JP3645108B2 - Manufacturing method of multiplexing / demultiplexing device - Google Patents

Manufacturing method of multiplexing / demultiplexing device Download PDF

Info

Publication number
JP3645108B2
JP3645108B2 JP34425098A JP34425098A JP3645108B2 JP 3645108 B2 JP3645108 B2 JP 3645108B2 JP 34425098 A JP34425098 A JP 34425098A JP 34425098 A JP34425098 A JP 34425098A JP 3645108 B2 JP3645108 B2 JP 3645108B2
Authority
JP
Japan
Prior art keywords
groove
optical fiber
multiplexing
wavelength filter
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34425098A
Other languages
Japanese (ja)
Other versions
JP2000171649A (en
Inventor
暁 都丸
三郎 今村
真 疋田
久男 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Advanced Technology Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Advanced Technology Corp
Priority to JP34425098A priority Critical patent/JP3645108B2/en
Publication of JP2000171649A publication Critical patent/JP2000171649A/en
Application granted granted Critical
Publication of JP3645108B2 publication Critical patent/JP3645108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Filters (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般光学や微少光学分野で、また光通信や光情報処理の分野で用いられる種々の光学素子等に利用可能な合分波素子の製造方法に関する。
【0002】
【従来の技術】
合分波素子は、1つの光信号を複数の光信号に分割したり、逆に複数の光信号を1つの光信号として結合したりする場合に用いる最も基本的な受動回路であり、微小レンズ等を用いたビーム系の合分波素子と、光ファイバや光導波路を用いた光導波路系の合分波素子とに分類される。特に近年では光情報処理、光通信分野で大量の情報処理を目的とした波長多重を可能とする上で、特に光導波路型合分波素子の研究開発が盛んに行われ、例えば石英系光導波路を採用した合分波素子が報告されている(文献:河内 正夫,NTT R&D vol.43 No.11p.101(1994))。
【0003】
【発明が解決しようとする課題】
しかし、このような従来の光導波路型合分波素子を種々の回路に適用する場合、実装・組み立てに多大な労力と時間がかかること、複雑な専用装置がいること等の解決すべき点が多い。そのため、従来の光導波路型合分波素子がさまざまな分野にまで普及していないのが現状である。また、上記の点から、組み立てには高度の熟練技術が必要なため、一般家庭にまで普及している電気関連部品の取り扱いと異なり、家庭でも取り扱える様な簡単な合分波素子は皆無であるというのが現状である。
【0004】
本発明は、このような現状に鑑みてなされたものであり、その目的は、合分波素子の使用分野を拡大する上で障害となる要因の一つである実装組み立てを簡便にするようにした合分波素子の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明にもとづく合分波素子の製造方法は、容器の表面の長手方向に沿って一端から他端に向けてダイシングソーを用いて第1の溝部を形成する工程と、該第1の溝部とX型に交差し、かつ前記容器の表面の長手方向に沿って一端から他端に向けてダイシングソーを用いて第2の溝部を斜めに形成する工程と、前記容器の表面の幅方向に沿って、前記第1の溝部及び前記第2の溝部と交差するようにフィルタ挿入溝を形成して波長フィルタを挿入する工程と、前記第1の溝部及び第2の溝部のそれぞれに光ファイバを嵌め込む際に、該嵌め込む光ファイバのうち前記波長フィルタからの透過光の出射側ファイバについては前記波長フィルタに接触するように嵌め込む工程と、前記第1の溝部及び第2の溝部との交差部分で、前記波長フィルタの近傍に紫外線硬化樹脂を滴下し、前記光ファイバを介して該紫外線硬化樹脂に紫外線を照射して光硬化させることにより、光導波路のコアを形成する工程と、次に、屈折率の低い紫外線硬化樹脂をさらに滴下し、前記光ファイバを介して該紫外線硬化樹脂に紫外線を照射して光硬化させることにより、前記光導波路のクラッドを形成する工程とを備え、前記第1の溝部及び第2の溝部に嵌め込まれた前記各光ファイバ、前記フィルタ挿入溝に挿入された前記波長フィルタ及び前記交差部分に設けられた前記光導波路を、前記第1の溝部及び前記第2の溝部に接着固定することを特徴とする。
また、前記光ファイバ、前記波長フィルタ、および前記光導波路を、前記第1の溝部および前記第2の溝部に接着固定するための接着剤として感光性エポキシ樹脂を用いることを特徴とする。
さらに、前記光ファイバは、ポリマークラッド光ファイバまたはプラスチック光ファイバであることを特徴とする。
【0006】
したがって、本発明における合分波素子の特徴を概説すれば以下のとおりである。
【0007】
(1)ポリマークラッド光ファイバ、プラスチック光ファイバをはめ込む溝部と波長フィルタをはめ込む溝部からなる容器の溝部に、光ファイバと波長フィルタをはめこみ、接着固定するだけで合分波素子を作製できる。
【0008】
(2)上記の容器が簡便に作製できる。
【0009】
(3)光導波路、光ファイバ、および波長フィルタを容器の溝部に接着固定する接着剤が感光性エポキシ樹脂であるため、取扱いが容易でしかも耐熱性に優れる。
【0010】
(4)容器に固定する波長フィルタとして誘導体多層膜がついたフィルム状の高分子膜を用いることが可能である。したがって安価でしかも膜厚がうすいためフィルタを挿入しても損失増加が少ないことを特徴とする。
【0011】
(5)光導波路が光を照射するだけで作製できるため安価である。
【0012】
以下に本発明にもとづく合分波素子を具体的に説明する。
【0013】
なお、本発明の合分波素子に適用される光導波路の作成方法としては、例えば特開平10−148729号公報を参照されたい。
【0014】
【発明の実施の形態】
本発明にもとづく合分波素子の一例を図1に示す。この図に示す合分波素子は、容器10の表面に、該表面の長手方向に沿って一端から他端に向けて形成された溝部1と、該溝部1と交差し、かつ該表面の長手方向に沿って一端から他端に向けて斜めに形成された溝部2と、該表面の幅方向に沿って延び、かつ溝部1および溝部2と交差する溝部3とを有する。これらの溝部1,2,および3の交差部には、光導波路4が設けられており、さらにこの光導波路4と接続した光ファイバ5,6,7が溝部1および溝部2にそれぞれ嵌め込まれている。また、溝部3には光導波路4を横切るようにして波長フィルタ8が嵌め込まれている。ところで、上記光導波路4は接着剤成分と同様の成分からなるため、光ファイバ5,6,7および波長フィルタ8を接着固定する役割も果たしている。
【0015】
以下、本発明にもとづく合分波素子に適用される容器の作製方法について説明する。ここでは、2つの異なる方法について説明する。
【0016】
<第1の方法>
まず、短波長領域から近赤外領域で透明な材料からなる基板を用意する。次にダイシングソーでこの基板に溝部加工を施す。この際、溝部幅はダイシングソーの刃の幅と密接な関係があり、通常のプラスチック光ファイバ用(外径1mm)に溝部加工するのであれば、刃の幅が1mm程度のものを用いる。また、通常のポリマークラッド光ファイバ(外径230μm)であれば刃の幅は230μm程度とする。波長フィルタでは分離する波長を誘導体多層膜の厚さ等によって決定できしかもその分離角度も一義的に決定されるので、図1に示すように溝部の交差角度はその波長フィルタの分離角度にあわせればよい。またフィルタ挿入溝部については反射形の波長フィルタを用いるなら、そのファイバ溝部に対して反射角度とあうように作製する。
【0017】
<第2の方法>
まず、基板(例えば、プラスチック製基板)を用意する。次に光硬化性樹脂を基板上で薄膜化し、フォトリソグラフィによりこの薄膜をマスク越しに紫外線を照射し、適当な有機溶媒にて現像することにより、所望の溝部を得る。この際、溝部幅については通常のプラスチック光ファイバ用(外径1mm)に溝部加工するのであれば幅が1mm程度のものを用い、通常のポリマークラッド光ファイバ(外径230μm)であれば幅は230μm程度とする。
【0018】
上記第1の方法または上記第2の方法のいずれかの方法によって作製された容器を以下の実施例で用いる。
【0019】
(実施例1)
この実施例では、上記第1の方法で作製した容器を用いた合分波素子を作製する。
【0020】
図2は、本実施例にもとづく合分波素子の概略的構成を示す模式的平面図である。
【0021】
この図に示す合分波素子は、容器10の表面に、該表面の長手方向に沿って一端から他端に向けて形成された溝部11と、該溝部11と交差し、かつ該表面の長手方向に沿って一端から他端に向けて斜めに形成された溝部12と、該表面の幅方向に沿って延び、かつ溝部11および溝部12と交差する溝部13とを有する。これらの溝部11,12,および交差部19には、光導波路14が設けられており、さらにこの光導波路14と接続した光ファイバ15,16,および17が溝部11および溝部12にそれぞれ嵌め込まれている。また、溝部13には光導波路14を横切るようにして波長フィルタ18が嵌め込まれている。このような構成からなる合分波素子を以下のようにして作製した。
【0022】
まずはじめに、上記第1の方法で作製した容器10の表面に3本の溝部11,12、および13を形成する。
【0023】
溝部11および12は、深さが235μm、幅が235μmとした。また、溝部13は波長フィルタ(厚さ20μm、大きさ2mm×3mm、1.3μm透過、1.55μm反射のローパスフィルタ)を入れる溝部で、その幅を30μm、深さを350μmとした。
【0024】
つぎに、ポリマークラッド光ファイバ15,16,17(いずれも片端FCコネクタつきでもう片端は被覆除去したもので外径230μm)3本を溝部11および12を図2に示すようにはめ込んだ。参照符号15は分波素子の場合の入射側ファイバ、16,17は出射側ファイバである。出射側ファイバ17は透過で出射する波長の出射側ファイバ、16は反射してくる波長の出射側ファイバである。最後に波長フィルタ18を溝部13に嵌め込んだ。入射側ファイバ15および出射側ファイバ16とフィルタ18の距離は700μm程度であった。また出射側ファイバ17と波長フィルタ18とを接触させた。その後、液状の紫外線硬化性エポキシ樹脂を波長フィルタ18付近に適量たらし、参照符号15の光ファイバ経由で紫外線照射を行い、樹脂の光硬化を行った。この場合、入射側ファイバ15および出射側ファイバ16と出射側ファイバ17との距離は1mm以下であり、光はそれほどひろがらず、入射側ファイバ15および出射側ファイバ16と出射側ファイバ17との間に光導波路14が形成された。その後、屈折率の低い紫外線硬化性エポキシ樹脂を滴下して光硬化させ、クラッドを作製した。この操作により、光ファイバ15,16,および17,さらに波長フィルタ18を容器10に接着固定した。これら一連の操作により本発明の合分波素子が作製できた。素子特性を測定したところ、透過ポートでの挿入損失1dB(波長1.3μm)、反射ポートでの挿入損失1dB(波長1.55μm)、クロストーク30dB以上であった。
【0025】
(実施例2)
実施例1の波長フィルタ18のかわりに厚さ20μm、大きさ2mm×3mm、13μm透過、0.85μm反射のロングパスフィルタを挿入し、本発明の合分波素子とした。素子特性を測定したところ、透過ポートでの挿入損失1dB(波長1.3μm)、反射ポートでの挿入損失1dB(波長0.85μm)、クロストーク35dB以上であった。
【0026】
(実施例3)
実施例1の容器10で溝部幅を1mmとしてポリマークラッド光ファイバ14,15,16のかわりにプラスチック光ファイバ(いずれも片端FCコネクタつきでもう片端は被覆除去したもので外径1000μm)を挿入した。厚さ20μm、0.58μm透過、0.65μm反射のローパスフィルタを挿入し、本発明の合分波素子とした。素子特性を測定したところ、透過ポートでの挿入損失2dB(波長0.58μm)、反射ポートでの挿入損失2dB(波長0.65μm)、クロストーク20dB以上であった。
【0027】
(実施例4)
実施例3でプラスチック光ファイバ(いずれも片端FCコネクタつきでもう片端は被覆除去したもので外径1000μm)のかわりに片端SCコネクタつきでもう片端は被覆除去したもので外径250μmを挿入した。厚さ20μm、1.3μm透過、1.55μm反射のローパスフィルタを挿入し、本発明の合分波素子とした。素子特性を測定したところ、透過ポートでの挿入損失2dB(波長1.3μm)、反射ポートでの挿入損失2dB(波長1.55μm)、クロストーク20dB以上であった。
【0028】
(実施例5)
図3は、本発明にもとづく合分波素子の他の例を示す模式的平面図である。上記実施例1ないし4では波長フィルタ用の溝部は一本であったが、この実施例では2本形成している。
【0029】
この図に示す合分波素子は、容器30の表面に、該表面の長手方向に沿って一端から他端に向けて形成された溝部31と、該溝部31と交差し、かつ斜めに形成された2本の溝部32,33と、該表面の幅方向に沿って延び、かつ溝部31および溝部32または33と交差する溝部34および35とを有する。これら2つの交差部分によって挟まれるようにして、溝部31には光導波路36が設けられており、さらにこの光導波路36と接続した光ファイバ37,38,39,および40が溝部31,32,および33にそれぞれ嵌め込まれている。また、溝部34および35には光導波路36の端面に接するようにしてそれぞれ波長フィルタ41,42としては、厚さが20μm、大きさ2mm×3mm、1.3μm、0.85μm透過、1.55μm反射のローパスフィルタと、厚さ20μm、大きさ2mm×3mm、1.3μm透過、0.85μm反射のロングパスフィルタとを用いた。光ファイバとしては実施例1と同様にポリマークラッド光ファイバを用いた。素子特性を測定したところ、それぞれの波長の挿入損失1.5dB(波長1.3μm)、挿入損失1.5dB(波長1.55μm)、挿入損失1.5dB(波長0.85μm)クロストーク20dB以上であった。
【0030】
【発明の効果】
以上説明したように、本発明にもとづく合分波素子は上記のように構成されるので、合分波素子の使用分野を拡大する上で障害となる要因の一つである実装組み立てを簡便にするとともに、合分波素子の低価格化を達成することが可能となる。
【図面の簡単な説明】
【図1】本発明にもとづく合分波素子の概略的構成を説明するための模式的平面図である。
【図2】本発明にもとづく合分波素子の一例を説明するための模式的平面図である。
【図3】本発明にもとづく合分波素子の他の例を説明するための模式的平面図である。
【符号の説明】
1 溝部
2 溝部
3 溝部
4 光導波路
5 光ファイバ
6 光ファイバ
7 光ファイバ
8 波長フィルタ
10 容器
11 溝部
12 溝部
13 溝部
14 光導波路
15 光ファイバ
16 光ファイバ
17 光ファイバ
18 波長フィルタ
19 交差部
30 容器
31 溝部
32 溝部
33 溝部
34 溝部
35 溝部
36 光導波路
37 光ファイバ
38 光ファイバ
39 光ファイバ
40 光ファイバ
41 波長フィルタ
42 波長フィルタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a multiplexing / demultiplexing element that can be used in various optical elements and the like used in the fields of general optics and micro optics, and in the fields of optical communication and optical information processing.
[0002]
[Prior art]
The multiplexing / demultiplexing element is the most basic passive circuit used when dividing one optical signal into a plurality of optical signals, or conversely combining a plurality of optical signals as one optical signal. And so forth, and a beam-based multiplexing / demultiplexing element using an optical fiber or an optical waveguide. Particularly in recent years, in order to enable wavelength multiplexing for a large amount of information processing in the field of optical information processing and optical communication, research and development of an optical waveguide type multiplexing / demultiplexing device has been actively conducted. There is a report of a multiplexing / demultiplexing device employing the above (reference: Masao Kawauchi, NTT R & D vol. 43 No. 11 p. 101 (1994)).
[0003]
[Problems to be solved by the invention]
However, when such a conventional optical waveguide type multiplexing / demultiplexing device is applied to various circuits, there are points to be solved such as a lot of labor and time for mounting and assembling and complicated dedicated devices. Many. Therefore, the current situation is that conventional optical waveguide type multiplexing / demultiplexing devices are not widely used in various fields. In addition, from the above points, since highly skilled techniques are required for assembly, unlike the handling of electrical parts that are prevalent in ordinary households, there are no simple multiplexing / demultiplexing elements that can be handled at home. That is the current situation.
[0004]
The present invention has been made in view of such a current situation, and an object thereof is to simplify mounting and assembly that is one of the factors that hinder the expansion of the field of use of the multiplexing / demultiplexing device. Another object of the present invention is to provide a method of manufacturing the multiplexed / demultiplexed device .
[0005]
[Means for Solving the Problems]
A method of manufacturing a multiplexing / demultiplexing device according to the present invention includes a step of forming a first groove portion using a dicing saw from one end to the other end along the longitudinal direction of the surface of the container, and the first groove portion, Crossing the X shape and forming a second groove portion obliquely using a dicing saw from one end to the other end along the longitudinal direction of the surface of the container, and along the width direction of the surface of the container Forming a filter insertion groove so as to intersect the first groove portion and the second groove portion, and inserting an optical fiber into each of the first groove portion and the second groove portion. Of the optical fiber to be fitted, the step of fitting the outgoing side fiber of the transmitted light from the wavelength filter so as to contact the wavelength filter, and the intersection of the first groove portion and the second groove portion In part, the wavelength filter A step of forming an optical waveguide core by dripping an ultraviolet curable resin in the vicinity and irradiating the ultraviolet curable resin with ultraviolet rays through the optical fiber to cause photocuring, and then ultraviolet curing with a low refractive index. A step of forming a clad of the optical waveguide by further dripping a resin and irradiating the ultraviolet curable resin with ultraviolet rays through the optical fiber to cure the resin. Bonding and fixing each optical fiber fitted in the groove, the wavelength filter inserted in the filter insertion groove, and the optical waveguide provided in the intersecting portion to the first groove and the second groove. It is characterized by.
In addition, a photosensitive epoxy resin is used as an adhesive for bonding and fixing the optical fiber, the wavelength filter, and the optical waveguide to the first groove and the second groove.
Further, the optical fiber is a polymer clad optical fiber or a plastic optical fiber.
[0006]
Therefore, the characteristics of the multiplexing / demultiplexing device according to the present invention are outlined as follows.
[0007]
(1) A multiplexing / demultiplexing device can be manufactured simply by fitting an optical fiber and a wavelength filter into a groove portion of a container including a groove portion into which a polymer clad optical fiber or a plastic optical fiber is fitted and a groove portion into which a wavelength filter is fitted, and adhesively fixing them.
[0008]
(2) The above container can be easily produced.
[0009]
(3) Since the adhesive that adheres and fixes the optical waveguide, optical fiber, and wavelength filter to the groove of the container is a photosensitive epoxy resin, it is easy to handle and has excellent heat resistance.
[0010]
(4) As a wavelength filter fixed to the container, a film-like polymer film with a derivative multilayer film can be used. Therefore, since the film thickness is low and the thickness is thin, the increase in loss is small even when a filter is inserted.
[0011]
(5) Since the optical waveguide can be produced simply by irradiating light, it is inexpensive.
[0012]
The multiplexing / demultiplexing device according to the present invention will be specifically described below.
[0013]
For a method of creating an optical waveguide applied to the multiplexing / demultiplexing device of the present invention, see, for example, Japanese Patent Application Laid-Open No. 10-148729.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An example of the multiplexing / demultiplexing device according to the present invention is shown in FIG. The multiplexing / demultiplexing element shown in this figure includes a groove portion 1 formed on the surface of the container 10 from one end to the other end along the longitudinal direction of the surface, intersecting the groove portion 1, and the longitudinal direction of the surface. A groove portion 2 formed obliquely from one end to the other end along the direction, and a groove portion 1 that extends along the width direction of the surface and intersects the groove portion 2. An optical waveguide 4 is provided at the intersection of these grooves 1, 2, and 3, and optical fibers 5, 6, and 7 connected to the optical waveguide 4 are fitted into the grooves 1 and 2, respectively. Yes. A wavelength filter 8 is fitted in the groove 3 so as to cross the optical waveguide 4. By the way, since the optical waveguide 4 is composed of the same component as the adhesive component, it also plays a role of bonding and fixing the optical fibers 5, 6, 7 and the wavelength filter 8.
[0015]
Hereinafter, a method for producing a container applied to the multiplexing / demultiplexing device according to the present invention will be described. Here, two different methods will be described.
[0016]
<First method>
First, a substrate made of a material transparent from the short wavelength region to the near infrared region is prepared. Next, the substrate is grooved with a dicing saw. At this time, the groove width is closely related to the width of the blade of the dicing saw, and if the groove portion is processed for a normal plastic optical fiber (outer diameter 1 mm), a blade having a width of about 1 mm is used. In the case of a normal polymer clad optical fiber (outer diameter 230 μm), the blade width is about 230 μm. In the wavelength filter, the wavelength to be separated can be determined by the thickness of the dielectric multi-layer film and the separation angle is also uniquely determined. Therefore, as shown in FIG. 1, if the crossing angle of the groove is matched to the separation angle of the wavelength filter, Good. If a reflection type wavelength filter is used for the filter insertion groove, the filter insertion groove is formed so as to have a reflection angle with respect to the fiber groove.
[0017]
<Second method>
First, a substrate (for example, a plastic substrate) is prepared. Next, the photocurable resin is thinned on the substrate, the thin film is irradiated with ultraviolet rays through a mask by photolithography, and developed with an appropriate organic solvent to obtain a desired groove. At this time, the groove width is about 1 mm if the groove is processed for a normal plastic optical fiber (outer diameter 1 mm), and the width is about a normal polymer clad optical fiber (outer diameter 230 μm). It is about 230 μm.
[0018]
The container produced by either the first method or the second method is used in the following examples.
[0019]
(Example 1)
In this embodiment, a multiplexing / demultiplexing device using the container produced by the first method is produced.
[0020]
FIG. 2 is a schematic plan view showing a schematic configuration of the multiplexing / demultiplexing device based on the present embodiment.
[0021]
The multiplexing / demultiplexing element shown in this figure has a groove portion 11 formed on the surface of the container 10 from one end to the other end along the longitudinal direction of the surface, intersecting the groove portion 11, and the longitudinal direction of the surface. The groove portion 12 is formed obliquely from one end to the other end along the direction, and the groove portion 11 extends along the width direction of the surface, and the groove portion 13 intersects the groove portion 12. An optical waveguide 14 is provided in the groove portions 11, 12 and the intersection portion 19 , and optical fibers 15, 16, and 17 connected to the optical waveguide 14 are fitted in the groove portion 11 and the groove portion 12, respectively. Yes. A wavelength filter 18 is fitted in the groove 13 so as to cross the optical waveguide 14 . A multiplexing / demultiplexing device having such a configuration was fabricated as follows.
[0022]
First, three grooves 11, 12, and 13 are formed on the surface of the container 10 produced by the first method.
[0023]
The grooves 11 and 12 had a depth of 235 μm and a width of 235 μm. The groove 13 is a groove into which a wavelength filter (thickness 20 μm, size 2 mm × 3 mm, 1.3 μm transmission, 1.55 μm reflection low-pass filter) is inserted, and the width is 30 μm and the depth is 350 μm.
[0024]
Next, three polymer clad optical fibers 15, 16, and 17 (both with one end FC connector and the other end covered and removed with an outer diameter of 230 μm) were inserted into the grooves 11 and 12 as shown in FIG. Reference numeral 15 is an incident side fiber in the case of a demultiplexing element, and 16 and 17 are outgoing side fibers. The emission side fiber 17 is an emission side fiber having a wavelength emitted by transmission, and 16 is an emission side fiber having a reflected wavelength. Finally, the wavelength filter 18 was fitted into the groove 13. The distances between the incident side fiber 15 and the outgoing side fiber 16 and the filter 18 were about 700 μm. Further, the emission side fiber 17 and the wavelength filter 18 were brought into contact with each other. Thereafter, an appropriate amount of a liquid ultraviolet curable epoxy resin was placed in the vicinity of the wavelength filter 18, and the resin was photocured by irradiating with ultraviolet rays through an optical fiber denoted by reference numeral 15. In this case, the distance between the incident side fiber 15 and the emission side fibers 16 and the emission side fibers 17 is at 1mm or less, the light is not spread so much, the incident-side fiber 15 and the exit-side full Aiba 16 and the emission side fibers 17 An optical waveguide 14 was formed between them. Thereafter, an ultraviolet curable epoxy resin having a low refractive index was dropped and photocured to prepare a clad. By this operation, the optical fibers 15, 16 and 17 and the wavelength filter 18 were bonded and fixed to the container 10. Through the series of operations, the multiplexing / demultiplexing device of the present invention was produced. When the device characteristics were measured, the insertion loss at the transmission port was 1 dB (wavelength 1.3 μm), the insertion loss at the reflection port was 1 dB (wavelength 1.55 μm), and the crosstalk was 30 dB or more.
[0025]
(Example 2)
Instead of the wavelength filter 18 of Example 1, a long-pass filter having a thickness of 20 μm, a size of 2 mm × 3 mm, a transmission of 13 μm, and a reflection of 0.85 μm was inserted to obtain the multiplexing / demultiplexing device of the present invention. When the element characteristics were measured, the insertion loss at the transmission port was 1 dB (wavelength 1.3 μm), the insertion loss at the reflection port was 1 dB (wavelength 0.85 μm), and the crosstalk was 35 dB or more.
[0026]
(Example 3)
In the container 10 of Example 1, the groove width was set to 1 mm, and a plastic optical fiber (both with one end FC connector and the other end covered and removed with an outer diameter of 1000 μm) was inserted instead of the polymer clad optical fibers 14, 15, 16. . A multiplexing / demultiplexing device of the present invention was obtained by inserting a low-pass filter having a thickness of 20 μm, a transmission of 0.58 μm, and a reflection of 0.65 μm. When the element characteristics were measured, the insertion loss at the transmission port was 2 dB (wavelength 0.58 μm), the insertion loss at the reflection port was 2 dB (wavelength 0.65 μm), and the crosstalk was 20 dB or more.
[0027]
(Example 4)
Instead of the plastic optical fiber in Example 3 (both with one end FC connector and the other end coated and removed with an outer diameter of 1000 μm), one end with an SC connector and the other end coated and an outer diameter of 250 μm was inserted. A low-pass filter having a thickness of 20 μm, 1.3 μm transmitting, and 1.55 μm reflecting was inserted to obtain the multiplexing / demultiplexing device of the present invention. When the element characteristics were measured, the insertion loss at the transmission port was 2 dB (wavelength 1.3 μm), the insertion loss at the reflection port was 2 dB (wavelength 1.55 μm), and the crosstalk was 20 dB or more.
[0028]
(Example 5)
FIG. 3 is a schematic plan view showing another example of the multiplexing / demultiplexing device according to the present invention. In the first to fourth embodiments, the wavelength filter has a single groove, but in this embodiment, two grooves are formed.
[0029]
The multiplexing / demultiplexing element shown in this figure is formed on the surface of the container 30 at an angle that crosses the groove 31 and is formed obliquely from one end to the other along the longitudinal direction of the surface. And two groove portions 32 and 33, and groove portions 34 and 35 extending along the width direction of the surface and intersecting the groove portion 31 and the groove portions 32 or 33. An optical waveguide 36 is provided in the groove 31 so as to be sandwiched between these two intersecting portions, and optical fibers 37, 38, 39, and 40 connected to the optical waveguide 36 are provided in the grooves 31, 32, and 40. 33 are respectively fitted. The wavelength filters 41 and 42 are in contact with the end face of the optical waveguide 36 in the grooves 34 and 35, respectively, and the thickness is 20 μm, the size is 2 mm × 3 mm, 1.3 μm, 0.85 μm, and the transmission is 1.55 μm. A reflective low-pass filter and a long-pass filter having a thickness of 20 μm, a size of 2 mm × 3 mm, a transmission of 1.3 μm, and a reflection of 0.85 μm were used. As an optical fiber, a polymer clad optical fiber was used in the same manner as in Example 1. When the element characteristics were measured, the insertion loss of each wavelength was 1.5 dB (wavelength 1.3 μm), the insertion loss was 1.5 dB (wavelength 1.55 μm), the insertion loss was 1.5 dB (wavelength 0.85 μm), and the crosstalk was 20 dB or more. Met.
[0030]
【The invention's effect】
As described above, since the multiplexing / demultiplexing device according to the present invention is configured as described above, it is easy to mount and assemble one of the factors that hinder the expansion of the field of use of the multiplexing / demultiplexing device. In addition, the price of the multiplexing / demultiplexing device can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic plan view for explaining a schematic configuration of a multiplexing / demultiplexing device according to the present invention.
FIG. 2 is a schematic plan view for explaining an example of a multiplexing / demultiplexing element according to the present invention.
FIG. 3 is a schematic plan view for explaining another example of the multiplexing / demultiplexing device according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Groove part 2 Groove part 3 Groove part 4 Optical waveguide 5 Optical fiber 6 Optical fiber 7 Optical fiber 8 Wavelength filter 10 Container 11 Groove part 12 Groove part 13 Groove part 14 Optical waveguide 15 Optical fiber 16 Optical fiber 17 Optical fiber 18 Wavelength filter 19 Crossing part 30 Container 31 Groove 32 Groove 33 Groove 34 Groove 35 Groove 36 Optical Waveguide 37 Optical Fiber 38 Optical Fiber 39 Optical Fiber 40 Optical Fiber 41 Wavelength Filter 42 Wavelength Filter

Claims (3)

容器の表面の長手方向に沿って一端から他端に向けてダイシングソーを用いて第1の溝部を形成する工程と、
該第1の溝部とX型に交差し、かつ前記容器の表面の長手方向に沿って一端から他端に向けてダイシングソーを用いて第2の溝部を斜めに形成する工程と、
前記容器の表面の幅方向に沿って、前記第1の溝部及び前記第2の溝部と交差するようにフィルタ挿入溝を形成して波長フィルタを挿入する工程と、
前記第1の溝部及び第2の溝部のそれぞれに光ファイバを嵌め込む際に、該嵌め込む光ファイバのうち前記波長フィルタからの透過光の出射側ファイバについては前記波長フィルタに接触するように嵌め込む工程と、
前記第1の溝部及び第2の溝部との交差部分で、前記波長フィルタの近傍に紫外線硬化樹脂を滴下し、前記光ファイバを介して該紫外線硬化樹脂に紫外線を照射して光硬化させることにより、光導波路のコアを形成する工程と、
次に、屈折率の低い紫外線硬化樹脂をさらに滴下し、前記光ファイバを介して該紫外線硬化樹脂に紫外線を照射して光硬化させることにより、前記光導波路のクラッドを形成する工程とを備え、
前記第1の溝部及び第2の溝部に嵌め込まれた前記各光ファイバ、前記フィルタ挿入溝に挿入された前記波長フィルタ及び前記交差部分に設けられた前記光導波路を、前記第1の溝部及び前記第2の溝部に接着固定することを特徴とする合分波素子の製造方法。
Forming a first groove using a dicing saw from one end to the other along the longitudinal direction of the surface of the container;
Crossing the first groove portion with the X shape and forming the second groove portion obliquely using a dicing saw from one end to the other end along the longitudinal direction of the surface of the container;
Forming a filter insertion groove so as to intersect the first groove and the second groove along the width direction of the surface of the container, and inserting a wavelength filter;
When an optical fiber is fitted into each of the first groove and the second groove, an outgoing-side fiber of the transmitted light from the wavelength filter is fitted so as to come into contact with the wavelength filter. a step of writing,
By dripping an ultraviolet curable resin in the vicinity of the wavelength filter at the intersection of the first groove and the second groove, and irradiating the ultraviolet curable resin with ultraviolet rays through the optical fiber to cause photocuring. Forming the core of the optical waveguide;
Next, a step of further forming a clad of the optical waveguide by further dropping an ultraviolet curable resin having a low refractive index and irradiating the ultraviolet curable resin with ultraviolet rays through the optical fiber to cause photocuring,
Each of the optical fibers fitted in the first groove and the second groove, the wavelength filter inserted in the filter insertion groove, and the optical waveguide provided in the intersecting portion, the first groove and the A method of manufacturing a multiplexing / demultiplexing device, wherein the second groove is bonded and fixed.
前記光ファイバ、前記波長フィルタ、および前記光導波路を、前記第1の溝部および前記第2の溝部に接着固定するための接着剤として感光性エポキシ樹脂を用いることを特徴とする請求項に記載の合分波素子の製造方法。Said optical fiber, wherein said wavelength filter, and the optical waveguide, in claim 1 which comprises using a photosensitive epoxy resin as an adhesive for bonding and fixing to said first groove portion and the second groove Manufacturing method of the multiplexing / demultiplexing device. 前記光ファイバは、ポリマークラッド光ファイバまたはプラスチック光ファイバであることを特徴とする請求項1又は2に記載の合分波素子の製造方法。 3. The method of manufacturing a multiplexing / demultiplexing device according to claim 1, wherein the optical fiber is a polymer clad optical fiber or a plastic optical fiber.
JP34425098A 1998-12-03 1998-12-03 Manufacturing method of multiplexing / demultiplexing device Expired - Fee Related JP3645108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34425098A JP3645108B2 (en) 1998-12-03 1998-12-03 Manufacturing method of multiplexing / demultiplexing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34425098A JP3645108B2 (en) 1998-12-03 1998-12-03 Manufacturing method of multiplexing / demultiplexing device

Publications (2)

Publication Number Publication Date
JP2000171649A JP2000171649A (en) 2000-06-23
JP3645108B2 true JP3645108B2 (en) 2005-05-11

Family

ID=18367799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34425098A Expired - Fee Related JP3645108B2 (en) 1998-12-03 1998-12-03 Manufacturing method of multiplexing / demultiplexing device

Country Status (1)

Country Link
JP (1) JP3645108B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608721B1 (en) 2000-06-02 2003-08-19 Essex Corporation Optical tapped delay line
US7720226B2 (en) 2002-11-19 2010-05-18 Essex Corporation Private and secure optical communication system using an optical tapped delay line
JP2009222840A (en) * 2008-03-14 2009-10-01 Universal Microelectronics Co Ltd Wdm type optical transmitter/receiver
CN105182482B (en) * 2015-09-14 2016-11-16 深圳市创鑫激光股份有限公司 A kind of configurable optical-fiber bundling device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232581B2 (en) * 1973-09-25 1977-08-23
JPS5895305A (en) * 1981-11-30 1983-06-06 Matsushita Electric Works Ltd Manufacture of optical branching circuit
JPS60173508A (en) * 1984-01-27 1985-09-06 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide connecting method
JPS61254912A (en) * 1985-05-07 1986-11-12 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer and its production
JPH01113703A (en) * 1987-10-28 1989-05-02 Furukawa Electric Co Ltd:The Production of optical element
JP2730901B2 (en) * 1988-02-20 1998-03-25 富士通株式会社 Optical function device
JPH0234806A (en) * 1988-07-25 1990-02-05 Sumitomo Electric Ind Ltd Demultiplexer/multiplexer and its manufacture
JP2586606B2 (en) * 1988-10-19 1997-03-05 富士通株式会社 Method of forming optical circuit device
DE3919262A1 (en) * 1989-06-13 1990-12-20 Hoechst Ag METHOD FOR PRODUCING A PLANAR OPTICAL COUPLER
JPH08320422A (en) * 1994-06-22 1996-12-03 Fujitsu Ltd Production of optical waveguide system and optical device using the system
JPH0990153A (en) * 1995-09-20 1997-04-04 Fujitsu Ltd Manufacture of optical waveguide and device obtained by the manufacturing method
JPH09304648A (en) * 1996-05-14 1997-11-28 Matsushita Electric Ind Co Ltd Optical passive device and its manufacture
KR100243315B1 (en) * 1996-11-18 2000-02-01 윤종용 Multi-mode optical coupler
JPH10148729A (en) * 1996-11-21 1998-06-02 Nippon Telegr & Teleph Corp <Ntt> Formation of ridge pattern of core part of polymer optical waveguide
JPH10268158A (en) * 1997-03-27 1998-10-09 Matsushita Electric Ind Co Ltd Optical branching filter and optical coupling part
JP3500962B2 (en) * 1998-05-15 2004-02-23 株式会社豊田中央研究所 Manufacturing method of optical demultiplexer

Also Published As

Publication number Publication date
JP2000171649A (en) 2000-06-23

Similar Documents

Publication Publication Date Title
US5119448A (en) Modular micro-optical systems and method of making such systems
JP3984009B2 (en) Manufacturing method of optical waveguide device
EP0438085A2 (en) Optical fiber electro-optical module
JP4910788B2 (en) Optical module and optical waveguide manufacturing method
JP2008040003A (en) Flexible optical waveguide film, optical transmission/reception module, multichannel optical transmission/reception module and method of manufacturing flexible optical waveguide film
JP2007178852A (en) Optical wiring board and optical module using the same
US20020146193A1 (en) Optical device
US6775441B2 (en) Optical waveguide connecting structure, optical element mounting structure and optical fiber mounting structure
JP3645108B2 (en) Manufacturing method of multiplexing / demultiplexing device
JPH11183747A (en) Three-dimensional polymer optical waveguide array and manufacture thereof
JP2003004992A (en) Optical transmission and reception module and its manufacturing method
US7296934B2 (en) Optical transmission module and manufacturing method thereof
JP2006251046A (en) Optical waveguide substrate, optical surface mounting waveguide element, and their manufacturing method
JP2001051142A (en) Optical integrating device and its manufacture
JP2002040290A (en) Fiber array part and its manufacturing method
JP2001116944A (en) Method for adding optical coupler to plane optical circuit and plane optical circuit
JP4692424B2 (en) Waveguide array for multicore bidirectional communication, method for manufacturing the same, and bidirectional communication module
JP2001194540A (en) Optical path switching device and its manufacturing method
JP3788397B2 (en) Optical waveguide device and communication device using optical waveguide device
JP2009300562A (en) Multi-channel right-angled optical path converting element
JP2004279620A (en) Optical integrated circuit
JP2006030224A (en) Optical waveguide and optical coupling device
JP2002258084A (en) Light-wave circuit module and method of manufacturing the same
JP2007139960A (en) Manufacturing method of bidirectional optical transmission/reception module
JPH10153719A (en) Multiplex-mode optical coupler and its manufacture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050202

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees