JPH10267838A - Method for evaluating performance of ion-exchange resin and method for managing water-treating system - Google Patents

Method for evaluating performance of ion-exchange resin and method for managing water-treating system

Info

Publication number
JPH10267838A
JPH10267838A JP9000297A JP9000297A JPH10267838A JP H10267838 A JPH10267838 A JP H10267838A JP 9000297 A JP9000297 A JP 9000297A JP 9000297 A JP9000297 A JP 9000297A JP H10267838 A JPH10267838 A JP H10267838A
Authority
JP
Japan
Prior art keywords
exchange resin
ion
anion exchange
ion exchange
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9000297A
Other languages
Japanese (ja)
Other versions
JP3633195B2 (en
Inventor
Yusuke Nagata
祐輔 永田
Daijiro Kobori
大二郎 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP9000297A priority Critical patent/JP3633195B2/en
Publication of JPH10267838A publication Critical patent/JPH10267838A/en
Application granted granted Critical
Publication of JP3633195B2 publication Critical patent/JP3633195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To grasp a cause and a state of contamination and enable estimation of a use limit, etc., by carrying out identification, determination, etc., to impurities of a surface part of an ion-exchange resin by a surface analysis method. SOLUTION: In evaluating an ion-exchange resin being used in various kinds of water-treating apparatuses, preferably, a surface analysis is carried out by the Fourier transform infrared total reflection analysis method (ATR method), thereby identifying a contaminant. Moreover, a degree of contamination is obtained from an intensity ratio of the natural absorption originated from the ion-exchange resin and the absorption originated from the contaminant. For example, an anion exchange resin used in a condensation desalination tower of a power plant is detected to be contaminated with polystyrene sulfonic acid eluted from a cation exchange resin by the ATR method, so that a quantitative working curve can be formed from a standard sample. A time when the anion exchange resin should be exchanged is judged, for example, from a mass-transfer coefficient(MTC). A quantitative value of the contaminant obtained by the ATR method is correlated to the MTC, and therefore can be utilized to judge the exchange time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種水処理装置で
使用されているイオン交換樹脂の性能評価方法、およ
び、該方法を利用した水処理系の管理方法に関し、特
に、火力発電所や原子力発電所において用いられている
復水脱塩装置や一般純水製造装置(脱塩装置)等の各種
水処理装置で使用されているイオン交換樹脂の性能評価
方法、および、該方法を利用してイオン交換樹脂の交換
時期を判断・決定する水処理系の管理方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the performance of an ion exchange resin used in various water treatment apparatuses, and a method for managing a water treatment system using the method. A method for evaluating the performance of an ion exchange resin used in various water treatment devices such as a condensate desalination device and a general pure water production device (desalination device) used in a power plant, and using the method. The present invention relates to a method for managing a water treatment system for judging / determining a time for replacing an ion exchange resin.

【0002】[0002]

【従来の技術】火力発電所や原子力発電所では、発電タ
ービンを駆動させた後の蒸気を冷却して復水とし、この
復水を加熱して再び蒸気として発電タービンの駆動に利
用し発電するサイクルを繰り返している。このため、復
水は、ボイラー、蒸気発生機、原子炉等の腐食防止や作
業員の被曝の原因となる放射能(特に、不純物としての
鉄分等を介して蓄積される)低減の観点から高度に浄化
する必要があり、混床式復水脱塩装置、粉末イオン交換
樹脂フィルター、中空糸フィルター等の各種復水浄化装
置が単独或いは組み合わせて採用されている。
2. Description of the Related Art In a thermal power plant or a nuclear power plant, steam generated after driving a power generation turbine is cooled and condensed, and the condensed water is heated and used again as steam to drive the power generation turbine to generate power. The cycle is repeating. For this reason, condensate is highly sophisticated from the viewpoint of preventing corrosion of boilers, steam generators, nuclear reactors, etc., and reducing radioactivity (especially, accumulated through iron as impurities), which causes worker exposure. Various condensate purification devices such as a mixed-bed condensate desalination device, a powdered ion exchange resin filter, and a hollow fiber filter are used alone or in combination.

【0003】上記混床式復水脱塩装置は、通常、複数の
復水脱塩塔(以下、「脱塩塔」と略す)からなる通水系
統と、脱塩塔にて使用したイオン交換樹脂を再生する再
生系統とからなる。脱塩塔内には、一般に、H形又はN
3 形の強酸性陽イオン交換樹脂とOH形の強塩基性陰
イオン交換樹脂が充填されている。
[0003] The mixed bed type condensate desalination apparatus generally includes a water flow system including a plurality of condensate desalination towers (hereinafter abbreviated as "desalination towers") and an ion exchange system used in the desalination towers. And a regeneration system for regenerating the resin. In the desalination tower, generally, H-form or N-form is used.
It is filled with a strongly acidic cation exchange resin in H 3 form and a strongly basic anion exchange resin in OH form.

【0004】このような復水脱塩装置において下記のよ
うに復水の処理が行われる。即ち、複数の脱塩塔に復水
をそれぞれ並列に通水し、復水中に含まれる不純物イオ
ンをイオン交換作用による吸着によって除去し、また、
酸化鉄等の金属酸化物は、濾過作用及び物理吸着作用に
よって除去し、浄化された処理水を得る。
[0004] In such a condensate desalination apparatus, condensate treatment is performed as follows. That is, the condensate is passed in parallel to a plurality of desalination towers, and impurity ions contained in the condensate are removed by adsorption by ion exchange,
Metal oxides such as iron oxide are removed by filtration and physical adsorption to obtain purified treated water.

【0005】このような脱塩塔内のイオン交換樹脂は、
通常、一定水量を処理すると再生工程に入る。再生工程
には、脱塩塔のイオン交換樹脂を再生塔(再生設備)に
移送し、イオン交換樹脂表面に付着した金属酸化物をエ
アスクラビング(air scrubbing )により除去する除去
工程と、陽イオン交換樹脂と陰イオン交換樹脂とに分離
する分離工程、更に、分離後、陽イオン交換樹脂には塩
酸又は硫酸を通薬し、陰イオン交換樹脂には水酸化ナト
リウムを通薬し、それぞれ不純物を脱着して両イオン交
換樹脂を再生する脱着工程がある。再生が終了したイオ
ン交換樹脂は、通常は貯槽に移し、別の脱塩塔内のイオ
ン交換樹脂が通水終点に達するまでの間、待機させてお
く。該別の脱塩塔で通水終点に達したイオン交換樹脂を
取り出し、代わりに待機中のイオン交換樹脂を該別の脱
塩塔に移送し、陽イオン交換樹脂と陰イオン交換樹脂と
の混床として復水の処理に供される。なお、陽イオン交
換樹脂と陰イオン交換樹脂の混合は、予備的な事前混合
と脱塩塔内での事後混合によって行い、混床とするのが
通常である。
[0005] The ion exchange resin in such a desalination tower is
Usually, when a certain amount of water is treated, a regeneration step is started. In the regeneration step, the ion exchange resin in the desalting tower is transferred to a regeneration tower (regeneration facility), and a metal oxide attached to the surface of the ion exchange resin is removed by air scrubbing. Separation process to separate resin and anion exchange resin.Furthermore, after separation, pass hydrochloric acid or sulfuric acid through cation exchange resin and pass sodium hydroxide through anion exchange resin to desorb impurities. Then, there is a desorption step of regenerating both ion exchange resins. The ion-exchange resin whose regeneration has been completed is usually transferred to a storage tank, and is kept on standby until the ion-exchange resin in another desalination tower reaches the end point of water flow. The ion exchange resin that has reached the end point of water passing is taken out in the another desalination tower, and instead, the waiting ion exchange resin is transferred to the other desalination tower, and the cation exchange resin and the anion exchange resin are mixed. Used as a floor for condensate treatment. The mixing of the cation exchange resin and the anion exchange resin is usually performed by preliminary pre-mixing and post-mixing in a desalting tower to form a mixed bed.

【0006】上記のような復水脱塩装置により処理され
た処理水に要求される水質としては、ボイラー、蒸気発
生機、原子炉等の腐食障害防止やスケール付着防止の観
点から、近年益々高純度が要求される傾向にあり、例え
ば、Naイオン、Clイオン、SO4 イオンについて
は、それぞれ0.01ppb以下が目標とされている。
上記のような不純物は、通常、復水脱塩塔内のイオン交
換樹脂にて捕捉されるが、イオン交換樹脂の性能が低下
すると、このような不純物がボイラー、蒸気発生機、原
子炉等に流入し、腐食物生成、スケール付着といった障
害が起こる。このようなことから、従来、発電所の安全
管理上、イオン交換樹脂の性能評価が重視されており、
陰イオン交換樹脂については反応速度試験を採用してい
るのが現状である。
[0006] The quality of water required for the treated water treated by the above condensate desalination apparatus has been increasing in recent years from the viewpoint of preventing corrosion damage to boilers, steam generators, nuclear reactors and the like and preventing scale adhesion. Purity tends to be required. For example, the target of Na ion, Cl ion, and SO 4 ion is 0.01 ppb or less.
Such impurities are usually captured by the ion exchange resin in the condensate desalination tower, but when the performance of the ion exchange resin is reduced, such impurities are transferred to boilers, steam generators, nuclear reactors, and the like. Inflow, causing obstacles such as corrosives formation and scale adhesion. For this reason, conventionally, the performance evaluation of ion exchange resins has been emphasized for safety management of power plants,
At present, a reaction rate test is employed for anion exchange resins.

【0007】上記のような発電所以外の一般の純水製造
装置で使用されるイオン交換樹脂も同様で、通常、混床
式や複床式で使用され、一定量採水すると再生を行う。
また、処理水の用途によっては、高度に浄化された処理
水が要求され、一定量採水後に、イオン交換樹脂の再生
を行わずに新品のイオン交換樹脂に交換する場合もあ
る。水質管理上、イオン交換樹脂の性能を健全に保つこ
とや適切な交換が重要であるが、イオン交換樹脂の性能
評価及び交換時期については、イオン交換樹脂塔出口水
の比抵抗値で管理されているのが現状である。
[0007] The same applies to ion exchange resins used in general pure water production apparatuses other than the above-mentioned power plants. Normally, they are used in a mixed-bed type or a double-bed type, and when a certain amount of water is collected, regeneration is performed.
Further, depending on the use of the treated water, highly purified treated water is required, and after a certain amount of water is collected, the ion exchange resin may be replaced with a new ion exchange resin without regeneration. From the viewpoint of water quality management, it is important to maintain the performance of the ion exchange resin soundly and properly replace it.However, the performance evaluation and replacement time of the ion exchange resin are controlled by the specific resistance value of the ion exchange resin tower outlet water. That is the current situation.

【0008】[0008]

【発明が解決しようとする課題】最近の研究によれば、
発電所の復水脱塩装置で使用されているイオン交換樹脂
について、陽イオン交換樹脂の影響で、陰イオン交換樹
脂の反応速度が低下することが明らかとなってきた。即
ち、水中のFeイオンやCuイオンを吸着した陽イオン
交換樹脂は、これらの重金属イオンの触媒作用と、水中
の溶存酸素や空気中の酸素との接触により、極僅かでは
あるが酸化分解を受け、このため陽イオン交換樹脂の母
体構造の一部であるスチレンスルホン酸のオリゴマーや
低分子ポリマー(以下、これらを「ポリスチレンスルホ
ン酸」と言う)からなる分解物が生成され、溶出したこ
れらの分解物が陰イオン交換樹脂の表面に吸着して汚染
し、陰イオン交換樹脂の反応性を低下させる大きな一因
となる。陰イオン交換樹脂の反応性が低下すると、陽イ
オン交換樹脂からの溶出物が陰イオン交換樹脂に捕捉さ
れないで、復水脱塩装置により処理された処理水に残留
し、ボイラー、蒸気発生機、原子炉等に流入し、高温下
で熱分解してCO2 やSO4 2- を生成するためにイオン
量が増加し、また、復水器への海水の漏洩に対して対処
できず、その結果、復水脱塩装置により処理された処理
水の水質が低下してしまう。通常のイオン交換樹脂再生
方法では、陰イオン交換樹脂からこれらの分解物は容易
に脱離できない。
According to recent research,
Regarding the ion exchange resin used in the condensate desalination unit of the power plant, it has become clear that the reaction rate of the anion exchange resin decreases due to the influence of the cation exchange resin. In other words, the cation exchange resin adsorbing Fe ions and Cu ions in water undergoes oxidative decomposition, albeit very slight, due to the catalytic action of these heavy metal ions and contact with dissolved oxygen in water and oxygen in air. As a result, decomposed products composed of oligomers or low-molecular polymers of styrene sulfonic acid (hereinafter, these are referred to as “polystyrene sulfonic acids”), which are part of the parent structure of the cation exchange resin, are generated and decomposed. The substance is adsorbed on the surface of the anion exchange resin and contaminates it, which is a major cause for reducing the reactivity of the anion exchange resin. When the reactivity of the anion exchange resin decreases, the eluate from the cation exchange resin is not captured by the anion exchange resin but remains in the treated water treated by the condensate desalination apparatus, and the boiler, the steam generator, It flows into nuclear reactors, etc., and pyrolyzes at high temperature to produce CO 2 and SO 4 2- , increasing the amount of ions, and also failing to cope with leakage of seawater to the condenser. As a result, the quality of the treated water treated by the condensate desalination apparatus decreases. These decomposition products cannot be easily desorbed from the anion exchange resin by a normal ion exchange resin regeneration method.

【0009】ところで、復水脱塩装置に使用中の陰イオ
ン交換樹脂の性能評価は、一般に反応速度の低下を指標
としているが、実際のプラントでは陰イオン交換樹脂の
反応速度は必ずしも使用期間と共に徐々に低下する訳で
は無く、或る時期より比較的急激に低下するため、単に
陰イオン交換樹脂の反応速度を測定するだけではその使
用限界について予測することはできない。また、新品の
陰イオン交換樹脂にポリスチレンスルホン酸の標準物質
(標準ポリスチレンスルホン酸)を添加すると、或る一
定量の標準ポリスチレンスルホン酸の吸着後に急激に陰
イオン交換樹脂の反応速度が低下することも明らかとな
ってきた。従来のような陰イオン交換樹脂の反応速度の
測定のみでは、上記のような急激な陰イオン交換樹脂の
反応速度の低下を予測することはできない。また、陰イ
オン交換樹脂の反応速度の上記のような急激な低下を予
測する方法として、標準ポリスチレンスルホン酸を陰イ
オン交換樹脂に添加し、その後の陰イオン交換樹脂の反
応速度及び標準ポリスチレンスルホン酸の吸着量を測定
する試験方法もあるが、使用する標準ポリスチレンスル
ホン酸が陰イオン交換樹脂に吸着し難いこと、標準ポリ
スチレンスルホン酸吸着量は添加量から未吸着量を差し
引いて算出することなどの理由から、分析に時間が掛か
る。
The performance evaluation of an anion exchange resin used in a condensate desalination apparatus is generally based on a decrease in the reaction rate as an index. However, in an actual plant, the reaction rate of the anion exchange resin is not necessarily the same as the use period. Since it does not decrease gradually, but rather decreases more rapidly than a certain period, it is not possible to predict the service limit of the anion exchange resin simply by measuring the reaction rate. In addition, when a standard substance of polystyrene sulfonic acid (standard polystyrene sulfonic acid) is added to a new anion exchange resin, the reaction rate of the anion exchange resin rapidly decreases after adsorption of a certain amount of standard polystyrene sulfonic acid. Has also become apparent. It is not possible to predict such a rapid decrease in the reaction rate of the anion exchange resin just by measuring the reaction rate of the anion exchange resin as in the related art. Further, as a method for predicting such a rapid decrease in the reaction rate of the anion exchange resin, standard polystyrene sulfonic acid is added to the anion exchange resin, and then the reaction rate of the anion exchange resin and the standard polystyrene sulfonic acid are added. There is also a test method for measuring the amount of adsorption, but the standard polystyrene sulfonic acid used is difficult to adsorb to the anion exchange resin, and the standard polystyrene sulfonic acid adsorption amount is calculated by subtracting the unadsorbed amount from the added amount. For a reason, analysis takes time.

【0010】また、陰イオン交換樹脂の反応速度に影響
を与えるのは、陽イオン交換樹脂からの酸化劣化分解生
成物以外に、発電所の定期検査時に使用する防錆剤、副
資材等がある。定期検査後の起動時には、通常、復水脱
塩塔に通水し、循環系統水の浄化をしていくが、この場
合、副資材等の不純物が循環系統の不純物として陰イオ
ン交換樹脂を汚染し、反応速度が低下することが考えら
れる。実際に、定期検査後起動直後に陰イオン交換樹脂
の反応速度が一時的に低下する現象が多々ある。従来の
陰イオン交換樹脂の反応速度(例えば、物質移動係数
「MTC」)測定では、陽イオン交換樹脂の既述のよう
な影響で陰イオン交換樹脂の反応速度が低下しているの
か、このような他の要因によるのか区別できない。ま
た、純水製造装置等の一般の水処理装置においては、発
電所の復水脱塩装置での現象とは逆で、陰イオン交換樹
脂が陽イオン交換樹脂に影響を与え、陽イオン交換樹脂
の反応速度が低下する現象が確認されている。
[0010] In addition to the oxidative degradation products from the cation exchange resin, rust preventives, auxiliary materials, and the like, which are used during periodic inspections of power plants, affect the reaction rate of the anion exchange resin. . At the start-up after the periodic inspection, water is usually passed through the condensate desalination tower to purify the circulation system water.In this case, impurities such as auxiliary materials contaminate the anion exchange resin as impurities in the circulation system. However, the reaction rate may decrease. Actually, there are many phenomena in which the reaction rate of the anion exchange resin temporarily decreases immediately after the regular inspection and immediately after startup. In the measurement of the reaction rate (for example, the mass transfer coefficient “MTC”) of the conventional anion exchange resin, it is determined whether the reaction rate of the anion exchange resin is reduced due to the above-described effect of the cation exchange resin. Indistinguishable from other factors. In addition, in a general water treatment apparatus such as a pure water production apparatus, an anion exchange resin affects a cation exchange resin, and is opposite to a phenomenon in a condensate desalination apparatus of a power plant. It has been confirmed that the reaction speed of the compound decreases.

【0011】発電所の復水脱塩装置及び一般純水製造装
置等においても、処理水の用途によっては、年々益々処
理水の純度向上が求められてきており、従来にも増して
高度の水質管理が要求されている。従って、従来のイオ
ン交換樹脂の反応速度による性能評価管理だけでは安全
管理上不十分で、陽イオン交換樹脂及び陰イオン交換樹
脂のより適切な性能評価及び交換時期決定が重要になっ
てきている。
In a condensate desalination unit and a general pure water production unit of a power plant, etc., the purity of the treated water is required to be improved year by year depending on the use of the treated water. Management is required. Therefore, the conventional performance evaluation management based on the reaction rate of the ion exchange resin alone is not sufficient for safety management, and more appropriate performance evaluation of the cation exchange resin and the anion exchange resin and determination of the replacement time are becoming important.

【0012】本発明は、かかる時代の要請に対応するこ
とができるイオン交換樹脂の性能評価方法及びイオン交
換樹脂の使用限界を予測できる水処理系の管理方法を提
供せんとするものである。
It is an object of the present invention to provide a method for evaluating the performance of an ion-exchange resin and a method for managing a water treatment system capable of predicting the limit of use of the ion-exchange resin, which can meet the demands of such an era.

【0013】[0013]

【課題を解決するための手段】本発明は、イオン交換樹
脂の表面分析により、前記イオン交換樹脂の表面部分に
おける不純物の同定、分布状況の測定及び/又は定量を
行うことを特徴とするイオン交換樹脂の性能評価方法、
および、イオン交換樹脂の表面分析により、前記イオン
交換樹脂の表面部分における不純物の同定、分布状況の
測定及び/又は定量を行うことによって、イオン交換樹
脂の汚染原因と汚染状況を把握し、イオン交換樹脂の以
降の反応速度低下傾向を予測し、イオン交換樹脂の交換
時期を決定することを特徴とする水処理系の管理方法を
提供するものである。
According to the present invention, there is provided an ion-exchange resin wherein the surface of the ion-exchange resin is subjected to surface analysis to identify and measure and / or quantify impurities on the surface of the ion-exchange resin. Resin performance evaluation method,
In addition, by performing the surface analysis of the ion exchange resin to identify impurities in the surface portion of the ion exchange resin and measure and / or quantify the distribution state, the cause of contamination and the contamination state of the ion exchange resin are grasped, and the ion exchange resin is contaminated. An object of the present invention is to provide a method for managing a water treatment system, which is characterized by predicting a tendency of a subsequent reduction in the reaction rate of a resin and determining a replacement time of an ion exchange resin.

【0014】本発明は、表面分析手法によるイオン交換
樹脂の性能評価方法及び該方法を利用してイオン交換樹
脂の交換時期の決定を行う水処理系の管理方法に関する
ものであるが、この表面分析手法としては、赤外分光
法、光電子分光法、光音響分光法、二次イオン質量分析
法などを挙げることができ、殊に赤外分光法を応用した
ATR法が有用である。ATR法は、深さ数μm迄の表
面領域を分析する方法であり、より深い領域の分析には
光音響分光法も有効であり、より浅い領域の分析には光
電子分光法や二次イオン質量分析法も有効である(参考
文献:講談社サイエンティフィック出版「固体表面分析
I」及び「固体表面分析II」、東京化学同人出版「F
T−IRの基礎と実際」等)。なお、これらの表面分析
手法は、火力発電所や原子力発電所では陰イオン交換樹
脂表面部分におけるスルホン酸成分(ポリスチレンスル
ホン酸成分)の測定に特に有効である。このような表面
分析手法により、例えば、復水脱塩装置等の各種水処理
装置内で使用されるイオン交換樹脂表面部分の解析を行
い、樹脂表面部分に存在する不純物を直接同定、定量す
る。これによって、従来解明不可能であったイオン交換
樹脂の汚染原因が明らかになると共に、イオン交換樹脂
の汚染状況を把握し、イオン交換樹脂のより正確な性能
評価及び以降の反応速度低下傾向を予測することが可能
となり、よって適切な交換時期の判断・決定が可能とな
る。
The present invention relates to a method for evaluating the performance of an ion-exchange resin by a surface analysis method and a method for managing a water treatment system that determines the time for exchanging the ion-exchange resin using the method. Examples of the method include infrared spectroscopy, photoelectron spectroscopy, photoacoustic spectroscopy, secondary ion mass spectroscopy, and the like. In particular, ATR using infrared spectroscopy is useful. The ATR method is a method of analyzing a surface region up to a depth of several μm. Photoacoustic spectroscopy is also effective for analysis of a deeper region, and photoelectron spectroscopy or secondary ion mass spectrometry is used for analysis of a shallower region. Analytical methods are also effective (references: “Solid Surface Analysis I” and “Solid Surface Analysis II” published by Kodansha Scientific, Tokyo Chemical Dojin Publishing “F
T-IR Fundamentals and Practice "). Note that these surface analysis methods are particularly effective for measuring a sulfonic acid component (polystyrene sulfonic acid component) on the surface of an anion exchange resin in a thermal power plant or a nuclear power plant. By such a surface analysis method, for example, the surface of an ion exchange resin used in various water treatment apparatuses such as a condensate desalination apparatus is analyzed, and impurities present on the resin surface are directly identified and quantified. By this, the cause of contamination of ion exchange resin, which could not be elucidated in the past, is clarified, the contamination status of ion exchange resin is grasped, more accurate performance evaluation of ion exchange resin and prediction of future reaction rate decrease tendency Therefore, it is possible to judge and determine an appropriate replacement time.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態に従っ
た実際の不純物測定方法及びイオン交換樹脂性能評価方
法を詳細に説明するが、本発明はこれらの実施の形態に
限定されるものでは無い。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an actual method for measuring impurities and a method for evaluating the performance of an ion exchange resin according to the embodiments of the present invention will be described in detail, but the present invention is not limited to these embodiments. Not.

【0016】本発明の方法においては、赤外分光法によ
りイオン交換樹脂の表面分析を行うのが好ましく、赤外
分光法を応用した赤外全反射分光法(ATR法、ATR
=Attenuated Total Reflectance)によりイオン交換樹
脂の表面分析を行うのが特に好ましい。このATR法
は、イオン交換樹脂を赤外光不活性な結晶板に接触さ
せ、結晶板を通して赤外光を入射させることにより、樹
脂表面部分の汚染物質を同定、定量するものである。A
TR法によれば、イオン交換樹脂表面部分の数μmの深
さ迄の分析が可能であり、例えば、前述のポリスチレン
スルホン酸(前述のように、陽イオン交換樹脂の分解生
成物である「スチレンスルホン酸のオリゴマーや低分子
量ポリマー」を表す)は、その分子量及び吸着量によっ
て吸着層の深さは異なるものの、汚染の原因となるレベ
ルにおいては、おおむね陰イオン交換樹脂の表面部分の
約1〜2μmの深さ迄吸着されると考えられるので、数
μmの深さ迄の分析が可能であれば充分である。
In the method of the present invention, the surface analysis of the ion exchange resin is preferably performed by infrared spectroscopy. Infrared total reflection spectroscopy (ATR, ATR
= Attenuated Total Reflectance) is particularly preferable to perform the surface analysis of the ion exchange resin. In the ATR method, an ion exchange resin is brought into contact with a crystal plate inactive with infrared light, and infrared light is made incident through the crystal plate to identify and quantify contaminants on the resin surface. A
According to the TR method, it is possible to analyze the surface portion of the ion-exchange resin to a depth of several μm. For example, the polystyrene sulfonic acid (as described above, “styrene, which is a decomposition product of a cation-exchange resin, Sulfonic acid oligomers and low molecular weight polymers ”), although the depth of the adsorbent layer varies depending on the molecular weight and the amount of adsorption, at a level that causes contamination, about 1 to about 1 to about the surface of the anion exchange resin. Since it is considered that the substance is adsorbed to a depth of 2 μm, it is sufficient if the analysis can be performed to a depth of several μm.

【0017】赤外分光器としては、分散型やフーリエ変
換型が使用できるが、フーリエ変換型が特に好ましい。
ATR法は、通常の赤外分光法に用いられる赤外分光器
の光路に結晶板を置く方法と、この方法に顕微鏡の使用
を組み合わせた方法があり、どちらを用いても良い。
As the infrared spectrometer, a dispersion type or a Fourier transform type can be used, but a Fourier transform type is particularly preferable.
The ATR method includes a method in which a crystal plate is placed in the optical path of an infrared spectroscope used for ordinary infrared spectroscopy, and a method in which this method is combined with the use of a microscope, and either method may be used.

【0018】測定に用いるイオン交換樹脂は、乾燥状態
及び含水状態のいずれでも良いが、赤外吸収スペクトル
のピークがシャープとなる点で含水状態の方がより有効
である。サンプルとなるイオン交換樹脂を結晶板に接触
させ、赤外光を照射する。結晶板の材質としては、目的
とする赤外領域に吸収が無く、充分に屈折率が大きけれ
ば使用できるが、GeやZnSeが特に好ましく、イオ
ン交換樹脂が乾燥状態の場合は、KRS−5(沃化タリ
ウムTlIと臭化タリウムTlBrの混晶)も有効であ
る。結晶板の形状としては、台形、菱形、半球形等様々
な形状が使用できる。また、赤外光の入射角度は臨界角
以上であれば特に限定されず、例えば、市販赤外分光器
で多用される30度、45度、60度のいずれも用いる
ことができ、また、結晶板の材質と入射角の組み合わせ
により、分析可能な深さを変えることができる。例え
ば、比較的深い表面領域の分析ではZnSeやKRS−
5の結晶板と45度の入射角、比較的浅い表面領域の分
析ではGe結晶板と60度の入射角の組み合わせが有効
である。
The ion exchange resin used for the measurement may be either in a dry state or a water-containing state, but the water-containing state is more effective in that the peak of the infrared absorption spectrum becomes sharp. A sample ion-exchange resin is brought into contact with a crystal plate and irradiated with infrared light. As the material of the crystal plate, it can be used as long as it has no absorption in a target infrared region and has a sufficiently large refractive index. However, Ge and ZnSe are particularly preferable. When the ion exchange resin is in a dry state, KRS-5 ( A mixed crystal of thallium iodide TlI and thallium bromide TlBr) is also effective. As the shape of the crystal plate, various shapes such as a trapezoid, a rhombus, and a hemisphere can be used. The angle of incidence of the infrared light is not particularly limited as long as it is equal to or larger than the critical angle. For example, any of 30 degrees, 45 degrees, and 60 degrees commonly used in commercially available infrared spectrometers can be used. The depth that can be analyzed can be changed depending on the combination of the material of the plate and the incident angle. For example, in the analysis of a relatively deep surface region, ZnSe or KRS-
In the analysis of the crystal plate No. 5 and the incident angle of 45 degrees, and the relatively shallow surface area, the combination of the Ge crystal plate and the incident angle of 60 degrees is effective.

【0019】例えば、イオン交換樹脂由来の吸収に対比
して汚染物質由来の吸収を分析して、汚染物質を同定す
ると共に、イオン交換樹脂由来の吸収と汚染物質由来の
吸収の強度比からイオン交換樹脂の汚染度合いを求める
ことができる。更に、汚染物質の標準品を用いて検量線
を作成しておき、汚染物質量を定量することも可能であ
る。
For example, by analyzing the absorption originating from the contaminant in comparison with the absorption originating from the ion exchange resin, the contaminant is identified, and based on the intensity ratio of the absorption originating from the ion exchange resin and the absorption originating from the contaminant, ion exchange is performed. The degree of resin contamination can be determined. Furthermore, it is also possible to prepare a calibration curve using standard contaminants and quantify the amount of contaminants.

【0020】図1にATR法による赤外吸収スペクトル
の一例を示す。試料は、陰イオン交換樹脂に標準ポリス
チレンスルホン酸(分子量:50,000)を一定量
(294mg/L−樹脂)吸着させた樹脂からなる一標
準試料(実施例1の表1における「MW50,000標
準品の欄」の)である。この赤外吸収スペクトルにお
いて、波数977cm-1に陰イオン交換樹脂の吸収が検
出され、波数1009cm-1、1035cm-1、112
6cm-1、1182cm-1(幅の広いピーク)に汚染物
質としての標準ポリスチレンスルホン酸に由来する吸収
が検出される(吸収ピーク位置は、試料の状態や測定条
件等により若干シフトするため、吸収ピーク位置は必ず
しも常に上記位置であるとは限らない)。
FIG. 1 shows an example of an infrared absorption spectrum by the ATR method. The sample is a standard sample ("MW 50,000" in Table 1 of Example 1) consisting of a resin obtained by adsorbing a fixed amount (294 mg / L-resin) of standard polystyrene sulfonic acid (molecular weight: 50,000) on an anion exchange resin. Standard Product Column ”). In this infrared absorption spectrum, the absorption of the anion exchange resin is detected in a wave number 977Cm -1, wavenumber 1009cm -1, 1035cm -1, 112
Absorption derived from standard polystyrenesulfonic acid as a contaminant is detected at 6 cm -1 and 1182 cm -1 (wide peak). (The absorption peak position is slightly shifted depending on the state of the sample, measurement conditions, and the like. The peak position is not always the above position).

【0021】図2にATR法による赤外吸収スペクトル
の他の一例を示す。試料は、某発電所の復水脱塩塔にお
いて使用された陰イオン交換樹脂(実施例1の表3にお
ける実機陰イオン交換樹脂No.1)である。陽イオン
交換樹脂から溶出する分解生成物による陰イオン交換樹
脂の汚染を示す一例で、この赤外吸収スペクトルにおい
て、上記標準試料の赤外吸収スペクトルと同様に、波数
977cm-1に陰イオン交換樹脂の吸収が検出され、波
数1009cm-1、1035cm-1、1126cm-1
1182cm-1(幅の広いピーク)に陽イオン交換樹脂
に由来する吸収が検出され、上記分解生成物が主にポリ
スチレンスルホン酸であることが分かる(吸収ピーク位
置は、試料の状態や測定条件等により若干シフトするた
め、吸収ピーク位置は必ずしも常に上記位置であるとは
限らない)。陰イオン交換樹脂の吸収に対する陽イオン
交換樹脂由来の吸収の強度比から、汚染物としての陽イ
オン交換樹脂の分解生成物等の溶出物による陰イオン交
換樹脂表面部分の汚染の度合いを求めることができる。
この場合、汚染物由来の吸収波数としては、上に挙げた
吸収波数のどれを利用しても良い。
FIG. 2 shows another example of the infrared absorption spectrum by the ATR method. The sample is an anion exchange resin (actual anion exchange resin No. 1 in Table 3 of Example 1) used in a condensate desalination tower of a certain power plant. This is an example showing the contamination of the anion exchange resin by a decomposition product eluted from the cation exchange resin. In this infrared absorption spectrum, the wave number is 977 cm −1 , similarly to the infrared absorption spectrum of the standard sample. , The wave numbers of 1009 cm −1 , 1035 cm −1 , 1126 cm −1 ,
Absorption derived from the cation exchange resin is detected at 1182 cm -1 (wide peak), and it can be seen that the decomposition product is mainly polystyrene sulfonic acid (the absorption peak position depends on the state of the sample, the measurement conditions, and the like). , The absorption peak position is not always the above position). From the intensity ratio of the absorption derived from the cation exchange resin to the absorption of the anion exchange resin, it is possible to determine the degree of contamination of the surface of the anion exchange resin due to elutes such as decomposition products of the cation exchange resin as contaminants. it can.
In this case, any of the above-mentioned absorption wave numbers may be used as the absorption wave number derived from the contaminant.

【0022】強塩基性の陰イオン交換樹脂にベンゼンス
ルホン酸を等量吸着させ、粉砕した試料、及びこの粉砕
試料に未吸着の該イオン交換樹脂の粉砕物を両者の割合
を変えて混合して得られる試料を標準試料として検量線
を作成することができる。なお、ベンゼンスルホン酸は
スチレンスルホン酸に類似する単純化合物なので、過剰
のベンゼンスルホン酸を陰イオン交換樹脂に添加すれば
樹脂内部にもベンゼンスルホン酸はイオン結合的に吸着
され、得られる樹脂を水洗すれば、ベンゼンスルホン酸
を等量吸着した樹脂試料を容易に得ることができる。こ
の場合は、ベンゼンスルホン酸がスチレンスルホン酸に
類似する単純化合物であり、一方、実機使用の場合に陽
イオン交換樹脂が分解して生成するポリスチレンスルホ
ン酸は既述のように「スチレンスルホン酸のオリゴマー
や低分子量ポリマー」であるので、上記検量線を利用す
るに当たっては、両者のこのような違いによる検量線作
成のモデルケースと実際の場合の相関関係を実機使用デ
ータの積み重ねにより予め把握しておく必要がある。
A sample obtained by adsorbing an equal amount of benzenesulfonic acid on a strongly basic anion exchange resin and a pulverized sample, and a pulverized product of the ion exchange resin not adsorbed to the pulverized sample are mixed at different ratios. A calibration curve can be created using the obtained sample as a standard sample. Since benzene sulfonic acid is a simple compound similar to styrene sulfonic acid, if excess benzene sulfonic acid is added to the anion exchange resin, benzene sulfonic acid is also adsorbed to the inside of the resin by ion bonding, and the resulting resin is washed with water. Then, a resin sample having an equal amount of benzenesulfonic acid adsorbed thereon can be easily obtained. In this case, benzene sulfonic acid is a simple compound similar to styrene sulfonic acid, while polystyrene sulfonic acid generated by decomposition of the cation exchange resin in actual use is, as described above, "polystyrene sulfonic acid. Oligomers and low-molecular-weight polymers ", so in using the above calibration curve, the correlation between the model case of the calibration curve creation due to such a difference and the actual case should be grasped in advance by accumulating actual machine use data. Need to be kept.

【0023】また、標準ポリスチレンスルホン酸の量を
変えて陰イオン交換樹脂の表面に吸着させて得られる試
料を標準試料として検量線を作成することもできる。こ
の場合も、この検量線を利用するに当たっては、検量線
作成のモデルケースと実際の場合の相関関係を実機使用
データの積み重ねにより予め把握しておくのが好ましい
が、一般的には、ポリスチレンスルホン酸の分子量が異
なっても検量線はほぼ同じとなる。このように検量線を
作成し、前記の吸収強度比(陰イオン交換樹脂の吸収に
対する陽イオン交換樹脂由来の吸収の強度比)から陰イ
オン交換樹脂表面部分の汚染物としてのポリスチレンス
ルホン酸(以下、時に「PSS」と略す)を定量するこ
ともできる。このような検量線の一例を図3に示す。こ
の図3は、標準ポリスチレンスルホン酸(標準PSS、
分子量「MW」:50,000)の陰イオン交換樹脂表
面への吸着量とATR法による赤外吸収スペクトルにお
ける陰イオン交換樹脂の波数977cm-1の吸収に対す
る吸着された標準PSSの波数1126cm-1の吸収の
強度比(吸収ピーク高さ比)との相関関係を示す検量線
(実施例1の表1のデータに基づいて作成)を表した図
である。なお、図3における標準PSS吸着量は、陰イ
オン交換樹脂を所定の標準PSS濃度の水溶液に浸漬し
所定時間振盪し、陰イオン交換樹脂に標準PSSを吸着
させ、樹脂と水溶液の分離を行い、分離された水溶液の
標準PSS濃度と最初の水溶液の標準PSS濃度との差
から算出したものである。
Further, a calibration curve can be prepared using a sample obtained by adsorbing the amount of standard polystyrene sulfonic acid on the surface of an anion exchange resin as a standard sample. In this case as well, when using this calibration curve, it is preferable to grasp in advance the correlation between the model case for creating the calibration curve and the actual case by stacking the actual machine use data. The calibration curve is almost the same even if the molecular weight of the acid is different. A calibration curve was prepared in this manner, and polystyrenesulfonic acid (hereinafter referred to as a contaminant on the surface of the anion exchange resin) (hereinafter referred to as “contaminant”) was determined from the absorption intensity ratio (intensity ratio of the absorption derived from the cation exchange resin to the absorption of the anion exchange resin). , Sometimes abbreviated as "PSS"). FIG. 3 shows an example of such a calibration curve. FIG. 3 shows that the standard polystyrene sulfonic acid (standard PSS,
The amount of adsorption on the surface of the anion exchange resin having a molecular weight of “MW”: 50,000) and the wave number of the standard PSS adsorbed to the absorption of the wave number of 977 cm −1 of the anion exchange resin in the infrared absorption spectrum by the ATR method of 1126 cm −1 FIG. 3 is a diagram showing a calibration curve (created based on the data in Table 1 of Example 1) showing a correlation with the intensity ratio of absorption (absorption peak height ratio). Note that the standard PSS adsorption amount in FIG. 3 is obtained by immersing the anion exchange resin in an aqueous solution having a predetermined standard PSS concentration and shaking for a predetermined time, adsorbing the standard PSS on the anion exchange resin, and separating the resin and the aqueous solution. It is calculated from the difference between the standard PSS concentration of the separated aqueous solution and the standard PSS concentration of the first aqueous solution.

【0024】本発明の水処理系の管理方法の実施に当た
っては、上記のようなイオン交換樹脂の汚染物の同定、
定量等の結果とイオン交換樹脂の反応速度の相関関係を
把握しておく必要がある。一例として、水処理系として
の実機復水脱塩装置内で使用する陰イオン交換樹脂の交
換時期の判断・決定を行う場合について説明する。
In carrying out the method for managing a water treatment system of the present invention, identification of contaminants of the ion exchange resin as described above,
It is necessary to grasp the correlation between the results of quantification and the like and the reaction rate of the ion exchange resin. As an example, a case in which the determination and determination of the replacement time of the anion exchange resin used in the actual condensate desalination apparatus as a water treatment system will be described.

【0025】陰イオン交換樹脂の反応速度の測定は、例
えば、物質移動係数「MTC」(mass transfer coeffi
cient )の測定による方法やシャローベット法等の公知
の方法などにより行うことができる。シャローベット法
は、樹脂層高約10mmのイオン交換樹脂層にNaCl
又は硫酸ナトリウム等の塩類含有水を流し、イオン除去
率を測定する方法である。一方、物質移動係数「MT
C」の測定による方法が便利で、その測定法の一例の概
略は次の通りである。
The measurement of the reaction rate of the anion exchange resin is performed, for example, by measuring the mass transfer coefficient “MTC” (mass transfer coefficient).
cient) or a known method such as a shallow betting method. In the shallow betting method, NaCl is added to an ion exchange resin layer having a resin layer height of about 10 mm.
Alternatively, it is a method of flowing a salt-containing water such as sodium sulfate and measuring the ion removal rate. On the other hand, the mass transfer coefficient “MT
The method based on the measurement of "C" is convenient, and an outline of an example of the measurement method is as follows.

【0026】例えば、発電所の復水脱塩装置からサンプ
リングした陰イオン交換樹脂をNaOHを用いて再生
し、再生樹脂と新品の陽イオン交換樹脂のH形とを再生
陰イオン交換樹脂/陽イオン交換樹脂容量比=1/2で
混合し、カラムに充填する。次いで、カラムの上部より
アンモニウムイオン(アンモニア水)と硫酸ナトリウム
を所定の濃度の水溶液の形で、流量70L/hr(リッ
トル/時間)で通水する。通水中にカラム入口水と出口
水を採取して、硫酸イオン濃度を測定し、更に、通水終
了後に空隙率、陰イオン交換樹脂粒径を測定する。物質
移動係数「MTC」を下記の式に従って算出する。この
値が高いほど、陰イオン交換樹脂の反応速度が高く、そ
の性能が健全であると言える。通常、新品の陰イオン交
換樹脂のMTC値は、2.0(×10-4m/sec)程
度となる。
For example, an anion exchange resin sampled from a condensate desalination unit at a power plant is regenerated using NaOH, and the regenerated resin and a new H-form of the cation exchange resin are regenerated with the regenerated anion exchange resin / cation. Mix at an exchange resin volume ratio = 1/2 and pack into a column. Subsequently, ammonium ions (aqueous ammonia) and sodium sulfate are passed through the upper part of the column at a flow rate of 70 L / hr (liter / hour) in the form of an aqueous solution having a predetermined concentration. The column inlet water and outlet water are collected during the passage of water, the sulfate ion concentration is measured, and after the passage of water, the porosity and the anion exchange resin particle size are measured. The mass transfer coefficient “MTC” is calculated according to the following equation. It can be said that the higher the value, the higher the reaction rate of the anion exchange resin, and the sounder the performance. Usually, the MTC value of a new anion exchange resin is about 2.0 (× 10 −4 m / sec).

【0027】 但し、 K:物質移動係数「MTC」(m/sec)、ε:空隙
率、R:陰イオン交換樹脂/陽イオン交換樹脂容量比、
F:通水流量(m3 /sec)、A×L:樹脂量
(m3 )、d:樹脂粒径(m)、C0 :入口水のSO4
2- 濃度、C:出口水のSO4 2- 濃度。
[0027] Here, K: mass transfer coefficient “MTC” (m / sec), ε: porosity, R: volume ratio of anion exchange resin / cation exchange resin,
F: water flow rate (m 3 / sec), A × L: resin amount (m 3 ), d: resin particle size (m), C 0 : inlet water SO 4
2- concentration, C: SO 4 2- concentration of outlet water.

【0028】MTCが低いと反応速度が低く、また、陰
イオン交換樹脂の一般的な交換時期は、例えば、MTC
=1(×10-4m/sec)となった時であるが、どの
程度汚染した時点で陰イオン交換樹脂を交換するかは、
装置の運転状況や水質の要求性能により変化するので、
個別具体的に判断されるべきものである。
If the MTC is low, the reaction rate is low, and the general exchange time of the anion exchange resin is, for example, MTC
= 1 (× 10 −4 m / sec), but the degree of contamination at which the anion exchange resin should be replaced is
It changes depending on the operating conditions of the equipment and the required performance of the water quality.
It should be determined individually and specifically.

【0029】分子量の異なる標準PSSの添加量を変え
て、新品陰イオン交換樹脂に添加し、各々の標準PSS
の吸着量とその時のMTCの関係を一方の軸を標準PS
Sの吸着量、他方の軸をMTCとした図表中にプロット
し、分子量別にプロットを結んで線を引き、標準PSS
吸着試料曲線を作成する。一方、例えば、実機復水脱塩
装置内で使用した陰イオン交換樹脂表面へのPSSの吸
着量(A)を本発明の方法で求め、また、MTCを上記
の方法で求め、上記の各標準PSS吸着試料曲線を描い
た図表中に点B(実機復水脱塩装置内使用陰イオン交換
樹脂についてのMTC及びA)としてプロットする。
The amount of the standard PSS having a different molecular weight was changed and added to a new anion exchange resin.
The relationship between the adsorption amount of Mn and the MTC at that time is shown with one axis as standard PS.
The amount of S adsorbed and the other axis plotted in a table with MTC, and plotted by molecular weight to draw a line
Create an adsorption sample curve. On the other hand, for example, the adsorption amount (A) of PSS to the surface of the anion exchange resin used in the actual condensate desalination apparatus was determined by the method of the present invention, and the MTC was determined by the above method. It is plotted as a point B (MTC and A for the anion exchange resin used in the actual condensate desalination apparatus) in the chart depicting the PSS adsorption sample curve.

【0030】各標準PSS吸着試料曲線と点Bを比較し
て、実機復水脱塩装置内使用陰イオン交換樹脂表面に吸
着したPSSの平均分子量を推定し、例えば、点Bの最
も近い標準PSS吸着試料曲線に基づいて、以降の陰イ
オン交換樹脂表面のPSS吸着量の増加に伴ったMTC
の低下傾向を予測する。また、以降の測定においては、
実機で使用中の陰イオン交換樹脂に吸着したPSS量を
本発明方法によって測定することにより、点Bの最も近
い標準PSS吸着試料曲線に基づいて実機使用中の陰イ
オン交換樹脂のMTCを推定することができる。さらに
また、例えば、MTCが1(×10-4m/sec)に到
達する迄のPSS吸着許容量を上記図表から読み取り、
イオン交換樹脂交換時期の判断資料とする。
By comparing each standard PSS adsorption sample curve with point B, the average molecular weight of PSS adsorbed on the surface of the anion exchange resin used in the actual condensate desalination apparatus was estimated. Based on the adsorption sample curve, the MTC with the subsequent increase in the amount of PSS adsorbed on the anion exchange resin surface
Predict the downward trend of In the subsequent measurements,
By measuring the amount of PSS adsorbed on the anion exchange resin used in the actual machine by the method of the present invention, the MTC of the anion exchange resin used in the actual machine is estimated based on the standard PSS adsorption sample curve closest to the point B. be able to. Furthermore, for example, the allowable amount of PSS adsorption until the MTC reaches 1 (× 10 −4 m / sec) is read from the above chart,
It will be used as a reference for the ion exchange resin exchange time.

【0031】[0031]

【実施例】以下の実施例により本発明を更に具体的に説
明するが、本発明はこれに限定されるものでは無い。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto.

【0032】実施例1 ローム・アンド・ハース社製新品陰イオン交換樹脂アン
バーライトIRA900(表1の「MW50,000標
準品」の欄の)、この樹脂に分子量「MW」50,0
00の標準PSSの水溶液を予め添加して、標準PSS
を吸着させ反応速度を低下させた陰イオン交換樹脂5種
類(表1の「MW50,000標準品」の欄の〜
)、及び、実機復水脱塩塔内使用中の陰イオン交換樹
脂4種類(表3の実機陰イオン交換樹脂No.1〜4。
なお、これら4種類の陰イオン交換樹脂は、それぞれ異
なる発電所の復水脱塩装置から採取したものである。)
の赤外吸収スペクトルを測定した。測定条件は以下の通
りであった。表1のデータに基づいて図3の検量線を作
成した。
Example 1 New anion exchange resin Amberlite IRA900 manufactured by Rohm and Haas Co. (in the column of "Standard MW 50,000" in Table 1), and a resin having a molecular weight "MW" of 50,000 was added to this resin.
00 standard PSS aqueous solution,
5 types of anion exchange resin which reduced the reaction rate by adsorbing
) And four types of anion exchange resins in use in the actual condensate demineralization tower (actual anion exchange resins Nos. 1-4 in Table 3).
These four types of anion exchange resins were collected from condensate and desalination units at different power plants. )
Was measured for its infrared absorption spectrum. The measurement conditions were as follows. The calibration curve of FIG. 3 was created based on the data of Table 1.

【0033】〔測定条件〕 装置:日本電子株式会社販売赤外分光器「DIAMON
D 20」 付属装置:ATR装置 結晶板:ZnSe 入射角:45度 積算回数:1024
[Measurement conditions] Apparatus: Infrared spectrometer “DIAMON” sold by JEOL Ltd.
D20 "Attached device: ATR device Crystal plate: ZnSe Incident angle: 45 degrees Integration frequency: 1024

【0034】また、これらの陰イオン交換樹脂の反応速
度の評価は、陰イオン交換樹脂の物質移動係数「MT
C」を前述の方法により測定することにより行った。上
記新品陰イオン交換樹脂に分子量「MW」10,000
の標準PSSの水溶液を予め添加して、標準PSSを吸
着させ反応速度を低下させた陰イオン交換樹脂5種類
(表2の「MW10,000標準品」の欄の〜)に
ついても物質移動係数「MTC」の測定を行った。結果
を表2、表3及び図4に示す。なお、標準PSSの濃度
及び分子量はゲル透過クロマトラフィーを用いて測定
し、陰イオン交換樹脂への標準PSSの吸着量は前述の
方法により求めた。
The evaluation of the reaction rate of these anion exchange resins was based on the mass transfer coefficient “MT” of the anion exchange resin.
C "was measured by the method described above. The new anion exchange resin has a molecular weight "MW" of 10,000.
For the five types of anion exchange resins (in the column of "MW 10,000 standard" in Table 2) in which the standard PSS aqueous solution was previously added and the standard PSS was adsorbed to reduce the reaction rate, the mass transfer coefficient " MTC ”was measured. The results are shown in Tables 2 and 3 and FIG. The concentration and molecular weight of the standard PSS were measured using gel permeation chromatography, and the amount of the standard PSS adsorbed on the anion exchange resin was determined by the method described above.

【0035】実機復水脱塩塔内使用中の各陰イオン交換
樹脂の赤外吸収スペクトルにおいても、標準PSSを吸
着させた陰イオン交換樹脂試料の赤外吸収スペクトルと
同様に、波数977cm-1に陰イオン交換樹脂の吸収が
検出され、波数1009cm-1、1035cm-1、11
26cm-1、1182cm-1(幅の広いピーク)に汚染
物質としてのPSSに由来する吸収が検出されることが
確認された。
In the infrared absorption spectrum of each anion exchange resin used in the actual condensate demineralization tower, the wave number was 977 cm −1 , similarly to the infrared absorption spectrum of the anion exchange resin sample to which standard PSS was adsorbed. Absorption of the anion exchange resin was detected at a wave number of 1009 cm -1 , 1035 cm -1 , and 11
It was confirmed that absorption derived from PSS as a contaminant was detected at 26 cm -1 and 1182 cm -1 (wide peak).

【0036】得られた各赤外吸収スペクトルの波数97
7cm-1の吸収に対する波数1126cm-1の吸収の強
度比を算出した。結果を表1及び表3に示す。なお、表
1及び表2において、「MW10,000標準品」と
「MW50,000標準品」は、それぞれ「分子量1
0,000の標準PSS」又は「分子量50,000の
標準PSS」を新品陰イオン交換樹脂への吸着に用いた
ことを示す。また、表1及び表2において、「PSS」
は陰イオン交換樹脂へのPSSの吸着量を表し、表3に
おいて、「計算PSS量」は図3の検量線を用いて吸収
の強度比から求めた陰イオン交換樹脂へのPSSの吸着
量を表し、図4は、物質移動係数「MTC」対陰イオン
交換樹脂表面部分へのPSS吸着量の関係を示す図であ
る。
Wave number 97 of each infrared absorption spectrum obtained
Was calculated intensity ratio of the absorption at a wavenumber of 1126cm -1 for absorption of 7 cm -1. The results are shown in Tables 1 and 3. In Tables 1 and 2, “MW 10,000 standard product” and “MW 50,000 standard product” refer to “molecular weight 1”, respectively.
It shows that "standard PSS of 000" or "standard PSS of molecular weight 50,000" was used for adsorption to a new anion exchange resin. In Tables 1 and 2, "PSS"
Represents the amount of PSS adsorbed on the anion exchange resin. In Table 3, “calculated PSS amount” represents the amount of PSS adsorbed on the anion exchange resin determined from the absorption intensity ratio using the calibration curve of FIG. FIG. 4 shows the relationship between the mass transfer coefficient “MTC” and the amount of PSS adsorbed on the surface of the anion exchange resin.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】図4中の分子量10,000標準PSS吸
着試料曲線及び分子量50,000標準PSS吸着試料
曲線から、実機復水脱塩塔内使用中の各陰イオン交換樹
脂の反応速度の低下(MTCの低下)の主たる原因は、
陽イオン交換樹脂の分解生成物であるPSS溶出物の陰
イオン交換樹脂への吸着であり、吸着PSSの平均分子
量は10,000〜50,000程度のものであると考
えられる。
From the curve of the adsorption sample of the standard PSS with a molecular weight of 10,000 and the curve of the adsorption sample of the standard PSS with a molecular weight of 50,000 in FIG. 4, the reduction in the reaction rate of each anion exchange resin in use in the actual condensate desalination tower (MTC Is the main cause of
This is the adsorption of the PSS eluate, which is a decomposition product of the cation exchange resin, to the anion exchange resin, and it is considered that the average molecular weight of the adsorbed PSS is about 10,000 to 50,000.

【0041】「実機陰イオン交換樹脂No.1とNo.
2」は、MTCがいずれも1.8(×10-4m/se
c)であるが、PSS吸着量についてはNo.1が約1
00mg/L−樹脂でNo.2が200mg/L−樹脂
であり、両者間で異なっている。図4中のNo.1の点
は分子量50,000標準PSS吸着試料曲線に近接し
ていることから、今後MTCが急激に低下することが考
えられ、MTCが1(×10-4m/sec)に到る迄に
更に吸着が許容されるPSS量は60mg/L−樹脂程
度と予測できる。一方、図4中のNo.2の点は分子量
10,000標準PSS吸着試料曲線に近接しているこ
とから、MTCが1(×10-4m/sec)に到る迄に
更に吸着が許容されるPSS量は100mg/L−樹脂
程度と予測できる。図4中のNo.3の点は分子量1
0,000標準PSS吸着試料曲線と分子量50,00
0標準PSS吸着試料曲線のほぼ中間に在ることから、
MTCが1(×10-4m/sec)に到る迄に更に吸着
が許容されるPSS量は50mg/L−樹脂程度と予測
できる。図4中のNo.4の点は一般的なMTCの許容
限界=1(×10-4m/sec)以下となっているの
で、既に陰イオン交換樹脂の交換が必要なことが分か
る。
"Actual anion exchange resins No. 1 and No. 1
2 "has an MTC of 1.8 (× 10 −4 m / sec)
c), the PSS adsorption amount was No. 1 is about 1
No. at 100 mg / L-resin. 2 is 200 mg / L-resin, which is different between the two. No. in FIG. Since point 1 is close to the curve of the 50,000-standard PSS adsorption sample, it is considered that the MTC will rapidly decrease in the future, and until the MTC reaches 1 (× 10 −4 m / sec). Further, the amount of PSS allowed to be adsorbed can be estimated to be about 60 mg / L-resin. On the other hand, in FIG. Point 2 is close to the curve of the sample with a standard molecular weight of 10,000 PSS, so that the amount of PSS that allows further adsorption before the MTC reaches 1 (× 10 −4 m / sec) is 100 mg / L. -Can be predicted as resin. No. in FIG. Point 3 is molecular weight 1
000 standard PSS adsorption sample curve and molecular weight 50,000
Since it is almost in the middle of the 0 standard PSS adsorption sample curve,
By the time the MTC reaches 1 (× 10 −4 m / sec), the amount of PSS allowed to be further adsorbed can be estimated to be about 50 mg / L-resin. No. in FIG. Point 4 is less than the allowable limit of general MTC = 1 (× 10 −4 m / sec), indicating that the anion exchange resin needs to be replaced.

【0042】[0042]

【発明の効果】従来から発電所の循環系統水の水質を良
好に維持するために、復水脱塩塔内のイオン交換樹脂を
健全に保つことが必要とされている。また、純水製造装
置(脱塩装置)等の一般の水処理装置についても同様
で、いずれの場合もイオン交換樹脂の性能を的確に評価
・判断することが水質管理上重要である。しかし、従来
のようなイオン交換樹脂の反応速度測定による性能評価
のみだと、イオン交換樹脂の汚染原因は不明であると共
に、反応速度の急速な低下に対処することが困難であ
る。そこで、本発明によるイオン交換樹脂の評価方法を
導入することで、イオン交換樹脂の汚染原因を明確にす
ることができると共に、イオン交換樹脂の反応速度の急
激な低下を事前に予測することも可能となる。更に、従
来のMTCの測定によるイオン交換樹脂の性能評価方法
との比較において、本発明の方法は、イオン交換樹脂の
表面分析を行うことによりイオン交換樹脂の性能評価を
行うので、分析に使用するイオン交換樹脂量が1〜数1
0個(MTC測定では数千個以上)と少なくて済み、ま
た、分析時間も1〜20分(MTC測定では数日)と短
時間で済む。
As described above, in order to maintain good water quality of the circulating system water of a power plant, it has been necessary to keep the ion exchange resin in the condensate desalination tower sound. The same applies to general water treatment equipment such as a pure water production equipment (desalination equipment). In any case, it is important for water quality management to accurately evaluate and judge the performance of the ion exchange resin. However, if only the performance evaluation based on the reaction rate measurement of the conventional ion exchange resin is performed, the cause of the contamination of the ion exchange resin is unknown, and it is difficult to cope with a rapid decrease in the reaction rate. Therefore, by introducing the method for evaluating an ion-exchange resin according to the present invention, it is possible to clarify the cause of contamination of the ion-exchange resin, and to predict a rapid decrease in the reaction rate of the ion-exchange resin in advance. Becomes Furthermore, in comparison with a conventional method for evaluating the performance of an ion exchange resin by measuring MTC, the method of the present invention is used for analysis because the performance of the ion exchange resin is evaluated by performing a surface analysis of the ion exchange resin. The amount of ion exchange resin is 1 to several 1
The analysis time can be as short as zero (several thousands or more in MTC measurement) and the analysis time can be as short as 1 to 20 minutes (several days in MTC measurement).

【0043】本発明の管理方法によれば、イオン交換樹
脂が正常に機能しなくなる前にその使用限界を予測し、
水処理系を安定的に管理することができる。本発明の管
理方法は、例えば、復水脱塩装置に使用される陰イオン
交換樹脂について好適に使用することができ、更に好適
には、PWR(pressurized water reactor )やBWR
(boiling water reactor )の原子力発電所の復水脱塩
装置に使用される陰イオン交換樹脂に使用することがで
きる。
According to the management method of the present invention, the use limit is predicted before the ion exchange resin malfunctions,
The water treatment system can be managed stably. The control method of the present invention can be suitably used, for example, for an anion exchange resin used in a condensate desalination apparatus, and more preferably, a PWR (pressurized water reactor) or BWR
It can be used for anion exchange resins used in condensate desalination units of nuclear power plants (boiling water reactors).

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、陰イオン交換樹脂に標準ポリスチレン
スルホン酸(分子量:50,000)を一定量(294
mg/L−樹脂)吸着させた樹脂からなる一標準試料の
ATR法による赤外吸収スペクトル図である。
FIG. 1 shows that an anion exchange resin is supplied with a fixed amount of standard polystyrene sulfonic acid (molecular weight: 50,000) (294).
(mg / L-resin) It is an infrared absorption spectrum figure by ATR method of one standard sample which consists of the resin adsorbed.

【図2】図2は、実施例1における実機復水脱塩塔内使
用陰イオン交換樹脂No.1のATR法による赤外吸収
スペクトル図である。
FIG. 2 shows an anion exchange resin No. used in the actual condensate demineralization tower in Example 1. FIG. 1 is an infrared absorption spectrum diagram of the No. 1 ATR method.

【図3】図3は、標準ポリスチレンスルホン酸(分子
量:50,000)の陰イオン交換樹脂表面への吸着量
とATR法による赤外吸収スペクトルにおける陰イオン
交換樹脂の波数977cm-1の吸収に対する吸着された
標準ポリスチレンスルホン酸の波数1126cm-1の吸
収の強度比(吸収ピーク高さ比)との相関関係を示す検
量線を表した図である。
FIG. 3 is a graph showing the adsorption amount of standard polystyrene sulfonic acid (molecular weight: 50,000) on the surface of an anion exchange resin and the absorption at a wave number of 977 cm −1 of the anion exchange resin in an infrared absorption spectrum by an ATR method. FIG. 4 is a diagram showing a calibration curve showing a correlation with an absorption intensity ratio (absorption peak height ratio) of an adsorbed standard polystyrene sulfonic acid at a wave number of 1126 cm −1 .

【図4】図4は、実施例1の結果を示すもので、物質移
動係数「MTC」対陰イオン交換樹脂表面部分へのPS
S吸着量の関係を示す図である。
FIG. 4 shows the results of Example 1, in which the mass transfer coefficient “MTC” versus PS on the surface of the anion exchange resin was measured.
It is a figure which shows the relationship of S adsorption amount.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G01N 29/00 501 G01N 29/00 501 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI G01N 29/00 501 G01N 29/00 501

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 イオン交換樹脂の表面分析により、前記
イオン交換樹脂の表面部分における不純物の同定、分布
状況の測定及び/又は定量を行うことを特徴とするイオ
ン交換樹脂の性能評価方法。
1. A method for evaluating the performance of an ion-exchange resin, comprising: identifying, measuring and / or quantifying the distribution of impurities on the surface of the ion-exchange resin by analyzing the surface of the ion-exchange resin.
【請求項2】 前記表面分析を、赤外分光法、光電子分
光法、光音響分光法又は二次イオン質量分析法により行
うことを特徴とする請求項1に記載のイオン交換樹脂の
性能評価方法。
2. The method according to claim 1, wherein the surface analysis is performed by infrared spectroscopy, photoelectron spectroscopy, photoacoustic spectroscopy or secondary ion mass spectrometry. .
【請求項3】 前記表面分析を、赤外分光法、好ましく
はフーリエ変換赤外全反射分光法により行うことを特徴
とする請求項2に記載のイオン交換樹脂の性能評価方
法。
3. The method according to claim 2, wherein the surface analysis is performed by infrared spectroscopy, preferably by Fourier transform infrared total reflection spectroscopy.
【請求項4】 前記イオン交換樹脂が、陰イオン交換樹
脂であることを特徴とする請求項1から3のいずれかに
記載のイオン交換樹脂の性能評価方法。
4. The method for evaluating the performance of an ion exchange resin according to claim 1, wherein the ion exchange resin is an anion exchange resin.
【請求項5】 イオン交換樹脂の表面分析により、前記
イオン交換樹脂の表面部分における不純物の同定、分布
状況の測定及び/又は定量を行うことによって、イオン
交換樹脂の汚染原因と汚染状況を把握し、イオン交換樹
脂の以降の反応速度低下傾向を予測し、イオン交換樹脂
の交換時期を決定することを特徴とする水処理系の管理
方法。
5. The surface analysis of the ion-exchange resin to identify and measure and / or quantify the impurities on the surface of the ion-exchange resin to grasp the cause of contamination and the state of the contamination of the ion-exchange resin. A method for predicting a subsequent tendency of the reaction rate of the ion exchange resin to decrease, and determining a replacement time of the ion exchange resin.
【請求項6】 前記表面分析を、赤外分光法、光電子分
光法、光音響分光法又は二次イオン質量分析法により行
うことを特徴とする請求項5に記載の水処理系の管理方
法。
6. The method according to claim 5, wherein the surface analysis is performed by infrared spectroscopy, photoelectron spectroscopy, photoacoustic spectroscopy or secondary ion mass spectrometry.
【請求項7】 前記表面分析を、赤外分光法、好ましく
はフーリエ変換赤外全反射分光法により行うことを特徴
とする請求項6に記載の水処理系の管理方法。
7. The method for managing a water treatment system according to claim 6, wherein the surface analysis is performed by infrared spectroscopy, preferably by Fourier transform infrared total reflection spectroscopy.
【請求項8】 前記イオン交換樹脂が、陰イオン交換樹
脂であることを特徴とする請求項5から7のいずれかに
記載のイオン交換樹脂の性能評価方法。
8. The method for evaluating the performance of an ion exchange resin according to claim 5, wherein the ion exchange resin is an anion exchange resin.
JP9000297A 1997-03-26 1997-03-26 Ion exchange resin performance evaluation method and water treatment system management method Expired - Lifetime JP3633195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9000297A JP3633195B2 (en) 1997-03-26 1997-03-26 Ion exchange resin performance evaluation method and water treatment system management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9000297A JP3633195B2 (en) 1997-03-26 1997-03-26 Ion exchange resin performance evaluation method and water treatment system management method

Publications (2)

Publication Number Publication Date
JPH10267838A true JPH10267838A (en) 1998-10-09
JP3633195B2 JP3633195B2 (en) 2005-03-30

Family

ID=13986408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9000297A Expired - Lifetime JP3633195B2 (en) 1997-03-26 1997-03-26 Ion exchange resin performance evaluation method and water treatment system management method

Country Status (1)

Country Link
JP (1) JP3633195B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765998B1 (en) * 2000-08-07 2007-10-11 오르가노 코포레이션 Method and apparatus for evaluating performance of anion exchange resins, and condensate demineralizers
JP2008281509A (en) * 2007-05-14 2008-11-20 Ebara Corp Exchange management method of ion-exchange resin in nuclear power plant condensate demineralizer
JP2013205074A (en) * 2012-03-27 2013-10-07 Dowa Eco-System Co Ltd Replacement time determination method of ion exchange resin
KR20150064602A (en) * 2013-12-03 2015-06-11 삼성전자주식회사 System and method for searching new material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765998B1 (en) * 2000-08-07 2007-10-11 오르가노 코포레이션 Method and apparatus for evaluating performance of anion exchange resins, and condensate demineralizers
JP2008281509A (en) * 2007-05-14 2008-11-20 Ebara Corp Exchange management method of ion-exchange resin in nuclear power plant condensate demineralizer
JP2013205074A (en) * 2012-03-27 2013-10-07 Dowa Eco-System Co Ltd Replacement time determination method of ion exchange resin
KR20150064602A (en) * 2013-12-03 2015-06-11 삼성전자주식회사 System and method for searching new material

Also Published As

Publication number Publication date
JP3633195B2 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
CN1252469C (en) Method and apparatus for estimating performance of anion-exchange resin and condensed-water desalting device
US5272091A (en) Water purification method and apparatus
CN105202522A (en) Once-through boiler corrosion and scaling risk diagnosis method
JPH10267838A (en) Method for evaluating performance of ion-exchange resin and method for managing water-treating system
EP0614085A1 (en) A method for directly monitoring the concentrations of water treatment compositions in steam generating systems
JP3384946B2 (en) Method for evaluating performance of anion exchange resin and apparatus used for the method
JP4441894B2 (en) Method for determining adsorption state of substance adsorbed on sample surface and management method for water treatment system
JP3276103B2 (en) Method for evaluating performance of anion exchange resin and method for managing water treatment system by said method
JPH102890A (en) Cation exchange resin performance evaluating method
JP6800379B1 (en) A method for identifying the unit that causes a raw water leak in a condenser condenser
JP2016180592A (en) Method of determining absorption state of organic substances absorbed by resin particles, and method of managing water treatment system
JP2002018294A (en) Method for evaluating ion exchange resin
JPH10339724A (en) Water quality evaluating method
JPH11237370A (en) Method for evaluating performance of ion exchange resin
JP4264702B2 (en) Ion exchange resin ion composition measurement method
JP4788509B2 (en) Anion exchange resin performance evaluation method
JP2000046990A (en) Method for analyzing amount of impurity eluted from ion exchange resin
JP4406876B2 (en) Ion exchange resin performance evaluation method and water treatment system management method
Ahn et al. A study on breakthrough characteristics of ion exchange bed with H-and ETAH-form resins for cation exchange in NH 3 and ETA solution including trace NaCl
JP3525996B2 (en) Method and apparatus for measuring hydrogen peroxide concentration in hydrazine-containing water
JP2004093231A (en) Method of measuring ion in solution and method of analyzing ion exchange resin
中馬高明 Study on behavior of silicic acid in ion exchange resin and efficient treatment of water resources
JP2000171448A (en) Test method for performance of ion-exchange resin
US4945063A (en) Method for detecting organic compounds by photoacoustic conversion
RU2408884C1 (en) Method of monitoring water contamination when washing boiler unit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040721

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term