JP3643795B2 - ピークリミッタ及びマルチキャリア増幅装置 - Google Patents

ピークリミッタ及びマルチキャリア増幅装置 Download PDF

Info

Publication number
JP3643795B2
JP3643795B2 JP2001229738A JP2001229738A JP3643795B2 JP 3643795 B2 JP3643795 B2 JP 3643795B2 JP 2001229738 A JP2001229738 A JP 2001229738A JP 2001229738 A JP2001229738 A JP 2001229738A JP 3643795 B2 JP3643795 B2 JP 3643795B2
Authority
JP
Japan
Prior art keywords
signal
peak
carrier
average power
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001229738A
Other languages
English (en)
Other versions
JP2003046480A (ja
Inventor
直樹 本江
陽一 大久保
雅樹 須藤
正人 洞口
壽雄 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2001229738A priority Critical patent/JP3643795B2/ja
Priority to US10/205,563 priority patent/US6931239B2/en
Priority to EP02017070A priority patent/EP1282225B1/en
Priority to DE60206451T priority patent/DE60206451T2/de
Priority to CN02127214.XA priority patent/CN1237748C/zh
Publication of JP2003046480A publication Critical patent/JP2003046480A/ja
Application granted granted Critical
Publication of JP3643795B2 publication Critical patent/JP3643795B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CDMA方式の移動通信システムの基地局装置等のマルチキャリア信号を増幅するシステムで使用されるピークリミッタ及びマルチキャリア増幅装置に係り、特に増幅システムの電力効率を向上できるピークリミッタ及びマルチキャリア増幅装置に関する。
【0002】
【従来の技術】
一般的に、CDMA( Code Division Multiple Access :符号分割多元接続)方式を移動通信方式として採用する移動通信システムに備えられた基地局装置(CDMA基地局装置)では、物理的に遠く離れた移動局装置(CDMA移動局装置)まで無線信号を到達させる必要があるため、送信対象となる信号を増幅器(アンプ)で大幅に増幅して送信出力することが必要である。
しかしながら、増幅器はアナログデバイスであるため、その入出力特性は非線形な関数となる。特に、飽和点と呼ばれる増幅限界以降では、増幅器に入力される電力が増大しても出力電力がほぼ一定となってしまう。そして、この非線形な出力によって出力信号に非線形歪が発生する。
【0003】
通常、増幅前の送信信号は、希望信号帯域外の信号成分が帯域制限フィルタによって低レベルに抑えられるが、増幅器通過後の信号では非線形歪が発生して希望信号帯域外(隣接チャネル)へ信号成分が漏洩する。例えば基地局装置では上記したように送信電力が高いため、このような隣接チャネルへの漏洩電力の大きさは厳しく規定されており、隣接チャネル漏洩電力(ACP:Adjacent Channel leakage Power)を削減する技術が用いられる。
【0004】
増幅器において隣接チャネル漏洩電力を削減する技術の一例として、バックオフ法、フィードフォワード法、プリディストーション法などが用いられる。
ここで、各方法の概要と動作特性について図6を使って説明する。図6は、増幅器の特性と、各隣接チャネル漏洩電力削減方法の動作特性を説明する説明図であり、(a)がバックオフ法の特性を示し、(b)が、フィードフォワード法、プリディストーション法の特性を示している。
【0005】
バックオフ法は、増幅器の動作範囲を線形領域に制限し、動作点を下げることによって非線形歪が発生するのを防ぐ方法である。具体的には、図6(a)に示すように、増幅器の特性が実線で示す曲線のように、途中まで線形で飽和すると非線形になって飽和出力レベルになる場合に、バックオフ法では、線形性を保っている最大の出力電力から、増幅器入力信号のピークファクタだけ低い点に動作点を設定するようになっている。
ここでピークファクタとは、図7に示すように増幅器入力信号における最大電力と平均電力の比であり、すなわち平均電力に対して最大電力の差が小さいほどピークファクタは小さいことになる。図7は、一般的な増幅器のピークファクタの説明図である。
【0006】
一方、フィードフォワード法は、主アンプで増幅して出力された(希望信号+歪成分)からエラーアンプで増幅された(歪成分)を引くことによって歪補償を行う方法である。
また、プリディストーション法は、希望信号を増幅器に入力する前に、通常AM/AM変換、AM/PM変換で表される非線形特性の逆特性によって希望信号に予め歪を与えて(希望信号+歪成分)を入力し、増幅器で発生する(歪成分)と相殺するように歪補償を行う方法である。
つまり、フィードフォワード法、及びプリディストーション法では、歪成分が発生するという前提で発生する歪を補償するものであるので、図6(b)に示すように、増幅器の特性曲線に対して、例えば、飽和出力電力(レベル)から増幅器入力信号のピークファクタだけ低い点に動作点を設定することができ、バックオフ法よりも動作点を高く設定することができる。
【0007】
現在、歪補償方式としては、フィードフォワード法とプリディストーション法が主流であり、その理由はシステムの電力効率を向上することができるためである。増幅器の動作点を高く設定できれば出力電力が大きくなるため電力効率が向上するが、電力効率は、増幅器入力信号のピークファクタの大きさに大きく左右されることになる。
ピークファクタが大きくなると、使用する電力増幅回路のトランジスタのサイズが大きくなり、また飽和出力電力から大きく出力レベルを下げて使用する必要がある。このようにレベルを下げていくと電力増幅器のDC供給電力と取り出される送信電力の比は低下してしまう。
【0008】
そこで、増幅器の電力効率を向上するためにピークファクタをできるだけ小さくする技術が重要であり、その一例として、増幅器の前段にピークリミッタを設け、最大電力(ピーク)を制限した信号を増幅器の入力信号とする方法がある。
従来のピークリミッタについて、図8を使って説明する。図8は、従来のピークリミッタの構成例を示すブロック図である。
従来のピークリミッタ1′は、図8に示すように、平均電力検出部11′と、瞬時電力検出部12′と、ピーク検出部13と、リミッタ部14′とから構成されている。
【0009】
従来のピークリミッタ1′の各部について説明する。
平均電力検出部11′は、入力信号IQの平均電力を検出して平均電力情報を出力するものである。
瞬時電力検出部12′は、入力信号IQの瞬時電力を検出して瞬時電力情報を出力するものである。
ピーク検出部13は、入力信号IQのピークの有無を検出するものである。具体的には、例えば入力される平均電力情報と瞬時電力情報から比の演算を行って入力信号の瞬時電力対平均電力比を算出し、算出された瞬時電力対平均電力比が予め定められているピークファクタ閾値を超えるかどうか、すなわち、リミットを施すべきピークの有無を検出し、ピーク検出情報を出力するようになっている。ここで、予め定められているピークファクタ閾値とは、後続して設置する増幅器における特性(図6(b))で飽和出力レベルに対して動作点を想定しているピークファクタを考慮した値である。
【0010】
リミッタ部14′は、入力信号IQの振幅のピークを制限するもので、具体的には、入力されるピーク検出情報に従って、リミットを施すべきピークが検出された場合に、入力される入力信号IQの電力(振幅)を予め定められているリミット電力になるように制限して出力信号IQを出力するようになっている。
【0011】
次に、従来のピークリミッタ1′の動作について説明する。
従来のピークリミッタ1′では、入力信号IQが、平均電力検出部11′、瞬時電力検出部12′、及びリミッタ部14′に入力され、平均電力検出部11′では入力信号の平均電力が検出されて平均電力情報が出力され、瞬時電力検出部12′では入力信号の瞬時電力が検出されて瞬時電力情報が出力され、ピーク検出部13で、平均電力情報と瞬時電力情報からリミットを施すべきピークの有無が検出されてピーク検出情報が出力され、リミッタ部14′でピーク検出情報に従って、リミットを施すべきピークが検出された場合に、入力される入力信号IQの電力を予め定められているリミット電力に制限された出力信号IQが出力されるようになっている。
【0012】
通常、ピークリミッタ1′に入力される入力信号IQは、帯域制限前のベースバンド信号であり、ピークリミッタ1′によってリミッタ処理が施された後にフィルタ(図示せず)によって帯域制限を行うので、歪は発生せず、また、ピークリミッタ1′によって入力信号のピーク値を制限しているため、入力信号のピークファクタを小さくしており、帯域制限後に行う増幅器の動作点を上げることができるので電力効率を向上できるものである。
ここで、ピークリミッタ1′によるリミッタ後に帯域制限を行うため、帯域制限後のピークファクタは帯域制限前のピークファクタより通常は大きくなる。これは、帯域制限前の矩形波が、帯域制限後に鈍ることで、ピークが高くなるポイントが現れるためである。そこで、ピーク検出部13で設定するピークファクタ閾値は、帯域制限後の瞬時電力対平均電力比が大きくなることを考慮してピークファクタ閾値を低めに設定する必要がある。
【0013】
次に、従来のピークリミッタ1′を用いた従来のマルチキャリア増幅装置について図9を使って説明する。図9は、従来のマルチキャリア増幅装置の概略構成ブロック図である。尚、図9では、一例として2キャリアの場合の構成を示している。
マルチキャリア信号を増幅する従来のマルチキャリア増幅装置は、各キャリア毎に独立した系列として信号ピークの制限を行うピークリミッタ1′と、帯域制限を施す帯域制限フィルタ2と、RF周波数にアップコンバート(高周波変調)するアップコンバータ3とから構成され、更に、各キャリア系列からの出力を結合してマルチキャリア信号を出力する結合器4と、マルチキャリア信号を増幅する増幅器5とから構成されている。
【0014】
従来のマルチキャリア増幅装置の動作は、各キャリア系列の入力信号IQが各ピークリミッタ1′に入力され、ピークリミッタ1′で各入力信号の瞬時電力対平均電力比が算出され、予め定められたピークファクタ閾値に基づいて、瞬時電力対平均電力比ピークファクタ閾値を超える場合に信号ピーク値が制限されてピーク制限信号A1,A2が出力され、各々帯域制限フィルタ2で帯域制限された信号B1,B2が出力され、更に各アップコンバータ3で各RF周波数にアップコンバートされた高周波変調信号(キャリア信号)C1,C2が出力される。そして、各キャリア系列のアップコンバータ3の出力信号が結合器4で結合されてマルチキャリア信号Dが出力され、増幅器5で増幅されて出力されるようになっている。
【0015】
その結果、従来のマルチキャリア増幅装置では、各キャリア系列でピークリミッタ1′によって信号のピーク値が制限されて瞬時電力対平均電力比を小さくする処理を施した信号A1,A2に対して、帯域制限、アップコンバートを行い、その後に結合し、結合後のマルチキャリア信号を増幅器5で増幅することになり、結合前の信号の瞬時電力対平均電力比が小さくなっていることにより、結合後のマルチキャリアの瞬時電力対平均電力比も小さくなるため、結果的に増幅器5への入力信号の瞬時電力対平均電力比が抑圧されて、増幅器5における動作点を上げることができるものである。
【0016】
尚、マルチキャリア信号の増幅の際の歪みを軽減する従来技術としては、2000年9月8日公開の特開平2000−244452号「CDMA無線基地局」(出願人:国際電気株式会社、発明者:檜者昌弘他)がある。
この従来技術は、キャリア数、多重数が多く、個別の送信電力が大きい変調信号を共通増幅器に入力した場合にベースバンド信号のリミッタレベルを高く、それ以外の場合はリミッタレベルを低く設定するリミットレベル可変を行うCDMA無線基地局であり、これにより、キャリア数、多重数が多く、個別の送信電力が大きい場合には、発生する歪みを低減させることができ、多重数が少ない場合には、受信側の誤り率を抑えることができ、また、リミットレベルの可変により、低消費電力の増幅器を使用することができるために装置全体の低消費電力に寄与するものである。
【0017】
【発明が解決しようとする課題】
しかしながら、従来のピークリミッタ及びマルチキャリア増幅装置では、各キャリア系列毎に設けたピークリミッタ1′で、各キャリア系列の入力信号から検出した瞬時電力対平均電力比ピークファクタ閾値との関係に基づいてピーク制限を行い、各々帯域制限を行った後に合成するので、結合器4出力であるマルチキャリア信号の瞬時電力対平均電力比は、経験上各キャリア系列の瞬時電力対平均電力比よりも大きくなるため、増幅器5への入力信号に対して所望する瞬時電力対平均電力比を得るために、各ピークリミッタ1′における最適なピークファクタ閾値を設定する調整は困難であり、安全のためにピークファクタ閾値を低めに設定することになり、効率よくピークリミットを行うことができないという問題があった。
複数キャリアにおける瞬時電力対平均電力比と1キャリアの瞬時電力対平均電力比との比較の一例として、W−CDMAにおける2〜4キャリア入力の瞬時電力対平均電力比は、1キャリア入力の瞬時電力対平均電力比と比較して2〜6dB程度大きくなる。
【0018】
また、他の問題点として、例えば各キャリア信号を結合器4で結合したマルチキャリア信号の電力が実際には小さくなるにも係わらず、ある1つのキャリア信号の瞬時電力対平均電力比ピークファクタ閾値よりも大きくなったような場合にも、従来のピークリミッタ1′ではピーク制限を行うので、必要のないピーク制限で変調精度の劣化を発生させていたという問題点があった。
【0019】
本発明は上記実情に鑑みて為されたもので、増幅器入力信号における所望の瞬時電力対平均電力比を精度良く実現するように効率のよいピークリミットを行い、増幅システムの電力効率を向上できるピークリミッタ及びマルチキャリア増幅装置を提供することを目的とする。
【0020】
【課題を解決するための手段】
上記従来例の問題点を解決するための本発明は、マルチキャリア信号を増幅するシステムにおいて用いられるピークリミッタであって、複数のキャリアのベースバンド信号を入力し、各ベースバンド信号を高周波帯で合成した場合に近似的に想定されるマルチキャリア信号の平均電力を求め平均電力情報を出力する平均電力検出部と、複数のキャリアのベースバンド信号を入力し、各ベースバンド信号を高周波帯で合成した場合に近似的に想定されるマルチキャリア信号の瞬時電力を求め瞬時電力情報を出力する瞬時電力検出部と、平均電力情報と瞬時電力情報を入力し、瞬時電力と平均電力との比である瞬時電力対平均電力比を元にしてピークの有無を検出するピーク検出部と、当該複数のキャリアのベースバンド信号を入力し、ピーク検出部でピークが検出されると、複数のキャリアのベースバンド信号の振幅を抑圧した各信号を出力するリミッタ部とを有し、平均電力検出部が、各キャリアのベースバンド信号のベクトルを用いてベクトル合成演算し、合成されたベクトルの電力の平均を求め平均電力とするものなので、各ベースバンド信号を高周波帯で合成した場合に近似的に想定されるマルチキャリア信号の瞬時電力対平均電力比に基づいて各ベースバンド信号の振幅を制限することにより、増幅対象のマルチキャリア信号のピーク発生を捉えて瞬時電力対平均電力比を小さくするように効果的に、且つ効率よく各ベースバンド信号の振幅を抑圧できる。
【0021】
上記従来例の問題点を解決するための本発明は、マルチキャリア信号を増幅するマルチキャリア増幅装置において、複数のキャリアのベースバンド信号を入力し、各ベースバンド信号を高周波帯で合成した場合に近似的に想定されるマルチキャリア信号の平均電力を求め平均電力情報を出力する平均電力検出部と、複数のキャリアのベースバンド信号を入力し、各ベースバンド信号を高周波帯で合成した場合に近似的に想定されるマルチキャリア信号の瞬時電力を求め瞬時電力情報を出力する瞬時電力検出部と、平均電力情報と瞬時電力情報を入力し、瞬時電力と平均電力との比である瞬時電力対平均電力比を元にしてピークの有無を検出するピーク検出部と、当該複数のキャリアのベースバンド信号を入力し、ピーク検出部でピークが検出されると、複数のキャリアのベースバンド信号の振幅を抑圧した各信号を出力するリミッタ部とを有し、平均電力検出部が、各キャリアのベースバンド信号のベクトルを用いてベクトル合成演算し、合成されたベクトルの電力の平均を求め平均電力とし、ピークリミッタの出力信号であるピークを抑圧した各キャリアのベースバンド信号に帯域制限を行う帯域制限フィルタと、帯域制限された信号を高周波帯にアップコンバートするアップコンバータと、高周波帯にアップコンバートされた各キャリアの信号を結合しマルチキャリア信号を出力する結合器と、マルチキャリア信号を増幅する増幅器とを有するものなので、各ベースバンド信号を帯域制限の後、高周波帯に変換してから合成した場合に近似的に想定されるマルチキャリア信号の瞬時電力対平均電力比に基づいて各ベースバンド信号の振幅を制限することにより、増幅器に入力されるマルチキャリア信号のピーク発生を捉えて瞬時電力対平均電力比を小さくするように効果的に、且つ効率よく各ベースバンド信号の振幅を抑圧して、その結果増幅器入力信号における所望の瞬時電力対平均電力比を精度良く実現できる。
【0022】
【発明の実施の形態】
本発明の実施の形態について図面を参照しながら説明する。
尚、以下で説明する機能実現手段は、当該機能を実現できる手段であれば、どのような回路又は装置であっても構わず、また機能の一部又は全部をソフトウェアで実現することも可能である。更に、機能実現手段を複数の回路によって実現してもよく、複数の機能実現手段を単一の回路で実現してもよい。
【0023】
上位概念的に説明すれば、本発明に係るピークリミッタは、各キャリアのベースバンド信号を入力し、各ベースバンド信号を高周波帯で合成した場合に近似的に想定されるマルチキャリア信号の瞬時電力対平均電力比を求め、当該瞬時電力対平均電力比を元にして、各ベースバンド信号の振幅を抑圧した各信号を出力するものなので、増幅対象のマルチキャリア信号のピーク発生を捉えて瞬時電力対平均電力比を小さくするように効果的に、且つ効率よく各ベースバンド信号の振幅を抑圧でき、増幅システムの電力効率を向上できるものである。
【0024】
機能実現手段で説明すれば、本発明に係るピークリミッタは、各キャリアのベースバンド信号を入力し、各ベースバンド信号を高周波帯で合成した場合に近似的に想定されるマルチキャリア信号の平均電力を求め平均電力情報を出力する平均電力検出部と、各キャリアのベースバンド信号を入力し、各ベースバンド信号を高周波帯で合成した場合に近似的に想定されるマルチキャリア信号の瞬時電力を求め瞬時電力情報を出力する瞬時電力検出部と、平均電力情報と瞬時電力情報を入力し、瞬時電力と平均電力との比である瞬時電力対平均電力比を求め、瞬時電力対平均電力比と予め定められているピークファクタ閾値とを比較してピークを検出しピーク検出情報を出力するピーク検出部と、当該各キャリアのベースバンド信号とピーク検出情報を入力し、ピーク検出情報からピークが検出されると、各キャリアのベースバンド信号の振幅を抑圧した各信号を出力するリミッタ部とを有するものなので、増幅対象のマルチキャリア信号のピーク発生を捉えて瞬時電力対平均電力比を小さくするように効果的に、且つ効率よく各ベースバンド信号の振幅のピークを抑圧でき、増幅システムの電力効率を向上できるものである。
【0025】
まず、本発明の本発明の実施の形態に係るマルチキャリア増幅装置について、図1を使って説明する。図1は、本発明の実施の形態に係るマルチキャリア増幅装置の構成ブロック図である。尚、図9と同様の構成をとる部分については同一の符号を付して説明する。
本実施の形態に係るマルチキャリア増幅装置は、図1に示すように、従来のマルチキャリア増幅装置と同様の構成として、各キャリア毎に独立した系列として帯域制限を施す帯域制限フィルタ2と、RF周波数にアップコンバート(高周波変調)するアップコンバータ3と、各キャリア系列からの出力を結合してマルチキャリア信号を出力する結合器4と、マルチキャリア信号を増幅する増幅器5とから構成され、更に従来各キャリア系列毎に設けられていたピークリミッタ1′の代わりに、各キャリア系列共通のピークリミッタ1が設けられている。
【0026】
ここで、帯域制限フィルタ2とアップコンバータ3と結合器4と増幅器5は、従来と全く同様であるので、詳細な説明は省略する。
本発明の特徴部分であるピークリミッタ1は、複数(図1では、2つ)のキャリア系列のベースバンド信号(入力信号)を入力し、各入力信号がアップコンバータ3で高周波変調され、結合器4で結合(合成)されたマルチキャリア信号を想定して、近似的に想定されたマルチキャリア信号の瞬時電力対平均電力比を求め、求めた瞬時電力対平均電力比が増幅器5の入力信号に対して所望する瞬時電力対平均電力比を超える場合に、各入力信号の振幅を抑制するものである。
【0027】
ここで、異なる周波数の信号(キャリア信号)を合成する状況について、図2を使って説明する。図2は、複数のキャリア信号及び合成後のマルチキャリア信号の複素空間表現を示す説明図である。
一般的にマルチキャリア信号送信においては、複数の入力信号が各々ある周波数間隔(キャリア周波数差)を持つ搬送波(キャリア)で変調されて、図2(a)(b)(c)に示すように各キャリア信号が、時間の経過と共に位相を変化させながら異なる周期で複素空間を回転している。
そして、各々のキャリア信号が各周波数で回転する過程で、各キャリア信号を合成したマルチキャリア信号は、各キャリア信号の位相が異なっている場合には、合成によって、IQ空間でうち消しあって電力値はそれほど大きな値を示すことはないが、複数のキャリア信号が同相に近づくに従い電力値は増大し、位相が一致した場合には、図2(d)に示すように、各キャリア信号の電力が加算されて瞬間的に瞬時電力が多大な値のピークを持つ可能性がある。尚、図2(d)では、分かり易くするために各信号の矢印をずらして表記している。
つまり、本発明では、複数キャリア信号の位相が異なる時点では、個々のキャリア信号の電力が大きくてもリミットはかけず、上記説明した複数キャリア信号の位相が一致する時点のマルチキャリア信号の電力を捉えてリミットをかけるタイミングを検出するのが目的である。
【0028】
ここで、本発明のピークリミッタ1の内部構成について、図3を使って説明する。図3は、本発明のピークリミッタの内部構成ブロック図である。尚、図8と同様の構成をとる部分については同一の符号を付して説明する。
本発明のピークリミッタ1は、図3に示すように、平均電力検出部11と、瞬時電力検出部12と、ピーク検出部13と、リミッタ部14とから構成されている。尚、主たる構成要素としては図8で示した従来のピークリミッタと同様であるが、各要素の働きが従来とは異なっている。
【0029】
本発明のピークリミッタ1の各部について説明する。
平均電力検出部11は、複数のキャリア系列(図3では、2キャリア系列)の入力信号IQを入力し、高周波(RF)帯で各キャリア信号を合成した場合に近似的に想定されるマルチキャリア信号の平均電力を検出し、平均電力情報を出力するものである。尚、具体的に高周波(RF)帯で各キャリア信号を合成したマルチキャリア信号を近似的に想定する方法については、後述する。
【0030】
瞬時電力検出部12は、複数のキャリア系列(図3では、2キャリア系列)の入力信号IQを入力し、高周波(RF)帯で各キャリア信号を合成した場合に近似的に想定されるマルチキャリア信号の瞬時電力を検出し、瞬時電力情報を出力するものである。具体的に高周波(RF)帯で各キャリア信号を合成したマルチキャリア信号を近似的に想定する方法については、後述する。
【0031】
ピーク検出部13は、近似的に想定された合成後のマルチキャリア信号におけるピークの有無を検出するものである。具体的には、平均電力検出部11及び瞬時電力検出部12から入力される想定された合成後のマルチキャリア信号における平均電力情報と瞬時電力情報から比の演算を行って瞬時電力対平均電力比を算出し、算出された瞬時電力対平均電力比が予め定められているピークファクタ閾値を超えるかどうか、すなわち、リミットを施すべきピークの有無を検出し、ピーク検出情報を出力するようになっている。ここで、予め定められているピークファクタ閾値とは、後続して設置する増幅器5における特性(図6(b))で飽和出力レベルに対して動作点を想定しているピークファクタを考慮した値である。
尚、本発明のピーク検出部13におけるピークの検出対象は、近似的に想定された合成後のマルチキャリア信号であるが、入力される平均電力情報と瞬時電力情報からピークの有無を検出する動作は、従来のピーク検出部13と全く同様である。
【0032】
リミッタ部14は、複数のキャリア系列(図3では、2キャリア系列)の入力信号IQを入力し、各入力信号IQの振幅のピークを制限するもので、具体的には、ピーク検出部13から入力されるピーク検出情報に従って、近似的に想定された合成後のマルチキャリア信号にリミットを施すべきピークが検出された場合に、瞬時電力対平均電力比を予め定められているピークファクタ閾値以下になるように各キャリア系列の入力信号の振幅を抑制する。
【0033】
本発明のピークリミッタ1の動作を説明すると、複数のキャリア系列の入力信号IQが、平均電力検出部11及び瞬時電力検出部12及びリミッタ部14に入力され、平均電力検出部11では、RF帯で各キャリア信号を合成した場合に近似的に想定されるマルチキャリア信号の平均電力が検出されて平均電力情報が出力される。
一方、瞬時電力検出部12では、同様にRF帯で各キャリア信号を合成した場合に近似的に想定されるマルチキャリア信号の瞬時電力が検出されて瞬時電力情報が出力される。
そして、ピーク検出部13で、近似的に想定されたマルチキャリア信号の平均電力情報と瞬時電力情報から、近似的に想定されたマルチキャリア信号におけるリミットを施すべきピークの有無が検出されてピーク検出情報が出力され、リミッタ部14でピーク検出情報に従って、リミットを施すべきピークが検出された場合に、瞬時電力対平均電力比を予め定められているピークファクタ閾値以下になるように各キャリア系列の入力信号の振幅を抑制する。
【0034】
次に、平均電力検出部11及び瞬時電力検出部12における、高周波(RF)帯で各キャリア信号を合成したマルチキャリア信号を近似的に想定する方法について説明する。
RF帯で合成したマルチキャリア信号を近似的に想定する第1の方法(第1の想定方法)は、入力される各入力信号にキャリア周波数差(Δf)のオフセットを与えてから合成し、一定のサンプリング間隔で合成信号の電力を検出する方法である。
【0035】
これは、平均電力検出部11及び瞬時電力検出部12への入力信号はベースバンド信号IQであるので、RF帯における合成を想定するためには、本来ならば、各アップコンバータ3で高周波変調されるRF周波数に変換してみて、RF周波数の信号合成、電力測定を行わなければならないが、RF周波数での信号処理は非常に速いサンプリングが必要になるので高価な信号処理デバイスが必要になってしまう。
しかし、各キャリア周波数が、互いにキャリア周波数差(Δf)を持つのであれば、各入力信号にキャリア周波数差(Δf)分のみのオフセットを与えて合成すれば、一定のサンプリング間隔(例えば、最も周波数の小さいキャリア信号の一周期)のタイミングにおいては、その時点の複数キャリアの状態を捉えることができ、マルチキャリア信号を近似的に想定して瞬時電力や平均電力を検出するには十分である。
【0036】
ここで、従来の平均電力検出部11′及び瞬時電力検出部12′と、本発明の平均電力検出部11及び瞬時電力検出部12との違いを数式を用いて説明する。
まず、各入力信号IQをベクトル複素表現で[数1]のように表す。
【0037】
【数1】
Figure 0003643795
【0038】
すると、図9に示した従来のマルチキャリア増幅装置の各ピークリミッタ1′における従来の瞬時電力検出部12′で求められる瞬時電力、及び平均電力検出部11′で求められる平均電力は、[数2]のように表すことができる。
【0039】
【数2】
Figure 0003643795
【0040】
尚、平均電力の求め方は、移動平均や重み付け平均など各種あるが、その方法については限定しない。
それに対して、図1、図2に示した本発明のマルチキャリア増幅装置のピークリミッタ1における瞬時電力検出部12で求められる瞬時電力、及び平均電力検出部11で求められる平均電力は、上記説明した第1の想定方法で求める場合には、[数3]のように表すことができる。
【0041】
【数3】
Figure 0003643795
【0042】
尚、[数3]においてΔfは、キャリア周波数の差である。
すなわち、各入力信号は、Δfだけ差のある各RF周波数にアップコンバートされるとして、各キャリア系列の入力信号にキャリア周波数差(Δf)分のみのオフセットを与えて合成し、異なるRF周波数の信号が合成された信号を疑似的に作り出す。
そして、一定のサンプリング間隔(例えば、最も周波数の小さいキャリア信号の一周期)で、合成信号の平均電力を検出すれば、サンプリング間隔は粗いが、長時間測定することによって、ほぼRF帯で合成されたマルチキャリア信号の平均電力に近い電力値を得ることができる。
【0043】
また、瞬時電力については、各キャリア系列委の入力信号にキャリア周波数差(Δf)分のみのオフセットを与えて合成すると、図2(d)に示したように、複数のキャリア信号の位相が一致した場合に、瞬間的に瞬時電力がピークを持つはずであるので、このタイミングを逃さないようにサンプリングを行って瞬時電力を検出すれば、ほぼRF帯で合成されたマルチキャリア信号におけるピークリミットを施すべきピークを検出するために重要な瞬時電力値を取得することができる。
【0044】
次に、上記説明した第1の想定方法を実現する平均電力検出部11及び瞬時電力検出部12の構成例について、図4、図5を使って説明する。図4は、本発明の平均電力検出部11の構成例を示すブロック図であり、図5は、本発明の瞬時電力検出部12の構成例を示すブロック図である。
本発明の第1の想定方法を実現する平均電力検出部11は、図4に示すように、各入力信号にキャリア周波数差(Δf)のオフセットを与えるための複素乗算部21,22,23,…と、各オフセットを与えられた信号を合成する加算器24と、加算信号の瞬時電力を求める電力計算部25と、瞬時電力から平均電力を求める平均部26とから構成されている。
【0045】
図4に示した平均電力検出部11の動作は、入力される複数(図4では4つ)の入力信号に対して、入力信号−1はそのまま、入力信号−2は複素乗算部21でΔfだけ回転されてオフセットがかけられ、入力信号−3は複素乗算部22で2Δfだけ回転されてオフセットがかけられ、入力信号−4は複素乗算部23で3Δfだけ回転されてオフセットがかけられ、全ての信号が加算器24で加算(合成)され、電力計算部25で瞬時電力が求められ、平均部26で平均電力が求められるようになっている。
【0046】
同様に、本発明の第1の想定方法を実現する瞬時電力検出部12は、図5に示すように、各入力信号にキャリア周波数差(Δf)のオフセットを与えるための複素乗算部31,32,33,…と、各オフセットを与えられた信号を合成する加算器34と、加算信号の瞬時電力を求める電力計算部35とから構成されている。
図5に示した瞬時電力検出部12の動作は、平均電力検出部11の動作と同様である。
【0047】
図4及び図5の構成からわかるように複素乗算部と、加算器と、電力計算部までの構成は、どちらも同一であるので、この部分を共通とし、電力計算部出力を瞬時電力情報として出力し、当該瞬時電力情報を平均部26に入力して、平均電力を求め、平均電力情報として出力するようにしても構わない。
【0048】
次に、平均電力検出部11及び瞬時電力検出部12における、RF帯で合成後のマルチキャリア信号を近似的に想定する別の方法について説明する。
RF帯で合成後のマルチキャリア信号を近似的に想定する第2の方法(第2の想定方法)は、入力される各入力信号をベクトルとして捉え、ベクトル演算により信号を合成して平均電力を求め、また、合成信号(ベクトル)の瞬時電力が最大になるタイミングの電力を演算により取得する方法である。
【0049】
まず、第2の想定方法における平均電力の求め方について説明する。
図1のマルチキャリア増幅装置において、各キャリア系列の入力ベースバンド信号はピークリミッタ1から出力された後、個別にアップコンバータ3でRF周波数帯にアップコンバートされた後に結合器4で合成されマルチキャリア信号になる。そのため、マルチキャリア信号の平均電力を測定する場合は、本来なら各RF周波数で回転している信号の合成電力の平均を測定する必要がある。しかし、RF信号で合成電力を測定する場合は非常に速いサンプリングが必要になるので高価な信号処理デバイスが必要になってしまう。
そこで、本発明では、各キャリアの入力ベースバンド信号をベクトルとして捉え、一定のタイミングでサンプリングを行ってベクトル合成演算し、合成されたベクトルの電力の平均を求めて、RF帯で合成後の近似的に想定したマルチキャリア信号の平均電力とするようになっている。
【0050】
次に、第2の想定方法における瞬時電力の求め方について説明する。
上記平均電力の求め方で説明したのと同様に、RF信号で瞬時電力を測定する場合は非常に速いサンプリングが必要になるので高価な信号処理デバイスが必要になってしまう。
そこで、本発明では、各キャリアのキャリア信号が同相になるタイミングで、各キャリアのベースバンド信号の電力の総和を求めて、RF帯で合成後の近似的に想定したマルチキャリア信号の瞬時電力とするようになっている。
【0051】
これは、図2に示したように、各々のキャリア信号が各RF周波数で回転する過程で、各キャリア信号を合成したマルチキャリア信号は、複数のキャリア信号が同相に近づくに従い電力値は増大し、位相が一致した場合には、図2(d)に示すように、各キャリア信号の電力が加算されて瞬間的に瞬時電力が多大な値のピークを持つ可能性があり、この時点のマルチキャリア信号の瞬時電力を捉えてリミットをかけるタイミングを検出すればよいからである。このとき、その合成ベクトルの電力は、各キャリア系列の入力信号の個々の電力の和に等しいことになる。
例えばW−CDMA方式の場合、入力信号が3.84[MHz]で、キャリア間隔が5[MHz]なので、必ず複数キャリアのベクトルが同一方向となる瞬間がある。
【0052】
ここで、第2の想定方法における平均電力及び瞬時電力の求め方の概念について、数式を用いて説明する。
第1の想定方法で説明したように、各キャリア周波数が、互いにキャリア周波数差(Δf)を持つのであれば、各入力信号にキャリア周波数差(Δf)分のみのオフセットを与えて合成することで、近似的な合成を行うことができ、瞬時電力、平均電力は[数3]で表すことができた。
[数3]の平均電力において、eの項が同一ベクトルとなり、1+j・0=1となる瞬間だけをサンプリングすると、[数4]の平均電力のようになる。これは、各入力ベースバンド信号について、ベクトル合成演算した合成ベクトルの電力を平均した数式となる。
これはサンプリングを粗くしたことにはなるが、長時間測定すると第1の想定方法の平均電力と等しくなるので、第2の想定方法を用いると、ハード構成が簡単になる。
また、瞬時電力は、[数4]の瞬時電力に示すように、単純に位相が一致したタイミングで、各キャリア系列の入力信号の電力の和を求める数式になっている。
【0053】
【数4】
Figure 0003643795
【0054】
次に、本発明のマルチキャリア増幅装置の動作について図1を使って説明する。
本発明のマルチキャリア増幅装置では、各キャリア系列の入力ベースバンド信号IQ(図1では2つ)が全てピークリミッタ1に入力され、ピークリミッタ1で各入力信号が高周波(RF)帯で合成した場合に近似的に想定されるマルチキャリア信号の瞬時電力対平均電力比が算出され、予め定められたピークファクタ閾値に基づいて各入力ベースバンド信号の振幅のピークが制限されてピーク制限信号a1,a2が出力される。
この時、ピーク制限信号a1,a2は、図9に示した従来のマルチキャリア増幅装置の各ピークリミッタ1′から出力されるピーク制限信号A1,A2とは異なり、RF帯で合成した場合に近似的に想定されるマルチキャリア信号において、瞬時電力対平均電力比ピークファクタ閾値を超える場合だけピークが制限されている信号である。
【0055】
そして、ピーク制限信号a1,a2は、帯域制限フィルタ2で帯域制限されて信号b1,b2となり、更にアップコンバータ3で各RF周波数にアップコンバートされて高周波変調信号(キャリア信号)c1,c2となって出力される。
そして、各キャリア系列のアップコンバータ3の出力信号が結合器4で結合されてマルチキャリア信号dが出力され、増幅器5で増幅されて出力されるようになっている。
【0056】
ここで、結合器4から出力されるマルチキャリア信号dは、図9に示した従来のマルチキャリア増幅装置の結合器4から出力されるマルチキャリア信号Dとは異なり、ピークリミッタ1における処理によってマルチキャリア信号におけるピーク電力値が制限されているだけで、その他の部分にはピークリミッタ1における処理の影響が与えられていない信号である。
【0057】
上記マルチキャリア増幅装置における動作の結果、本発明では、各キャリア系列の入力信号に対してピークリミッタ1によって、高周波帯で合成した場合に近似的に想定されるマルチキャリア信号の瞬時電力対平均電力比を元にして、各入力信号ピーク値が制限されて瞬時電力対平均電力比を小さくする処理を施した信号a1,a2に対して、帯域制限、アップコンバートの後に結合し、結合後のマルチキャリア信号を増幅器5で増幅することになり、結果的に増幅器5に入力されるマルチキャリア信号の瞬時電力対平均電力比が抑えられて、増幅器5おける動作点を上げることができるものである。
【0058】
本発明のピークリミッタによれば、各キャリア系列のベースバンド信号を入力し、各ベースバンド信号を高周波帯で合成した場合に近似的に想定されるマルチキャリア信号の平均電力を平均電力検出部11で求めると共に、瞬時電力検出部12で当該マルチキャリア信号の瞬時電力を求め、ピーク検出部13でこの平均電力と瞬時電力から瞬時電力対平均電力比を求めて予め設定されているピークファクタ閾値との比較によってピークの有無を検出し、ピークがある場合に、リミッタ部14で各ベースバンド信号の振幅を抑圧した各信号を出力するものであるので、増幅対象のマルチキャリア信号に関するピーク発生を捉えて、瞬時電力対平均電力比を小さくするように効果的、且つ効率よく入力信号に対してピークリミットが為され、その結果増幅器入力信号における所望の瞬時電力対平均電力比を精度良く実現できる効果がある。
また、例え、個々の入力信号としては、瞬時電力対平均電力比が増幅器5で所望される瞬時電力対平均電力比を上回っていても、合成されると小さくなるような場合には、当該入力信号に対してピークリミットを施さないので、不要なピーク制限による変調精度劣化を招くことなく、効率よくピーク制限を行うことができる効果がある。
【0059】
そして、本発明の平均電力検出部11及び瞬時電力検出部12において、各ベースバンド信号を高周波帯で合成した場合のマルチキャリア信号を近似的に想定する方法として、本来なら各アップコンバータ3で高周波変調されるRF周波数に変換して合成するところであり、RF信号の電力測定には非常に高速のサンプリングが要求されるところであるが、第1の想定方法を用いると、入力される各入力信号に複素乗算部を用いてキャリア周波数差(Δf)のオフセットを与えてから合成し、合成信号の瞬時電力や平均電力を検出するので、ベースバンド信号の周波数に対するサンプリングで瞬時電力や平均電力を検出することができ、構成をさほど増大することなく、高周波帯で合成した場合のマルチキャリア信号に近似するマルチキャリア信号の瞬時電力や平均電力を検出できる効果がある。
【0060】
また、本発明の平均電力検出部11において、第2の想定方法を用いると、入力される各入力信号をベクトルとして捉え、一定の、例えば、同一ベクトルとなるタイミングでサンプリングを行ってベクトル演算により信号を合成して平均電力を求めるので、近似可能な程度までサンプリングを粗くして効率よく検出処理を行い、且つ演算処理のみで平均電力を求めることによって構成を簡略化でき、ハード規模の縮小し、コストを低減できる効果がある。
【0061】
また、本発明の瞬時電力検出部12において、第2の想定方法を用いると、複数の入力信号のキャリア位相が一致するタイミング、すなわち合成信号(ベクトル)の瞬時電力が最大になるタイミングの電力を演算により取得するので、ピークファクタのポイントとなる瞬時電力を効果的に捉えることができ、且つ演算処理のみで瞬時電力を求めることにより構成を簡略化でき、ハード規模の縮小し、コストを低減できる効果がある。
【0062】
本発明のマルチキャリア増幅装置によれば、複数の入力ベースバンド信号が全てピークリミッタ1に入力され、ピークリミッタ1で各入力信号が高周波(RF)帯で合成した場合に近似的に想定されるマルチキャリア信号の瞬時電力対平均電力比が算出され、予め定められたピークファクタ閾値に基づいて各入力ベースバンド信号のピーク値が制限されて出力され、帯域制限フィルタ2で帯域制限され、更にアップコンバータ3で各RF周波数にアップコンバートされ、結合器4で結合されてマルチキャリア信号が出力され、増幅器5で増幅されて出力されるので、間接的にではあるが、結果的に増幅器5に入力されるマルチキャリア信号のピーク発生を捉えて瞬時電力対平均電力比が抑圧されて、増幅器5の動作点を上げることができ、増幅システムの電力効率を向上させることができる効果がある。
また、従来の技術で問題になっていた、結合器4で結合されるとうち消されてしまうようなケースにおける、個々のキャリア系列におけるピーク制限がなくなるので、必要のないピーク制限による変調精度の劣化を回避することができ、システム全体としての信頼性を向上できる効果がある。
【0063】
【発明の効果】
本発明によれば、マルチキャリア信号を増幅するシステムにおいて用いられるピークリミッタであって、平均電力検出部が、複数のキャリアのベースバンド信号を入力し、各ベースバンド信号を高周波帯で合成した場合に近似的に想定されるマルチキャリア信号の平均電力を求め平均電力情報を出力し、同様に瞬時電力検出部が、近似的に想定されるマルチキャリア信号の瞬時電力を求め瞬時電力情報を出力し、ピーク検出部が瞬時電力と平均電力との比である瞬時電力対平均電力比を元にしてピークの有無を検し、リミッタ部がピーク検出部でピークが検出されると、複数のキャリアのベースバンド信号の振幅を抑圧して各信号を出力し、平均電力検出部が、各キャリアのベースバンド信号のベクトルを用いてベクトル合成演算し、合成されたベクトルの電力の平均を求めるピークリミッタとしているので、各ベースバンド信号を高周波帯で合成した場合に近似的に想定されるマルチキャリア信号のピーク発生を捉え瞬時電力対平均電力比を小さくするように効果的に、且つ効率よく各ベースバンド信号の振幅のピークを抑圧できる効果がある。
【0064】
本発明によれば、マルチキャリア信号を増幅するマルチキャリア増幅装置において、ピークリミッタの平均電力検出部が、複数のキャリアのベースバンド信号を入力し、各ベースバンド信号を高周波帯で合成した場合に近似的に想定されるマルチキャリア信号の平均電力を求め平均電力情報を出力し、瞬時電力検出部が、複数のキャリアのベースバンド信号を入力し、各ベースバンド信号を高周波帯で合成した場合に近似的に想定されるマルチキャリア信号の瞬時電力を求め瞬時電力情報を出力し、ピーク検出部が、平均電力情報と瞬時電力情報を入力し、瞬時電力と平均電力との比である瞬時電力対平均電力比を元にしてピークの有無を検出し、リミタ部が、当該複数のキャリアのベースバンド信号を入力し、ピーク検出部でピークが検出されると、複数のキャリアのベースバンド信号の振幅を抑圧した各信号を出力し、平均電力検出部が、各キャリアのベースバンド信号のベクトルを用いてベクトル合成演算し、合成されたベクトルの電力の平均を求め平均電力とし、帯域制限フィルタがピークリミッタからのピークを抑圧した各キャリアのベースバンド信号に帯域制限を行い、アップコンバータが帯域制限された各信号を高周波帯にアップコンバートし、結合器が各キャリアの信号を結合してマルチキャリア信号を出力し、増幅器がマルチキャリア信号を増幅するマルチキャリア増幅装置としているので、各ベースバンド信号を帯域制限の後、高周波帯に変換してから合成した場合の近似的に想定されるマルチキャリア信号のピーク発生を捉え、瞬時電力対平均電力比を小さくするように効果的に、効率よく各ベースバンド信号の振幅のピークを抑圧して、その結果増幅器入力信号における所望の瞬時電力対平均電力比を精度良く実現でき、増幅システムの電力効率を向上できる効果がある。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るマルチキャリア増幅装置の構成ブロック図である。
【図2】複数のキャリア信号及び合成後のマルチキャリア信号の複素空間表現を示す説明図である。
【図3】本発明のピークリミッタの内部構成ブロック図である。
【図4】本発明の平均電力検出部の構成例を示すブロック図である。
【図5】本発明の瞬時電力検出部の構成例を示すブロック図である。
【図6】増幅器の特性と、各隣接チャネル漏洩電力削減方法の動作特性を説明する説明図である。
【図7】一般的な増幅器のピークファクタの説明図である。
【図8】従来のピークリミッタの構成例を示すブロック図である。
【図9】従来のマルチキャリア増幅装置の概略構成ブロック図である。
【符号の説明】
1,1′…ピークリミッタ、 2…帯域制限フィルタ、 3…アップコンバータ、 4…結合器、 5…増幅器、 11,11′…平均電力検出部、 12,12′…瞬時電力検出部、 13…ピーク検出部、 14、14′…リミッタ部、 21,22,23,31,32,33…複素演算部、 24、34…加算器、 25、35…電力計算部、 26…平均部

Claims (3)

  1. マルチキャリア信号を増幅するシステムにおいて用いられるピークリミッタであって、
    複数のキャリアのベースバンド信号を入力し、前記各ベースバンド信号を高周波帯で合成した場合に近似的に想定されるマルチキャリア信号の平均電力を求め平均電力情報を出力する平均電力検出部と、
    前記複数のキャリアのベースバンド信号を入力し、前記各ベースバンド信号を高周波帯で合成した場合に近似的に想定されるマルチキャリア信号の瞬時電力を求め瞬時電力情報を出力する瞬時電力検出部と、
    前記平均電力情報と前記瞬時電力情報を入力し、瞬時電力と平均電力との比である瞬時電力対平均電力比を元にしてピークの有無を検出するピーク検出部と、
    前記複数のキャリアのベースバンド信号を入力し、前記ピーク検出部でピークが検出されると、前記複数のキャリアのベースバンド信号の振幅を抑圧した各信号を出力するリミッタ部とを有し、
    前記平均電力検出部が、各キャリアのベースバンド信号のベクトルを用いてベクトル合成演算し、前記合成されたベクトルの電力の平均を求め平均電力とする平均電力検出部であることを特徴とするピークリミッタ。
  2. 瞬時電力検出部が、複数のキャリアのキャリア信号が同相になるタイミングで前記複数のキャリアのベースバンド信号の電力の総和を求めて瞬時電力とする瞬時電力検出部であることを特徴とする請求項記載のピークリミッタ。
  3. マルチキャリア信号を増幅するマルチキャリア増幅装置において、
    請求項1又は請求項2記載のピークリミッタと、
    前記ピークリミッタの出力信号であるピークを抑圧した各キャリアのベースバンド信号に帯域制限を行う帯域制限フィルタと、
    前記帯域制限された信号を高周波帯にアップコンバートするアップコンバータと、
    前記高周波帯にアップコンバートされた各キャリアの信号を結合しマルチキャリア信号を出力する結合器と、
    前記マルチキャリア信号を増幅する増幅器とを有することを特徴とするマルチキャリア増幅装置。
JP2001229738A 2001-07-30 2001-07-30 ピークリミッタ及びマルチキャリア増幅装置 Expired - Fee Related JP3643795B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001229738A JP3643795B2 (ja) 2001-07-30 2001-07-30 ピークリミッタ及びマルチキャリア増幅装置
US10/205,563 US6931239B2 (en) 2001-07-30 2002-07-26 Peak limiter and multi-carrier amplification apparatus
EP02017070A EP1282225B1 (en) 2001-07-30 2002-07-29 Peak limiter and multi-carrier amplification apparatus
DE60206451T DE60206451T2 (de) 2001-07-30 2002-07-29 Spitzenwertbegrenzer und Vorrichtung zur Verstärkung eines Mehrträgersignals
CN02127214.XA CN1237748C (zh) 2001-07-30 2002-07-30 峰值限幅器和多载波放大装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001229738A JP3643795B2 (ja) 2001-07-30 2001-07-30 ピークリミッタ及びマルチキャリア増幅装置

Publications (2)

Publication Number Publication Date
JP2003046480A JP2003046480A (ja) 2003-02-14
JP3643795B2 true JP3643795B2 (ja) 2005-04-27

Family

ID=19062042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001229738A Expired - Fee Related JP3643795B2 (ja) 2001-07-30 2001-07-30 ピークリミッタ及びマルチキャリア増幅装置

Country Status (1)

Country Link
JP (1) JP3643795B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050201180A1 (en) * 2004-03-05 2005-09-15 Qualcomm Incorporated System and methods for back-off and clipping control in wireless communication systems
JP2005354378A (ja) 2004-06-10 2005-12-22 Hitachi Kokusai Electric Inc 送信装置
EP2226932B1 (en) * 2009-03-02 2013-10-16 Alcatel Lucent Method for amplifying a signal by a power amplifier, power amplifier system, device, computer program product, and digital storage medium thereof
JP5736999B2 (ja) 2011-06-21 2015-06-17 富士通株式会社 ピーク抑圧装置、ピーク抑圧方法、および無線通信装置
WO2013094106A1 (ja) * 2011-12-19 2013-06-27 日本電気株式会社 送信装置および無線信号送信方法
WO2014141335A1 (ja) * 2013-03-15 2014-09-18 日本電気株式会社 通信装置及びそのピーク抑圧方法

Also Published As

Publication number Publication date
JP2003046480A (ja) 2003-02-14

Similar Documents

Publication Publication Date Title
US6931239B2 (en) Peak limiter and multi-carrier amplification apparatus
US7606322B2 (en) Digital pre-distortion technique using nonlinear filters
JP3805221B2 (ja) 歪み補償装置
US7522672B2 (en) Digital branch calibrator for an RF transmitter
US7415250B2 (en) Distortion compensating amplifier
EP1318600B1 (en) Distortion compensating circuit for compensating distortion occurring in power amplifier
US7873116B2 (en) Transmitter
JP5052366B2 (ja) 高効率フィードフォワード増幅器の制御方法
US7652532B2 (en) Correlation method for monitoring power amplifier
JP3927521B2 (ja) 送信機
JP2019180093A (ja) ワイヤレス通信システムにおける広帯域デジタルプリディストーションのために周波数が広く離間している信号を整合させるための方法
US8085870B2 (en) Transmitter
CN108347226B (zh) 包络跟踪方法、系统及装置
WO2004091094A1 (ja) 歪補償装置
US9337783B2 (en) Distortion compensation apparatus and distortion compensation method
JP3643795B2 (ja) ピークリミッタ及びマルチキャリア増幅装置
JP2008167289A (ja) 送信装置
WO2006082681A1 (ja) スペクトル解析方法、歪検出装置、歪補償増幅装置
JP4302436B2 (ja) 送信装置および受信装置
JP2002044054A (ja) リミッタ回路付きキャリア合成送信回路
JP4101601B2 (ja) 電力増幅器用歪補償装置
JP3714917B2 (ja) ピークリミッタ及びマルチキャリア増幅装置
JP4288458B2 (ja) 振幅制限回路及びcdma通信装置
JP5532968B2 (ja) 信号処理回路とこの回路を有する通信装置
EP1318612A2 (en) Nonlinear compensating circuit, base-station apparatus, and transmission power clipping method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3643795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees