JP3633195B2 - Ion exchange resin performance evaluation method and water treatment system management method - Google Patents

Ion exchange resin performance evaluation method and water treatment system management method Download PDF

Info

Publication number
JP3633195B2
JP3633195B2 JP9000297A JP9000297A JP3633195B2 JP 3633195 B2 JP3633195 B2 JP 3633195B2 JP 9000297 A JP9000297 A JP 9000297A JP 9000297 A JP9000297 A JP 9000297A JP 3633195 B2 JP3633195 B2 JP 3633195B2
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
absorption
anion exchange
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9000297A
Other languages
Japanese (ja)
Other versions
JPH10267838A (en
Inventor
祐輔 永田
大二郎 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP9000297A priority Critical patent/JP3633195B2/en
Publication of JPH10267838A publication Critical patent/JPH10267838A/en
Application granted granted Critical
Publication of JP3633195B2 publication Critical patent/JP3633195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、各種水処理装置で使用されているイオン交換樹脂の性能評価方法、および、該方法を利用した水処理系の管理方法に関し、特に、火力発電所や原子力発電所において用いられている復水脱塩装置や一般純水製造装置(脱塩装置)等の各種水処理装置で使用されているイオン交換樹脂の性能評価方法、および、該方法を利用してイオン交換樹脂の交換時期を判断・決定する水処理系の管理方法に関するものである。
【0002】
【従来の技術】
火力発電所や原子力発電所では、発電タービンを駆動させた後の蒸気を冷却して復水とし、この復水を加熱して再び蒸気として発電タービンの駆動に利用し発電するサイクルを繰り返している。このため、復水は、ボイラー、蒸気発生機、原子炉等の腐食防止や作業員の被曝の原因となる放射能(特に、不純物としての鉄分等を介して蓄積される)低減の観点から高度に浄化する必要があり、混床式復水脱塩装置、粉末イオン交換樹脂フィルター、中空糸フィルター等の各種復水浄化装置が単独或いは組み合わせて採用されている。
【0003】
上記混床式復水脱塩装置は、通常、複数の復水脱塩塔(以下、「脱塩塔」と略す)からなる通水系統と、脱塩塔にて使用したイオン交換樹脂を再生する再生系統とからなる。脱塩塔内には、一般に、H形又はNH 形の強酸性陽イオン交換樹脂とOH形の強塩基性陰イオン交換樹脂が充填されている。
【0004】
このような復水脱塩装置において下記のように復水の処理が行われる。即ち、複数の脱塩塔に復水をそれぞれ並列に通水し、復水中に含まれる不純物イオンをイオン交換作用による吸着によって除去し、また、酸化鉄等の金属酸化物は、濾過作用及び物理吸着作用によって除去し、浄化された処理水を得る。
【0005】
このような脱塩塔内のイオン交換樹脂は、通常、一定水量を処理すると再生工程に入る。再生工程には、脱塩塔のイオン交換樹脂を再生塔(再生設備)に移送し、イオン交換樹脂表面に付着した金属酸化物をエアスクラビング(air scrubbing )により除去する除去工程と、陽イオン交換樹脂と陰イオン交換樹脂とに分離する分離工程、更に、分離後、陽イオン交換樹脂には塩酸又は硫酸を通薬し、陰イオン交換樹脂には水酸化ナトリウムを通薬し、それぞれ不純物を脱着して両イオン交換樹脂を再生する脱着工程がある。再生が終了したイオン交換樹脂は、通常は貯槽に移し、別の脱塩塔内のイオン交換樹脂が通水終点に達するまでの間、待機させておく。該別の脱塩塔で通水終点に達したイオン交換樹脂を取り出し、代わりに待機中のイオン交換樹脂を該別の脱塩塔に移送し、陽イオン交換樹脂と陰イオン交換樹脂との混床として復水の処理に供される。なお、陽イオン交換樹脂と陰イオン交換樹脂の混合は、予備的な事前混合と脱塩塔内での事後混合によって行い、混床とするのが通常である。
【0006】
上記のような復水脱塩装置により処理された処理水に要求される水質としては、ボイラー、蒸気発生機、原子炉等の腐食障害防止やスケール付着防止の観点から、近年益々高純度が要求される傾向にあり、例えば、Naイオン、Clイオン、SOイオンについては、それぞれ0.01ppb以下が目標とされている。上記のような不純物は、通常、復水脱塩塔内のイオン交換樹脂にて捕捉されるが、イオン交換樹脂の性能が低下すると、このような不純物がボイラー、蒸気発生機、原子炉等に流入し、腐食物生成、スケール付着といった障害が起こる。このようなことから、従来、発電所の安全管理上、イオン交換樹脂の性能評価が重視されており、陰イオン交換樹脂については反応速度試験を採用しているのが現状である。
【0007】
上記のような発電所以外の一般の純水製造装置で使用されるイオン交換樹脂も同様で、通常、混床式や複床式で使用され、一定量採水すると再生を行う。また、処理水の用途によっては、高度に浄化された処理水が要求され、一定量採水後に、イオン交換樹脂の再生を行わずに新品のイオン交換樹脂に交換する場合もある。水質管理上、イオン交換樹脂の性能を健全に保つことや適切な交換が重要であるが、イオン交換樹脂の性能評価及び交換時期については、イオン交換樹脂塔出口水の比抵抗値で管理されているのが現状である。
【0008】
【発明が解決しようとする課題】
最近の研究によれば、発電所の復水脱塩装置で使用されているイオン交換樹脂について、陽イオン交換樹脂の影響で、陰イオン交換樹脂の反応速度が低下することが明らかとなってきた。即ち、水中のFeイオンやCuイオンを吸着した陽イオン交換樹脂は、これらの重金属イオンの触媒作用と、水中の溶存酸素や空気中の酸素との接触により、極僅かではあるが酸化分解を受け、このため陽イオン交換樹脂の母体構造の一部であるスチレンスルホン酸のオリゴマーや低分子ポリマー(以下、これらを「ポリスチレンスルホン酸」と言う)からなる分解物が生成され、溶出したこれらの分解物が陰イオン交換樹脂の表面に吸着して汚染し、陰イオン交換樹脂の反応性を低下させる大きな一因となる。陰イオン交換樹脂の反応性が低下すると、陽イオン交換樹脂からの溶出物が陰イオン交換樹脂に捕捉されないで、復水脱塩装置により処理された処理水に残留し、ボイラー、蒸気発生機、原子炉等に流入し、高温下で熱分解してCOやSO 2− を生成するためにイオン量が増加し、また、復水器への海水の漏洩に対して対処できず、その結果、復水脱塩装置により処理された処理水の水質が低下してしまう。通常のイオン交換樹脂再生方法では、陰イオン交換樹脂からこれらの分解物は容易に脱離できない。
【0009】
ところで、復水脱塩装置に使用中の陰イオン交換樹脂の性能評価は、一般に反応速度の低下を指標としているが、実際のプラントでは陰イオン交換樹脂の反応速度は必ずしも使用期間と共に徐々に低下する訳では無く、或る時期より比較的急激に低下するため、単に陰イオン交換樹脂の反応速度を測定するだけではその使用限界について予測することはできない。また、新品の陰イオン交換樹脂にポリスチレンスルホン酸の標準物質(標準ポリスチレンスルホン酸)を添加すると、或る一定量の標準ポリスチレンスルホン酸の吸着後に急激に陰イオン交換樹脂の反応速度が低下することも明らかとなってきた。従来のような陰イオン交換樹脂の反応速度の測定のみでは、上記のような急激な陰イオン交換樹脂の反応速度の低下を予測することはできない。また、陰イオン交換樹脂の反応速度の上記のような急激な低下を予測する方法として、標準ポリスチレンスルホン酸を陰イオン交換樹脂に添加し、その後の陰イオン交換樹脂の反応速度及び標準ポリスチレンスルホン酸の吸着量を測定する試験方法もあるが、使用する標準ポリスチレンスルホン酸が陰イオン交換樹脂に吸着し難いこと、標準ポリスチレンスルホン酸吸着量は添加量から未吸着量を差し引いて算出することなどの理由から、分析に時間が掛かる。
【0010】
また、陰イオン交換樹脂の反応速度に影響を与えるのは、陽イオン交換樹脂からの酸化劣化分解生成物以外に、発電所の定期検査時に使用する防錆剤、副資材等がある。定期検査後の起動時には、通常、復水脱塩塔に通水し、循環系統水の浄化をしていくが、この場合、副資材等の不純物が循環系統の不純物として陰イオン交換樹脂を汚染し、反応速度が低下することが考えられる。実際に、定期検査後起動直後に陰イオン交換樹脂の反応速度が一時的に低下する現象が多々ある。従来の陰イオン交換樹脂の反応速度(例えば、物質移動係数「MTC」)測定では、陽イオン交換樹脂の既述のような影響で陰イオン交換樹脂の反応速度が低下しているのか、このような他の要因によるのか区別できない。また、純水製造装置等の一般の水処理装置においては、発電所の復水脱塩装置での現象とは逆で、陰イオン交換樹脂が陽イオン交換樹脂に影響を与え、陽イオン交換樹脂の反応速度が低下する現象が確認されている。
【0011】
発電所の復水脱塩装置及び一般純水製造装置等においても、処理水の用途によっては、年々益々処理水の純度向上が求められてきており、従来にも増して高度の水質管理が要求されている。従って、従来のイオン交換樹脂の反応速度による性能評価管理だけでは安全管理上不十分で、陽イオン交換樹脂及び陰イオン交換樹脂のより適切な性能評価及び交換時期決定が重要になってきている。
【0012】
本発明は、かかる時代の要請に対応することができるイオン交換樹脂の性能評価方法及びイオン交換樹脂の使用限界を予測できる水処理系の管理方法を提供せんとするものである。
【0013】
【課題を解決するための手段】
本発明は、イオン交換樹脂の赤外分光法による表面分析により、前記イオン交換樹脂の表面部分における不純物である汚染物質の同定、分布状況の測定及び/又は定量を行ってイオン交換樹脂の性能評価を行うに当たって、イオン交換樹脂由来の吸収に対比して汚染物質由来の吸収を分析して、イオン交換樹脂由来の吸収と同定された汚染物質由来の吸収の強度比からイオン交換樹脂の汚染度合いを求めることを特徴とするイオン交換樹脂の性能評価方法、および、イオン交換樹脂の赤外分光法による表面分析により、前記イオン交換樹脂の表面部分における不純物である汚染物質の同定、分布状況の測定及び/又は定量を行ってイオン交換樹脂の性能評価を行うに当たって、イオン交換樹脂由来の吸収に対比して汚染物質由来の吸収を分析して、イオン交換樹脂由来の吸収と同定された汚染物質由来の吸収の強度比からイオン交換樹脂の汚染度合いを求めることによって、イオン交換樹脂の汚染原因と汚染状況を把握し、イオン交換樹脂の以降の反応速度低下傾向を予測し、イオン交換樹脂の交換時期を決定することを特徴とする水処理系の管理方法を提供するものである。
【0014】
本発明は、表面分析手法としての赤外分光法によるイオン交換樹脂の性能評価方法及び該方法を利用してイオン交換樹脂の交換時期の決定を行う水処理系の管理方法に関するものである。表面分析手法としては、赤外分光法、光電子分光法、光音響分光法、二次イオン質量分析法などを挙げることができるが、本発明では赤外分光法による表面分析を行うものとし、殊に赤外分光法を応用したATR法が有用である。ATR法は、深さ数μm迄の表面領域を分析する方法であり、より深い領域の分析には光音響分光法も有効であるのに対し、より浅い領域の分析にしか光電子分光法や二次イオン質量分析法は適用できず(参考文献:講談社サイエンティフィック出版「固体表面分析I」及び「固体表面分析II」、東京化学同人出版「FT−IRの基礎と実際」等)、そのため、光電子分光法と二次イオン質量分析法は本発明から除外する。なお、本発明に用いる表面分析手法としての赤外分光法は、火力発電所や原子力発電所では陰イオン交換樹脂表面部分におけるスルホン酸成分(ポリスチレンスルホン酸成分)の測定に特に有効である。このような表面分析手法としての赤外分光法により、例えば、復水脱塩装置等の各種水処理装置内で使用されるイオン交換樹脂表面部分の解析を行い、樹脂表面部分に存在する不純物を直接同定、定量する。これによって、従来解明不可能であったイオン交換樹脂の汚染原因が明らかになると共に、イオン交換樹脂の汚染状況を把握し、イオン交換樹脂のより正確な性能評価及び以降の反応速度低下傾向を予測することが可能となり、よって適切な交換時期の判断・決定が可能となる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態に従った実際の不純物測定方法及びイオン交換樹脂性能評価方法を詳細に説明するが、本発明はこれらの実施の形態に限定されるものでは無い。
【0016】
本発明の方法においては、赤外分光法によりイオン交換樹脂の表面分析を行う、赤外分光法を応用した赤外全反射分光法(ATR法、ATR=Attenuated Total Reflectance)によりイオン交換樹脂の表面分析を行うのが特に好ましい。このATR法は、イオン交換樹脂を赤外光不活性な結晶板に接触させ、結晶板を通して赤外光を入射させることにより、樹脂表面部分の汚染物質を同定、定量するものである。ATR法によれば、イオン交換樹脂表面部分の数μmの深さ迄の分析が可能であり、例えば、前述のポリスチレンスルホン酸(前述のように、陽イオン交換樹脂の分解生成物である「スチレンスルホン酸のオリゴマーや低分子量ポリマー」を表す)は、その分子量及び吸着量によって吸着層の深さは異なるものの、汚染の原因となるレベルにおいては、おおむね陰イオン交換樹脂の表面部分の約1〜2μmの深さ迄吸着されると考えられるので、数μmの深さ迄の分析が可能であれば充分である。
【0017】
赤外分光器としては、分散型やフーリエ変換型が使用できるが、フーリエ変換型が特に好ましい。ATR法は、通常の赤外分光法に用いられる赤外分光器の光路に結晶板を置く方法と、この方法に顕微鏡の使用を組み合わせた方法があり、どちらを用いても良い。
【0018】
測定に用いるイオン交換樹脂は、乾燥状態及び含水状態のいずれでも良いが、赤外吸収スペクトルのピークがシャープとなる点で含水状態の方がより有効である。サンプルとなるイオン交換樹脂を結晶板に接触させ、赤外光を照射する。結晶板の材質としては、目的とする赤外領域に吸収が無く、充分に屈折率が大きければ使用できるが、GeやZnSeが特に好ましく、イオン交換樹脂が乾燥状態の場合は、KRS−5(沃化タリウムTlIと臭化タリウムTlBrの混晶)も有効である。結晶板の形状としては、台形、菱形、半球形等様々な形状が使用できる。また、赤外光の入射角度は臨界角以上であれば特に限定されず、例えば、市販赤外分光器で多用される30度、45度、60度のいずれも用いることができ、また、結晶板の材質と入射角の組み合わせにより、分析可能な深さを変えることができる。例えば、比較的深い表面領域の分析ではZnSeやKRS−5の結晶板と45度の入射角、比較的浅い表面領域の分析ではGe結晶板と60度の入射角の組み合わせが有効である。
【0019】
例えば、イオン交換樹脂由来の吸収に対比して汚染物質由来の吸収を分析して、汚染物質を同定すると共に、イオン交換樹脂由来の吸収と汚染物質由来の吸収の強度比からイオン交換樹脂の汚染度合いを求めることができる。更に、汚染物質の標準品を用いて検量線を作成しておき、汚染物質量を定量することも可能である。
【0020】
図1にATR法による赤外吸収スペクトルの一例を示す。試料は、陰イオン交換樹脂に標準ポリスチレンスルホン酸(分子量:50,000)を一定量(294mg/L−樹脂)吸着させた樹脂からなる一標準試料(実施例1の表1における「MW50,000標準品の欄」の▲5▼)である。この赤外吸収スペクトルにおいて、波数977cm−1に陰イオン交換樹脂の吸収が検出され、波数1009cm−1、1035cm−1、1126cm−1、1182cm−1(幅の広いピーク)に汚染物質としての標準ポリスチレンスルホン酸に由来する吸収が検出される(吸収ピーク位置は、試料の状態や測定条件等により若干シフトするため、吸収ピーク位置は必ずしも常に上記位置であるとは限らない)。
【0021】
図2にATR法による赤外吸収スペクトルの他の一例を示す。試料は、某発電所の復水脱塩塔において使用された陰イオン交換樹脂(実施例1の表3における実機陰イオン交換樹脂No.1)である。陽イオン交換樹脂から溶出する分解生成物による陰イオン交換樹脂の汚染を示す一例で、この赤外吸収スペクトルにおいて、上記標準試料の赤外吸収スペクトルと同様に、波数977cm−1に陰イオン交換樹脂の吸収が検出され、波数1009cm−1、1035cm−1、1126cm−1、1182cm−1(幅の広いピーク)に陽イオン交換樹脂に由来する吸収が検出され、上記分解生成物が主にポリスチレンスルホン酸であることが分かる(吸収ピーク位置は、試料の状態や測定条件等により若干シフトするため、吸収ピーク位置は必ずしも常に上記位置であるとは限らない)。陰イオン交換樹脂の吸収に対する陽イオン交換樹脂由来の吸収の強度比から、汚染物としての陽イオン交換樹脂の分解生成物等の溶出物による陰イオン交換樹脂表面部分の汚染の度合いを求めることができる。この場合、汚染物由来の吸収波数としては、上に挙げた吸収波数のどれを利用しても良い。
【0022】
強塩基性の陰イオン交換樹脂にベンゼンスルホン酸を等量吸着させ、粉砕した試料、及びこの粉砕試料に未吸着の該イオン交換樹脂の粉砕物を両者の割合を変えて混合して得られる試料を標準試料として検量線を作成することができる。なお、ベンゼンスルホン酸はスチレンスルホン酸に類似する単純化合物なので、過剰のベンゼンスルホン酸を陰イオン交換樹脂に添加すれば樹脂内部にもベンゼンスルホン酸はイオン結合的に吸着され、得られる樹脂を水洗すれば、ベンゼンスルホン酸を等量吸着した樹脂試料を容易に得ることができる。この場合は、ベンゼンスルホン酸がスチレンスルホン酸に類似する単純化合物であり、一方、実機使用の場合に陽イオン交換樹脂が分解して生成するポリスチレンスルホン酸は既述のように「スチレンスルホン酸のオリゴマーや低分子量ポリマー」であるので、上記検量線を利用するに当たっては、両者のこのような違いによる検量線作成のモデルケースと実際の場合の相関関係を実機使用データの積み重ねにより予め把握しておく必要がある。
【0023】
また、標準ポリスチレンスルホン酸の量を変えて陰イオン交換樹脂の表面に吸着させて得られる試料を標準試料として検量線を作成することもできる。この場合も、この検量線を利用するに当たっては、検量線作成のモデルケースと実際の場合の相関関係を実機使用データの積み重ねにより予め把握しておくのが好ましいが、一般的には、ポリスチレンスルホン酸の分子量が異なっても検量線はほぼ同じとなる。このように検量線を作成し、前記の吸収強度比(陰イオン交換樹脂の吸収に対する陽イオン交換樹脂由来の吸収の強度比)から陰イオン交換樹脂表面部分の汚染物としてのポリスチレンスルホン酸(以下、時に「PSS」と略す)を定量することもできる。このような検量線の一例を図3に示す。この図3は、標準ポリスチレンスルホン酸(標準PSS、分子量「MW」:50,000)の陰イオン交換樹脂表面への吸着量とATR法による赤外吸収スペクトルにおける陰イオン交換樹脂の波数977cm−1の吸収に対する吸着された標準PSSの波数1126cm−1の吸収の強度比(吸収ピーク高さ比)との相関関係を示す検量線(実施例1の表1のデータに基づいて作成)を表した図である。なお、図3における標準PSS吸着量は、陰イオン交換樹脂を所定の標準PSS濃度の水溶液に浸漬し所定時間振盪し、陰イオン交換樹脂に標準PSSを吸着させ、樹脂と水溶液の分離を行い、分離された水溶液の標準PSS濃度と最初の水溶液の標準PSS濃度との差から算出したものである。
【0024】
本発明の水処理系の管理方法の実施に当たっては、上記のようなイオン交換樹脂の汚染物の同定、定量等の結果とイオン交換樹脂の反応速度の相関関係を把握しておく必要がある。一例として、水処理系としての実機復水脱塩装置内で使用する陰イオン交換樹脂の交換時期の判断・決定を行う場合について説明する。
【0025】
陰イオン交換樹脂の反応速度の測定は、例えば、物質移動係数「MTC」(mass transfer coefficient )の測定による方法やシャローベット法等の公知の方法などにより行うことができる。シャローベット法は、樹脂層高約10mmのイオン交換樹脂層にNaCl又は硫酸ナトリウム等の塩類含有水を流し、イオン除去率を測定する方法である。一方、物質移動係数「MTC」の測定による方法が便利で、その測定法の一例の概略は次の通りである。
【0026】
例えば、発電所の復水脱塩装置からサンプリングした陰イオン交換樹脂をNaOHを用いて再生し、再生樹脂と新品の陽イオン交換樹脂のH形とを再生陰イオン交換樹脂/陽イオン交換樹脂容量比=1/2で混合し、カラムに充填する。次いで、カラムの上部よりアンモニウムイオン(アンモニア水)と硫酸ナトリウムを所定の濃度の水溶液の形で、流量70L/hr(リットル/時間)で通水する。通水中にカラム入口水と出口水を採取して、硫酸イオン濃度を測定し、更に、通水終了後に空隙率、陰イオン交換樹脂粒径を測定する。物質移動係数「MTC」を下記の式に従って算出する。この値が高いほど、陰イオン交換樹脂の反応速度が高く、その性能が健全であると言える。通常、新品の陰イオン交換樹脂のMTC値は、2.0(×10−4m/sec)程度となる。
【0027】
【数1】

Figure 0003633195
但し、
K:物質移動係数「MTC」(m/sec)、ε:空隙率、R:陰イオン交換樹脂/全イオン交換樹脂容量比、F:通水流量(m/sec)、A:樹脂層断面積(m)、L:樹脂層高(m)、従ってA×L:樹脂量(m)、d:樹脂粒径(m)、C:入口水のSO 2− 濃度、C:出口水のSO 2− 濃度。
【0028】
MTCが低いと反応速度が低く、また、陰イオン交換樹脂の一般的な交換時期は、例えば、MTC=1(×10−4m/sec)となった時であるが、どの程度汚染した時点で陰イオン交換樹脂を交換するかは、装置の運転状況や水質の要求性能により変化するので、個別具体的に判断されるべきものである。
【0029】
分子量の異なる標準PSSの添加量を変えて、新品陰イオン交換樹脂に添加し、各々の標準PSSの吸着量とその時のMTCの関係を一方の軸を標準PSSの吸着量、他方の軸をMTCとした図表中にプロットし、分子量別にプロットを結んで線を引き、標準PSS吸着試料曲線を作成する。一方、例えば、実機復水脱塩装置内で使用した陰イオン交換樹脂表面へのPSSの吸着量(A)を本発明の方法で求め、また、MTCを上記の方法で求め、上記の各標準PSS吸着試料曲線を描いた図表中に点B(実機復水脱塩装置内使用陰イオン交換樹脂についてのMTC及びA)としてプロットする。
【0030】
各標準PSS吸着試料曲線と点Bを比較して、実機復水脱塩装置内使用陰イオン交換樹脂表面に吸着したPSSの平均分子量を推定し、例えば、点Bの最も近い標準PSS吸着試料曲線に基づいて、以降の陰イオン交換樹脂表面のPSS吸着量の増加に伴ったMTCの低下傾向を予測する。また、以降の測定においては、実機で使用中の陰イオン交換樹脂に吸着したPSS量を本発明方法によって測定することにより、点Bの最も近い標準PSS吸着試料曲線に基づいて実機使用中の陰イオン交換樹脂のMTCを推定することができる。さらにまた、例えば、MTCが1(×10−4m/sec)に到達する迄のPSS吸着許容量を上記図表から読み取り、イオン交換樹脂交換時期の判断資料とする。
【0031】
【実施例】
以下の実施例により本発明を更に具体的に説明するが、本発明はこれに限定されるものでは無い。
【0032】
実施例1
ローム・アンド・ハース社製新品陰イオン交換樹脂アンバーライトIRA900(表1の「MW50,000標準品」の欄の▲1▼)、この樹脂に分子量「MW」50,000の標準PSSの水溶液を予め添加して、標準PSSを吸着させ反応速度を低下させた陰イオン交換樹脂5種類(表1の「MW50,000標準品」の欄の▲2▼〜▲6▼)、及び、実機復水脱塩塔内使用中の陰イオン交換樹脂4種類(表3の実機陰イオン交換樹脂No.1〜4。なお、これら4種類の陰イオン交換樹脂は、それぞれ異なる発電所の復水脱塩装置から採取したものである。)の赤外吸収スペクトルを測定した。測定条件は以下の通りであった。表1のデータに基づいて図3の検量線を作成した。
【0033】
〔測定条件〕
装置:日本電子株式会社販売赤外分光器「DIAMOND 20」
付属装置:ATR装置
結晶板:ZnSe
入射角:45度
積算回数:1024
【0034】
また、これらの陰イオン交換樹脂の反応速度の評価は、陰イオン交換樹脂の物質移動係数「MTC」を前述の方法により測定することにより行った。上記新品陰イオン交換樹脂に分子量「MW」10,000の標準PSSの水溶液を予め添加して、標準PSSを吸着させ反応速度を低下させた陰イオン交換樹脂5種類(表2の「MW10,000標準品」の欄の▲2▼〜▲6▼)についても物質移動係数「MTC」の測定を行った。結果を表2、表3及び図4に示す。なお、標準PSSの濃度及び分子量はゲル透過クロマトラフィーを用いて測定し、陰イオン交換樹脂への標準PSSの吸着量は前述の方法により求めた。
【0035】
実機復水脱塩塔内使用中の各陰イオン交換樹脂の赤外吸収スペクトルにおいても、標準PSSを吸着させた陰イオン交換樹脂試料の赤外吸収スペクトルと同様に、波数977cm−1に陰イオン交換樹脂の吸収が検出され、波数1009cm−1、1035cm−1、1126cm−1、1182cm−1(幅の広いピーク)に汚染物質としてのPSSに由来する吸収が検出されることが確認された。
【0036】
得られた各赤外吸収スペクトルの波数977cm−1の吸収に対する波数1126cm−1の吸収の強度比を算出した。結果を表1及び表3に示す。なお、表1及び表2において、「MW10,000標準品」と「MW50,000標準品」は、それぞれ「分子量10,000の標準PSS」又は「分子量50,000の標準PSS」を新品陰イオン交換樹脂への吸着に用いたことを示す。また、表1及び表2において、「PSS」は陰イオン交換樹脂へのPSSの吸着量を表し、表3において、「計算PSS量」は図3の検量線を用いて吸収の強度比から求めた陰イオン交換樹脂へのPSSの吸着量を表し、図4は、物質移動係数「MTC」対陰イオン交換樹脂表面部分へのPSS吸着量の関係を示す図である。
【0037】
【表1】
Figure 0003633195
【0038】
【表2】
Figure 0003633195
【0039】
【表3】
Figure 0003633195
【0040】
図4中の分子量10,000標準PSS吸着試料曲線及び分子量50,000標準PSS吸着試料曲線から、実機復水脱塩塔内使用中の各陰イオン交換樹脂の反応速度の低下(MTCの低下)の主たる原因は、陽イオン交換樹脂の分解生成物であるPSS溶出物の陰イオン交換樹脂への吸着であり、吸着PSSの平均分子量は10,000〜50,000程度のものであると考えられる。
【0041】
「実機陰イオン交換樹脂No.1とNo.2」は、MTCがいずれも1.8(×10−4m/sec)であるが、PSS吸着量についてはNo.1が約100mg/L−樹脂でNo.2が200mg/L−樹脂であり、両者間で異なっている。図4中のNo.1の点は分子量50,000標準PSS吸着試料曲線に近接していることから、今後MTCが急激に低下することが考えられ、MTCが1(×10−4m/sec)に到る迄に更に吸着が許容されるPSS量は60mg/L−樹脂程度と予測できる。一方、図4中のNo.2の点は分子量10,000標準PSS吸着試料曲線に近接していることから、MTCが1(×10−4m/sec)に到る迄に更に吸着が許容されるPSS量は100mg/L−樹脂程度と予測できる。図4中のNo.3の点は分子量10,000標準PSS吸着試料曲線と分子量50,000標準PSS吸着試料曲線のほぼ中間に在ることから、MTCが1(×10−4m/sec)に到る迄に更に吸着が許容されるPSS量は50mg/L−樹脂程度と予測できる。図4中のNo.4の点は一般的なMTCの許容限界=1(×10−4m/sec)以下となっているので、既に陰イオン交換樹脂の交換が必要なことが分かる。
【0042】
【発明の効果】
従来から発電所の循環系統水の水質を良好に維持するために、復水脱塩塔内のイオン交換樹脂を健全に保つことが必要とされている。また、純水製造装置(脱塩装置)等の一般の水処理装置についても同様で、いずれの場合もイオン交換樹脂の性能を的確に評価・判断することが水質管理上重要である。しかし、従来のようなイオン交換樹脂の反応速度測定による性能評価のみだと、イオン交換樹脂の汚染原因は不明であると共に、反応速度の急速な低下に対処することが困難である。そこで、本発明によるイオン交換樹脂の評価方法を導入することで、イオン交換樹脂の汚染原因を明確にすることができると共に、イオン交換樹脂の反応速度の急激な低下を事前に予測することも可能となる。更に、従来のMTCの測定によるイオン交換樹脂の性能評価方法との比較において、本発明の方法は、イオン交換樹脂の表面分析を行うことによりイオン交換樹脂の性能評価を行うので、分析に使用するイオン交換樹脂量が1〜数10個(MTC測定では数千個以上)と少なくて済み、また、分析時間も1〜20分(MTC測定では数日)と短時間で済む。
【0043】
本発明の管理方法によれば、イオン交換樹脂が正常に機能しなくなる前にその使用限界を予測し、水処理系を安定的に管理することができる。本発明の管理方法は、例えば、復水脱塩装置に使用される陰イオン交換樹脂について好適に使用することができ、更に好適には、PWR(pressurized water reactor )やBWR(boiling water reactor )の原子力発電所の復水脱塩装置に使用される陰イオン交換樹脂に使用することができる。
【図面の簡単な説明】
【図1】図1は、陰イオン交換樹脂に標準ポリスチレンスルホン酸(分子量:50,000)を一定量(294mg/L−樹脂)吸着させた樹脂からなる一標準試料のATR法による赤外吸収スペクトル図である。
【図2】図2は、実施例1における実機復水脱塩塔内使用陰イオン交換樹脂No.1のATR法による赤外吸収スペクトル図である。
【図3】図3は、標準ポリスチレンスルホン酸(分子量:50,000)の陰イオン交換樹脂表面への吸着量とATR法による赤外吸収スペクトルにおける陰イオン交換樹脂の波数977cm−1の吸収に対する吸着された標準ポリスチレンスルホン酸の波数1126cm−1の吸収の強度比(吸収ピーク高さ比)との相関関係を示す検量線を表した図である。
【図4】図4は、実施例1の結果を示すもので、物質移動係数「MTC」対陰イオン交換樹脂表面部分へのPSS吸着量の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for evaluating the performance of ion exchange resins used in various water treatment apparatuses and a method for managing a water treatment system using the method, and is particularly used in thermal power plants and nuclear power plants. A method for evaluating the performance of ion exchange resins used in various water treatment apparatuses such as a condensate demineralizer and a general pure water production apparatus (demineralization apparatus), and a time for replacing the ion exchange resin using the method. It relates to the management method of the water treatment system to be judged and determined.
[0002]
[Prior art]
In thermal power plants and nuclear power plants, the steam after driving the power generation turbine is cooled to form condensate, and this condensate is heated and used again as steam to drive the power generation turbine to generate power. . For this reason, condensate is advanced from the standpoint of reducing the radioactivity (especially accumulated through iron as an impurity) that causes corrosion prevention for boilers, steam generators, nuclear reactors, etc. and exposure to workers. Various condensate purification apparatuses such as a mixed bed type condensate demineralizer, a powder ion exchange resin filter, and a hollow fiber filter are employed singly or in combination.
[0003]
The above mixed bed type condensate demineralizer usually regenerates a water flow system consisting of a plurality of condensate demineralization towers (hereinafter abbreviated as “demineralization tower”) and an ion exchange resin used in the demineralization tower. It consists of a regenerative system. In the desalting tower, generally in the H form or NH 4 A strongly acidic cation exchange resin in the form and a strongly basic anion exchange resin in the OH form are filled.
[0004]
In such a condensate demineralizer, condensate treatment is performed as follows. That is, condensate is passed through a plurality of demineralization towers in parallel, and impurity ions contained in the condensate are removed by adsorption by ion exchange, and metal oxides such as iron oxide are filtered and physically removed. Removed by adsorption action to obtain purified treated water.
[0005]
The ion exchange resin in such a desalting tower usually enters a regeneration step when a certain amount of water is treated. In the regeneration step, the ion exchange resin of the desalting tower is transferred to the regeneration tower (regeneration equipment), and the metal oxide adhering to the surface of the ion exchange resin is removed by air scrubbing, and the cation exchange Separation process to separate resin and anion exchange resin, and after separation, hydrochloric acid or sulfuric acid is passed through cation exchange resin, and sodium hydroxide is passed through anion exchange resin to desorb impurities. Thus, there is a desorption process for regenerating both ion exchange resins. The regenerated ion exchange resin is usually transferred to a storage tank and kept waiting until the ion exchange resin in another desalting tower reaches the water flow end point. The ion exchange resin that has reached the water flow end point in the other demineralization tower is taken out and, instead, the standby ion exchange resin is transferred to the other demineralization tower and mixed with the cation exchange resin and the anion exchange resin. The floor is used for condensate treatment. In general, the cation exchange resin and the anion exchange resin are mixed by preliminary premixing and post-mixing in a desalting tower to form a mixed bed.
[0006]
The water quality required for the treated water treated by the condensate demineralizer as described above is increasingly required in recent years from the viewpoint of preventing corrosion failure and scale adhesion of boilers, steam generators, nuclear reactors, etc. For example, Na ions, Cl ions, SO4For ions, each target is set to 0.01 ppb or less. Such impurities are usually trapped by ion exchange resin in the condensate demineralization tower, but when the performance of the ion exchange resin deteriorates, such impurities may enter boilers, steam generators, nuclear reactors, etc. Inflow, obstacles such as formation of corrosion and adhesion of scale occur. For these reasons, the performance evaluation of ion exchange resins has hitherto been emphasized for the safety management of power plants, and the reaction rate test is currently employed for anion exchange resins.
[0007]
The same applies to ion exchange resins used in general pure water production apparatuses other than the above-mentioned power plants, and usually used in a mixed bed type or a multiple bed type, and regenerates when a certain amount of water is sampled. Further, depending on the use of treated water, highly purified treated water is required, and after sampling a certain amount, it may be replaced with a new ion exchange resin without regenerating the ion exchange resin. For water quality management, it is important to keep the performance of the ion exchange resin sound and appropriate replacement.However, the performance evaluation and replacement time of the ion exchange resin are controlled by the specific resistance value of the water at the outlet of the ion exchange resin tower. The current situation is.
[0008]
[Problems to be solved by the invention]
Recent studies have shown that the reaction rate of anion exchange resins decreases due to the influence of cation exchange resins on ion exchange resins used in condensate demineralizers at power plants. . In other words, the cation exchange resin that adsorbs Fe ions and Cu ions in water undergoes oxidative decomposition, albeit slightly, due to the catalytic action of these heavy metal ions and contact with dissolved oxygen in water and oxygen in the air. For this reason, decomposition products of styrene sulfonic acid oligomers and low molecular weight polymers (hereinafter referred to as “polystyrene sulfonic acid”), which are part of the matrix structure of the cation exchange resin, are generated and eluted. Objects are adsorbed and contaminated on the surface of the anion exchange resin, which greatly contributes to a decrease in the reactivity of the anion exchange resin. When the reactivity of the anion exchange resin is reduced, the effluent from the cation exchange resin is not captured by the anion exchange resin, but remains in the treated water treated by the condensate demineralizer, a boiler, a steam generator, It flows into a nuclear reactor, etc.2Or SO4 2-As a result, the amount of ions increases and the leakage of seawater to the condenser cannot be dealt with. As a result, the quality of the treated water treated by the condensate demineralizer decreases. In the usual ion exchange resin regeneration method, these decomposition products cannot be easily detached from the anion exchange resin.
[0009]
By the way, the performance evaluation of the anion exchange resin used in the condensate demineralizer generally uses the decrease in the reaction rate as an index, but in an actual plant, the reaction rate of the anion exchange resin gradually decreases with the period of use. However, since it decreases relatively rapidly from a certain time, it is impossible to predict the use limit by simply measuring the reaction rate of the anion exchange resin. In addition, when a polystyrene sulfonic acid standard substance (standard polystyrene sulfonic acid) is added to a new anion exchange resin, the reaction rate of the anion exchange resin rapidly decreases after adsorption of a certain amount of standard polystyrene sulfonic acid. It has also become clear. Only by measuring the reaction rate of an anion exchange resin as in the prior art, a sudden decrease in the reaction rate of the anion exchange resin as described above cannot be predicted. In addition, as a method for predicting the rapid decrease in the reaction rate of the anion exchange resin as described above, standard polystyrene sulfonic acid is added to the anion exchange resin, and then the reaction rate of the anion exchange resin and the standard polystyrene sulfonic acid are added. There is also a test method for measuring the amount of adsorbed, but the standard polystyrene sulfonic acid used is difficult to adsorb on the anion exchange resin, the standard polystyrene sulfonic acid adsorbed amount is calculated by subtracting the unadsorbed amount from the added amount, etc. The analysis takes time for a reason.
[0010]
In addition to oxidative degradation products from cation exchange resins, there are rust preventives, auxiliary materials, etc. used during periodic inspections of power plants that affect the reaction rate of anion exchange resins. When starting up after periodic inspection, water is usually passed through the condensate demineralizer to purify the circulation system water. In this case, impurities such as secondary materials contaminate the anion exchange resin as impurities in the circulation system. However, the reaction rate may be reduced. Actually, there are many phenomena in which the reaction rate of the anion exchange resin temporarily decreases immediately after starting after the periodic inspection. In the conventional reaction rate measurement of an anion exchange resin (for example, mass transfer coefficient “MTC”), whether the reaction rate of the anion exchange resin is decreased due to the influence of the cation exchange resin as described above. It cannot be distinguished whether it is due to other factors. In general water treatment equipment such as pure water production equipment, the anion exchange resin affects the cation exchange resin, contrary to the phenomenon of the condensate desalination equipment at the power plant. It has been confirmed that the reaction rate decreases.
[0011]
The power plant condensate desalination equipment and general pure water production equipment, etc. have been required to improve the purity of treated water year by year depending on the use of treated water, and higher water quality management is required than ever before. Has been. Therefore, the performance evaluation management based on the reaction rate of the conventional ion exchange resin alone is not sufficient for safety management, and more appropriate performance evaluation and determination of the replacement timing of the cation exchange resin and the anion exchange resin have become important.
[0012]
The present invention is intended to provide an ion exchange resin performance evaluation method and a water treatment system management method capable of predicting the use limit of the ion exchange resin that can meet the demands of the times.
[0013]
[Means for Solving the Problems]
The present invention relates to infrared spectroscopy of ion exchange resins.To the lawImpurities in the surface portion of the ion exchange resin by surface analysisIs a pollutantIdentification, distribution status measurement and / or quantificationIn evaluating the performance of the ion exchange resin, the absorption ratio derived from the contaminant identified as the absorption derived from the ion exchange resin is analyzed by analyzing the absorption derived from the contaminant in comparison with the absorption derived from the ion exchange resin. The degree of contamination of ion exchange resin fromMethod for evaluating the performance of an ion exchange resin, and infrared spectroscopy of the ion exchange resinTo the lawImpurities in the surface portion of the ion exchange resin by surface analysisIs a pollutantIdentification, distribution status measurement and / or quantificationIn evaluating the performance of the ion exchange resin, the absorption ratio derived from the contaminant identified as the absorption derived from the ion exchange resin is analyzed by analyzing the absorption derived from the contaminant in comparison with the absorption derived from the ion exchange resin. By calculating the degree of contamination of ion exchange resin fromProvides a water treatment system management method characterized by determining the cause and status of ion exchange resin contamination, predicting the subsequent reaction rate decrease trend of the ion exchange resin, and determining the replacement time of the ion exchange resin To do.
[0014]
The present invention provides a surface analysis technique.Infrared spectroscopy asThe present invention relates to a method for evaluating the performance of an ion exchange resin and a method for managing a water treatment system in which the exchange time of the ion exchange resin is determined using the method. Examples of the surface analysis method include infrared spectroscopy, photoelectron spectroscopy, photoacoustic spectroscopy, and secondary ion mass spectrometry. In the present invention, infrared spectroscopy is used.To the lawTherefore, the ATR method using infrared spectroscopy is particularly useful. The ATR method is a method for analyzing a surface region up to a depth of several μm, and photoacoustic spectroscopy is effective for analyzing a deeper region, whereas photoelectron spectroscopy and two-dimensional analysis are used only for analyzing a shallower region. Secondary ion mass spectrometry cannot be applied (references: Kodansha Scientific publication "Solid Surface Analysis I" and "Solid Surface Analysis II", Tokyo Chemical Doujin Publishing "FT-IR Basics and Practice", etc.). Photoelectron spectroscopy and secondary ion mass spectrometry are excluded from the present invention. The surface analysis method used in the present inventionInfrared spectroscopy asIs particularly effective for measuring the sulfonic acid component (polystyrene sulfonic acid component) in the surface portion of the anion exchange resin in thermal power plants and nuclear power plants. Such surface analysis techniquesInfrared spectroscopy asThus, for example, an ion exchange resin surface portion used in various water treatment apparatuses such as a condensate demineralizer is analyzed, and impurities present in the resin surface portion are directly identified and quantified. As a result, the cause of contamination of the ion exchange resin, which could not be elucidated in the past, will be clarified, the contamination status of the ion exchange resin will be grasped, and more accurate performance evaluation of the ion exchange resin and prediction of subsequent reaction rate decrease will be made Therefore, it is possible to determine and determine an appropriate replacement time.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, actual impurity measurement methods and ion exchange resin performance evaluation methods according to embodiments of the present invention will be described in detail, but the present invention is not limited to these embodiments.
[0016]
In the method of the present invention, surface analysis of an ion exchange resin is performed by infrared spectroscopy.ButIt is particularly preferable to perform surface analysis of the ion exchange resin by infrared total reflection spectroscopy (ATR method, ATR = Attenuated Total Reflectance) applying infrared spectroscopy. In this ATR method, an ion exchange resin is brought into contact with an inactive infrared light crystal plate, and infrared light is incident through the crystal plate to identify and quantify contaminants on the resin surface portion. According to the ATR method, it is possible to analyze the surface portion of the ion exchange resin to a depth of several μm. For example, the polystyrene sulfonic acid (as described above, “styrene which is a decomposition product of the cation exchange resin” Although the depth of the adsorption layer varies depending on the molecular weight and the amount of adsorption, the sulfonic acid oligomer or low molecular weight polymer ”represents about 1 to 1 of the surface portion of the anion exchange resin. Since it is considered that adsorption is performed up to a depth of 2 μm, it is sufficient if an analysis up to a depth of several μm is possible.
[0017]
As the infrared spectrometer, a dispersion type or a Fourier transform type can be used, but a Fourier transform type is particularly preferable. The ATR method includes a method in which a crystal plate is placed in the optical path of an infrared spectrometer used in normal infrared spectroscopy, and a method in which the use of a microscope is combined with this method, either of which may be used.
[0018]
The ion exchange resin used for the measurement may be in either a dry state or a water-containing state, but the water-containing state is more effective in that the peak of the infrared absorption spectrum becomes sharp. A sample ion exchange resin is brought into contact with the crystal plate and irradiated with infrared light. As the material of the crystal plate, it can be used if it has no absorption in the target infrared region and has a sufficiently high refractive index, but Ge and ZnSe are particularly preferable. When the ion exchange resin is in a dry state, KRS-5 ( A mixed crystal of thallium iodide TlI and thallium bromide TlBr) is also effective. As the shape of the crystal plate, various shapes such as trapezoid, rhombus and hemisphere can be used. In addition, the incident angle of infrared light is not particularly limited as long as it is greater than or equal to the critical angle. For example, any of 30 degrees, 45 degrees, and 60 degrees frequently used in commercially available infrared spectrometers can be used. The depth that can be analyzed can be changed by combining the material of the plate and the incident angle. For example, a combination of a ZnSe or KRS-5 crystal plate and an incident angle of 45 degrees is effective in analyzing a relatively deep surface region, and a Ge crystal plate and an incident angle of 60 degrees are effective in analyzing a relatively shallow surface region.
[0019]
For example, by analyzing the absorption derived from the pollutant in comparison with the absorption derived from the ion exchange resin, the contamination is identified, and the contamination of the ion exchange resin is determined from the intensity ratio of the absorption derived from the ion exchange resin and the absorption derived from the contaminant. The degree can be determined. Furthermore, it is also possible to prepare a calibration curve using a standard product of pollutants and quantify the amount of pollutants.
[0020]
FIG. 1 shows an example of an infrared absorption spectrum by the ATR method. The sample is a standard sample (“MW 50,000” in Table 1 of Example 1) made of a resin obtained by adsorbing a certain amount (294 mg / L-resin) of standard polystyrene sulfonic acid (molecular weight: 50,000) to an anion exchange resin. (5) in “Standard column”. In this infrared absorption spectrum, the wave number is 977 cm.-1The absorption of anion exchange resin was detected at a wave number of 1009 cm.-11035cm-11126cm-1, 1182cm-1Absorption derived from standard polystyrene sulfonic acid as a contaminant is detected in (wide peak) (absorption peak position is slightly shifted depending on the sample condition, measurement conditions, etc., so the absorption peak position is always the above position) Not necessarily).
[0021]
FIG. 2 shows another example of an infrared absorption spectrum by the ATR method. The sample is an anion exchange resin (actual anion exchange resin No. 1 in Table 3 of Example 1) used in the condensate demineralization tower of Sakai Power Station. This is an example showing contamination of the anion exchange resin by the decomposition product eluted from the cation exchange resin. In this infrared absorption spectrum, similarly to the infrared absorption spectrum of the standard sample, the wave number is 977 cm.-1The absorption of anion exchange resin was detected at a wave number of 1009 cm.-11035cm-11126cm-1, 1182cm-1Absorption derived from the cation exchange resin is detected at (wide peak), and it can be seen that the decomposition product is mainly polystyrene sulfonic acid (the absorption peak position is slightly shifted depending on the sample condition, measurement conditions, etc.) Therefore, the absorption peak position is not always the above position). The degree of contamination of the surface portion of the anion exchange resin by the elution product such as a decomposition product of the cation exchange resin as a contaminant can be obtained from the intensity ratio of the absorption derived from the cation exchange resin to the absorption of the anion exchange resin. it can. In this case, any of the absorption wave numbers listed above may be used as the absorption wave number derived from the contaminant.
[0022]
A sample obtained by adsorbing an equal amount of benzenesulfonic acid to a strongly basic anion exchange resin and then pulverizing it, and mixing this pulverized sample with unadsorbed pulverized product of the ion exchange resin at different ratios A calibration curve can be created using as a standard sample. Since benzene sulfonic acid is a simple compound similar to styrene sulfonic acid, if excess benzene sulfonic acid is added to the anion exchange resin, benzene sulfonic acid is adsorbed ionically inside the resin, and the resulting resin is washed with water. Then, a resin sample in which an equal amount of benzenesulfonic acid is adsorbed can be easily obtained. In this case, benzene sulfonic acid is a simple compound similar to styrene sulfonic acid. On the other hand, in the case of actual use, polystyrene sulfonic acid produced by decomposition of the cation exchange resin is, as described above, “styrene sulfonic acid. Since they are `` oligomers and low molecular weight polymers '', when using the above calibration curve, the correlation between the model case for creating the calibration curve due to such a difference between the two and the actual case should be grasped in advance by accumulating the actual machine usage data. It is necessary to keep.
[0023]
In addition, a calibration curve can be created using a sample obtained by changing the amount of standard polystyrene sulfonic acid to be adsorbed on the surface of the anion exchange resin as a standard sample. In this case as well, when using the calibration curve, it is preferable to grasp in advance the correlation between the model case for creating the calibration curve and the actual case by accumulating the actual machine usage data. Even if the molecular weight of the acid is different, the calibration curve is almost the same. In this way, a calibration curve was prepared, and polystyrene sulfonic acid (hereinafter referred to as a contamination of the anion exchange resin surface part) from the absorption intensity ratio (intensity ratio of absorption derived from the cation exchange resin to the absorption of the anion exchange resin). , Sometimes abbreviated as “PSS”). An example of such a calibration curve is shown in FIG. FIG. 3 shows the adsorption amount of the standard polystyrene sulfonic acid (standard PSS, molecular weight “MW”: 50,000) on the anion exchange resin surface and the wave number of 977 cm of the anion exchange resin in the infrared absorption spectrum by the ATR method.-1Adsorbed standard PSS wave number 1126cm for absorption-1It is the figure showing the calibration curve (made based on the data of Table 1 of Example 1) which shows correlation with the intensity ratio (absorption peak height ratio) of absorption. Note that the standard PSS adsorption amount in FIG. 3 is obtained by immersing the anion exchange resin in an aqueous solution having a predetermined standard PSS concentration and shaking for a predetermined time to adsorb the standard PSS to the anion exchange resin, thereby separating the resin and the aqueous solution. It is calculated from the difference between the standard PSS concentration of the separated aqueous solution and the standard PSS concentration of the first aqueous solution.
[0024]
In carrying out the method for managing a water treatment system of the present invention, it is necessary to grasp the correlation between the results of identification and quantification of the contamination of the ion exchange resin as described above and the reaction rate of the ion exchange resin. As an example, a case will be described in which determination and determination of the replacement time of an anion exchange resin used in an actual condensate demineralizer as a water treatment system is performed.
[0025]
The reaction rate of the anion exchange resin can be measured by, for example, a method by measuring a mass transfer coefficient “MTC” (mass transfer coefficient) or a known method such as a shallow bed method. The shallow bed method is a method in which a salt-containing water such as NaCl or sodium sulfate is passed through an ion exchange resin layer having a resin layer height of about 10 mm and the ion removal rate is measured. On the other hand, a method by measuring the mass transfer coefficient “MTC” is convenient, and an example of the measuring method is as follows.
[0026]
For example, an anion exchange resin sampled from a condensate demineralizer at a power plant is regenerated using NaOH, and the regenerated resin and the H form of a new cation exchange resin are regenerated anion exchange resin / cation exchange resin capacity. Mix at ratio = 1/2 and load into column. Next, ammonium ions (ammonia water) and sodium sulfate are passed through the upper part of the column in the form of an aqueous solution having a predetermined concentration at a flow rate of 70 L / hr (liter / hour). Column inlet water and outlet water are collected in the water flow, and the sulfate ion concentration is measured. After the water flow is completed, the porosity and the anion exchange resin particle size are measured. The mass transfer coefficient “MTC” is calculated according to the following formula. It can be said that the higher the value, the higher the reaction rate of the anion exchange resin and the sounder the performance. Usually, the MTC value of a new anion exchange resin is 2.0 (× 10-4m / sec).
[0027]
[Expression 1]
Figure 0003633195
However,
K: Mass transfer coefficient “MTC” (m / sec), ε: Porosity, R: Anion exchange resin / total ion exchange resin volume ratio, F: Water flow rate (m3/ Sec), A: Resin layer cross-sectional area (m2), L: resin layer height (m), therefore A × L: resin amount (m3), D: resin particle size (m), C0: SO of inlet water4 2-  Concentration, C: SO of outlet water4 2-  concentration.
[0028]
When the MTC is low, the reaction rate is low, and the general exchange time of the anion exchange resin is, for example, MTC = 1 (× 10-4m / sec), however, how much anion exchange resin should be replaced when it is contaminated varies depending on the operating conditions of the device and the required performance of water quality, and should be determined individually and specifically. Is.
[0029]
The addition amount of standard PSS with different molecular weight is changed and added to a new anion exchange resin. The relationship between the adsorption amount of each standard PSS and the MTC at that time is one axis with the standard PSS adsorption amount and the other axis with the MTC. The standard PSS adsorption sample curve is created by plotting in the chart and drawing a line connecting the plots by molecular weight. On the other hand, for example, the adsorption amount (A) of PSS on the surface of the anion exchange resin used in the actual condensate demineralizer is determined by the method of the present invention, and the MTC is determined by the above method. Plotted as point B (MTC and A for anion exchange resin used in actual condensate demineralizer) in a chart depicting the PSS adsorption sample curve.
[0030]
Each standard PSS adsorption sample curve is compared with point B to estimate the average molecular weight of PSS adsorbed on the surface of the anion exchange resin used in the actual condensate demineralizer, for example, the standard PSS adsorption sample curve closest to point B Based on the above, the MTC decreasing tendency with the increase in the PSS adsorption amount on the surface of the anion exchange resin is predicted. In the subsequent measurements, the amount of PSS adsorbed on the anion exchange resin currently used in the actual machine is measured by the method of the present invention, so that the anion in use in the actual machine is based on the standard PSS adsorption sample curve closest to point B. The MTC of the ion exchange resin can be estimated. Furthermore, for example, MTC is 1 (× 10-4m / sec) is read from the above chart to determine the allowable amount of PSS adsorption until reaching the ion exchange resin replacement timing.
[0031]
【Example】
The present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto.
[0032]
Example 1
New anion exchange resin Amberlite IRA900 (1 in the column of “MW 50,000 standard product” in Table 1) manufactured by Rohm and Haas, and an aqueous solution of standard PSS having a molecular weight of “MW” of 50,000. Five types of anion exchange resins added in advance and adsorbed with standard PSS to reduce the reaction rate ((2) to (6) in “MW 50,000 standard product” column of Table 1), and actual condensate Four types of anion exchange resins in use in the desalting tower (actual anion exchange resins Nos. 1 to 4 in Table 3. These four types of anion exchange resins are condensate demineralizers of different power plants, respectively. The infrared absorption spectrum was measured. The measurement conditions were as follows. Based on the data in Table 1, the calibration curve of FIG.
[0033]
〔Measurement condition〕
Equipment: JEOL Ltd. sales infrared spectrometer “DIAMOND 20”
Attached equipment: ATR equipment
Crystal plate: ZnSe
Incident angle: 45 degrees
Integration count: 1024
[0034]
The reaction rates of these anion exchange resins were evaluated by measuring the mass transfer coefficient “MTC” of the anion exchange resin by the method described above. Five types of anion exchange resins ("MW10,000" in Table 2) in which an aqueous solution of standard PSS having a molecular weight of "MW" 10,000 was previously added to the new anion exchange resin to adsorb the standard PSS and reduce the reaction rate. The mass transfer coefficient “MTC” was also measured for (2) to (6)) in the “standard product” column. The results are shown in Table 2, Table 3 and FIG. In addition, the density | concentration and molecular weight of standard PSS were measured using the gel permeation chromatography, and the adsorption amount of standard PSS to the anion exchange resin was calculated | required by the above-mentioned method.
[0035]
In the infrared absorption spectrum of each anion exchange resin used in the actual condensate demineralization tower, the wave number of 977 cm is the same as the infrared absorption spectrum of the anion exchange resin sample adsorbed with standard PSS.-1The absorption of anion exchange resin was detected at a wave number of 1009 cm.-11035cm-11126cm-1, 1182cm-1It was confirmed that absorption derived from PSS as a contaminant was detected at (wide peak).
[0036]
Wave number 977 cm of each obtained infrared absorption spectrum-1Wave number 1126cm for absorption of water-1The intensity ratio of absorption was calculated. The results are shown in Tables 1 and 3. In Tables 1 and 2, “MW 10,000 standard product” and “MW 50,000 standard product” are “standard PSS having a molecular weight of 10,000” or “standard PSS having a molecular weight of 50,000” respectively. It shows that it used for adsorption to exchange resin. In Tables 1 and 2, “PSS” represents the amount of PSS adsorbed to the anion exchange resin, and in Table 3, “calculated PSS amount” was determined from the absorption intensity ratio using the calibration curve of FIG. FIG. 4 is a graph showing the relationship between the mass transfer coefficient “MTC” and the PSS adsorption amount on the anion exchange resin surface portion.
[0037]
[Table 1]
Figure 0003633195
[0038]
[Table 2]
Figure 0003633195
[0039]
[Table 3]
Figure 0003633195
[0040]
From the molecular weight 10,000 standard PSS adsorption sample curve and the molecular weight 50,000 standard PSS adsorption sample curve in FIG. 4, the reaction rate of each anion exchange resin during use in the actual condensate demineralization tower is decreased (decrease in MTC). The main cause is the adsorption of the PSS eluate, which is a decomposition product of the cation exchange resin, to the anion exchange resin, and the average molecular weight of the adsorbed PSS is considered to be about 10,000 to 50,000. .
[0041]
“Actual anion exchange resins No. 1 and No. 2” both have an MTC of 1.8 (× 10-4m / sec), but the PSS adsorption amount is No. No. 1 is about 100 mg / L-resin and 2 is 200 mg / L-resin and is different between the two. No. in FIG. Since the point 1 is close to the molecular weight 50,000 standard PSS adsorption sample curve, it is conceivable that the MTC will rapidly decrease in the future, and the MTC is 1 (× 10-4m / sec), the amount of PSS that can be further adsorbed is estimated to be about 60 mg / L-resin. On the other hand, in FIG. Since the point of 2 is close to the molecular weight 10,000 standard PSS adsorption sample curve, the MTC is 1 (× 10-4m / sec), the amount of PSS that can be further adsorbed is estimated to be about 100 mg / L-resin. No. in FIG. Since the point 3 is approximately in the middle of the molecular weight 10,000 standard PSS adsorption sample curve and the molecular weight 50,000 standard PSS adsorption sample curve, the MTC is 1 (× 10-4m / sec), the amount of PSS that can be further adsorbed is predicted to be about 50 mg / L-resin. No. in FIG. The point of 4 is general MTC tolerance limit = 1 (× 10-4m / sec) or less, it can be seen that the anion exchange resin must already be replaced.
[0042]
【The invention's effect】
Conventionally, it is necessary to keep the ion exchange resin in the condensate demineralization tower healthy in order to maintain the water quality of the power system circulation system well. The same applies to a general water treatment apparatus such as a pure water production apparatus (demineralization apparatus). In any case, it is important for water quality management to accurately evaluate and judge the performance of the ion exchange resin. However, if only the performance evaluation based on the conventional reaction rate measurement of the ion exchange resin is used, the cause of contamination of the ion exchange resin is unknown and it is difficult to cope with the rapid decrease in the reaction rate. Therefore, by introducing the method for evaluating an ion exchange resin according to the present invention, it is possible to clarify the cause of contamination of the ion exchange resin and predict in advance a sudden decrease in the reaction rate of the ion exchange resin. It becomes. Furthermore, in comparison with the conventional method for evaluating the performance of ion exchange resins by MTC measurement, the method of the present invention evaluates the performance of the ion exchange resin by performing a surface analysis of the ion exchange resin. The amount of ion-exchange resin can be as small as 1 to several tens (thousands or more in MTC measurement), and the analysis time can be as short as 1 to 20 minutes (several days in MTC measurement).
[0043]
According to the management method of the present invention, the use limit can be predicted before the ion exchange resin does not function normally, and the water treatment system can be managed stably. The management method of the present invention can be suitably used for, for example, an anion exchange resin used in a condensate demineralizer, and more preferably, PWR (pressurized water reactor) or BWR (boiling water reactor). It can be used for anion exchange resins used in condensate demineralizers of nuclear power plants.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 shows infrared absorption by an ATR method of one standard sample made of a resin in which a standard polystyrene sulfonic acid (molecular weight: 50,000) is adsorbed on an anion exchange resin (294 mg / L-resin). FIG.
2 shows an anion exchange resin No. 1 used in the actual condensate demineralization tower in Example 1. FIG. It is an infrared absorption spectrum figure by ATR method of 1.
FIG. 3 shows the adsorption amount of standard polystyrene sulfonic acid (molecular weight: 50,000) on the anion exchange resin surface and the wave number of 977 cm of the anion exchange resin in the infrared absorption spectrum by the ATR method.-1Wave number of adsorbed standard polystyrene sulfonic acid for absorption of 1126 cm-1It is the figure showing the calibration curve which shows correlation with the intensity ratio (absorption peak height ratio) of absorption.
FIG. 4 shows the results of Example 1 and shows the relationship between the mass transfer coefficient “MTC” and the PSS adsorption amount on the anion exchange resin surface.

Claims (6)

イオン交換樹脂の赤外分光法による表面分析により、前記イオン交換樹脂の表面部分における不純物である汚染物質の同定、分布状況の測定及び/又は定量を行ってイオン交換樹脂の性能評価を行うに当たって、イオン交換樹脂由来の吸収に対比して汚染物質由来の吸収を分析して、イオン交換樹脂由来の吸収と同定された汚染物質由来の吸収の強度比からイオン交換樹脂の汚染度合いを求めることを特徴とするイオン交換樹脂の性能評価方法。The surface analysis by infrared spectroscopy of the ion exchange resin is carried out the identification of pollutant which is an impurity in the surface portion of the ion exchange resin, I line measurement and / or quantification of distribution performance evaluation of an ion exchange resin In this case, the absorption from the pollutant is analyzed in comparison with the absorption from the ion exchange resin, and the degree of contamination of the ion exchange resin is determined from the intensity ratio of the absorption from the contaminant identified as the absorption from the ion exchange resin. A method for evaluating the performance of an ion exchange resin characterized by the following. 前記表面分析を、フーリエ変換赤外全反射分光法により行うことを特徴とする請求項1に記載のイオン交換樹脂の性能評価方法。The method for evaluating the performance of an ion exchange resin according to claim 1, wherein the surface analysis is performed by Fourier transform infrared total reflection spectroscopy. 前記イオン交換樹脂が、陰イオン交換樹脂であり、汚染物質が、ポリスチレンスルホン酸であることを特徴とする請求項1又は2に記載のイオン交換樹脂の性能評価方法。The ion exchange resin, Ri anion exchange resin der contaminants, performance evaluation method of an ion exchange resin according to claim 1 or 2, characterized in that the polystyrene sulphonic acid. イオン交換樹脂の赤外分光法による表面分析により、前記イオン交換樹脂の表面部分における不純物である汚染物質の同定、分布状況の測定及び/又は定量を行ってイオン交換樹脂の性能評価を行うに当たって、イオン交換樹脂由来の吸収に対比して汚染物質由来の吸収を分析して、イオン交換樹脂由来の吸収と同定された汚染物質由来の吸収の強度比からイオン交換樹脂の汚染度合いを求めることによって、イオン交換樹脂の汚染原因と汚染状況を把握し、イオン交換樹脂の以降の反応速度低下傾向を予測し、イオン交換樹脂の交換時期を決定することを特徴とする水処理系の管理方法。The surface analysis by infrared spectroscopy of the ion exchange resin is carried out the identification of pollutant which is an impurity in the surface portion of the ion exchange resin, I line measurement and / or quantification of distribution performance evaluation of an ion exchange resin In this case, the absorption from the pollutant is analyzed in comparison with the absorption from the ion exchange resin, and the degree of contamination of the ion exchange resin is determined from the intensity ratio of the absorption from the contaminant identified as the absorption from the ion exchange resin. A method for managing a water treatment system, characterized in that the cause and state of contamination of an ion exchange resin are grasped, the subsequent reaction rate decreasing tendency of the ion exchange resin is predicted, and the replacement time of the ion exchange resin is determined. 前記表面分析を、フーリエ変換赤外全反射分光法により行うことを特徴とする請求項4に記載の水処理系の管理方法。The water treatment system management method according to claim 4, wherein the surface analysis is performed by Fourier transform infrared total reflection spectroscopy. 前記イオン交換樹脂が、陰イオン交換樹脂であり、汚染物質が、ポリスチレンスルホン酸であることを特徴とする請求項4又は5に記載の水処理系の管理方法The ion exchange resin, Ri anion exchange resin der contaminants, management method of water treatment system of claim 4 or 5, wherein the polystyrene sulfonic acid.
JP9000297A 1997-03-26 1997-03-26 Ion exchange resin performance evaluation method and water treatment system management method Expired - Lifetime JP3633195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9000297A JP3633195B2 (en) 1997-03-26 1997-03-26 Ion exchange resin performance evaluation method and water treatment system management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9000297A JP3633195B2 (en) 1997-03-26 1997-03-26 Ion exchange resin performance evaluation method and water treatment system management method

Publications (2)

Publication Number Publication Date
JPH10267838A JPH10267838A (en) 1998-10-09
JP3633195B2 true JP3633195B2 (en) 2005-03-30

Family

ID=13986408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9000297A Expired - Lifetime JP3633195B2 (en) 1997-03-26 1997-03-26 Ion exchange resin performance evaluation method and water treatment system management method

Country Status (1)

Country Link
JP (1) JP3633195B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4600617B2 (en) * 2000-08-07 2010-12-15 オルガノ株式会社 Anion exchange resin performance evaluation method and apparatus, and condensate demineralizer
JP4738381B2 (en) * 2007-05-14 2011-08-03 株式会社荏原製作所 Exchange management method of ion exchange resin in nuclear power plant condensate demineralizer
JP2013205074A (en) * 2012-03-27 2013-10-07 Dowa Eco-System Co Ltd Replacement time determination method of ion exchange resin
KR102224714B1 (en) * 2013-12-03 2021-03-08 삼성전자주식회사 System and method for searching new material

Also Published As

Publication number Publication date
JPH10267838A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
JP4600617B2 (en) Anion exchange resin performance evaluation method and apparatus, and condensate demineralizer
US5403492A (en) Ion exchange resin having dual morphology
US20090296873A1 (en) Method and apparatus for condensate demineralization
JP3633195B2 (en) Ion exchange resin performance evaluation method and water treatment system management method
JP2001215294A (en) Condensate demineralizer
US20090101586A1 (en) Adsorption of radionuclides
JPS6243519B2 (en)
JP4441894B2 (en) Method for determining adsorption state of substance adsorbed on sample surface and management method for water treatment system
JPH0247599A (en) Treatment method for radioactive nuclide containing waste liquid
JP3384946B2 (en) Method for evaluating performance of anion exchange resin and apparatus used for the method
JP3276103B2 (en) Method for evaluating performance of anion exchange resin and method for managing water treatment system by said method
JP5038232B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP4267804B2 (en) Ion exchange resin evaluation method
JP6677570B2 (en) Radionuclide removal method and radionuclide removal system
JP3864539B2 (en) Ion-exchange resin performance evaluation method
JP4406876B2 (en) Ion exchange resin performance evaluation method and water treatment system management method
US11227698B2 (en) Method for identifying the unit causing a raw water leak in a condenser of a thermal power plant
JP2005003597A (en) Method for evaluating performance of strongly acidic positive ion exchanging resin in mixed bed condensate polisher of primary cooling water system at pressurized-water nuclear power generating plant
JP2006194738A (en) Performance evaluation method for sulfonic acid type cation exchange resin of primary cooling water system desalination tower of pressurized water type nuclear power plant
JP2004093231A (en) Method of measuring ion in solution and method of analyzing ion exchange resin
JP3137388B2 (en) Life prediction method of ion exchange resin
JP2008023414A (en) Method for evaluating performance of anion exchange resin
JP2000046990A (en) Method for analyzing amount of impurity eluted from ion exchange resin
Hunkele et al. Removal of radioactive cobalt from highly saline streams
JP4738381B2 (en) Exchange management method of ion exchange resin in nuclear power plant condensate demineralizer

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040721

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term