼ球状面をもつ外壁面10aと、ほぼ球状面をもつ内壁面10cとを備えている。外側保護管1の先端の肉厚t1は、外側保護管1の閉鎖部10の肉厚t2とほぼ相応し、肉厚変動を抑制している。
【0017】
外側保護管1の挿入孔2は、外側保護管1の先端側に設けられた径小孔20と、径小孔20に連通する主孔25とで構成されている。径小孔20と主孔25とは同軸的に形成されている。径小孔20の内径をD1として示す。主孔25の内径をD2として示す。図2に示すように径小孔20の内径D1は、主孔25の内径D2よりも小さい。径小孔20の長さをL1として示す。L1にわたり、径小孔20の内径は実質的に同一とされているが、場合によっては、先端から離れるにつれて内径が僅かに拡径するように僅かに傾斜していても良い。
【0018】
主孔25のうち径小孔20に連続する側には、径小孔20に向かうにつれて内径が次第に縮径する円錐壁面27が形成されている。円錐壁面27は、後述する絶縁管6の先端6kを径小孔20に挿入する際のガイド作用を期待できる。
外側保護管1の先端を除いた外周面には、キャスタブル材料(例えばアルミナ耐火材料)を外側保護管1に鋳包んで成形した円筒状の保護スリーブ3が被覆されている。保護スリーブ3は内周面3aと外周面3bと端面3cとをもつ。
【0019】
保護スリーブ3から突出している外側保護管1の軸長は、L2として示されている。外側保護管1の先端の外径をE1として示す。保護スリーブ3の外径をE2として示す。なお、外側保護管1の外径E1は外側保護管1の全長にわたりほぼ同一にできる。保護スリーブ3の外径E2は保護スリーブ3の全長にわたりほぼ同一にできる。
【0020】
保護スリーブ3の基端3m側には筒状の固定金具4が同軸的に被覆されている。固定金具4は、耐高温性に優れた金属(例えばステンレス鋼)で形成されている。固定金具4の周壁に形成した通孔4aに挿入したビス4cを保護スリーブ3に係止している。固定金具4には、中央孔5aをもつ金属パイプ5が同軸的に連設されている。金属パイプ5は、耐高温性に優れた金属(例えばステンレス鋼)で形成されている。金属パイプ5には電気コネクタ52が保持されている。
【0021】
絶縁管6は電気絶縁性をもつ材料(例えばアルミナ耐火材料)で形成されている。絶縁管6には、互いに独立して軸長方向に沿って並走された2個の熱電対挿入孔60が形成されている。絶縁管6の外径をD4として示す。
絶縁管6の熱電対挿入孔60にはワイヤ状の熱電対71,72が個々に挿入されており、熱電対71,72は互いに短絡することが防止されている。熱電対71,72の先端側には、両者を接合した測温接点73が設けられている。熱電対71,72の基端は電気コネクタ52に接続されている。
【0022】
熱電対71,72を備えた絶縁管6は、アルミナ製の中間保護管9の通孔9aに挿通されている。この結果、絶縁管6の先端6kは中間保護管9の一端開口9cから突出している。中間保護管9の外径をD3として示す。
本実施例においては、前記したように、測温接点73をもつ熱電対71,72を備えた絶縁管6が中間保護管9と共に外側保護管1の挿入孔2に挿入されている。ここで図2に示すように、絶縁管6の先端6kは、外側保護管1の先端側の径小孔20に挿入されて配置されている。
【0023】
本実施例においては、外側保護管1の挿入孔2の径小孔20の内壁面と絶縁管6の外壁面との間には、貴な金属である白金を用いて形成された円筒パイプ形状の伝熱金属キャップ8が配置されている。白金は薄肉形状への塑性変形が容易であり、耐高温性に優れており、且つ熱伝導率も高い。更にガスバリヤ性も高い。例えば、伝熱金属キャップ8の外径は約3.6mm、内径は約3.2mm、軸長は径小孔20の軸長に対応するように約30mm〜60mmにできる。
【0024】
伝熱金属キャップ8の先端は閉鎖部80で閉鎖されている。伝熱金属キャップ8の閉鎖部80の近傍に、熱電対71,72の測温接点73が位置している。従って熱電対71,72の測温接点73が外側保護管1に直接的に接触することは抑えられている。
なお本実施例では、上記した径小孔20の内径D1は約4mm、主孔25の内径D2は約10mm、径小孔20の長さL1は約50mm、外側保護管1の先端の突出長L2は約70mm、中間保護管9の外径D3は約6mm、外側保護管1の外径E1は約24mm、保護スリーブ3の外径E2は約40mmにできる。
【0025】
以上の説明から理解できるように本実施例においては、外側保護管1の挿入孔2の先端側は、内径が大きい主孔25ではなく、内径が小さい径小孔20であるため、径小孔20の内壁面と絶縁管6の先端6kの外壁面との隙間幅を小さくすることができる。
そのため、熱電対71,72の測温接点73への熱伝達性を向上させ得る。例えば、外側保護管1の径小孔20の内壁面と絶縁管6の先端6kとの外壁面との間に詰める装填物(例えば耐火材料の粉末)を低減または廃止することができる。故に、熱電対71,72の測温接点73による測温応答性の改善に有利となる。つまり測温における時定数の短縮を図るのに有利となる。
【0026】
ところで、外側保護管1の挿入孔2の内径を挿入孔2の全長にわたりD1としつつ、挿入孔2を真っ直ぐに形成しようとすることは、製造工程上容易ではない。外側保護管1の製造工程における歪、反りなどの影響があるからである。この場合には、全長にわたり内径がD1と小さい挿入孔は高精度では真っ直ぐとなりにくい。この結果、歪みや反りが発生した挿入孔に絶縁管6を挿入する操作が困難となる。
【0027】
この点本実施例においては、図2に示すように、外側保護管1の挿入孔2を先端側の径小孔20と主孔25とに分け、主孔25の内径をD2と大きくしつつ、径小孔20の内径D1のみを小さくしている方式が採用されている。そのため、上記したような絶縁管6の挿入が困難となる不具合を回避するのに有利となる。また本実施例においては外側保護管1の挿入孔2の先端側は、内径がD1と小さな径小孔20であるため、外側保護管1の周壁のうち、挿入孔2に対応する周壁部分の肉厚t1を他の周壁部分の肉厚t2よりも厚く確保することができる。故に、外力負荷が作用し易い外側保護管1の先端の側の強度を確保する面において有利となる。また径小孔20の内壁面の損耗に対する寿命も確保される。
【0028】
更に本実施例においては、前述したように、外側保護管1の挿入孔2の径小孔20の内壁面と絶縁管6の外壁面との間には、貴な金属である白金を用いて形成された円筒パイプ形状の伝熱金属キャップ8が配置されている。伝熱金属キャップ8内に熱電対71,72の測温接点73が位置している。故に、熱電対71,72による測温応答性を高めるのに有利となる。つまり測温における時定数の短縮を図るのに有利となる。
【0029】
更に、伝熱金属キャップ8は金属である白金で形成されているため、耐火物材料とは異なり、脆くなく、薄肉であっても容易に破損することはない。故に測温接点73の保護を効果的に図ることができ、測温接点73の耐久性向上を図るのに有利である。
使用の際の熱などによって、外側保護管1の構成材料と熱電対71,72とが反応するおそれがある場合がある。あるいは、外側保護管1の構成材料から発生するガスと熱電対71,72とが反応するおそれがある場合がある。これらの場合には、熱電対71,72の先端やこの測温接点73を伝熱金属キャップ8が包囲して保護しているため、伝熱金属キャップ8が熱電対71,72の劣化を抑える役割を果たすことも期待できる。
【0030】
(第2実施例)
以下、第2実施例を図3,図4参照して説明する。
第2実施例は第1実施例と基本的には同様の構成である。従って同一機能を奏する部位には同一の符号を付する。本実施例においても、前記した実施例の場合と同様に、外側保護管1の挿入孔2は、先端側の径小孔20とこれに続く主孔25とで構成されている。このように外側保護管1の挿入孔2の先端側は、内径が小さな径小孔20であるため、径小孔20の内壁面と絶縁管6の先端6kの外壁面との隙間幅を小さくすることができる。故に熱電対71,72による測温応答性の改善に有利となる。
【0031】
更に本実施例においては、外側保護管1の先端部には、円錐外壁面14を介して径小筒部15が同軸的に形成されている。径小筒部15の軸長はL4として示されている。径小筒部15の外径はE4として示されている。外側保護管1の基端側の外径はE1cとして示されている。
径小筒部15の外径E4は、外側保護管1の基端側の外径E1cよりも小さくされている。この結果、外側保護管1の先端1kの周壁の肉厚が薄くなるため、外側保護管1の先端1kの熱容量が低減される。そのため、外側保護管1の先端1kを介しての熱電対71,72の測温接点73への熱伝達が速く行われる。故に、熱電対71,72による測温応答性を一層高めるのに有利となる。つまり測温における時定数の短縮を図るのに有利となる。
【0032】
本実施例においては、径小筒部15の外径E4は約12mm、径小孔20の内径D1は約4mm、主孔25の内径D2は約10mm、中間保護管9の外径D3は約6mm、径小孔20の長さL1は約60mm、外側保護管1の突出長L2は約70mm、径小筒部15の軸長L4は約50mmにできる。
更に本実施例においては金属パイプ5には、高さ合わせ用のストッパリング55が設けられている。
【0033】
(他の例)
その他、本発明装置は上記し且つ図面に示した実施例のみに限定されるものではなく、要旨を逸脱しない範囲内で必要に応じて適宜変更して実施できるものである。例えば、上記したL1をL2以上とすることもできる。また上記した寸法サイズは上記した値、範囲に限定されるものではなく、また各部品の材料は上記した材料に限定されるものではなく、使用状況に応じて適宜選択できることは勿論である。
【0034】
【発明の効果】
本発明装置によれば、外側保護管の挿入孔の先端側は径小孔であるため、挿入孔の内径が大径である場合に比較して、挿入孔の径小孔の内壁面と絶縁管の先端との外壁面との隙間幅を小さくできる。そのため測温接点への熱伝達性が向上し、測温応答性の改善に有利となる。
【図面の簡単な説明】
【図1】第1実施例に係る熱電対装置を示す構成図である。
【図2】第1実施例に係る熱電対装置の要部を示す構成図である。
【図3】第2実施例に係る熱電対装置を示す構成図である。
【図4】第2実施例に係る熱電対装置の要部を示す構成図である。
【符号の説明】
図中、1は外側保護管、10は閉鎖部、2は挿入孔、20は径小孔、25は主孔、6は絶縁管、60は熱電対挿入孔、71,72は熱電対、73は測温接点、8は伝熱金属キャップを示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermocouple device for temperature measurement. The present invention can be used, for example, when measuring the temperature of molten metal (cast iron melt, cast steel melt, copper melt, aluminum melt, zinc melt, etc.) and gas.
[0002]
[Prior art]
Conventionally, thermocouple devices for temperature measurement have been provided. This thermocouple device includes an outer protective tube having an insertion hole with a closed end and formed of a heat-resistant material, and an insulating tube formed of a material having electrical insulation inserted into the insertion hole of the outer protective tube. And a thermocouple that is inserted into the thermocouple insertion hole of the insulating tube and has a temperature measuring contact on the tip side.
[0003]
The temperature of the temperature measurement object such as molten metal is measured by the temperature measuring contact of the thermocouple.
[0004]
[Problems to be solved by the invention]
In this thermocouple device, there is a considerably large gap between the outer wall surface of the insulating tube having the thermocouple and the inner wall surface of the insertion hole of the outer protective tube. For this reason, the time constant at the time of temperature measurement is large, and the responsiveness of temperature measurement is not always satisfactory.
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a thermocouple device that is advantageous in improving temperature measurement responsiveness.
[0005]
[Means for Solving the Problems]
The thermocouple device according to the present invention includes an outer protective tube formed of a heat-resistant material having an insertion hole with a closed tip, and an electric insulating property provided with a thermocouple insertion hole inserted into the insertion hole of the outer protective tube. A thermocouple device having an insulating tube formed of a material having a thermocouple having a temperature measuring contact inserted in a thermocouple insertion hole and an intermediate protective tube having a through hole ;
The outer protective tube is made of a cermet material having a metal phase and a refractory phase,
The insertion hole of the outer protective tube includes a small-diameter hole whose inner diameter on the distal end side of the outer protective tube is smaller than an inner diameter on the proximal end side of the outer protective tube, and an inner diameter of the small-diameter hole that communicates with the small-diameter hole. A main hole having a large inner diameter, and a conical wall whose inner diameter contracts toward the small hole,
The insulating tube having a thermocouple having a temperature measuring contact is inserted into the through hole of the intermediate protective tube, and is inserted into the insertion hole of the outer protective tube together with the intermediate protective tube.
The tip of the insulating tube protrudes from one end opening of the intermediate protective tube and is inserted into the small diameter hole of the insertion hole of the outer protective tube.
[0006]
According to the device of the present invention, as described above, the insertion hole of the outer protective tube includes the small-diameter hole in which the inner diameter on the distal end side of the outer protective tube is smaller than the inner diameter on the proximal end side of the outer protective tube; A main hole communicating with the hole and having an inner diameter larger than the inner diameter of the small-diameter hole.
And the front-end | tip part of the insulating tube provided with the thermocouple which has a temperature measuring contact is inserted in the small diameter hole at the front end side of the insertion hole of an outer side protection tube.
[0007]
According to the device of the present invention, the distal end side of the insertion hole of the outer protective tube is a small-diameter hole, so the gap width between the inner wall surface of the small-diameter hole and the outer wall surface of the insulating tube is made smaller than in the prior art. it can. Therefore, the heat transfer property to the temperature measuring contact is improved. Therefore, the time constant at the time of temperature measurement becomes small, which is advantageous for improving the response of the temperature measurement junction of the thermocouple.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
According to the device of the present invention, the insertion hole of the outer protective tube communicates with the small-diameter hole whose inner diameter on the distal end side of the outer protective tube is smaller than the inner diameter on the proximal end side of the outer protective tube, and the small-diameter hole. A main hole having an inner diameter larger than the inner diameter of the small hole. When relative display is performed with the average inner diameter of the main hole being 100, the average inner diameter of the small-diameter holes can be relatively displayed as about 30 to 90, particularly about 40 to 60, but is not limited thereto.
[0009]
The outer protective tube is made of a heat resistant material. A cermet material is adopted as a material constituting the outer protective tube. The cermet material is constituted by dispersing a particulate refractory phase in a metal phase.
According to the device of the present invention, the distal end portion of the insulating tube provided with the thermocouple having the temperature measuring contact is inserted into the small-diameter hole on the distal end side of the insertion hole.
[0010]
According to a preferred aspect of the device of the present invention, the outer protective tube includes a small-diameter cylindrical portion in which the outer diameter on the distal end side of the outer protective tube is smaller than the outer diameter on the proximal end side of the outer protective tube. In this case, since the thickness of the peripheral wall at the tip of the outer protective tube is reduced, it is advantageous to enhance the responsiveness of temperature measurement by the thermocouple.
According to a preferred aspect of the apparatus of the present invention, the heat transfer between the inner wall surface of the small-diameter hole of the insertion hole and the outer wall surface of the insulating tube is made of a metal having a good thermal conductivity or has a metal as a main component. A configuration in which a metal cap is arranged can be employed.
[0011]
In this case, since the heat transfer metal cap is disposed, it is advantageous to enhance the responsiveness of temperature measurement by the thermocouple.
There is a possibility that the constituent material of the outer protective tube and the thermocouple may react due to heat during use. Alternatively, there is a possibility that the gas generated from the constituent material of the outer protective tube may react with the thermocouple. In these cases, it can be expected that the heat transfer metal cap will serve to surround and protect the thermocouple, particularly the temperature measuring junction of the thermocouple.
[0012]
The metal constituting the heat transfer metal cap described above can be selected according to the usage environment of the thermocouple device in consideration of securing properties such as thermal conductivity, high temperature resistance, gas barrier property, breakage resistance, etc. In addition, a noble metal system such as a platinum system or a gold system can be employed, or in some cases, an iron system, nickel system, copper system, aluminum system, or the like can also be employed. The metal constituting the heat transfer metal cap may be a high purity metal or an alloy.
The heat transfer metal cap preferably has a thin cylindrical shape, but may have a thick cylindrical shape.
[0013]
Any thermocouple can be used as long as it can measure temperature, and it can be selected according to usage conditions. It can be selected from platinum-platinum rhodium, alumel-chromel, chromel-constantan, iron- It may be constantan or copper-constantan.
In use, the device according to the present invention measures the temperature of the temperature measurement object by bringing the tip of the outer protective tube into contact with the temperature measurement object. As the temperature measurement object, a liquid such as a molten metal, a gas such as an atmospheric gas, a solid such as a metal or a refractory can be employed.
[0014]
When the temperature of a liquid such as a molten metal is measured by the apparatus of the present invention, the tip of the apparatus of the present invention may be immersed from above in the liquid surface of the molten metal. Or you may immerse the front-end | tip of this invention apparatus from the wall part (for example, bottom part or side wall part) of the container which has stored liquids, such as a molten metal.
[0015]
【Example】
(First embodiment)
The first embodiment will be described below with reference to FIGS.
In the thermocouple device according to the present embodiment, a cylindrical pipe-shaped outer protective tube 1 is provided extending in the axial direction. The outer protective tube 1 is formed of a cermet material that is one type of heat-resistant material. The cermet material is constituted by dispersing a particulate refractory phase in a metal phase. In this embodiment, a particulate zirconia phase is dispersed in a molybdenum phase. That is, it is composed of a mixed material of Mo phase-ZrO 2 phase. This is in consideration of securing properties such as resistance to melting, high temperature resistance and thermal conductivity. The outer protective tube 1 has an outer wall surface 1a.
[0016]
An insertion hole 2 having a circular cross section is formed inside the outer protective tube 1 so as to extend along the axial length direction. The distal end of the insertion hole 2 of the outer protective tube 1 is closed by a closing portion 10. The closing portion 10 includes an outer wall surface 10a having a substantially spherical surface and an inner wall surface 10c having a substantially spherical surface. The wall thickness t1 at the tip of the outer protective tube 1 substantially corresponds to the wall thickness t2 of the closed portion 10 of the outer protective tube 1 and suppresses wall thickness fluctuation.
[0017]
The insertion hole 2 of the outer protective tube 1 includes a small-diameter hole 20 provided on the distal end side of the outer protective tube 1 and a main hole 25 communicating with the small-diameter hole 20. The small-diameter hole 20 and the main hole 25 are formed coaxially. The inner diameter of the small diameter hole 20 is shown as D1. The inner diameter of the main hole 25 is shown as D2. As shown in FIG. 2, the inner diameter D <b> 1 of the small-diameter hole 20 is smaller than the inner diameter D <b> 2 of the main hole 25. The length of the small diameter hole 20 is shown as L1. The inner diameter of the small-diameter hole 20 is substantially the same over L1, but depending on the case, it may be slightly inclined so that the inner diameter slightly increases as the distance from the tip increases.
[0018]
A conical wall surface 27 whose inner diameter is gradually reduced toward the small diameter hole 20 is formed on the side of the main hole 25 that is continuous with the small diameter hole 20. The conical wall surface 27 can be expected to have a guide action when a distal end 6k of an insulating tube 6 described later is inserted into the small-diameter hole 20.
A cylindrical protective sleeve 3 formed by casting a castable material (for example, alumina refractory material) into the outer protective tube 1 is coated on the outer peripheral surface excluding the tip of the outer protective tube 1. The protective sleeve 3 has an inner peripheral surface 3a, an outer peripheral surface 3b, and an end surface 3c.
[0019]
The axial length of the outer protective tube 1 protruding from the protective sleeve 3 is shown as L2. The outer diameter of the tip of the outer protective tube 1 is shown as E1. The outer diameter of the protective sleeve 3 is shown as E2. The outer diameter E1 of the outer protective tube 1 can be made substantially the same over the entire length of the outer protective tube 1. The outer diameter E2 of the protective sleeve 3 can be made substantially the same over the entire length of the protective sleeve 3.
[0020]
A cylindrical fixing fitting 4 is coaxially covered on the base end 3 m side of the protective sleeve 3. The fixing metal 4 is formed of a metal (for example, stainless steel) excellent in high temperature resistance. Screws 4 c inserted into through holes 4 a formed in the peripheral wall of the fixing metal 4 are locked to the protective sleeve 3. A metal pipe 5 having a central hole 5 a is coaxially connected to the fixing metal 4. The metal pipe 5 is formed of a metal (for example, stainless steel) excellent in high temperature resistance. An electrical connector 52 is held on the metal pipe 5.
[0021]
The insulating tube 6 is made of an electrically insulating material (for example, alumina refractory material). In the insulating tube 6, two thermocouple insertion holes 60 are formed that run parallel to each other along the axial length direction. The outer diameter of the insulating tube 6 is shown as D4.
Wire-shaped thermocouples 71 and 72 are individually inserted into the thermocouple insertion holes 60 of the insulating tube 6, and the thermocouples 71 and 72 are prevented from short-circuiting each other. On the front end side of the thermocouples 71 and 72, a temperature measuring contact 73 is provided by joining the two. The base ends of the thermocouples 71 and 72 are connected to the electrical connector 52.
[0022]
The insulating tube 6 including the thermocouples 71 and 72 is inserted into the through hole 9a of the intermediate protective tube 9 made of alumina. As a result, the tip 6 k of the insulating tube 6 protrudes from the one end opening 9 c of the intermediate protective tube 9. The outer diameter of the intermediate protective tube 9 is shown as D3.
In the present embodiment, as described above, the insulating tube 6 including the thermocouples 71 and 72 having the temperature measuring contact 73 is inserted into the insertion hole 2 of the outer protective tube 1 together with the intermediate protective tube 9. Here, as shown in FIG. 2, the distal end 6 k of the insulating tube 6 is disposed by being inserted into the small-diameter hole 20 on the distal end side of the outer protective tube 1.
[0023]
In the present embodiment, a cylindrical pipe shape formed using platinum, which is a noble metal, between the inner wall surface of the small diameter hole 20 of the insertion hole 2 of the outer protective tube 1 and the outer wall surface of the insulating tube 6. The heat transfer metal cap 8 is arranged. Platinum is easy to be plastically deformed into a thin-walled shape, is excellent in high temperature resistance, and has a high thermal conductivity. Furthermore, the gas barrier property is also high. For example, the heat transfer metal cap 8 can have an outer diameter of about 3.6 mm, an inner diameter of about 3.2 mm, and an axial length of about 30 mm to 60 mm so as to correspond to the axial length of the small diameter hole 20.
[0024]
The tip of the heat transfer metal cap 8 is closed by a closing portion 80. In the vicinity of the closing portion 80 of the heat transfer metal cap 8, the temperature measuring contacts 73 of the thermocouples 71 and 72 are located. Therefore, direct contact of the temperature measuring contact 73 of the thermocouples 71 and 72 with the outer protective tube 1 is suppressed.
In this embodiment, the inner diameter D1 of the small-diameter hole 20 is about 4 mm, the inner diameter D2 of the main hole 25 is about 10 mm, the length L1 of the small-diameter hole 20 is about 50 mm, and the protruding length of the distal end of the outer protective tube 1 L2 is about 70 mm, the outer diameter D3 of the intermediate protective tube 9 is about 6 mm, the outer diameter E1 of the outer protective tube 1 is about 24 mm, and the outer diameter E2 of the protective sleeve 3 can be about 40 mm.
[0025]
As can be understood from the above description, in this embodiment, the distal end side of the insertion hole 2 of the outer protective tube 1 is not the main hole 25 having a large inner diameter but the small diameter hole 20 having a small inner diameter. The gap width between the inner wall surface 20 and the outer wall surface of the tip 6k of the insulating tube 6 can be reduced.
Therefore, the heat transfer property to the temperature measuring contact 73 of the thermocouples 71 and 72 can be improved. For example, it is possible to reduce or eliminate the load (for example, refractory material powder) packed between the inner wall surface of the small-diameter hole 20 of the outer protective tube 1 and the outer wall surface of the tip 6k of the insulating tube 6. Therefore, it becomes advantageous to the improvement of the temperature measurement responsiveness by the temperature measuring contact 73 of the thermocouples 71 and 72. That is, it is advantageous for shortening the time constant in temperature measurement.
[0026]
By the way, it is not easy in the manufacturing process to form the insertion hole 2 straight while setting the inner diameter of the insertion hole 2 of the outer protective tube 1 to D1 over the entire length of the insertion hole 2. This is because there is an influence such as distortion and warpage in the manufacturing process of the outer protective tube 1. In this case, the insertion hole whose inner diameter is as small as D1 over the entire length is less likely to be straight with high accuracy. As a result, it becomes difficult to insert the insulating tube 6 into the insertion hole in which distortion or warping has occurred.
[0027]
In this regard, in this embodiment, as shown in FIG. 2, the insertion hole 2 of the outer protective tube 1 is divided into a small-diameter hole 20 and a main hole 25 on the tip side, and the inner diameter of the main hole 25 is increased to D2. A method is employed in which only the inner diameter D1 of the small-diameter hole 20 is reduced. Therefore, it is advantageous to avoid the problem that it becomes difficult to insert the insulating tube 6 as described above. Further, in the present embodiment, the distal end side of the insertion hole 2 of the outer protective tube 1 is a small-diameter hole 20 having a small inner diameter D1, and therefore, of the peripheral wall portion corresponding to the insertion hole 2 in the peripheral wall of the outer protective tube 1. The wall thickness t1 can be secured larger than the wall thickness t2 of other peripheral wall portions. Therefore, it is advantageous in terms of ensuring the strength of the outer protective tube 1 on which the external force load is easily applied. Moreover, the lifetime with respect to wear of the inner wall surface of the small diameter hole 20 is also ensured.
[0028]
Further, in this embodiment, as described above, platinum, which is a noble metal, is used between the inner wall surface of the small diameter hole 20 of the insertion hole 2 of the outer protective tube 1 and the outer wall surface of the insulating tube 6. The formed cylindrical pipe-shaped heat transfer metal cap 8 is arranged. Temperature measuring contacts 73 of thermocouples 71 and 72 are located in the heat transfer metal cap 8. Therefore, it becomes advantageous to improve the temperature measurement responsiveness by the thermocouples 71 and 72. That is, it is advantageous for shortening the time constant in temperature measurement.
[0029]
Furthermore, since the heat transfer metal cap 8 is made of platinum, which is a metal, unlike the refractory material, it is not brittle and does not easily break even if it is thin. Therefore, the temperature measuring contact 73 can be effectively protected, which is advantageous in improving the durability of the temperature measuring contact 73.
There is a possibility that the constituent material of the outer protective tube 1 reacts with the thermocouples 71 and 72 due to heat during use. Alternatively, there is a possibility that the gas generated from the constituent material of the outer protective tube 1 reacts with the thermocouples 71 and 72. In these cases, since the heat transfer metal cap 8 surrounds and protects the tips of the thermocouples 71 and 72 and the temperature measuring contact 73, the heat transfer metal cap 8 suppresses deterioration of the thermocouples 71 and 72. We can expect to play a role.
[0030]
(Second embodiment)
The second embodiment will be described below with reference to FIGS.
The second embodiment has basically the same configuration as the first embodiment. Accordingly, parts having the same function are denoted by the same reference numerals. Also in this embodiment, as in the case of the above-described embodiment, the insertion hole 2 of the outer protective tube 1 is composed of a small-diameter hole 20 on the distal end side and a main hole 25 subsequent thereto. As described above, since the distal end side of the insertion hole 2 of the outer protective tube 1 is a small-diameter hole 20 having a small inner diameter, the gap width between the inner wall surface of the small-diameter hole 20 and the outer wall surface of the distal end 6k of the insulating tube 6 is reduced. can do. Therefore, it becomes advantageous to the improvement of the temperature measurement response by the thermocouples 71 and 72.
[0031]
Further, in the present embodiment, a small-diameter cylindrical portion 15 is coaxially formed at the distal end portion of the outer protective tube 1 via a conical outer wall surface 14. The axial length of the small diameter cylindrical portion 15 is indicated as L4. The outer diameter of the small diameter cylindrical portion 15 is shown as E4. The outer diameter on the base end side of the outer protective tube 1 is shown as E1c.
The outer diameter E4 of the small diameter cylinder portion 15 is smaller than the outer diameter E1c on the proximal end side of the outer protective tube 1. As a result, since the thickness of the peripheral wall of the tip 1k of the outer protective tube 1 is reduced, the heat capacity of the tip 1k of the outer protective tube 1 is reduced. Therefore, heat transfer to the temperature measuring contact 73 of the thermocouples 71 and 72 through the tip 1k of the outer protective tube 1 is performed quickly. Therefore, it becomes advantageous to further improve the temperature measurement response by the thermocouples 71 and 72. That is, it is advantageous for shortening the time constant in temperature measurement.
[0032]
In this embodiment, the outer diameter E4 of the small diameter cylindrical portion 15 is about 12 mm, the inner diameter D1 of the small diameter hole 20 is about 4 mm, the inner diameter D2 of the main hole 25 is about 10 mm, and the outer diameter D3 of the intermediate protective tube 9 is about 6 mm, the length L1 of the small diameter hole 20 can be about 60 mm, the protruding length L2 of the outer protective tube 1 can be about 70 mm, and the axial length L4 of the small diameter cylindrical portion 15 can be about 50 mm.
Further, in this embodiment, the metal pipe 5 is provided with a stopper ring 55 for height adjustment.
[0033]
(Other examples)
In addition, the device of the present invention is not limited to the embodiment described above and shown in the drawings, and can be implemented with appropriate modifications as necessary without departing from the scope of the invention. For example, the above-described L1 can be set to L2 or more. Further, the above dimensional size is not limited to the above value and range, and the material of each component is not limited to the above material, and it is needless to say that it can be appropriately selected according to the use situation.
[0034]
【The invention's effect】
According to the device of the present invention, since the distal end side of the insertion hole of the outer protective tube is a small diameter hole, it is insulated from the inner wall surface of the small diameter hole of the insertion hole as compared with the case where the inner diameter of the insertion hole is large. The gap width between the pipe tip and the outer wall surface can be reduced. Therefore, the heat transfer property to the temperature measuring contact is improved, which is advantageous for improving the temperature measuring response.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a thermocouple device according to a first embodiment.
FIG. 2 is a configuration diagram showing a main part of the thermocouple device according to the first embodiment.
FIG. 3 is a configuration diagram showing a thermocouple device according to a second embodiment.
FIG. 4 is a configuration diagram showing a main part of a thermocouple device according to a second embodiment.
[Explanation of symbols]
In the figure, 1 is an outer protective tube, 10 is a closing portion, 2 is an insertion hole, 20 is a small hole, 25 is a main hole, 6 is an insulation tube, 60 is a thermocouple insertion hole, 71 and 72 are thermocouples, 73 Indicates a temperature measuring contact, and 8 indicates a heat transfer metal cap.

Claims (3)

先端が閉鎖された挿入孔を備え耐熱性をもつ材料で形成された外側保護管と、前記外側保護管の挿入孔に挿入され熱電対挿入孔を備え電気絶縁性をもつ材料で形成された絶縁管と、前記熱電対挿入孔に挿入され先端側に測温接点を備えた熱電対と、通孔をもつ中間保護管とをもつ熱電対装置であって、
前記外側保護管は、金属相と耐火物相とを有するサーメット材料で形成されており、
前記外側保護管の挿入孔は、前記外側保護管の先端側の内径が前記外側保護管の基端側の内径よりも小さくされた径小孔と、前記径小孔に連通すると共に前記径小孔の内径よりも大きな内径をもつ主孔と、前記径小孔に向かうにつれて内径が収縮する円錐壁面とを備えており、
前記測温接点をもつ熱電対を備えた前記絶縁管は、前記中間保護管の通孔に挿通されており、且つ、前記中間保護管と共に前記外側保護管の挿入孔に挿入されており、更に、
前記絶縁管の先端部が前記中間保護管の一端開口から突出し、前記外側保護管の前記挿入孔の前記径小孔に挿入されていることを特徴とする熱電対装置。
An outer protective tube formed of a heat-resistant material having an insertion hole with a closed tip, and an insulation formed of a material having an electrical insulation property, having a thermocouple insertion hole inserted into the insertion hole of the outer protective tube A thermocouple device having a tube, a thermocouple inserted into the thermocouple insertion hole and having a temperature measuring contact on the tip side, and an intermediate protective tube having a through hole ;
The outer protective tube is made of a cermet material having a metal phase and a refractory phase,
The insertion hole of the outer protective tube communicates with the small-diameter hole whose inner diameter on the distal end side of the outer protective tube is smaller than the inner diameter on the proximal end side of the outer protective tube, and the small-diameter hole. A main hole having an inner diameter larger than the inner diameter of the hole, and a conical wall whose inner diameter contracts toward the small hole,
The insulating tube having a thermocouple having the temperature measuring contact is inserted through the through hole of the intermediate protective tube, and is inserted into the insertion hole of the outer protective tube together with the intermediate protective tube, ,
A thermocouple device, wherein a tip portion of the insulating tube protrudes from one end opening of the intermediate protective tube and is inserted into the small-diameter hole of the insertion hole of the outer protective tube.
請求項1において、前記外側保護管は、前記外側保護管の先端側の外径が前記外側保護管の基端側の外径よりも小さくされた径小筒部を備えていることを特徴とする熱電対装置。2. The outer protective tube according to claim 1, wherein the outer protective tube includes a small-diameter cylindrical portion in which an outer diameter on a distal end side of the outer protective tube is smaller than an outer diameter on a proximal end side of the outer protective tube. Thermocouple device to do. 請求項1または2において、前記外側保護管の外周面にはキャスタブル材料で成形された保護スリーブが被覆されていることを特徴とする熱電対装置。3. The thermocouple device according to claim 1, wherein a protective sleeve made of a castable material is coated on an outer peripheral surface of the outer protective tube.
JP01252099A 1999-01-20 1999-01-20 Thermocouple device Expired - Fee Related JP3645439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01252099A JP3645439B2 (en) 1999-01-20 1999-01-20 Thermocouple device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01252099A JP3645439B2 (en) 1999-01-20 1999-01-20 Thermocouple device

Publications (2)

Publication Number Publication Date
JP2000213996A JP2000213996A (en) 2000-08-04
JP3645439B2 true JP3645439B2 (en) 2005-05-11

Family

ID=11807629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01252099A Expired - Fee Related JP3645439B2 (en) 1999-01-20 1999-01-20 Thermocouple device

Country Status (1)

Country Link
JP (1) JP3645439B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776762B2 (en) * 2000-09-27 2011-09-21 株式会社東芝 Thermocouple device
JP4569795B2 (en) * 2001-01-09 2010-10-27 三菱マテリアル株式会社 Temperature sensor
JP6234755B2 (en) * 2013-09-19 2017-11-22 日本特殊陶業株式会社 Temperature sensor
CN107665743B (en) * 2017-10-20 2023-11-24 中国核动力研究设计院 Thermometer for measuring temperature of integrated reactor and temperature measuring system thereof

Also Published As

Publication number Publication date
JP2000213996A (en) 2000-08-04

Similar Documents

Publication Publication Date Title
KR101113532B1 (en) Temperature sensor for a resistance thermometer, in particular for use in the exhaust gas system of combustion engines
AU622743B2 (en) Thermocouple-type temperature sensor and method of measuring temperature of molten steel
JP2005172489A (en) Temperature measuring probe for molten metal
JPH11316106A (en) Method and device for continuous measurement of abrasion amount of metallurgic container wall
US3668099A (en) Apparatus for measuring oxygen content of a fluid
JP3645439B2 (en) Thermocouple device
JP2009517678A (en) Tube for temperature measurement
JP4776762B2 (en) Thermocouple device
JP3571951B2 (en) Thermocouple device
RU2117265C1 (en) Device measuring temperature of corrosive melts
JP3306426B2 (en) Thermocouple for measuring molten metal temperature
JP3548905B2 (en) Thermocouple device
JP2000213994A (en) Thermocouple device
JPH01299423A (en) Protective-tube type meter for continuous temperature measurement
CA2102969C (en) Immersion-type temperature measuring apparatus using thermocouple
US7772483B2 (en) Sensor for measuring the temperature of flowing metals
JP4623481B2 (en) thermocouple
JP3287915B2 (en) Melt measuring instrument
JP2002022554A (en) Thermocouple for high temperature, and manufacturing method therefor
JP4750320B2 (en) Temperature measuring device and cooling method of measuring device
JPH11311574A (en) Ceramic thermocouple for molten copper
JP2001183239A (en) Continuous temperature measuring device
JP3627317B2 (en) Thermocouple structure
JPH0339701Y2 (en)
JPS63300924A (en) Thermoelectric thermometer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040721

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees