JP4406876B2 - Ion exchange resin performance evaluation method and water treatment system management method - Google Patents

Ion exchange resin performance evaluation method and water treatment system management method Download PDF

Info

Publication number
JP4406876B2
JP4406876B2 JP2004213717A JP2004213717A JP4406876B2 JP 4406876 B2 JP4406876 B2 JP 4406876B2 JP 2004213717 A JP2004213717 A JP 2004213717A JP 2004213717 A JP2004213717 A JP 2004213717A JP 4406876 B2 JP4406876 B2 JP 4406876B2
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
resin
ion
performance evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004213717A
Other languages
Japanese (ja)
Other versions
JP2006030146A (en
Inventor
大二郎 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2004213717A priority Critical patent/JP4406876B2/en
Publication of JP2006030146A publication Critical patent/JP2006030146A/en
Application granted granted Critical
Publication of JP4406876B2 publication Critical patent/JP4406876B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、イオン交換樹脂の性能評価方法、および、イオン交換樹脂の交換時期を判断、決定する水処理系の管理方法に関する。 The present invention is a method for evaluating performance of an ion exchange resins, and determines the replacement timing of the ion exchange resins, on how to manage the water treatment system for determining.

イオン交換体は物質精製などの目的で広く利用されている。例えば、無機イオン交換体である合成ゼオライトは水の軟化、イオン交換膜は電気透析による電解質の濃縮除去、海水濃縮による食塩の製造、糖液精製、燃料電池への利用、そしてイオン交換樹脂は水処理、廃水処理、食品製造、医薬品の分離や精製、湿式精練、分析、触媒としての利用などに用いられている。   Ion exchangers are widely used for purposes such as substance purification. For example, synthetic zeolite, which is an inorganic ion exchanger, softens water, ion exchange membranes concentrate and remove electrolytes by electrodialysis, salt production by seawater concentration, sugar solution purification, use in fuel cells, and ion exchange resins are water. It is used for treatment, wastewater treatment, food production, separation and purification of pharmaceuticals, wet scouring, analysis, and use as a catalyst.

特にイオン交換樹脂は、火力発電所や原子力発電所、半導体製造工場、一般産業プラントを始めとして多くの分野で利用されている。具体的には、イオン交換樹脂は、火力発電所や原子力発電所では、補給水処理装置や復水脱塩装置等に使用され、通常は陽イオン交換樹脂と陰イオン交換樹脂の混床式で用いられている。補給水処理装置では、イオン交換樹脂により原水中のイオン成分などの除去を行い、電気伝導率が1μS/cm以下の純水を製造し、発電所系統水に補給している。復水脱塩装置では、復水中のイオン成分やプラントの構成材料から発生する腐食生成物の除去、さらには復水器の冷却水として使われている海水が漏洩した場合の海水成分の除去を目的としてイオン交換樹脂が使用されており、電気伝導率0.1μS/cm以下を達成する高度な復水処理が要求されている。   In particular, ion exchange resins are used in many fields including thermal power plants, nuclear power plants, semiconductor manufacturing plants, and general industrial plants. Specifically, ion exchange resins are used in make-up water treatment equipment, condensate demineralization equipment, etc. in thermal power plants and nuclear power plants, and are usually mixed bed type of cation exchange resin and anion exchange resin. It is used. In the makeup water treatment apparatus, ion components and the like in raw water are removed by ion exchange resin to produce pure water having an electric conductivity of 1 μS / cm or less and replenished to power plant system water. The condensate demineralizer removes ionic components in condensate and corrosion products generated from plant components, and also removes seawater components when seawater used as condenser cooling water leaks. An ion exchange resin is used for the purpose, and advanced condensate treatment that achieves an electric conductivity of 0.1 μS / cm or less is required.

半導体製造工場では、LSIチップなどの洗浄工程で使用される超純水の製造設備などにイオン交換樹脂が利用されており、半導体の集積度増大に伴い、比抵抗率が18MΩcm以上、イオン濃度がpptレベル以下の超純水を製造することが要求されている。   In semiconductor manufacturing factories, ion exchange resins are used in production facilities for ultrapure water used in the cleaning process for LSI chips and the like, and with an increase in the degree of integration of semiconductors, the specific resistivity is 18 MΩcm or more and the ion concentration is increased. It is required to produce ultrapure water below the ppt level.

一般産業プラントでは、イオン交換樹脂は、通常は混床式である純水製造装置に利用されているほかに、澱粉糖や蔗糖の脱色と脱塩、化学プロセスにおける金属の回収、化学製品の精製といった多様な用途に利用され、さらには有機化学反応の酸塩基固体触媒としても多く利用されている。   In general industrial plants, ion-exchange resins are used in pure water production equipment, which is usually a mixed-bed type. In addition, decolorization and desalination of starch sugar and sucrose, recovery of metals in chemical processes, and purification of chemical products It is also widely used as an acid-base solid catalyst for organic chemical reactions.

以上のように、様々な分野において利用されているイオン交換樹脂であるが、使われる原水中の有機物や系統水中の不純物、樹脂同士の接触などによって、その性能が劣化する場合がある。通常であれば、酸あるいはアルカリ等を用いた再生操作によってイオン交換樹脂の性能(イオン交換能)を回復させることができるが、イオン交換樹脂に非可逆的に不純物が吸着した場合は、上記再生操作によって性能を回復させることは困難である。従って、再生操作で性能を回復できなくなったイオン交換樹脂は交換が必要となる。   As described above, although it is an ion exchange resin used in various fields, its performance may be deteriorated due to organic substances in raw water used, impurities in system water, contact between resins, and the like. Normally, the performance of the ion exchange resin (ion exchange capacity) can be recovered by a regeneration operation using acid or alkali, etc., but if the impurities are irreversibly adsorbed to the ion exchange resin, the above regeneration is performed. It is difficult to restore performance by operation. Therefore, the ion exchange resin whose performance cannot be recovered by the regeneration operation needs to be replaced.

混床式で使用されるイオン交換樹脂の場合、片方の電荷符号のイオン交換樹脂の反応速度が著しく低下する場合がある。これは、例えば、イオン交換樹脂が酸化劣化などを受けた場合に、イオン交換樹脂の一部が溶出したり、剥がれ落ちて反対の電荷符号のイオン交換樹脂に吸着することが原因と考えられている。また、このような反対の電荷符号のイオン交換樹脂からの溶出物や剥落物の吸着だけでなく、水中の不純物の影響も考えられ、各イオン交換樹脂の反応速度の評価だけではイオン交換樹脂の劣化の原因を充分には把握出来ず、正しく水質管理を行うことが出来ない。   In the case of an ion exchange resin used in a mixed bed type, the reaction rate of the ion exchange resin having one charge code may be significantly reduced. This is considered to be caused by, for example, when the ion exchange resin is subjected to oxidative degradation or the like, part of the ion exchange resin is eluted or peeled off and adsorbed on the ion exchange resin having the opposite charge sign. Yes. In addition to the adsorption of the eluate and exfoliation from the ion exchange resin having the opposite charge sign, the influence of impurities in the water is also considered, and the evaluation of the reaction rate of each ion exchange resin is not sufficient. The cause of deterioration cannot be fully understood, and water quality management cannot be performed correctly.

ところで、発電所の復水脱塩装置で使用されているイオン交換樹脂については、陽イオン交換樹脂の影響で陰イオン交換樹脂の反応速度(例えば、物質移動係数:MTC)が低下することが明らかとなってきている。即ち、水中のFeイオンやCuイオン等の金属イオンの触媒作用や溶存酸素の影響で陽イオン交換樹脂が酸化分解を受け、陽イオン交換樹脂の母体構造であるポリスチレンスルホン酸(以下、「PSS」と称する)のオリゴマー及びポリマーが溶出し、陰イオン交換樹脂の表面に吸着して汚染し、陰イオン交換樹脂の反応速度を低下させる。また、純水製造装置等の一般の水処理装置においては、発電所の復水脱塩装置での現象とは逆で、陰イオン交換樹脂が陽イオン交換樹脂に影響を与え、陽イオン交換樹脂の反応速度が低下する現象も生じる。   By the way, it is clear that the reaction rate (for example, mass transfer coefficient: MTC) of the anion exchange resin is lowered due to the influence of the cation exchange resin for the ion exchange resin used in the condensate demineralizer of the power plant. It has become. That is, the cation exchange resin undergoes oxidative decomposition under the influence of catalytic action of metal ions such as Fe ions and Cu ions in water and dissolved oxygen, and polystyrene sulfonic acid (hereinafter referred to as “PSS”), which is the base structure of the cation exchange resin. Are eluted and adsorbed and contaminated on the surface of the anion exchange resin, reducing the reaction rate of the anion exchange resin. In general water treatment equipment such as pure water production equipment, the anion exchange resin affects the cation exchange resin, contrary to the phenomenon of the condensate desalination equipment at the power plant. This also causes a phenomenon that the reaction rate decreases.

実際のプラントでは陰イオン交換樹脂の反応速度は必ずしも使用期間とともに徐々に低下するわけではなく、ある時期より急激に低下するため、単に陰イオン交換樹脂の反応速度を測定するだけでは、陰イオン交換樹脂の交換時期を予測することは出来ない。この様に、反応速度によるイオン交換樹脂の性能評価管理だけでは水質管理上不十分で、陽イオン交換樹脂及び陰イオン交換樹脂のより適切な性能評価、交換時期予測、交換時期決定が重要になってきている。   In an actual plant, the reaction rate of the anion exchange resin does not necessarily decrease gradually with the period of use, but it suddenly decreases from a certain period of time. Therefore, simply measuring the reaction rate of the anion exchange resin makes it possible to perform anion exchange. It is not possible to predict when to replace the resin. In this way, performance evaluation management of ion exchange resin based on reaction rate alone is not sufficient for water quality management, and more appropriate performance evaluation of cation exchange resin and anion exchange resin, prediction of replacement time, and determination of replacement time are important. It is coming.

本発明者等は、陰イオン交換樹脂の表面分析を行い、表面に吸着したPSSの吸着量を測定することにより、陰イオン交換樹脂の性能評価と交換時期予測を行い、陰イオン交換樹脂の交換時期を決定する方法を考案した。
特開平10−267838号公報
The present inventors perform surface analysis of the anion exchange resin, measure the amount of PSS adsorbed on the surface, evaluate the performance of the anion exchange resin and predict the replacement time, and replace the anion exchange resin. A method for determining the timing was devised.
JP-A-10-267838

この方法は、従来の反応速度による評価方法に比べて、優れた方法であるが、陰イオン交換樹脂表面に吸着したPSSが該樹脂に与える影響は、その分子量により異なるため、PSSの分子量毎のデータを蓄積する必要があった。   This method is superior to the conventional evaluation method based on the reaction rate, but the effect of PSS adsorbed on the surface of the anion exchange resin on the resin differs depending on the molecular weight. It was necessary to accumulate data.

本発明は、上述の様な従来技術の問題点を解消し、効率的且つ簡便なイオン交換樹脂の性能評価方法、および、イオン交換樹脂の交換時期を判断、決定する効率的且つ簡便な水処理系の管理方法を提供せんとするものである。 The present invention eliminates the problems of the prior art as described above, and provides an efficient and simple method for evaluating the performance of an ion exchange resin , and an efficient and simple water treatment for determining and determining the replacement time of an ion exchange resin. It is intended to provide a system management method.

本発明は、原子間力顕微鏡の探針であるカンチレバーとイオン交換樹脂の表面との相互作用を測定し、該イオン交換樹脂の表面の電荷の状態を調べ、イオン交換樹脂の性能評価を行なうことを特徴とするイオン交換樹脂の性能評価方法を提供するものである。この方法を適用するのに特に適したイオン交換樹脂は、混床式で使用されている陽イオン交換樹脂、混床式で使用されている陰イオン交換樹脂、発電所の復水脱塩装置で使用されている陰イオン交換樹脂、純水製造装置で使用されている陽イオン交換樹脂又は陰イオン交換樹脂である。ここで、表面電荷の状態を調べる手法は、原子間力顕微鏡を用いる手法であり、具体的には、原子間力顕微鏡の探針であるカンチレバーとイオン交換樹脂の表面との相互作用を測定し、該イオン交換樹脂表面の電荷の状態を調べる手法であり、これによりイオン交換樹脂の性能評価を行うことができる。 The present invention measures the interaction between the cantilever and the ion exchange resin surface is a tip of an atomic force microscope, check the status of the charges on the surface of the ion exchange resin, the performance evaluation of an ion exchange resin An ion exchange resin performance evaluation method characterized by the above is provided. Particularly suitable ion exchange resins for applying this method are cation exchange resins used in mixed bed systems, anion exchange resins used in mixed bed systems, and condensate demineralizers at power plants. An anion exchange resin used, a cation exchange resin or an anion exchange resin used in a pure water production apparatus. Here, our method of Ru examine the state of the surface charge is a method of using an atomic force microscope, the interaction with specific, the cantilever and the ion exchange resin surface is a tip of an atomic force microscope This is a method for measuring and examining the state of the charge on the surface of the ion exchange resin , whereby the performance of the ion exchange resin can be evaluated.

また、本発明は、上記のイオン交換樹脂の性能評価方法によりイオン交換樹脂の性能評価を行い、該イオン交換樹脂の以降の反応速度低下傾向を予測し、イオン交換樹脂の交換時期を決定することを特徴とする水処理系の管理方法をも提供するものである。 Further, the present invention performs a performance evaluation of the ion exchange resin by the performance evaluation method of the ion exchange resin, to predict the reaction rate decline since of the ion-exchange resin, to determine the replacement timing of the ion exchange resin The management method of the water treatment system characterized by this is also provided.

一般に、物質の表面電荷を評価する場合には、ゼータ電位の測定が行われる。液中に分散できる微粒子状のイオン交換体では電気泳動法も使用され得るが、粒状のイオン交換樹脂は液中に分散しないため適用できない。膜状や繊維状のイオン交換体では流動電位法も使用され得るが、イオン交換体内部をイオンが透過するためその表面に電位が発生し難い場合は適用が困難となり、また、粒状のイオン交換樹脂は巨視的には凹凸が激しいことなどから適用が困難であると考えられる。そこで、本発明による粒状のイオン交換樹脂の場合は、原子間力顕微鏡(atomic force microscopy:AFM )の探針(カンチレバー)と樹脂表面との相互作用を測定し、樹脂表面の電荷の状態を評価する方法を採るGenerally, when evaluating the surface charge of a substance, the zeta potential is measured. Electrophoresis can also be used for fine particle ion exchangers that can be dispersed in a liquid, but granular ion exchange resins are not applicable because they are not dispersed in a liquid. Streaming potential method can also be used for membrane and fibrous ion exchangers. However, it is difficult to apply if the surface of the ion exchanger does not generate a potential because the ions permeate inside the ion exchanger. It is considered that the resin is difficult to apply due to macroscopic unevenness. Therefore, in the case of the granular ion exchange resin according to the present invention , the interaction between the atomic force microscopy (AFM) probe (cantilever) and the resin surface is measured, and the state of charge on the resin surface is evaluated. how to take.

従来から発電所の循環系統水の水質を良好に維持するために、復水脱塩装置の復水脱塩塔内のイオン交換樹脂を健全に保つことが必要とされている。また、純水製造装置(脱塩装置)等の他の一般の水処理装置についても同様で、いずれの場合もイオン交換樹脂の性能を的確に評価・判断することが水質管理上重要である。ところで、後述の実施例において、イオン交換樹脂の反応速度(例えば、物質移動係数:MTC)と樹脂表面の電荷に良い相関が見られたことから、本発明の方法はイオン交換樹脂の性能評価に有効であることが分かった。従って、本発明の水処理系の管理方法によれば、イオン交換樹脂表面の電荷を調べてイオン交換樹脂の性能評価を行い、その寿命を予測し、イオン交換樹脂の交換時期を決定することが可能である。しかも、MTC測定法等の反応速度測定法と比べて本発明の方法は遥かに簡易であり、例えばPSSの分子量毎のデータを蓄積する必要があった表面分析法と比べても簡易である。 Conventionally, in order to maintain the quality of water in the circulation system of a power plant in good condition, it is necessary to keep the ion exchange resin in the condensate demineralization tower of the condensate demineralizer healthy. Further, the same applies for other general water treatment device, such as pure water production system (demineralizer), it is important for water quality management is possible to accurately evaluate and determine ion exchange resins of performance in either case . Incidentally, in Examples described below, the reaction rate (e.g., mass transfer coefficient: MTC) of ion exchange resin from the charge to a good correlation was found of the resin surface, the method of the present invention the performance evaluation of an ion exchange resin It was found to be effective. Therefore, according to the management method of the water treatment system of the present invention performs a performance evaluation of the ion exchange resin by examining the charge of the ion exchange resin surface, to predict its lifetime, to determine the replacement timing of the ion exchange resin Is possible. In addition, the method of the present invention is much simpler than the reaction rate measurement method such as the MTC measurement method, and is also simpler than, for example, the surface analysis method that needs to accumulate data for each molecular weight of PSS.

以下、発明を実施するための最良の形態として、原子間力顕微鏡の探針(カンチレバー)とイオン交換樹脂表面との相互作用を測定し、樹脂表面の電荷の状態を調べる態様について説明するが、本発明はこれらに限定されるものではない Hereinafter, as the best mode for carrying out the invention, an aspect of measuring the interaction between the probe of the atomic force microscope (cantilever) and the surface of the ion exchange resin and examining the state of charge on the resin surface will be described. The present invention is not limited to these .

液中で帯電したカンチレバーとイオン交換樹脂表面との相互作用(引力、斥力)を測定し、イオン交換樹脂表面の電荷の状態を評価する。カンチレバーとしては、例えば、Si製やSi製のものが一般的に用いられるが、液中で帯電するものであれば、これらに限定されるものではない。 The interaction (attraction, repulsion) between the cantilever charged in the liquid and the surface of the ion exchange resin is measured, and the state of charge on the surface of the ion exchange resin is evaluated. As the cantilever, for example, those made of Si or Si 3 N 4 are generally used, but are not limited to these as long as they are charged in the liquid.

また、カンチレバーの先端径は数nmと極めて細いため、イオン交換樹脂表面の局所的な構造の影響を受けて、データのバラツキなどが生じ易いので、カンチレバーの先端に数10μmの粒子を固定させて、この粒子表面とイオン交換樹脂表面との相互作用を測定することによって、感度良くカンチレバーとイオン交換体の表面との相互作用を測定することも出来る。固定する粒子としては、例えば、ガラス球等のガラス粒子、シリカ粒子、ポリマー粒子、金属粒子及び物質の粒子表面にイオン性の官能基を修飾した粒子などを挙げることができ、液中で帯電するものであればいずれのものでも用いることができる。   In addition, since the tip diameter of the cantilever is as thin as several nanometers, data variations are likely to occur due to the local structure of the surface of the ion exchange resin, so that particles of several tens of μm are fixed to the tip of the cantilever. By measuring the interaction between the particle surface and the surface of the ion exchange resin, the interaction between the cantilever and the surface of the ion exchanger can be measured with high sensitivity. Examples of the particles to be fixed include glass particles such as glass spheres, silica particles, polymer particles, metal particles, and particles whose surface is modified with an ionic functional group, and are charged in a liquid. Any material can be used.

本発明による水処理系の管理方法の実施に当たっては、上記のようなイオン交換樹脂の表面電荷の状態(帯電したカンチレバー[先端に粒子を固定していてもよい]とイオン交換樹脂表面との相互作用)の測定・評価結果とイオン交換樹脂の反応速度の相関関係を予め把握しておく必要がある。そして、この相関関係を利用して、イオン交換樹脂の表面電荷の状態の評価結果から、復水脱塩装置や純水製造装置等の水処理系実機内で使用する陰イオン交換樹脂や陽イオン交換樹脂等のイオン交換樹脂の交換時期の予測・決定を行う。   In carrying out the method for managing a water treatment system according to the present invention, the surface charge state of the ion exchange resin as described above (the charged cantilever [the particle may be fixed at the tip]) and the surface of the ion exchange resin It is necessary to grasp in advance the correlation between the measurement / evaluation result of the action) and the reaction rate of the ion exchange resin. Using this correlation, the anion exchange resin and cation used in the actual water treatment system such as a condensate demineralizer and a pure water production device can be obtained from the evaluation result of the surface charge state of the ion exchange resin. Predict and determine the replacement time of ion exchange resins such as exchange resins.

例えば、イオン交換樹脂の反応速度の測定は、後述の実施例1におけるカラム出口の比抵抗の測定によるイオン交換速度を測定する方法、シャローベット法、物質移動係数「MTC」(mass transfer coefficient )の測定による方法等の公知の方法などにより行うことができる。シャローベット法は、樹脂層高約10mmのイオン交換樹脂層にNaCl又は硫酸ナトリウム等の塩類含有水を流し、イオン除去率を測定する方法である。一方、物質移動係数「MTC」の測定による方法が通常用いられ、その測定法の一例の概略は次の通りである。   For example, the reaction rate of the ion exchange resin is measured by the method of measuring the ion exchange rate by measuring the specific resistance at the column outlet in Example 1 described later, the shallow bed method, the mass transfer coefficient “MTC” (mass transfer coefficient) It can be performed by a known method such as a method by measurement. The shallow bed method is a method in which a salt-containing water such as NaCl or sodium sulfate is passed through an ion exchange resin layer having a resin layer height of about 10 mm and the ion removal rate is measured. On the other hand, a method by measurement of a mass transfer coefficient “MTC” is usually used, and an outline of an example of the measurement method is as follows.

例えば、発電所の復水脱塩装置からサンプリングした陰イオン交換樹脂をNaOHを用いて再生し、再生樹脂と新品の陽イオン交換樹脂のH形とを再生陰イオン交換樹脂/陽イオン交換樹脂容量比=1/2で混合し、カラムに充填する。次いで、カラムの上部よりアンモニウムイオン(アンモニア水)と硫酸ナトリウムを所定の濃度の水溶液の形で、流量70L/hr(リットル/時間)で通水する。通水中にカラム入口水と出口水を採取して、硫酸イオン濃度を測定し、更に、通水終了後に空隙率、陰イオン交換樹脂粒径を測定する。物質移動係数「MTC」を下記の「数1」の式に従って算出する。この値が高いほど、陰イオン交換樹脂の反応速度が高く、その性能が健全であると言える。通常、新品の陰イオン交換樹脂のMTC値は、2.0(×10-4m/sec)程度となる。 For example, an anion exchange resin sampled from a condensate demineralizer at a power plant is regenerated using NaOH, and the regenerated resin and the H form of a new cation exchange resin are regenerated anion exchange resin / cation exchange resin capacity. Mix at ratio = 1/2 and load into column. Next, ammonium ions (ammonia water) and sodium sulfate are passed through the upper part of the column in the form of an aqueous solution having a predetermined concentration at a flow rate of 70 L / hr (liter / hour). Column inlet water and outlet water are collected in the water flow, and the sulfate ion concentration is measured. After the water flow is completed, the porosity and the anion exchange resin particle size are measured. The mass transfer coefficient “MTC” is calculated according to the following “Equation 1”. It can be said that the higher the value, the higher the reaction rate of the anion exchange resin and the sounder the performance. Usually, the MTC value of a new anion exchange resin is about 2.0 (× 10 −4 m / sec).

Figure 0004406876
但し、
K:物質移動係数「MTC」(m/sec)、ε:空隙率、R:陰イオン交換樹脂/全イオン交換樹脂容量比、F:通水流量(m3 /sec)、A:樹脂層断面積(m2 )、L:樹脂層高(m)、従ってA×L:樹脂量(m3 )、d:樹脂粒径(m)、C0 :入口水のSO4 2- 濃度、C:出口水のSO4 2- 濃度。
Figure 0004406876
However,
K: Mass transfer coefficient “MTC” (m / sec), ε: Porosity, R: Anion exchange resin / total ion exchange resin volume ratio, F: Water flow rate (m 3 / sec), A: Resin layer breakage Area (m 2 ), L: Resin layer height (m), therefore A × L: Resin amount (m 3 ), d: Resin particle size (m), C 0 : SO 4 2− concentration of inlet water, C: SO 4 2- concentration of outlet water.

MTCが低いと反応速度が低く、また、陰イオン交換樹脂の一般的な交換時期は、例えば、MTC=1(×10-4m/sec)となった時であるが、これがどの程度の値になった時点で陰イオン交換樹脂を交換するかは、装置の運転状況や水質の要求性能により変化するので、個別具体的に判断されるべきものである。個別具体的に判断された各場合のかかるMTC値を基準として、該各場合の陰イオン交換樹脂の表面電荷の状態の評価結果とMTCの相関関係との対比から、陰イオン交換樹脂の交換時期の予測・決定を行うことが出来る。 The reaction rate is low when the MTC is low, and the general exchange time of the anion exchange resin is, for example, when MTC = 1 (× 10 −4 m / sec). Whether the anion exchange resin should be replaced at this point depends on the operating conditions of the apparatus and the required performance of the water quality, and should be determined individually and specifically. Using the MTC value determined in each case as a reference, the anion exchange resin replacement time is determined based on the comparison between the evaluation result of the surface charge state of the anion exchange resin and the MTC correlation in each case. Can be predicted and determined.

以下の実施例により本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。   The following examples further illustrate the present invention, but the present invention is not limited thereto.

半導体製造工場の混床式純水製造装置で水質が低下したMB塔(混床式イオン交換塔)の樹脂を採取し、反応速度及び原子間力顕微鏡におけるカンチレバーと樹脂表面との相互作用を測定した。採取した樹脂は、ローム・アンド・ハース社製強酸性陽イオン交換樹脂アンバーライトIR124とローム・アンド・ハース社製強塩基性陰イオン交換樹脂アンバーライトIRA402BLであった。   Collecting resin from MB tower (mixed bed ion-exchange tower) whose water quality has deteriorated using a mixed-bed pure water production system at a semiconductor manufacturing plant, and measuring the reaction rate and the interaction between the cantilever and the resin surface in an atomic force microscope did. The collected resins were a strongly acidic cation exchange resin Amberlite IR124 manufactured by Rohm and Haas and a strongly basic anion exchange resin Amberlite IRA402BL manufactured by Rohm and Haas.

反応速度は、イオン交換速度により比較した。イオン交換速度は、イオン交換樹脂に一定濃度の塩の水溶液を通液し、段階的に線速度(LV)を上げていき、その時の出口の比抵抗を測定して、評価した。具体的には、陽イオン交換樹脂の実機測定試料の場合は、この試料の30mlと新品陰イオン交換樹脂アンバーライトIRA402BLの70mlを混床としてカラムに充填し、15μS/cm相当のNaCl水溶液を該カラムに通液した。その結果を表1に示す。陰イオン交換樹脂の実機測定試料の場合は、この試料の30mlと新品陽イオン交換樹脂アンバーライトIR124の70mlを混床としてカラムに充填し、15μS/cm相当のNaSO水溶液を該カラムに通液した。その結果を表2に示す。また、比較のために、上記の各場合に、実機測定試料の代わりに新品のイオン交換樹脂を用いて同様に混床とし、各カラムにそれぞれの塩の水溶液を通液し、その時の出口の比抵抗を測定した。それらの結果も表1と表2に示すが、「出口の比抵抗」の欄で「新品」として示されたデータである。表1と表2において、上の段から下方の段に向かって逐次通液したことを示している。表1を例とすれば、超純水をLV=20m/hrで20分通液し、次いでNaCl水溶液をLV=20m/hrで5分通液し、次いでNaCl水溶液をLV=30m/hrで5分通液し、最後にNaCl水溶液をLV=40m/hrで5分通液したことを示している。 The reaction rate was compared by the ion exchange rate. The ion exchange rate was evaluated by passing an aqueous salt solution at a constant concentration through the ion exchange resin, gradually increasing the linear velocity (LV), and measuring the specific resistance at the outlet at that time. Specifically, in the case of an actual measurement sample of a cation exchange resin, 30 ml of this sample and 70 ml of a new anion exchange resin Amberlite IRA402BL are packed into a column as a mixed bed, and a NaCl aqueous solution equivalent to 15 μS / cm is added to the column. The solution was passed through the column. The results are shown in Table 1. In the case of an actual measurement sample of an anion exchange resin, 30 ml of this sample and 70 ml of a new cation exchange resin Amberlite IR124 are packed into a column as a mixed bed, and a Na 2 SO 4 aqueous solution equivalent to 15 μS / cm is applied to the column. The liquid was passed. The results are shown in Table 2. In addition, for comparison, in each of the above cases, a new bed of ion exchange resin is used instead of the actual measurement sample to form a mixed bed, and each salt solution is passed through each column. The specific resistance was measured. These results are also shown in Tables 1 and 2, and are data indicated as “new” in the column of “specific resistance at outlet”. In Tables 1 and 2, it is shown that liquid was sequentially passed from the upper stage toward the lower stage. Taking Table 1 as an example, ultrapure water was passed at LV = 20 m / hr for 20 minutes, then NaCl aqueous solution was passed at LV = 20 m / hr for 5 minutes, and then NaCl aqueous solution was passed at LV = 30 m / hr. It shows that the solution was passed for 5 minutes, and finally the NaCl aqueous solution was passed for 5 minutes at LV = 40 m / hr.

Figure 0004406876
Figure 0004406876

Figure 0004406876
Figure 0004406876

陽イオン交換樹脂アンバーライトIR124の新品測定試料の場合はLVを高くしても比抵抗は殆ど変化していないが、実機測定試料の場合はLVを高くすれば比抵抗は低下しており反応速度が低下していることを示している。陰イオン交換樹脂アンバーライトIRA402BLは新品測定試料、実機測定試料のいずれの場合も、LVを高くしても比抵抗は殆ど変化しておらず、実機測定試料においても比抵抗は殆ど低下せず、反応速度は殆ど低下していないことが分かる。   In the case of a new measurement sample of the cation exchange resin Amberlite IR124, the specific resistance is hardly changed even if the LV is increased, but in the case of the actual measurement sample, the specific resistance is decreased if the LV is increased. Indicates that it is decreasing. In the case of the anion exchange resin Amberlite IRA402BL, in either the new measurement sample or the actual machine measurement sample, the specific resistance hardly changed even when the LV was increased, and the specific resistance did not substantially decrease even in the actual machine measurement sample. It can be seen that the reaction rate has hardly decreased.

原子間力顕微鏡におけるカンチレバーと樹脂表面との相互作用の測定は下記の条件で行った。
[測定条件]
・装置:原子間力顕微鏡SPA−400(セイコーインスツルメンツ社製)
・カンチレバー:SN−FF01、Si製、バネ定数0.06N/m(セイコーインスツルメンツ社製)
・測定液:pH3(HClで調整)
・測定モード:フォースカーブ測定
The interaction between the cantilever and the resin surface in the atomic force microscope was measured under the following conditions.
[Measurement condition]
-Apparatus: Atomic force microscope SPA-400 (manufactured by Seiko Instruments Inc.)
Cantilever: SN-FF01, Si 3 N 4 made, spring constant 0.06 N / m (manufactured by Seiko Instruments Inc.)
・ Measurement solution: pH 3 (adjusted with HCl)
・ Measurement mode: Force curve measurement

図1に陽イオン交換樹脂アンバーライトIR124の新品測定試料と実機測定試料について、図2に陰イオン交換樹脂アンバーライトIRA402BLの新品測定試料と実機測定試料について、カンチレバーと樹脂表面との相互作用の測定結果を示す。両図において、横軸はカンチレバーと樹脂表面間の距離、縦軸はカンチレバーが受けた力である。両樹脂について、表1と表2及び図1と図2の「反応速度」及び原子間力顕微鏡におけるカンチレバーと樹脂表面との「相互作用(表面間の力)」の結果を表3に纏める。   FIG. 1 shows the measurement of the interaction between the cantilever and the resin surface for the new measurement sample and the actual measurement sample of the cation exchange resin Amberlite IR124, and FIG. Results are shown. In both figures, the horizontal axis represents the distance between the cantilever and the resin surface, and the vertical axis represents the force received by the cantilever. The results of “reaction rate” in Tables 1 and 2 and FIGS. 1 and 2 and “interaction (force between surfaces)” between the cantilever and the resin surface in an atomic force microscope are summarized in Table 3.

Figure 0004406876
Figure 0004406876

Siは、pH3の溶液中でプラスに帯電することが知られている。
「超精密ウェーハ表面制御技術」p.237、(株)サイエンスフォーラム
It is known that Si 3 N 4 is positively charged in a pH 3 solution.
“Ultra-precision wafer surface control technology” p. 237, Science Forum Inc.

陽イオン交換樹脂アンバーライトIR124の新品測定試料の場合は引力が検出され、樹脂表面はマイナスに帯電していることを示している。実機測定試料の場合の性能が低下した陽イオン交換樹脂アンバーライトIR124では引力が検出されていないことから、樹脂表面の電荷はほぼ中和されていることを示している。一方、陰イオン交換樹脂アンバーライトIRA402BLは新品測定試料の場合も実機測定試料の場合も斥力が検出され、樹脂表面はプラスで変化無く、性能も低下していないことを示している。   In the case of a new measurement sample of the cation exchange resin Amberlite IR124, an attractive force is detected, indicating that the resin surface is negatively charged. In the cation exchange resin amberlite IR124 whose performance in the case of an actual machine measurement sample has been reduced, no attractive force is detected, indicating that the charge on the resin surface is almost neutralized. On the other hand, in the case of the anion exchange resin Amberlite IRA402BL, the repulsive force was detected both in the case of the new measurement sample and the actual measurement sample, indicating that the resin surface was positive and not changed and the performance was not deteriorated.

イオン交換樹脂の反応速度と表面の電荷に相関が見られたことから、本発明のイオン交換体の性能評価方法(本実施例では、原子間力顕微鏡におけるカンチレバーと樹脂表面との相互作用を測定による)は、イオン交換樹脂の評価に有効であることが分かる。本実施例における反応速度測定試験は、イオン交換樹脂量として100ml必要で測定時間も数10分必要であるが、本発明による本実施例の測定では原理的に樹脂1粒で測定可能で、測定時間も1測定当たり数秒であることから、非常に効率的、簡便に樹脂の性能評価が可能である。   Since there was a correlation between the reaction rate of the ion exchange resin and the charge on the surface, the performance evaluation method of the ion exchanger of the present invention (in this example, the interaction between the cantilever and the resin surface in the atomic force microscope was measured. Is effective for the evaluation of ion exchange resins. The reaction rate measurement test in this example requires 100 ml as the amount of ion exchange resin and requires several tens of minutes, but in the measurement of this example according to the present invention, in principle, measurement can be performed with one resin particle. Since the time is several seconds per measurement, the performance of the resin can be evaluated very efficiently and simply.

ローム・アンド・ハース社製強塩基性陰イオン交換樹脂アンバーライトIRA900CPに平均分子量10,000及び1,000,000のPSS(東ソー株式会社製)を樹脂1L当たりの吸着量として、0〜298mg吸着させた樹脂(以下、PSS吸着量の単位:mg/L−Rで表す)を測定試料として使用した。それぞれの樹脂測定試料について、物質移動係数(MTC)及び原子間力顕微鏡における粒子固定カンチレバーと樹脂表面との相互作用を測定した。粒子固定カンチレバーは、Si製のカンチレバーの先端に、半径約20μmのガラス球を粒子として固定させたもので、ガラス球と樹脂表面との相互作用を測定するようにしたものである。 Adsorption of 0 to 298 mg of PSS (manufactured by Tosoh Corporation) with an average molecular weight of 10,000 and 1,000,000 per 1 liter of resin is applied to the strongly basic anion exchange resin Amberlite IRA900CP manufactured by Rohm and Haas. The resin used (hereinafter, expressed in units of PSS adsorption amount: mg / LR) was used as a measurement sample. For each resin measurement sample, the mass transfer coefficient (MTC) and the interaction between the particle-fixed cantilever and the resin surface in an atomic force microscope were measured. The particle-fixed cantilever is obtained by fixing a glass sphere having a radius of about 20 μm as a particle to the tip of a Si 3 N 4 cantilever and measuring the interaction between the glass sphere and the resin surface.

原子間力顕微鏡におけるカンチレバー先端のガラス球と樹脂表面との相互作用の測定は下記の条件で行った。
[測定条件]
・装置:原子間力顕微鏡SPA−400(セイコーインスツルメンツ社製)
・カンチレバー:SN−FF01、Si製、バネ定数0.9N/m(セイコーインスツルメンツ社製)
・測定液:超純水
・測定モード:フォースカーブ測定
The interaction between the glass sphere at the tip of the cantilever and the resin surface in the atomic force microscope was measured under the following conditions.
[Measurement condition]
-Apparatus: Atomic force microscope SPA-400 (manufactured by Seiko Instruments Inc.)
Cantilever: SN-FF01, made of Si 3 N 4 , spring constant 0.9 N / m (manufactured by Seiko Instruments Inc.)
・ Measurement liquid: Ultrapure water ・ Measurement mode: Force curve measurement

図3に陰イオン交換樹脂アンバーライトIRA900CPに平均分子量10,000のPSSを0〜298mg/L−R吸着させた樹脂について、カンチレバー先端のガラス球と樹脂表面との相互作用の測定結果を示す。横軸(x軸)はガラス球表面と樹脂表面間の距離、縦軸(y軸)はカンチレバーが受けた力である。PSSを吸着していない0mg/L−Rの場合は引力が検出され、PSSの吸着量が増大するに従って、引力の大きさは小さくなり、PSS吸着量298mg/L−Rの場合は斥力が検出されている。ガラスは中性領域の水中でマイナスに帯電することから、陰イオン交換樹脂アンバーライトIRA900CPの表面はプラスに帯電しており、PSS吸着量の増大に従ってマイナス方向に帯電がシフトしたことを示している。   FIG. 3 shows the measurement results of the interaction between the glass sphere at the tip of the cantilever and the resin surface of the resin obtained by adsorbing 0 to 298 mg / LR of PSS having an average molecular weight of 10,000 on the anion exchange resin Amberlite IRA900CP. The horizontal axis (x-axis) is the distance between the glass sphere surface and the resin surface, and the vertical axis (y-axis) is the force received by the cantilever. In the case of 0 mg / LR that does not adsorb PSS, the attractive force is detected. As the adsorption amount of PSS increases, the magnitude of the attractive force decreases. In the case of the PSS adsorption amount of 298 mg / LR, the repulsive force is detected. Has been. Since the glass is negatively charged in neutral water, the surface of the anion exchange resin Amberlite IRA900CP is positively charged, indicating that the charge is shifted in the negative direction as the PSS adsorption amount increases. .

表4に分子量10,000及び1,000,000のPSSをそれぞれ吸着させた樹脂について、カンチレバー先端のガラス球と樹脂表面との相互作用(表面間の力)の測定結果と物質移動係数(MTC)の測定結果を示す。引力が検出された場合にはy軸の最小値、斥力が検出された場合はx=0でのy値を指標として用いて記載した。いずれの分子量においても、引力から斥力に変化する際に、MTCが陰イオン交換樹脂の一般的な交換基準である1.0の値を下回っている。一方、この時のPSS吸着量は、分子量によって異なっている。また、MTCは急激に変化しているのに対し、引力の大きさは(即ち、表面の電荷の状態)は徐々に小さく(即ち、電荷の状態がマイナス方向に)変化している。以上から、表面の電荷の状態を測定することにより、MTCが低下する時期を予測することが出来ることが分かった。   Table 4 shows the results of measuring the interaction between the glass sphere at the tip of the cantilever and the resin surface (force between the surfaces) and the mass transfer coefficient (MTC) for the resins adsorbed with molecular weights of 10,000 and 1,000,000, respectively. ) Shows the measurement results. When attraction is detected, the minimum value of the y-axis is used, and when repulsive force is detected, the y value at x = 0 is used as an index. At any molecular weight, MTC is below the value of 1.0 which is a general exchange standard for anion exchange resins when changing from attractive force to repulsive force. On the other hand, the PSS adsorption amount at this time varies depending on the molecular weight. Further, while the MTC changes rapidly, the magnitude of the attractive force (that is, the state of charge on the surface) gradually decreases (that is, the state of charge changes in the negative direction). From the above, it was found that the time when the MTC decreases can be predicted by measuring the surface charge state.

Figure 0004406876
Figure 0004406876

発電所Aと発電所Bにおいて復水脱塩装置で使用されている強塩基性陰イオン交換樹脂アンバーライトIRA900CPを各一定期間後に経時的に採取した樹脂を測定試料として使用した。なお、復水脱塩装置で使用されている陰イオン交換樹脂と陽イオン交換樹脂は定期的に再生処理されているのは勿論である。それぞれの測定試料について、物質移動係数(MTC)及び原子間力顕微鏡における粒子固定カンチレバーと樹脂表面との相互作用を測定した。粒子固定カンチレバーは、Si製のカンチレバーの先端に、半径約20μmのガラス球を粒子として固定させたもので、ガラス球と樹脂表面との相互作用を測定するようにしたものである。原子間力顕微鏡におけるカンチレバー先端のガラス球と樹脂表面との相互作用(表面間の力)の測定条件は実施例2と同様とした。結果を表5に示す。表5において、データの最上段は樹脂使用初期のものであり、下段に向かうに従って樹脂使用期間は長くなり、データの最下段は樹脂使用後期のものである。また、表5において、PSS吸着量はフーリエ変換赤外全反射分光法で求めた。 Resin collected over time after a certain period of time was used as a measurement sample of the strongly basic anion exchange resin Amberlite IRA900CP used in the condensate demineralizer at power plants A and B. Needless to say, the anion exchange resin and the cation exchange resin used in the condensate demineralizer are periodically regenerated. For each measurement sample, the mass transfer coefficient (MTC) and the interaction between the particle-fixed cantilever and the resin surface in an atomic force microscope were measured. The particle-fixed cantilever is obtained by fixing a glass sphere having a radius of about 20 μm as a particle to the tip of a Si 3 N 4 cantilever and measuring the interaction between the glass sphere and the resin surface. The measurement conditions for the interaction between the glass sphere at the tip of the cantilever and the resin surface in the atomic force microscope (force between the surfaces) were the same as in Example 2. The results are shown in Table 5. In Table 5, the uppermost stage of the data is for the initial stage of resin use, the resin usage period becomes longer toward the lower stage, and the lowermost stage of the data is for the late stage of resin use. In Table 5, the PSS adsorption amount was determined by Fourier transform infrared total reflection spectroscopy.

Figure 0004406876
Figure 0004406876

発電所Aでは使用後期においてPSS吸着量は155mgまで増加するが、表面間の力は引力のままであり(即ち、樹脂表面の電荷はプラス)、MTCも大きく低下していない。一方、発電所Bでは使用後期においてPSS吸着量は発電所Aとほぼ同量の159mgまで増加すると、表面間の力は斥力に変化し(即ち、樹脂表面の電荷はマイナスへ変化)、MTCは大きく低下する。以上の結果から、表面の電荷の状態を測定することにより、MTCが低下する時期を予測することが出来ることが分かった。   In the power plant A, the PSS adsorption amount increases to 155 mg in the latter period of use, but the force between the surfaces remains attractive (that is, the charge on the resin surface is positive), and the MTC is not greatly reduced. On the other hand, in the power plant B, when the PSS adsorption amount increases to 159 mg, which is almost the same as that in the power plant A, the force between the surfaces changes to repulsive force (that is, the charge on the resin surface changes to minus), and MTC is Decrease significantly. From the above results, it was found that the time when the MTC decreases can be predicted by measuring the surface charge state.

樹脂の表面の電荷とMTCに良い相関が見られたことから、樹脂表面の電荷を調べることにより、樹脂の性能評価、寿命予測、交換時期決定を行うことが出来ることが分かった。AFMを用いる表面電荷測定方法は、使用するカンチレバーの材質、バネ定数、カンチレバーに粒子を固定する場合は固定するその粒子の材質や大きさなどにより、表面間に働く力の大きさは異なるため、予め表面間の力の変化と性能との関係を調べておく必要があることも理解されよう。   Since a good correlation was observed between the charge on the surface of the resin and the MTC, it was found that by examining the charge on the surface of the resin, it is possible to evaluate the performance of the resin, predict the lifetime, and determine the replacement time. The surface charge measurement method using AFM is different in the magnitude of the force acting between the surfaces depending on the material of the cantilever to be used, the spring constant, and the material and size of the particle to be fixed when fixing the particle to the cantilever. It will also be appreciated that the relationship between the change in force between the surfaces and performance must be examined in advance.

本発明のイオン交換樹脂の性能評価方法によれば、イオン交換樹脂の性能を的確に評価・判断することが出来る。また、本発明の水処理系の管理方法によれば、特にイオン交換樹脂が正常に機能しなくなる前にその使用限界を予測し、水処理系を安定的に管理することができる。従って、本発明の方法は、例えば、火力発電所や原子力発電所での補給水処理装置や復水脱塩装置など、半導体製造工場、一般産業プラントを始めとして多くの分野での水処理装置、廃水処理装置、純水製造装置などで利用することができ、特に好適には、PWR型やBWR型の原子力発電所の復水脱塩装置に使用される陰イオン交換樹脂の交換時期の決定などに適用することができる。 According to the performance evaluation method of an ion exchange resin of the present invention, it is possible to accurately evaluate and determine ion exchange resins performance. Further, according to the management method of the water treatment system of the present invention, to predict the usage limit before the ion-exchange resin in Japanese may not function properly, the water treatment system can be stably managed. Therefore, the method of the present invention includes, for example, water treatment devices in many fields including semiconductor manufacturing plants and general industrial plants, such as makeup water treatment devices and condensate demineralization devices in thermal power plants and nuclear power plants, It can be used in wastewater treatment equipment, pure water production equipment, etc., and particularly preferably, determination of the replacement time of anion exchange resin used in condensate demineralization equipment for PWR and BWR nuclear power plants, etc. Can be applied to.

図1は、陽イオン交換樹脂の新品測定試料と実機測定試料についての原子間力顕微鏡におけるカンチレバーと樹脂表面との相互作用の測定結果を力−距離曲線として示すグラフ図である。FIG. 1 is a graph showing, as a force-distance curve, a measurement result of an interaction between a cantilever and a resin surface in an atomic force microscope for a new measurement sample and an actual measurement sample of a cation exchange resin. 図2は、陰イオン交換樹脂の新品測定試料と実機測定試料についての原子間力顕微鏡におけるカンチレバーと樹脂表面との相互作用の測定結果を力−距離曲線として示すグラフ図である。FIG. 2 is a graph showing, as a force-distance curve, measurement results of the interaction between the cantilever and the resin surface in an atomic force microscope for a new measurement sample and an actual measurement sample of an anion exchange resin. 図3は、陰イオン交換樹脂に平均分子量10,000のPSSを0〜298mg/L−R吸着させた樹脂についての原子間力顕微鏡におけるカンチレバー先端に固定したガラス球と樹脂表面との相互作用の測定結果を力−距離曲線として示すグラフ図である。FIG. 3 shows the interaction between a glass sphere fixed to the tip of a cantilever and the resin surface in an atomic force microscope for a resin obtained by adsorbing 0 to 298 mg / LR of PSS having an average molecular weight of 10,000 on an anion exchange resin. It is a graph which shows a measurement result as a force-distance curve.

Claims (4)

原子間力顕微鏡の探針であるカンチレバーとイオン交換樹脂の表面との相互作用を測定し、該イオン交換樹脂の表面の電荷の状態を調べ、イオン交換樹脂の性能評価を行なうことを特徴とするイオン交換樹脂の性能評価方法。 Measuring the interaction of the atomic force microscope probe is a cantilever and the ion exchange resin surface, examines the state of charge of the surface of the ion-exchange resin, and performing performance evaluation of the ion exchange resin Ion exchange resin performance evaluation method. 前記イオン交換樹脂が、混床式で使用されている陽イオン交換樹脂又は陰イオン交換樹脂であることを特徴とする請求項1に記載のイオン交換樹脂の性能評価方法。 The ion exchange resin performance evaluation method according to claim 1, wherein the ion exchange resin is a cation exchange resin or an anion exchange resin used in a mixed bed type. 前記イオン交換樹脂が、発電所の復水脱塩装置で使用されている陰イオン交換樹脂、または、純水製造装置で使用されている陽イオン交換樹脂又は陰イオン交換樹脂であることを特徴とする請求項1又は2に記載のイオン交換樹脂の性能評価方法。 The ion exchange resin is an anion exchange resin used in a condensate desalination apparatus of a power plant, or a cation exchange resin or an anion exchange resin used in a pure water production apparatus. A method for evaluating the performance of the ion exchange resin according to claim 1 or 2. 請求項1からのいずれかに記載のイオン交換樹脂の性能評価方法によりイオン交換樹脂の性能評価を行い、該イオン交換樹脂の以降の反応速度低下傾向を予測し、イオン交換樹脂の交換時期を決定することを特徴とする水処理系の管理方法。 The performance evaluation method of an ion exchange resin according to any one of claims 1 to 3 The performance evaluation of the ion exchange resin, to predict the reaction rate decline since of the ion exchange resin, the replacement timing of the ion exchange resin A method for managing a water treatment system, characterized by deciding.
JP2004213717A 2004-07-22 2004-07-22 Ion exchange resin performance evaluation method and water treatment system management method Expired - Fee Related JP4406876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004213717A JP4406876B2 (en) 2004-07-22 2004-07-22 Ion exchange resin performance evaluation method and water treatment system management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004213717A JP4406876B2 (en) 2004-07-22 2004-07-22 Ion exchange resin performance evaluation method and water treatment system management method

Publications (2)

Publication Number Publication Date
JP2006030146A JP2006030146A (en) 2006-02-02
JP4406876B2 true JP4406876B2 (en) 2010-02-03

Family

ID=35896669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004213717A Expired - Fee Related JP4406876B2 (en) 2004-07-22 2004-07-22 Ion exchange resin performance evaluation method and water treatment system management method

Country Status (1)

Country Link
JP (1) JP4406876B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6258721B2 (en) * 2014-02-07 2018-01-10 富士電機株式会社 Cooling water leak diagnosis system
US11017344B2 (en) 2016-09-12 2021-05-25 Ecolab Usa Inc. Method and apparatus for predicting depletion of deionization tanks and optimizing delivery schedules

Also Published As

Publication number Publication date
JP2006030146A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
CN1252469C (en) Method and apparatus for estimating performance of anion-exchange resin and condensed-water desalting device
Pan et al. Fluoride removal from water by membrane capacitive deionization with a monovalent anion selective membrane
Guyes et al. Enhancing the ion-size-based selectivity of capacitive deionization electrodes
Karunarathne et al. Fixed bed adsorption column studies for the removal of aqueous phenol from activated carbon prepared from sugarcane bagasse
Bai et al. Removal of cadmium from wastewater using ion exchange resin Amberjet 1200H columns
JP2014100706A (en) Water treatment for particularly producing ultrapure water
Song et al. Effects of the operating parameters on the reverse osmosis-electrodeionization performance in the production of high purity water
JP4406876B2 (en) Ion exchange resin performance evaluation method and water treatment system management method
JP3320730B2 (en) Method and apparatus for preparing clean gas
JP6846185B2 (en) Deterioration diagnosis method for solid catalyst carrier, deterioration diagnosis device, and measurement device for substances to be treated
US20090294367A1 (en) Method and apparatus for condensate demineralization
Ali et al. The potential of nitrate removal from groundwater of Bani-Suif west area, Egypt using nanocomposite reverse osmosis membranes
US20030050350A1 (en) Treated ion exchange resin and method for treatment thereof
JP4671272B2 (en) Method and apparatus for detecting anion in liquid
JP2003230840A (en) Method for regenerating ion exchanger and regenerating agent for anion exchanger
JP3633195B2 (en) Ion exchange resin performance evaluation method and water treatment system management method
Budash et al. Effect of Acid Modification on Porous Structure and Adsorption Properties of Different Type Ukrainian Clays for Water Purification Technologies
JP4441894B2 (en) Method for determining adsorption state of substance adsorbed on sample surface and management method for water treatment system
JP3948514B2 (en) Ion exchanger performance recovery method and performance recovery apparatus
JP4505103B2 (en) Cation exchange resin performance evaluation method and water treatment system management method using the method
JP4583570B2 (en) Cation exchange resin performance evaluation method and water treatment system management method using the same
JP2000009703A (en) Performance evaluation method for anion-exchange resin
JP7179641B2 (en) Method for evaluating performance of anion exchange resin, method for producing pure water, and water treatment system
CN117037944B (en) Method and system for determining dosage of fluoride adsorbent
Fischer In situ electrochemical regeneration of activated carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091029

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees