JP3137388B2 - Life prediction method of ion exchange resin - Google Patents

Life prediction method of ion exchange resin

Info

Publication number
JP3137388B2
JP3137388B2 JP03267795A JP26779591A JP3137388B2 JP 3137388 B2 JP3137388 B2 JP 3137388B2 JP 03267795 A JP03267795 A JP 03267795A JP 26779591 A JP26779591 A JP 26779591A JP 3137388 B2 JP3137388 B2 JP 3137388B2
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
ion
life
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03267795A
Other languages
Japanese (ja)
Other versions
JPH05104000A (en
Inventor
一郎 稲見
雅之 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03267795A priority Critical patent/JP3137388B2/en
Publication of JPH05104000A publication Critical patent/JPH05104000A/en
Application granted granted Critical
Publication of JP3137388B2 publication Critical patent/JP3137388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はたとえば沸騰水型原子炉
を使用する原子力発電所(以下、BWR原子力発電所と
記す)の復水脱塩塔内に充填されているイオン交換樹脂
の寿命予測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the life of an ion-exchange resin packed in a condensate desalination tower of a nuclear power plant using a boiling water reactor (hereinafter referred to as a BWR nuclear power plant). About the method.

【0002】[0002]

【従来の技術】BWR原子力発電所で使用されている復
水脱塩塔のイオン交換樹脂には定まった使用期間(寿
命)がなく廃棄物発生量低減という見地からは出来るだ
け長く使用したほうがよく、高純度水質を維持するため
には定期検査ごとに新品と交換したほうがよい。
2. Description of the Related Art The ion exchange resin of a condensate desalination tower used in a BWR nuclear power plant has no fixed use period (life) and should be used as long as possible from the viewpoint of reducing the amount of waste generated. In order to maintain high-purity water quality, it is better to replace it with a new one at each periodic inspection.

【0003】一方、復水脱塩塔に限ればクラッド除去性
能は図6に示したように年々向上するため、放射線被曝
低減上、クラッドの炉内持ち込みを減らさなければなら
ないという立場からは、劣化を懸念しながらイオン交換
樹脂を長年使用せざるを得なかった。
On the other hand, if only the condensate desalination tower is used, the performance of removing the clad is improved year by year as shown in FIG. 6. Therefore, in order to reduce the radiation exposure, it is necessary to reduce the carry-in of the clad into the furnace. I had to use the ion exchange resin for many years while worried.

【0004】これまでの経験から、陽イオン交換樹脂
(カチオン樹脂)は10年程度使用しても、強度およびイ
オン交換能力に顕著な低下はみられず、陰イオン交換樹
脂(アニオン樹脂)はイオン交換基の弱塩基化はおこる
が、クラッド除去性能に関しての寄与はないので、陰イ
オン交換樹脂のみ交換するという策が採られていた。
[0004] From experience, even when a cation exchange resin (cation resin) has been used for about 10 years, there is no remarkable decrease in strength and ion exchange capacity. Although the exchange group is weakly basified, it does not contribute to the performance of removing the clad, so that only the anion exchange resin is exchanged.

【0005】しかしながら、陽イオン交換樹脂は強度お
よびイオン交換能力に顕著な低下はみられないといって
も長年使用すると、有機不純物の溶出という問題が懸念
されている。
[0005] However, even if the cation exchange resin is used for a long time even though the strength and the ion exchange capacity are not remarkably reduced, there is a concern about the problem of elution of organic impurities.

【0006】[0006]

【発明が解決しようとする課題】従来技術の課題は、B
WR原子力発電所でイオン交換樹脂が何年使用できるか
がまったくわからなかったこと、したがって使用年数を
経てくると、突然の劣化を懸念しながら使用せざるを得
なかったことである。本発明が解決しようとしている課
題はこのようにイオン交換樹脂の寿命を予測できなかっ
たところにある。
The problems of the prior art are:
There was no telling how many years the ion exchange resin could be used at the WR nuclear power plant, and over the years of use it had to be used worried about sudden degradation. The problem to be solved by the present invention is that the life of the ion exchange resin cannot be predicted in this way.

【0007】本発明は上記課題を解決するためになされ
たもので、たとえば冷却材中の腐食生成物などのクラッ
ド除去性能に大きく係わる陽イオン交換樹脂の寿命を予
測することでイオン交換樹脂の交換に計画性を持たせる
ことができるイオン交換樹脂の寿命予測方法を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. For example, the present invention is based on the prediction of the service life of a cation exchange resin, which greatly affects the performance of removing a clad such as a corrosion product in a coolant, to replace the ion exchange resin. It is an object of the present invention to provide a method for estimating the life of an ion exchange resin, which can give a planner to a product.

【0008】[0008]

【課題を解決するための手段】本発明は陽イオン交換樹
脂中の鉄量を測定して酸化劣化の加速条件を決めたの
ち、前記陽イオン交換樹脂中に酸化剤を加えて加速劣化
処理し、次に前記加速劣化処理した劣化イオン交換樹脂
の含水率を測定し、この含水率を実機プラントデータと
対照して劣化度の判定を行い、次に前記劣化イオン交換
樹脂の各種評価試験を行い、ついで前記評価試験結果を
予め作成したイオン交換樹脂使用基準と照合して合否判
定を行う一連の操作に基いてイオン交換樹脂の寿命を予
測する方法であり、かつ前記一連の操作を異なる数点の
劣化条件の下に異なる供試用樹脂を作成して行い、これ
らの供試用樹脂の前記各種評価試験結果から内挿または
外挿することにより前記イオン交換樹脂使用基準と照合
て寿命予測することを特徴とする。
The present invention measures the amount of iron in a cation exchange resin to determine the conditions for accelerating oxidative deterioration, and then performs an accelerated deterioration treatment by adding an oxidizing agent to the cation exchange resin. Next, the moisture content of the degraded ion exchange resin subjected to the accelerated degradation treatment is measured, the degree of degradation is determined by comparing the moisture content with actual plant data, and then various evaluation tests of the degraded ion exchange resin are performed. Then, the evaluation test results
Pre the life of the ion exchange resin based on the collation to acceptability determination and previously prepared ion-exchange resin used reference to the row cormorants series of operations
Measurement method, and the above series of operations is performed at several different points.
A different test resin was created and tested under degradation conditions.
Interpolation or from the results of the various evaluation tests of the test resin
Outer insert against the O Ri said ion-exchange resin used criteria Rukoto
Characterized by life predicted.

【0009】[0009]

【作用】復水脱塩塔の陽イオン交換樹脂は使用年数とと
もに陽イオン交換樹脂粒内に鉄を取り込む(図2)。鉄
は酸化触媒として作用するため、少量の酸化剤で粒内鉄
量に応じた劣化を起こさせることができる。劣化の指標
は、酸化による架橋破断(不可逆膨潤)を定量的に表せ
る「含水率の増大」でみることができる。
The cation exchange resin of the condensate desalination tower takes in iron into the cation exchange resin particles with the age of use (Fig. 2). Since iron acts as an oxidation catalyst, a small amount of oxidizing agent can cause deterioration according to the amount of intragranular iron. An indicator of deterioration can be seen in “increase in water content”, which can quantitatively represent crosslinking rupture (irreversible swelling) due to oxidation.

【0010】実機プラントにおいて経験的に分かってい
る陽イオン交換樹脂の含水率変化から、加速劣化した年
数がわかり、一方で加速劣化イオン交換樹脂の強度,不
純物溶出特性などを試験し、使用の可否を判定して寿命
評価とする。
From the change in the water content of the cation exchange resin, which is empirically known in the actual plant, the number of years of accelerated deterioration can be determined. On the other hand, the strength, impurity elution characteristics, etc. of the accelerated deterioration ion exchange resin are tested to determine whether or not the resin can be used. Is determined and the life is evaluated.

【0011】復水脱塩塔内のイオン交換樹脂はイオンの
ほかにクラッドも除去する。一部のクラッドは陽イオン
交換樹脂の表面で溶解し、イオンとなってイオン交換樹
脂粒内に取り込まれる。これらの鉄は陽イオン交換樹脂
の薬品再生が、再生効率のよくない硫酸で行われるた
め、年々、増加する傾向にある。この鉄は酸化触媒とし
て作用する。
[0011] The ion exchange resin in the condensate desalination tower removes not only ions but also cladding. Some of the clad is dissolved on the surface of the cation exchange resin and becomes ions to be taken into the ion exchange resin particles. These irons tend to increase year by year because the chemical regeneration of the cation exchange resin is performed with sulfuric acid, which has poor regeneration efficiency. This iron acts as an oxidation catalyst.

【0012】一方、陽イオン交換樹脂は供用中に酸化を
受け、架橋が切れて膨潤する。したがって、実機使用の
陽イオン交換樹脂をサンプリングして、これに酸化剤を
加えれば、不可逆膨潤は鉄触媒の存在下で加速的に進行
する。この様にして、数年先のイオン交換樹脂の状態を
作り出すことができ、そのイオン交換樹脂がどの様な挙
動をとるかを試験により確認することが可能となる。
On the other hand, the cation exchange resin undergoes oxidation during the operation, swells due to breakage of the crosslinks. Therefore, if a cation exchange resin used in a real machine is sampled and an oxidizing agent is added thereto, irreversible swelling proceeds at an accelerated rate in the presence of an iron catalyst. In this way, the state of the ion exchange resin several years from now can be created, and it is possible to confirm by a test what behavior the ion exchange resin will take.

【0013】[0013]

【実施例】図1から図5を参照しながら本発明に係るイ
オン交換樹脂の寿命予測方法の一実施例を説明する。図
1は本実施例の寿命予測方法の工程図を、図2から図5
は図1における各工程中の関係曲線図または線図を示し
ている。すなわち、図1において、寿命を予測しようと
する試料とする陽イオン交換樹脂中の鉄量測定(符号
1)を行い、劣化の加速条件決定(符号2)を行う。こ
の加速条件とはイオン交換樹脂中の鉄量と過酸化水素に
よる処理時間、処理温度および過酸化水素濃度と、イオ
ン交換樹脂/過酸化水素の定量比で規定される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a method for estimating the life of an ion exchange resin according to the present invention will be described with reference to FIGS. FIG. 1 is a process chart of the life estimation method of the present embodiment, and FIGS.
Shows a relationship curve diagram or diagram during each step in FIG. That is, in FIG. 1, the amount of iron in a cation exchange resin as a sample whose life is to be predicted is measured (reference numeral 1), and a condition for accelerating deterioration is determined (reference numeral 2). The acceleration conditions are defined by the amount of iron in the ion exchange resin, the treatment time with hydrogen peroxide, the treatment temperature, the hydrogen peroxide concentration, and the quantitative ratio of ion exchange resin / hydrogen peroxide.

【0014】この条件で加速劣化処理(符号3)したの
ち、イオン交換樹脂の含水率測定(符号4)を行い、何
年相当の劣化が起きたかを実機プラントデータ(符号
5)との対照から劣化度(何年使用相当か)判定(符号
6)を行う。次にこの加速劣化イオン交換樹脂を用いた
評価試験(符号7)を行う。この評価試験は強度、溶
出、交換容量、交換速度などである。
After accelerated deterioration treatment (reference numeral 3) under these conditions, the moisture content of the ion exchange resin is measured (reference numeral 4), and how many years of deterioration has occurred is compared with the actual plant data (reference numeral 5). Deterioration degree (how many years of use) is determined (reference numeral 6). Next, an evaluation test (reference numeral 7) using the accelerated deterioration ion exchange resin is performed. This evaluation test includes strength, dissolution, exchange capacity, exchange rate, and the like.

【0015】この評価試験結果をイオン交換樹脂使用基
準(符号8)と照合して使用の可,不可の合否判定(符
号9)を行う。そして、この合否判定により前記劣化度
の判定(符号6)にフィードバックし、異なる数点の劣
化条件の下に劣化度の異なる供試用樹脂を作成する。こ
れらの供試用樹脂の各種評価試験結果から内挿または外
挿することにより、前記イオン交換樹脂使用基準8と照
合して加速劣化の度合いを数点変えることで、その後ど
の位の期間使用できるかという寿命予測(符号10)をた
てることができる。
The evaluation test result is compared with the ion exchange resin use standard (reference numeral 8) to determine whether the use is possible or not (reference numeral 9). The pass / fail judgment is fed back to the deterioration degree judgment (reference numeral 6), and several different inferiorities are obtained.
Under test conditions, test resins with different degrees of degradation are prepared. This
Interpolated or extrapolated from the results of various evaluation tests of these test resins
By insertion, the ion exchange resin use standard 8 is illuminated.
In addition, by changing the degree of accelerated deterioration by several points, it is possible to make a life expectancy (reference numeral 10) as to how long it can be used thereafter.

【0016】図2は陽イオン交換樹脂の粒内鉄量とイオ
ン交換樹脂の使用年数との関係を示している。図3は陽
イオン交換樹脂1リットル当たり9gの鉄量を保有して
いる5年間使用の復水脱塩塔イオン交換樹脂試料を 0.5
%過酸化水素水でイオン交換樹脂1に対し、過酸化水素
水10の容量比で60℃条件下で浸漬放置したときの処理時
間に対するイオン交換樹脂含水率をみたものである。
FIG. 2 shows the relationship between the amount of intragranular iron in the cation exchange resin and the age of the ion exchange resin. FIG. 3 shows a sample of a condensate desalination tower ion-exchange resin sample that has been used for 5 years and has 9 g of iron per liter of cation-exchange resin.
In this figure, the water content of the ion exchange resin with respect to the treatment time when immersed and left at 60 ° C. in a volume ratio of the hydrogen peroxide solution 10 with respect to the ion exchange resin 1 with respect to the ion exchange resin 1 is shown.

【0017】この結果を実機プラントで何年相当の含水
率か判定すると、4時間処理したイオン交換樹脂が12
年、8時間処理したイオン交換樹脂が14年、24時間処理
したイオン交換樹脂が20年相当の劣化を示している。
From the result, it was determined how many years the water content was in the actual plant.
Yearly, the ion exchange resin treated for 8 hours shows deterioration for 14 years, and the ion exchange resin treated for 24 hours shows deterioration for 20 years.

【0018】次にこれらの劣化陽イオン交換樹脂を純水
中に30℃で浸漬したときの24時間後の全有機物炭素(T
OC)溶出速度を相当使用年数に対して盛った図を図4
に示す。また、図5は相当使用年数とイオン交換樹脂の
押し潰し強度の関係を示したものである。それぞれのイ
オン交換樹脂の特性に対する使用基準値から、合否判定
すると、図5の押し潰し強度では、18年まですなわち残
り13年使用できると判定されるが、図4のTOC溶出で
は12年まですなわち残り7年しか使用できないと判定さ
れる。このように複数の判定基準を設け、もっとも短い
寿命で安全側に評価する。
Next, when these deteriorated cation exchange resins were immersed in pure water at 30 ° C., the total organic carbon (T
FIG. 4 is a graph in which OC) elution rates are plotted with respect to the number of years of use.
Shown in FIG. 5 shows the relationship between the number of years of use and the crushing strength of the ion exchange resin. When the pass / fail judgment is made based on the use reference values for the characteristics of each ion exchange resin, it is determined that the crushing strength in FIG. 5 can be used up to 18 years, that is, the remaining 13 years, but the TOC elution in FIG. It is determined that only the remaining seven years can be used. In this way, a plurality of criteria are provided, and the shortest life is evaluated on the safe side.

【0019】この実施例では5年間使用した復水脱塩塔
のイオン交換樹脂に対して余命7年と判定された。した
がって、7年後に全塔を交換する計画が立てられる。こ
の場合、前に述べたように、新品のイオン交換樹脂交換
にクラッド除去性能の低下が心配される。したがって、
7年かけて逐次イオン交換樹脂交換を行うという方法も
採られるし、別途クラッド除去装置の設置を検討する猶
予も7年あればできる。一方、廃棄物の処理処分という
観点からも、7年という期間は廃イオン交換樹脂の取扱
いを検討するに十分な期間であろう。
In this example, the life expectancy of the ion exchange resin of the condensate desalination tower used for 5 years was determined to be 7 years. Therefore, a plan is made to replace all towers in seven years. In this case, as described above, there is a concern that replacement of a new ion-exchange resin may lower the clad removal performance. Therefore,
A method of successively exchanging the ion exchange resin over seven years may be adopted, and if there is a lapse of seven years to consider separately installing a clad removing apparatus. On the other hand, from the viewpoint of waste treatment and disposal, the period of seven years will be a sufficient period for considering handling of waste ion exchange resin.

【0020】陽イオン交換樹脂中の鉄量が多い場合は、
実施例の過酸化水素濃度より、低い濃度にする、加速劣
化温度を低くするイオン交換樹脂/過酸化水素水の容量
比を大きくするなどの条件変更を行う。逆に陽イオン交
換樹脂中の鉄量が少ない場合は、それと逆の操作を行
う。本発明では、酸化剤として過酸化水素を用いている
が他の酸化剤や紫外線のような酸化装置を用いることで
も目的を達成することができる。
When the amount of iron in the cation exchange resin is large,
Conditions are changed such as lowering the hydrogen peroxide concentration in the embodiment, increasing the capacity ratio of ion exchange resin / hydrogen peroxide solution to lower the accelerated deterioration temperature, and the like. Conversely, when the amount of iron in the cation exchange resin is small, the reverse operation is performed. In the present invention, hydrogen peroxide is used as the oxidizing agent, but the object can be achieved by using another oxidizing agent or an oxidizing device such as ultraviolet rays.

【0021】使用可否の判定に、TOC溶出速度と押し
潰し強度を用いたが、他の基準、例えばイオン交換容
量、イオン交換速度なども併用し、多面的な評価をした
ほうが正確である。また、新品のイオン交換樹脂に対し
ては、鉄をクラッドもしくはイオンで付加させて、本発
明の加速劣化および寿命評価を行う。
Although the TOC elution rate and the crushing strength were used to judge the applicability, it is more accurate to perform a multifaceted evaluation by using other criteria such as ion exchange capacity and ion exchange rate. In addition, iron is added to a new ion exchange resin by cladding or ions, and the accelerated deterioration and life evaluation of the present invention are performed.

【0022】[0022]

【発明の効果】本発明によればイオン交換樹脂の交換時
期が予測できるため、計画的なイオン交換樹脂の交換が
可能となる。したがって、新品のイオン交換樹脂の在庫
期間を短くでき、経済的であると同時に、保管中の劣化
を最小限に止めることができる。このほか復水脱塩塔の
全塔一括交換も回避できることで、水質悪化要因をTO
Cとクラッドの両面からなくすことが可能となる。
According to the present invention, the replacement time of the ion exchange resin can be predicted, so that the replacement of the ion exchange resin can be planned. Therefore, the stock period of a new ion exchange resin can be shortened, and it is economical, and at the same time, deterioration during storage can be minimized. In addition, by avoiding simultaneous replacement of all of the condensate desalination towers, TO
It is possible to eliminate from both sides of C and the clad.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るイオン交換樹脂の寿命予測方法の
一実施例を示す工程図。
FIG. 1 is a process diagram showing one embodiment of a method for predicting the life of an ion exchange resin according to the present invention.

【図2】図1における陽イオン交換樹脂の粒内鉄量と使
用年数との関係を示す曲線図。
FIG. 2 is a curve diagram showing the relationship between the amount of intragranular iron of the cation exchange resin in FIG. 1 and the years of use.

【図3】図1における陽イオン交換樹脂含水率と酸化処
理時間との関係を示す曲線図。
FIG. 3 is a curve diagram showing the relationship between the water content of the cation exchange resin and the oxidation treatment time in FIG.

【図4】図1における評価試験のTOC溶出速度と使用
相当年数との関係を示す線図。
FIG. 4 is a diagram showing the relationship between the TOC dissolution rate and the number of years of use in the evaluation test in FIG.

【図5】図1における評価試験の押し潰し強度と使用相
当年数との関係を示す曲線図。
5 is a curve diagram showing the relationship between the crushing strength and the number of years of use in the evaluation test in FIG.

【図6】従来のイオン交換樹脂の寿命予測方法における
クラッド除去性能とイオン交換樹脂の使用年数との関係
を示す曲線図。
FIG. 6 is a curve diagram showing the relationship between the clad removal performance and the years of use of the ion exchange resin in the conventional method for predicting the life of an ion exchange resin.

【符号の説明】[Explanation of symbols]

1…イオン交換樹脂中の鉄量測定、2…劣化の加速条件
決定、3…加速劣化処理、4…劣化イオン交換樹脂の含
水率測定、5…実機プラントデータ、6…劣化度の判
定、7…評価試験、8…イオン交換樹脂使用基準、9…
合否判定、10…寿命予測。
1. Measurement of iron content in ion exchange resin. 2. Determination of deterioration acceleration conditions. 3. Acceleration deterioration treatment. 4. Measurement of water content of deteriorated ion exchange resin. 5. Actual plant data. 6. Determination of deterioration degree. 7. ... Evaluation test, 8 ... Ion-exchange resin use standard, 9 ...
Pass / fail judgment, 10 ... Life expectancy.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01J 47/00 - 47/14 C02F 1/42 G21C 17/003 G21F 9/12 ──────────────────────────────────────────────────の Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B01J 47/00-47/14 C02F 1/42 G21C 17/003 G21F 9/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 陽イオン交換樹脂中の鉄量を測定して酸
化劣化の加速条件を決めたのち、前記陽イオン交換樹脂
中に酸化剤を加えて加速劣化処理し、次に前記加速劣化
処理した劣化イオン交換樹脂の含水率を測定し、この含
水率を実機プラントデータと対照して劣化度の判定を行
い、次に前記劣化イオン交換樹脂の各種評価試験を行
い、ついで前記評価試験結果を予め作成したイオン交換
樹脂使用基準と照合して合否判定を行う一連の操作に基
いてイオン交換樹脂の寿命を予測する方法であり、かつ
前記一連の操作を異なる数点の劣化条件の下に異なる供
試用樹脂を作成して行い、これらの供試用樹脂の前記各
種評価試験結果から内挿または外挿することにより前記
イオン交換樹脂使用基準と照合して寿命予測することを
特徴とするイオン交換樹脂の寿命予測方法。
1. The method according to claim 1, wherein the amount of iron in the cation exchange resin is measured to determine conditions for accelerating oxidative degradation.
An oxidizing agent is added to the inside for accelerated deterioration treatment, and then the accelerated deterioration
The moisture content of the treated degraded ion exchange resin was measured and this
The water content is compared with the actual plant data to determine the degree of deterioration, then various evaluation tests of the deteriorated ion exchange resin are performed, and then the evaluation test results are compared with a previously prepared ion exchange resin use standard to pass or fail. based on the decision in a row jar series of operations
Method to predict the life of the ion exchange resin, and
The above series of operations is performed under different conditions under several different degradation conditions.
A test resin was prepared and performed.
Said Ri by the Rukoto to interpolate interpolated or out of the seed evaluation test results
A method for estimating the life of an ion-exchange resin, comprising predicting the life of the ion-exchange resin by comparing it with a use standard of the ion-exchange resin.
JP03267795A 1991-10-16 1991-10-16 Life prediction method of ion exchange resin Expired - Fee Related JP3137388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03267795A JP3137388B2 (en) 1991-10-16 1991-10-16 Life prediction method of ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03267795A JP3137388B2 (en) 1991-10-16 1991-10-16 Life prediction method of ion exchange resin

Publications (2)

Publication Number Publication Date
JPH05104000A JPH05104000A (en) 1993-04-27
JP3137388B2 true JP3137388B2 (en) 2001-02-19

Family

ID=17449703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03267795A Expired - Fee Related JP3137388B2 (en) 1991-10-16 1991-10-16 Life prediction method of ion exchange resin

Country Status (1)

Country Link
JP (1) JP3137388B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583570B2 (en) * 1999-12-06 2010-11-17 オルガノ株式会社 Cation exchange resin performance evaluation method and water treatment system management method using the same

Also Published As

Publication number Publication date
JPH05104000A (en) 1993-04-27

Similar Documents

Publication Publication Date Title
WO2012009781A1 (en) Reactor decontamination process and reagent
US8353990B2 (en) Process for chemically decontaminating radioactively contaminated surfaces of a nuclear plant cooling system using an organic acid followed by an anionic surfactant
JPS6158800B2 (en)
US6633624B1 (en) Condensate demineralization
Velmurugan et al. Experience with dilute chemical decontamination in Indian pressurized heavy water reactors
JP3137388B2 (en) Life prediction method of ion exchange resin
US5398268A (en) Nuclear power plant having a water chemistry control system for a primary cooling system thereof and an operation method thereof
US6147274A (en) Method for decontamination of nuclear plant components
EP0164937A1 (en) Method of decontaminating metal surfaces
WO1997017146A9 (en) Method for decontamination of nuclear plant components
WO1997017146A1 (en) Method for decontamination of nuclear plant components
US9115010B2 (en) Demineralizer of primary coolant system in pressurized-water reactor power plant and method for purifying primary cooling water in pressurized-water reactor power plant
JP3276103B2 (en) Method for evaluating performance of anion exchange resin and method for managing water treatment system by said method
JPH102890A (en) Cation exchange resin performance evaluating method
JP2000009703A (en) Performance evaluation method for anion-exchange resin
JP2021508041A (en) A method for identifying the unit that causes a raw water leak in a condenser condenser
Miller et al. Controlling radiation fields in CANDU reactors using chemical decontamination technologies
Maeda et al. The relationship between the reactor water sulfate ion concentration and cation exchange resin of CD in BWR
Burrows et al. Corrosion electrochemistry of fuel element materials in pond storage conditions
JP2002045851A (en) Operation control method of condensed water desalting device
Gangwer et al. Radiation-induced corrosion of mild steel in contact with ion-exchange materials
JPH10267838A (en) Method for evaluating performance of ion-exchange resin and method for managing water-treating system
Rizzato Investigation on retained and released $^ 14} $ C and effects of gamma-radiation for spent Ion-exchange resins arising from boiling water reactors
JP4267804B2 (en) Ion exchange resin evaluation method
KR20000055710A (en) CCP Process for SG Molar Ratio Control in NPP and CPP device of the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees