JP3642168B2 - スペクトル拡散通信システムおよびスペクトル拡散通信方法 - Google Patents
スペクトル拡散通信システムおよびスペクトル拡散通信方法 Download PDFInfo
- Publication number
- JP3642168B2 JP3642168B2 JP34976197A JP34976197A JP3642168B2 JP 3642168 B2 JP3642168 B2 JP 3642168B2 JP 34976197 A JP34976197 A JP 34976197A JP 34976197 A JP34976197 A JP 34976197A JP 3642168 B2 JP3642168 B2 JP 3642168B2
- Authority
- JP
- Japan
- Prior art keywords
- data
- encoded
- spread spectrum
- encoded data
- spectrum communication
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Transmitters (AREA)
- Circuits Of Receivers In General (AREA)
Description
【発明の属する技術分野】
本発明は、符号化された通信データによって変調された搬送波を受信し、受信した搬送波を変調して通信データを復号するスペクトル拡散通信システムおよびスペクトル拡散通信方法に関するものである。
【0002】
【従来の技術】
従来のスペクトル拡散通信システムに用いられている送信機および受信機の例を、それぞれ、図6および図7に示してある。図6に示すように、スペクトル拡散通信システムに用いられる送信機70は、符号化された通信データを出力する通信データ生成装置71と、この通信データによって搬送波を変調して送信する出力装置72とを有している。
【0003】
通信データ生成装置71は、入力端子11を備えており、この入力端子11には、送信するデジタルデータとして+1と−1の2つのレベルを取る2値信号が入力される。この2値信号はシンボルレートで変化する信号である。入力端子11に入力された送信データ(2値信号)は、乗算器73において拡散符号発生器74の出力と乗算されて符号化処理が施され、その後、出力装置72に供給される。拡散符号発生器74の出力は+1と−1の2つのレベルを取る疑似ランダム系列である。このようにして、通信データ生成装置71から符号化された通信データが出力装置72に出力される。一方、出力装置72は、搬送波を出力する局部発振器25と、供給された通信データによって搬送波を変調する変調器24とを備えており、変調器24の出力は周波数変換部26において空間を伝搬する周波数に変換され、その後、増幅器27において増幅される。増幅された後は、アンテナ28より送信される。
【0004】
一方、図7に示すように、スペクトル拡散通信システムの受信機80は、受信した信号を復調して通信内容を示す符号化が施された通信データに変換する入力装置81と、この符号化が施された通信データを復調する受信データ生成装置82とを有している。
【0005】
入力装置81は、アンテナ31を備えており、このアンテナ31に入力された受信信号は増幅器32で増幅された後、周波数変換部33において中間周波数に変換される。この中間周波数信号は局部発振器35の出力する搬送波と共にミキサ34に入力されて、ここで、ベースバンド信号に変換され、受信データ生成装置82に供給される。
【0006】
受信データ生成装置82は、乗算器43を備えており、入力装置81から供給された信号が乗算器43において送信側と同一の疑似ランダム系列と乗算される。この疑似ランダム系列を送信側と同一の位相にするために、乗算器43の出力は積分器45に入力された送信データの1シンボル継続時間の積分操作の後、同期回路46によって積分出力の振幅が最大となるように拡散符号発生器44の位相が制御される。積分器45の出力はさらに識別器47に入力された信号振幅の正負が判定された後、出力端子42に出力される。
【0007】
このようなスペクトル拡散通信システムにおいて情報伝送速度を上げるために、送信機70の入力端子11に供給される送信データのシンボルレートを上げると拡散比が確保できなくなる。一方、スペクトル拡散通信システムでは、互いに直交する複数の拡散信号を用いて情報を多重化して送信することにより、1度に送信できる情報量を増やすことができる。従って、情報を多重化して送信すれば情報伝送速度を実質的に高めることができる。このようなスペクトル拡散通信システムは特開平7−145365号公報等に開示されており、この多重化したスペクトル拡散通信システムの送信機および受信機の例を、それぞれ、図8および図9に示してある。
【0008】
図8に示す送信機75の通信データ生成装置71は、入力端子11から入力された送信データ(シリアルデータ)をパラレルデータに変換する直列−並列変換回路14を備えている。この直列−並列変換回路14で分離された各々のパラレルデータは、対応する乗算器18、19および20において拡散符号が乗算される。ここで、それぞれの拡散符号発生器15、16および17は互いに直交する拡散符号を出力するようになっており、拡散符号が乗算されたデータは加算器21において加算されて情報が多重化される。加算器21の出力は、前述したように、出力装置72の変調器24において局部発振器25からの搬送波を変調する。変調器24からの出力は、周波数変換部26において周波数変換された後、増幅器27において増幅され、アンテナ28より送信される。
【0009】
図9に示す受信機85は、前述した受信機80の入力装置81と同様の入力装置81を有しており、この入力装置81によって生成されたベースバンド信号は、3つのパラレルデータに分岐して受信データ生成装置82のパラレルデータ生成装置38、39および40に供給される。パラレルデータ生成装置38、39および40に供給されたパラレルデータは、その各々に送信側と同一でかつ位相も一致している拡散符号が乗算され、その後、並列−直列変換回路41においてシリアルデータに変換されて出力端子42より出力される。なお、このような受信機85の情報伝送速度は多重数に比例して増加する。
【0010】
ここで、局部発振器25の出力する搬送波周波数をωとし、また、変調方式をBPSK(Binary Phase Shift Keying)とする。このようにすると、乗算器18、19およぼ20の出力を加算器21で加算した出力Vaddは下式(1)で表される。
【0011】
【数1】
【0012】
従って、変調器24の出力Vは下式(2)で表される。
【0013】
【数2】
【0014】
このように、通信データの振幅は4つのレベルを取る。例えば、通信データの振幅が−3となるのは乗算器の出力が全て−1である場合のみである。これに対し、通信データの振幅が−1となるのは乗算器の出力のいずれか1つが+1、残りの2つの出力が−1となる場合であり、このような場合は3通りある。なお、それぞれの振幅の値が出現する確率は二項分布にしたがう。
【0015】
【発明が解決しようとする課題】
上述した多重化したスペクトル拡散通信システムでは、情報の多重数が増加すると、振幅の小さい通信データが出現する確率が高くなる。一方、情報の多重数の増加は、振幅のピーク値を大きくさせると共に、ピーク電力と平均電力との比を増大させる。このようにピーク電力と平均電力の比が大きくなると、送信機の出力装置に用意されている増幅器(RF増幅器)の1dB利得圧縮点と動作入力レベルとの比、すなわち、バックオフが小さい場合には、通信データが歪み、隣接チャネル漏洩電力が増大してしまう。
【0016】
そこで、同じ増幅器を使用しながら、バックオフを大きく確保することが考えられるが、バックオフを大きくしたのでは、増幅器の効率が低下する。したがって、所要送信出力を得るためには消費電力の大きな増幅器を用いなければならない。小さなバックオフでも歪特性を劣化させないためには入力信号の強度に応じて増幅器の動作バイアス点を変化させる外部制御回路を用いればよいが、このような増幅器は制御が複雑で高価であり、送信機のコストを高騰させる原因となるので好ましくない。
【0017】
そこで、本発明においては、高速な情報伝送速度を持ちつつ、ピーク電力と平均電力との比を小さくすることが可能なスペクトル拡散送信装置および受信装置を備えた通信システムおよび通信方法を提供することを目的としている。
【0018】
【課題を解決するための手段】
このため、本発明のスペクトル拡散通信システムおよびスペクトル拡散通信方法においては、パラレルデータにそれぞれ直交化した拡散符号を乗算してベースバンド帯にて加算することにより第1の符号化データを生成した後さらに、この第1の符号化データの少なくとも一部の値を変化させて、平均値とピーク値との差が低減された第2の符号化データを生成するようにしている。
【0019】
すなわち、本発明のスペクトル拡散通信システム用の送信機では、符号化された通信データによって搬送波を変調した後に増幅して送信する出力装置とを有するスペクトル拡散通信システム用の送信装置において、通信データ生成装置は、入力されるシリアルデータを複数のパラレルデータに変換し、各々のパラレルーデータと直交化された拡散符号とを乗算して加算することにより第1の符号化データを生成する第1の符号化装置と、この第1の符号化データの少なくとも一部の値を変化させて、平均値とピーク値との差が低減された第2の符号化データを生成する第2の符号化装置とを備えていることを特徴としている。
【0020】
また、本発明のスペクトル拡散通信システム用の受信装置は、受信した信号を増幅した後に復調して通信内容を示す第2の符号化データを含む通信データを取得する入力装置と、通信データを復号する受信データ生成装置とを有している。第2の符号化データは第1の符号化データを平均値とピーク値との差が低減されるように変換されたものである。受信データ生成装置は、第2の符号化データを第1の符号化データに逆変換する第1の復号装置と、この第1の符号化データに直交化された拡散符号を乗算して複数のパラレルデータを生成し、これら複数のパラレルデータをシリアルデータに変換して出力する第2の復号装置とを備えていることを特徴としている。
【0021】
このような送信装置および受信装置を用いた本発明のスペクトル拡散通信システムでは、符号化された通信データによって変調された後に増幅された搬送波を送信し、受信して増幅された後の搬送波が復調された通信データを復号するスペクトル拡散通信システムにおいて、通信データは、入力されるシリアルデータを複数のパラレルデータに変換し、各々のパラレルデータと直交化された拡散符号とを乗算して加算することにより第1の符号化データに変換する第1の符号化処理と、この第1の符号化データの少なくとも一部の値を異なる値に変換させて、平均値とピーク値との差が低減された第2の符号化データを生成する第2の符号化処理とが施されていることを特徴としている。
【0022】
また、本発明のスペクトル拡散通信方法では、符号化された通信データによって変調された後に増幅された搬送波を送信する送信工程と、受信して増幅された後の搬送波が復調された通信データを復号する受信工程とを有するスペクトル拡散通信方法において、送信工程は、入力されるシリアルデータを複数のパラレルデータに変換し、各々のパラレルデータと直交化された拡散符号とを乗算して加算することにより第1の符号化データに変換する第1の符号化工程と、この第1の符号化データの少なくとも一部の値と異なる値に変化させて、平均値とピーク値との差を低減した第2の符号化データを生成する第2の符号化工程とを備えている。また、受信工程は、第2の符号化データを第1の符号化データに逆変換する第1の復号工程と、第1の符号化データに直交化された拡散符号を乗算して複数のパラレルデータを生成し、これら複数のパラレルデータをシリアルデータに変換する第2の復号工程とを備えていることを特徴としている。
【0023】
このような本発明のスペクトル拡散通信システムおよびスペクトル拡散通信方法では、情報を多重化することによって第1の符号化データのピーク値と平均値との比が増大するが、第2の符号化処理によってピーク値と平均値との差が低減された第2の符号化データに変換される。第2の符号化データで変調された出力の電力は第2の符号化データの値の2乗に比例する。従って、送信時および受信時に増幅を施す信号のピーク電力と平均電力との比が低減される。このため、バックオフの小さな増幅器(RF増幅器)を用いても、通信データの歪みや隣接チャネル漏洩電力の増大を防止できる。また、送信時および受信時にバックオフの小さな増幅器を使用できるので、増幅器の効率が低下することもなく、また、増幅器における消費電力が増大することもない。さらに、制御が複雑で高価な増幅器を使用する必要がないので、スペクトル拡散通信システムを低コストで構築できる。
【0024】
第2の符号化装置あるいは第2の符号化処理において、第1の符号化データに一様の基準値を加算あるいは減算することにより、ピーク値と平均値との差が低減された第2の符号化データに変換可能である。このような変換方法では、送信側で通信データに第2の符号化処理が施されているにも係わらず、受信側では、第2の符号化データに直交化された拡散符号を乗算して複数のパラレルデータを生成し、これら複数のパラレルデータをシリアルデータに変換する従来と同様の第3の復号工程を実行することができる。
【0025】
また、第1の符号化データを置き換える等の方法により、変調後の出力が平衡変調されるように第2の符号化データを生成することができる。このような第2の符号化データを採用すると、送受信される信号が平衡になるので、搬送波抑圧度が劣化するのを防止できる。従って、変調歪み等の少ない品質の高い信号を送信することができ、また、品質の高い通信データを復調することができる。
【0026】
ここで、送信装置として、2組の通信データ生成装置とを有し、出力装置において2組の通信データ生成装置のそれぞれの通信データによって搬送波を直交変調するようにした装置を採用することが可能である。このような装置を用いれば、情報をより多くかつ簡単に多重化することができ、情報伝送速度を容易に高めることができる。
【0027】
【発明の実施の形態】
[第1の実施の形態]
以下に図面を参照しながら本発明を適用したスペクトル拡散通信システムを説明する。図1および図2には、それぞれ、本例のスペクトル拡散通信システムの送信装置および受信装置の概略構成をブロック図を用いて示してある。本例の送信装置2は、±1の2つのレベルを取る2値信号がシンボルレートで変化する送信データ(シリアルデータ)φ1が入力される装置であり、このシリアルデータφ1を符号化して通信データφ2として出力する通信データ生成装置3と、この通信データφ2によって搬送波を変調して送信する出力装置4とを有している。
【0028】
通信データ生成装置3は、シリアルデータφ1が入力される入力端子11と、入力端子11に入力されたシリアルデータφ1を複数のパラレルデータφ5に変換し、各々のパラレルデータφ5と直交化された拡散符号とを乗算して加算することにより第1の符号化データφ3を生成する第1の符号化装置12と、この第1の符号化データφ3の少なくとも一部の値を変化させて、平均値とピーク値との差が低減された第2の符号化データφ4を生成する第2の符号化装置としての加算値変換回路13とを有している。
【0029】
第1の符号化装置12は、入力端子11に入力されたシリアルデータφ1を3つのパラレルデータφ5に変換する直列−並列変換回路14と、この直列−並列変換回路14の並列数に等しい数だけ互いに直交化された拡散符号を発生する拡散符号発生器15、16および17と、各々のパラレルデータφ5と各々の拡散符号発生器15、16および17の出力する拡散符号とを乗算する乗算器18、19および20と、これらの乗算器18、19および20によって乗算された信号を加算する加算器21とを備えている。加算値変換回路13は、入力された第1の符号化データφ3を、ピーク電力と平均電力との比が小さい第2の符号化データφ4に変換して出力できるようになっている。また、加算値変換回路13は、出力装置4における変調が均質になるように(平衡変調されるように)第1の符号化データφ3を変換可能である。
【0030】
出力装置4は、通信データ生成装置3からの通信データφ2(第2の符号化データφ4)によって搬送波を変調する変調器24と、搬送波を出力する局部発振器25と、変調器24において変調された通信データφ2の周波数を変換する周波数変換部26と、周波数変換部26から出力された通信データφ2を増幅する増幅器27と、増幅器27において増幅された通信データφ2を送信するアンテナ28とを備えている。
【0031】
一方、図2に示すように、本例のスペクトル拡散通信システムの受信装置5は、受信した信号を復調して通信内容を示す第2の符号化データφ4を含む通信データφ2を取得する入力装置6と、入力装置6で取得した通信データφ2を復号する受信データ生成装置7とを有している。
【0032】
入力装置6は、通信データφ2によって変調された搬送波を受信するアンテナ31と、アンテナ31で受信した信号を増幅する増幅器32と、増幅器32で増幅された信号を中間周波数信号に変換する周波数変換部33と、中間周波数信号をベースバンド信号に変換するミキサ34および局部発振器35とを備えている。
【0033】
受信データ生成装置7は、第2の符号化データφ4を第1の符号化データφ3に逆変換する第1の復号装置としての加算値逆変換回路36と、この第1の符号化データφ3に直交化された拡散符号を乗算して複数のパラレルデータφ5を生成し、これらの複数のパラレルデータφ5をシリアルデータφ1に変換して出力する第2の復号装置37とを備えている。第2の復号装置37は、3つのパラレルデータφ5を生成するための3組のパラレルデータ生成装置38、39および40と、これらのパラレルデータ生成装置38、39および40によって生成されたパラレルデータφ5をシリアルデータφ1に変換する並列−直列変換回路41と、シリアルデータφ1を出力するための出力端子42とを備えている。各パラレルデータ生成装置38、39および40は、従来の受信装置85のパラレルデータ生成装置と同様に、それぞれ、乗算器43、拡散符号発生器44、積分器45、同期回路46および識別器47を備えている。
【0034】
本例の送信装置2および受信装置5を用いてスペクトル拡散通信システムにおける送信方法を図3および図4にフローチャートで示してある。図3は送信装置2における処理である。まず、ステップST1において、入力端子11にシリアルデータφ1が入力されると、ステップST2で直列−並列変換回路14において3つのパラレルデータφ5に分割され、それぞれのパラレルデータφ5は対応する乗算器18、19および20において直交化された拡散符号が乗算される。各拡散符号発生器15、16および17からは互いに直交化された拡散符号が出力され、情報を多重化できるようになっている。各乗算器18、19および20において拡散符号が乗算されたパラレルデータφ5は加算器21において全加算されて第1の符号化データφ3とされる。
【0035】
この第1の符号化データφ3は加算値変換回路13において第2の符号化処理が施される。すなわち、ステップST3において、第1の符号化データφ3は、ピーク電力と平均電力との比が小さく、かつ、変調器24における変調が平衡となるように第2の符号化データφ4に変換される。この第2の符号化処理は、例えば、次のように行われる。図1に示す送信機における情報の多重数は3であるが、本発明の効果をより分かりやすくするために、例えば、この多重数を7とすると、加算値変換回路13に入力される第1の符号化データφ3は、上述した式(2)から、(−7、−5、−3、−1、+1、+3、+5、+7)の8通りの振幅レベルを取ることになる。加算値変換回路13においては、このような第1の符号化データφ3に対して(+6、+2、−2、−6、+6、+2、−2、−6)のデータを加算して(−1、−3、−5、−7、+7、+5、+3、+1)という第2の符号化データφ4に変換する。変換前の第1の符号化データφ3のそれぞれの値が出現する確率は二項分布にしたがい、その絶対値の平均値は2.1875となる。従って、第1の符号化データφ3で変調した出力信号のピーク電力と平均電力との比は(7/2.1875)2 =10.2となり、デジベル単位に換算すると、10.1dBとなる。これに対し、変換後の第2の符号化データφ4のそれぞれの値が出現する確率は、第1の符号化データφ3と同様に、二項分布にしたがい、その絶対値の平均値は5.8125となる。従って、第2の符号化データφ4で変調した出力信号のピーク電力と平均電力との比は(7/5.8125)2 =1.44となり、デジベル単位に換算すると、1.6dBとなる。このように加算値変換回路13で第1の符号化データφ3を符号化して第2の符号化データφ4に変換することにより、送受信される信号のピーク電力と平均電力との比が低減されるように搬送波を変調できる通信データφ2を生成できる。
【0036】
次に、ステップST4において、第2の符号化データφ4によって局部発振器25から出力された搬送波を変調器24において変調する。変調器24における変調方式は周知の変調方式を採用できる。例えば、BPSK方式を採用できる。本例では、加算値変換回路13において変換された第2の符号化データφ4は変調器24における変調が平衡変調されるように行われ、歪み等の少ない品質の高い信号が得られる。
【0037】
最後に、変調器24の出力信号は、周波数変換部26、増幅器27で適当な処理が施された後に、アンテナ28から送信される。
【0038】
図4は受信装置5における処理である。受信装置5においては、まず、ステップST11で、アンテナ31で第2の符号化データφ4によって変調された搬送波を受信すると、その搬送波は増幅器32で増幅され、周波数変換部33で中間周波数信号に変換される。次に、ステップST12で、中間周波数信号はミキサ34において復調された第2の符号化データφ4に変換され、受信データ生成装置7に出力される。次に、ステップST13で、受信データ生成装置7の加算値逆変換回路36において、第2の符号化データφ4が第1の符号化データφ3に逆変換される。次に、ステップST14において、第1の符号化データφ3は第2の復号処理が施される。すなわち、第1の符号化データφ3は分岐して、各パラレルデータ生成装置38、39および40においてパラレルデータφ6に変換された後、並列−直列変換回路41でシリアルデータφ1に変換される。なお、復号時には通信データφ2に先立ってヘッダー等を用いて同期を取ることが可能である。
【0039】
このように本例の送信装置2および受信装置5を備えたスペクトル拡散通信システムでは、情報を多重化することによりピーク値と平均値との比が増大した第1の符号化データφ3が加算値変換回路13に供給されると、そこにおいてピーク値と平均値との差が低減された第2の符号化データφ4に変換される。このため、第2の符号化データφ4で変調された出力信号のピーク電力と平均電力との比は、第1の符号化データφ3で変調された出力信号のピーク電力と平均電力との比より小さくなる。すなわち、送信時および受信時に増幅を施す信号のピーク電力と平均電力との比が低減される。従って、バックオフの小さな増幅器(RF増幅器)を用いても、通信データの歪みや隣接チャネル漏洩電力の増大を防止できる。また、送信時および受信時にバックオフの小さな増幅器27、32を使用できるので、増幅器の効率が低下することもなく、また、増幅器における消費電力が増大することもない。さらに、制御が複雑で高価な増幅器を使用する必要がない。従って、低コストで、データ品質に優れた信頼性の高いスペクトル拡散通信システムを構築できる。
【0040】
また、加算値変換回路13では、変調器24によって変調された後の出力が均質となるように(平衡変調されるように)第1の符号化データφ3を第2の符号化データφ4に変換するようにしている。このような第2の符号化データを採用すると、送受信される信号が平衡になるので、搬送波抑圧度が劣化するのを防止できる。従って、変調歪み等の少ない品質の高い信号を送信することができ、また、品質の高い通信データを復調することができる。
【0041】
[第2の実施の形態]
ここで、上述した送信装置2において、加算値変換回路13における第2の符号化処理では、第1の符号化データφ3に一様でないデータを加算することにより、ピーク値と平均値との差が低減された第2の符号化データφ4に変換するようにしている。これに対し、予め定められた一定値のデータを第1の符号化データφ3に加算して第2の符号化データφ4に変換してピーク値と平均値との差を低減することも可能である。例えば、本例においても説明しやすくするために、多重数を7とすると、(−7、−5、−3、−1、+1、+3、+5、+7)の8通りの振幅レベルを取る第1の符号化データφ3が加算値変換回路13に入力される。このような第1の符号化データφ3に対して一律に”8”というデータを基準値として加算して(+1、+3、+5、+7、+9、+11、+13、+15)という第2の符号化データφ4に変換できる。このようにすると、第2の符号化データφ4のそれぞれの値が出現する確率は、二項分布にしたがい、その絶対値の平均値は8.0となる。従って、第2の符号化データφ4で変調した出力信号のピーク電力と平均電力との比は(15/8.0)2 =1.875となり、デジベル単位に換算すると、2.73dBとなる。これに対し、変調前の第1の符号化データφ3で変調した出力信号のピーク電力と平均電力との比は、前述したように、(7/2.1875)2 =10.2(10.1dB)となる。従って、均一な基準値を加算あるいは減算することによっても、変調された出力のピーク電力と平均電力の比を低減できる第2の符号化データφ4を生成できる。このため、バックオフの小さな増幅器を使用しながらも、通信データの歪みや隣接チャネル漏洩電力の増大が発生しない多重化したスペクトル拡散通信システムを実現でき、このようなシステムを、低コストで、データ品質に優れた信頼性の高いものにできる。これに加えて、本例の変換方法を採用すると、加算値変換回路13において一様に加算された値”8”に対して、受信装置5において拡散符号が乗算され、1シンボル継続時間の積分操作を受けると”0”になるため、従来の受信機をそのままの構成で使用できるという利点がある。すなわち、受信側では、第2の符号化データφ4に直交化された拡散符号を乗算して複数のパラレルデータφ5を生成し、これら複数のパラレルデータφ5をシリアルデータφ1に変換する工程(第3の復号工程)を実施すれば良い。但し、このような第2の符号化データφ4を用いると、変調器24における変調が平衡とならないために、搬送波抑圧度が劣化する。従って、受信する際の通信データφ2(第2の符号化データφ4)の品質が劣化しやすくなるので、変調歪み等が少ない変調装置を用いることが望ましい。
【0042】
[第3の実施の形態]
図5に本発明の送信装置の異なって例を示してある。図5に示す送信装置2aは、2組の通信データ生成装置3aおよび3bを有し、出力装置4は、2組の通信データ生成装置3aおよび3bのそれぞれの通信データによって搬送波を直交変調する直交変調器24aを備えている。それぞれの通信データ生成装置3a、3bおよび出力装置4の構成は上述した例をほぼ同様であるので同一符号を付して説明は省略する。
【0043】
送信装置2aは、入力端子11に入力されたシリアルデータφ1を2つのパラレルデータIおよびQに分離する直列−変換回路14aを備えている。このような送信装置2aにおいて、入力端子から入力されたシリアルデータφ1は、直列−並列変換回路14aによって2つのパラレルデータIおよびQに分離され、その各々が2組の通信データ生成装置3aおよび3bに入力される。それぞれの通信データ生成装置3aおよび3bでは、前述した通信データ生成装置3と同様に、通信データ生成装置3aおよび3bに入力されたデータを3つのパラレルデータに分離した後、その各々に直交化された拡散符号を乗算し、それらをベースバンド帯にて加算して第1の符号化処理を施す。さらに、この第1の符号化処理が施された第1の符号化データを、ピーク値と平均値との差が低減された第2の符号化データに変換して出力する。そして、出力装置4では、2組の通信データ生成装置3aおよび3bからのそれぞれの第2の符号化データによって局部発振器25の出力する搬送波を直交変調器24aにおいて直交変調する。従って、この送信装置2aは、変調するときに再び多重化することによって前述した送信装置2の2倍のデータを送信可能であり、この結果、伝送速度も2倍となる。また、このようにして送信された通信データφ2を受信する受信装置においては、直交変調器24aを用いて変調した後に多重化されたデータを分離することができ、それぞれの分離されたデータに対し上記と同様の復調処理を行うことにより送信されたデータを再生することができる。
【0044】
【発明の効果】
以上説明したように、本発明のスペクトル拡散通信システムおよびスペクトル拡散通信方法においては、パラレルデータにそれぞれ直交化した拡散符号を乗算してベースバンド帯にて加算することにより第1の符号化データを生成した後さらに、第1の符号化データの少なくとも一部の値を異なる値に変化させて、平均値とピーク値との差が低減された第2の符号化データを生成するようにしている。従って、送信時および受信時に増幅を施す信号のピーク電力と平均電力との比を低減でき、バックオフの小さな増幅器(RF増幅器)を用いても、通信データの歪みや隣接チャネル漏洩電力の増大を防止できる。また、送信時および受信時にバックオフの小さな増幅器を使用できるので、増幅器の効率が低下することもなく、また、増幅器における消費電力が増大することもない。さらに、制御が複雑で高価な増幅器を使用する必要がないので、データ品質に優れた信頼性の高い低コストなスペクトル拡散通信システムを構築できる。
【図面の簡単な説明】
【図1】本発明を適用したスペクトル拡散通信システムの送信装置の概略構成を示すブロック図である。
【図2】本発明を適用したスペクトル拡散通信システムの受信装置の概略構成を示すブロック図である。
【図3】図1に示す送信装置のおけるデータ処理のフローチャートである。
【図4】図2に示す受信装置におけるデータ処理のフローチャートである。
【図5】図1とは異なる例の送信装置の概略構成を示すブロック図である。
【図6】従来のスペクトル拡散通信システムの送信機の概略構成を示すブロック図である。
【図7】従来のスペクトル拡散通信システムの受信機の概略構成を示すブロック図である。
【図8】多重化したスペクトル拡散通信システムの送信機の概略構成を示すブロック図である。
【図9】多重化したスペクトル拡散通信システムの受信機の概略構成を示すブロック図である。
【符号の説明】
2、2a・・スペクトル拡散通信システムの送信装置
3、3a、3b・・通信データ生成装置
4・・出力装置
5・・スペクトル拡散通信システムの受信装置
6・・入力装置
7・・受信データ生成装置
12・・第1の符号化装置
13・・加算値変換回路
14、14a・・直列−変換回路
15、16、17・・拡散符号発生器
18、19、20・・乗算器
21・・加算器
24・・変調器
24a・・直交変調器
25・・局部発振器
36・・加算値逆変換回路
37・・第2の復号装置
38、39、40・・パラレルデータ生成装置
41・・並列−直列変換回路
Claims (4)
- 符号化された通信データを出力する通信データ生成装置と、この通信データによって搬送波を変調した後に増幅して送信する出力装置とを有するスペクトル拡散通信システム用の送信装置において、
前記通信データ生成装置は、入力されるシリアルデータを複数のパラレルデータに変換し、各々のパラレルデータと直交化された拡散符号とを乗算して加算することにより第1の符号化データを生成する第1の符号化装置と、
前記第1の符号化データに所定の基準値を加算または減算して、平均値とピーク値との差が低減された第2の符号化データを生成する第2の符号化装置と、を備えていることを特徴とするスペクトル拡散通信システム用の送信装置。 - 請求項1に記載の送信装置と、
受信して増幅した後の信号を復調した第2の符号化データと、直交化された拡散符号とを乗算して複数のパラレルデータを生成し、これらの複数のパラレルデータをシリアルデータに変換して出力する受信装置とを有することを特徴とするスペクトル拡散通信システム。 - 符号化された通信データによって変調された後に増幅された搬送波を送信し、受信して増幅された後の搬送波が復調された通信データを復号するスペクトル拡散通信システムにおいて、
前記通信データは、入力されるシリアルデータを複数のパラレルデータに変換し、各々のパラレルデータと直交化された拡散符号とを乗算して加算することにより第1の符号化データに変換する第1の符号化処理と、
前記第1の符号化データに所定の基準値を加算または減算することにより、平均値とピーク値との差が低減された第2の符号化データを生成する第2の符号化処理とが施されていることを特徴とするスペクトル拡散通信システム。 - 符号化された通信データによって変調された後に増幅された搬送波を送信する送信工程と、受信して増幅された後の搬送波が復調された通信データを復号する受信工程とを有するスペクトル拡散通信方法において、
前記送信工程は、入力されるシリアルデータを複数のパラレルデータに変換し、各々のパラレルデータと直交化された拡散符号とを乗算して加算することにより第1の符号化データに変換する第1の符号化工程と、
この第1の符号化データに所定の基準値を加算または減算することにより第2の符号化データを生成する第2の符号化工程とを備えており、
前記受信工程は、第2の符号化データに直交化された拡散符号を乗算して複数のパラレルデータを生成し、これら複数のパラレルデータをシリアルデータに変換する第3の復号工程を備えていることを特徴とするスペクトル拡散通信方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34976197A JP3642168B2 (ja) | 1997-12-18 | 1997-12-18 | スペクトル拡散通信システムおよびスペクトル拡散通信方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34976197A JP3642168B2 (ja) | 1997-12-18 | 1997-12-18 | スペクトル拡散通信システムおよびスペクトル拡散通信方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11186938A JPH11186938A (ja) | 1999-07-09 |
JP3642168B2 true JP3642168B2 (ja) | 2005-04-27 |
Family
ID=18405935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34976197A Expired - Fee Related JP3642168B2 (ja) | 1997-12-18 | 1997-12-18 | スペクトル拡散通信システムおよびスペクトル拡散通信方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3642168B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5794136B2 (ja) * | 2011-12-20 | 2015-10-14 | アイコム株式会社 | 通信機および通信方法 |
-
1997
- 1997-12-18 JP JP34976197A patent/JP3642168B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11186938A (ja) | 1999-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5757766A (en) | Transmitter and receiver for orthogonal frequency division multiplexing signal | |
JP2718398B2 (ja) | Cdma基地局送信装置 | |
JP4771646B2 (ja) | ゴレイ相補系列変調によるスペクトラム拡散ディジタル通信方法、送信機および受信機 | |
US7145863B2 (en) | Mobile station, base station, communication system, and communication method | |
EP0836303A2 (en) | Reduction of peak to average power ratio in MCM systems | |
US6324171B1 (en) | Multicarrier CDMA base station system and multi-code wave forming method therof | |
US8804869B2 (en) | OFDM PAPR reduction using cancelation vectors | |
US6781980B1 (en) | CDMA transmitter and method generating combined high-rate and low-rate CDMA signals | |
KR100354337B1 (ko) | 대역 확산 통신 방식에서의 확산 변조 방식을 이용한송수신방식 및 송수신장치 | |
US20100054357A1 (en) | Radio communication system | |
JP2010041706A (ja) | 光直交周波数分割多重信号の位相変調方法及び装置 | |
JP2734955B2 (ja) | 無線データ通信装置 | |
JP4463458B2 (ja) | 信号発生器およびデコーダ | |
CN114422038B (zh) | 一种基于副载波ofdm的光子太赫兹无线通讯方法及系统 | |
US6320842B1 (en) | Spread spectrum communication apparatus | |
US20090028219A1 (en) | Coherent and non-coherent hybrid direct sequence/frequency hopping spread spectrum systems with high power and bandwidth efficiency and methods thereof | |
JP3642168B2 (ja) | スペクトル拡散通信システムおよびスペクトル拡散通信方法 | |
JP2780688B2 (ja) | 位相変調多重化送信装置 | |
EP0903871A2 (en) | Spread spectrum signal generating device and method | |
JPH1084329A (ja) | Ofdm変調信号の伝送方法およびofdm送信装置、受信装置 | |
JP3632412B2 (ja) | スペクトル拡散通信システムおよびスペクトル拡散通信方法 | |
JPH09102758A (ja) | 符号多重化通信装置 | |
JP3376580B2 (ja) | 光伝送装置及びその光送信装置 | |
KR970008671B1 (ko) | 파일럿트 채널을 이용한 대역확산 통신시스템의 데이타 송수신기 | |
JP2000078103A (ja) | 通信システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040716 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040824 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041008 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050118 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080204 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090204 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090204 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100204 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110204 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110204 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120204 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130204 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130204 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |