JP4583570B2 - Cation exchange resin performance evaluation method and water treatment system management method using the same - Google Patents

Cation exchange resin performance evaluation method and water treatment system management method using the same Download PDF

Info

Publication number
JP4583570B2
JP4583570B2 JP2000294281A JP2000294281A JP4583570B2 JP 4583570 B2 JP4583570 B2 JP 4583570B2 JP 2000294281 A JP2000294281 A JP 2000294281A JP 2000294281 A JP2000294281 A JP 2000294281A JP 4583570 B2 JP4583570 B2 JP 4583570B2
Authority
JP
Japan
Prior art keywords
exchange resin
cation exchange
pss
amount
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000294281A
Other languages
Japanese (ja)
Other versions
JP2001228134A (en
Inventor
千佳 建持
潤平 府川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2000294281A priority Critical patent/JP4583570B2/en
Publication of JP2001228134A publication Critical patent/JP2001228134A/en
Application granted granted Critical
Publication of JP4583570B2 publication Critical patent/JP4583570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、火力発電所、原子力発電所の復水脱塩装置や、電子工業における純水製造装置のポリッシャ等で使用する陽イオン交換樹脂の劣化度合いの評価方法に関する。また、本発明は、上記評価方法を用いた水処理系の管理方法に関する。
【0002】
【従来の技術】
陽イオン交換樹脂と陰イオン交換樹脂とを組み合わせた脱塩装置のイオン交換樹脂の性能評価方法として、次の方法が知られている。すなわち、▲1▼脱塩装置から樹脂をサンプリングし、▲2▼混合状態の場合は逆洗等の手法により分離し、▲3▼再生が必要な場合は、陽イオン交換樹脂は塩酸等の酸再生剤を通薬してH形に調整し、陰イオン交換樹脂は苛性ソーダ等のアルカリ再生剤を通薬してOH形に調整した後、十分に洗浄を行い、▲4▼樹脂を脱塩装置と同様の組み合わせになるように調整し、▲5▼これを試験筒に充填して試験筒に一定濃度の塩類含有水を通水し、処理水に漏洩するイオン量を電気伝導率の値として測定する方法である。
【0003】
しかしながら、上述したイオン交換樹脂の性能評価方法は、イオン交換樹脂の反応速度の低下を知ることはできるが、脱塩装置の処理水質に問題を生じる以前に、予めイオン交換樹脂の使用限界を予測することはできなかった。また、陽イオン交換樹脂の酸化劣化度合いは、TOC溶出量の増加、水分保有能力の増加、TOC溶出物中の高分子物質の増加等によって評価することが可能である。しかし、陽イオン交換樹脂からの溶出物の量は必ずしも使用期間につれて徐々に増加するわけではなく、ある時期から比較的急激に増加するため、上記性能評価方法では陽イオン交換樹脂の使用限界を予測することはできなかった。
【0004】
これに対し、本出願人は、陽イオン交換樹脂の使用限界を予測できる方法として、陽イオン交換樹脂に銅イオン及び/又は鉄イオンを吸着させた後、ヒドラジン水溶液を接触させて加速劣化させ、次いで劣化させた陽イオン交換樹脂に溶離液を接触させ、この時樹脂から溶出したポリスチレンスルホン酸量を測定する陽イオン交換樹脂の性能評価方法を提案した(特開平9−210977号)。この方法は、陽イオン交換樹脂を加速劣化させた後、劣化させた陽イオン交換樹脂からのポリスチレンスルホン酸溶出量を測定し、その値に基づいて陽イオン交換樹脂の交換時期を決定する方法である。
【0005】
すなわち、脱塩装置に通常使用されている陽イオン交換樹脂は、イオン交換基としてスルホン酸基を有する強酸性陽イオン交換樹脂であり、その溶出物の主成分はポリスチレンスルホン酸(以下、場合によりPSSという)である。この陽イオン交換樹脂を長期間使用した場合、陽イオン交換樹脂の一部が酸化分解されて劣化し、種々の分子量のPSSを溶出するようになる。溶出されるPSSは、陽イオン交換樹脂と対で使用される陰イオン交換樹脂の反応速度を低下させることが知られており、そのため陽イオン交換樹脂の劣化度合いの評価方法が望まれていた。しかし、PSSを溶出するようになっても、通常は陽イオン交換樹脂自体のイオン交換性能には大きな低下が認められないため、劣化度合いをPSSの溶出量によって評価する方法が望まれていた。前述の特開平9−210977号の方法は、かかる要望に応えるものである。
【0006】
【発明が解決しようとする課題】
しかし、本発明者らが検討を行ったところ、特開平9−210977号の方法には、次のような問題があることが判明した。すなわち、劣化した陽イオン交換樹脂から溶出するポリスチレンスルホン酸には、低分子量のポリスチレンスルホン酸(以下、低分子量PSSという)と、高分子量のポリスチレンスルホン酸(以下、高分子量PSSという)があるが、本発明者らは、高分子量PSSには、溶解性のポリスチレンスルホン酸(以下、溶解性PSSという)と、不溶解性のポリスチレンスルホン酸(以下、不溶解性PSSという)が存在し、陰イオン交換樹脂の反応性低下には、特に不溶解性PSSが影響を与えることを見出した。しかし、不溶解性PSSはPSSの特徴を有しているため、特開平9−210977号の評価方法では、不溶解性PSSを溶解性PSSと区別して定量することはできず、陽イオン交換樹脂から溶出するPSSは高分子量PSSと低分子量PSSにしか区別できなかった。そのため、高分子量PSSとして定量されるPSS中の溶解性PSSと不溶解性PSSの割合によっては、陽イオン交換樹脂の劣化度合いをうまく評価することができない場合があることが判明した。
【0007】
本発明は、前述した事情に鑑みてなされたもので、陽イオン交換樹脂の劣化度合いを陽イオン交換樹脂からのPSSの溶出量によって評価する方法であって、陽イオン交換樹脂の劣化度合いを精度よく評価することができる方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者は、前述した課題を達成するために、陽イオン交換樹脂に接触させた後の液体中に含まれるPSSから不溶解性PSSを分離する目的で、まず、メンブレンフィルタを用いた濾過処理によって前記液体から不溶解性PSSを分離することを試みた。しかし、この方法ではフィルタが目詰まりを起こし、溶解性PSSがフィルタ上に残留して、溶解性PSSの測定値が低めになってしまうという不具合が生じた。そこでさらに検討したところ、遠心分離により前記液体中に含まれる微粒子を分離した後、さらにメンブレンフィルタで濾過を行うことにより、前記液体から不溶解性PSSを分離することが可能となり、これにより溶解性PSSの測定値に影響与えることなく、溶解性PSS及び不溶解性PSSをそれぞれ定量できることを知見した。
【0009】
本発明は、上記知見に基づいてなされたもので、下記(1)〜()に示す陽イオン交換樹脂の性能評価方法、及び、下記()に示す水処理系の管理方法を提供する。なお、本発明は各種の強酸性陽イオン交換樹脂の評価に適用することができ、陽イオン交換樹脂であればどのような型(例えばゲル型、MR型、ポーラス型等)のものでも評価することができる。
【0010】
(1)陽イオン交換樹脂に液体を接触させ、次いで陽イオン交換樹脂に接触させた後の液体中に含まれるポリスチレンスルホン酸量を測定する工程と、前記陽イオン交換樹脂に接触させた後の液体を遠心分離し、次いで遠心分離後の液体をメンブレンフィルタで濾過した後、濾液中に含まれるポリスチレンスルホン酸量を測定する工程とを備え、前記両工程で得られたポリスチレンスルホン酸量から算出される微粒子型ポリスチレンスルホン酸量に基づいて前記陽イオン交換樹脂の劣化度合いを評価することを特徴とする陽イオン交換樹脂の性能評価方法。
)陽イオン交換樹脂に液体を接触させる前に、陽イオン交換樹脂に銅イオン及び/又は鉄イオンを吸着させ、さらにヒドラジン水溶液を接触させて陽イオン交換樹脂を加速劣化させる(1)の陽イオン交換樹脂の性能評価方法。
)加速劣化させた陽イオン交換樹脂に液体を接触させる前に、加速劣化させた陽イオン交換樹脂に酸水溶液を接触させて陽イオン交換樹脂に吸着されている銅イオン及び/又は鉄イオンを脱離させる()の陽イオン交換樹脂の性能評価方法。
)陽イオン交換樹脂に液体を接触させる際に、陽イオン交換樹脂に結晶金属を添加して陽イオン交換樹脂を加速劣化させる(1)の陽イオン交換樹脂の性能評価方法。
)ポリスチレンスルホン酸量の測定をゲルフィルトレーションクロマトグラフィーにより行う(1)〜()の陽イオン交換樹脂の性能評価方法。
)微粒子型ポリスチレンスルホン酸が、孔径0.4〜0.45μmのメンブレンフィルタを透過し、孔径0.1μm以下のメンブレンフィルタを透過しない大きさの不溶解性ポリスチレンスルホン酸である(1)〜()の陽イオン交換樹脂の性能評価方法。
)遠心分離において回転数を30000rpm以上とする(1)〜()の陽イオン交換樹脂の性能評価方法。
)(1)〜()の陽イオン交換樹脂の性能評価方法を用いて陽イオン交換樹脂の劣化度合いを評価することを特徴とする水処理系の管理方法。
【0011】
本発明において、微粒子型PSSとは、不溶解性PSSのことをいい、さらに孔径0.4〜0.45μmのメンブレンフィルタを透過し、孔径0.1μm以下のメンブレンフィルタを透過しない大きさの不溶解性PSSのことをいう。本発明では、不溶解性PSSと微粒子型PSSとを実質的に同じものとしている。したがって、本明細書では、以下、不溶解性PSSを微粒子型PSSという。
【0012】
本発明者らは、陽イオン交換樹脂からの微粒子型PSSの溶出量と、陰イオン交換樹脂の反応性低下の度合いとが相関性を示すことを見出した。本発明では、2つの工程で得られたPSS量から算出される微粒子型PSS量に基づいて、陽イオン交換樹脂の劣化度合いを精度よく評価することができる。
【0013】
【発明の実施の形態】
以下、本発明につきさらに詳しく説明する。本発明では、陽イオン交換樹脂に液体を接触させ、次いで陽イオン交換樹脂に接触させた後の液体(以下、溶出液ということもある)中に含まれるPSS量を測定する工程(以下、第1工程ということもある)を実施する。第1工程で測定を行う溶出液中には、微粒子型PSS、溶解性高分子量PSS及び溶解性低分子量PSSが存在する。
【0014】
陽イオン交換樹脂に接触させる液体(以下、溶離液ということもある)としては、例えば、純水や、純水に塩化ナトリウム、硫酸ナトリウム、アンモニア、ヒドラジン、水酸化ナトリウム等の電解質を比較的低濃度で溶解させた電解質水溶液等が挙げられるが、PSSの溶離効果が高いという点で、特にアンモニアとヒドラジンとを含有する混合水溶液を用いるのが好ましい。陽イオン交換樹脂に溶離液を接触させる方法も特に制限はないが、好ましくは溶離液中に陽イオン交換樹脂を浸漬して撹拌下に接触させる浸漬法を用いるとよく、また、このとき反応系の温度を約40℃程度にするとよい。
【0015】
陽イオン交換樹脂に接触させた後の液体(以下、溶出液ということもある)中に含まれるPSS量の測定方法に限定はなく、いかなる方法によってもよいが、ゲルフィルトレーションクロマトグラフィー(GFC)によることが特に好ましい。GFCは液体クロマトグラフィーの一種であり、溶媒に溶解した物質をその分子サイズの差によって分離定量する方法である。GFCの検出器としては、例えば紫外線検出器、示差屈折検出器等を用いることができるが、微粒子型PSSは大きさが異なるだけで微粒子といえどもPSSの特徴を有しているため、PSSと同一の波長で定量することができる。この場合、紫外線検出器はピーク面積を測ることにより容易に定量できるため特に好ましい。なお、陽イオン交換樹脂から溶出した微粒子型PSS以外の微粒子は検出されないため定量に誤差が生じることはない。
【0016】
また、本発明では、前記溶出液を遠心分離し、次いで遠心分離後の溶出液をメンブレンフィルタで濾過した後、濾液中に含まれるPSS量を測定する工程(以下、第2工程ということもある)を実施する。上記遠心分離及び濾過により、溶出液中から微粒子型PSSが除去される。
【0017】
遠心分離は、溶出液中のほとんどの微粒子を除去する目的で行われるもので、その条件に特に限定はないが、容器の回転数を30000rpm以上、特に45000rpm以上とすることが適当である。この回転数は、通常より高回転であるが、この回転数により微粒子の分離を良好に行うことができる。また、回転時間は30分〜3時間が好ましく、例えば回転数45000rpmの場合は回転時間を1時間程度とすることが適当である。
【0018】
メンブレンフィルタによる濾過は、遠心分離後の溶出液中に残存する微粒子を除去する目的で行われるもので、メンブレンフィルタとしては、孔径が0.1μm以下のものを用いることが好ましい。孔径0.1μmとは、バブルポイント法(JIS−K3832)などの物理的測定法や、一定粒径の粉末を用いて測定するJIS−Z8901などの粒子保留性測定方法により算出した値を示すものである。また、上記以外の方法で測定される場合もあり、一般には平均孔径と称されているので、本発明においてもこれに倣うものとする。本発明では、メンブレンフィルタとして、上記孔径を有するものであれば、精密濾過膜、限外濾過膜等の任意のものを用いることができるが、操作の簡便性の点でディスク形の精密濾過膜が特に好ましい。
【0019】
第2工程におけるPSS量の測定手段に限定はないが、第1工程と同様にGFCによることが特に好ましい。
【0020】
なお、第1工程及び第2工程におけるGFCによるPSS量の測定において、紫外線検出器を用いる場合、紫外線は懸濁物質中では散乱、反射の影響を受けるため、試料中に微粒子が含まれる場合と含まれない場合とでは、PSS濃度と吸光度との関係が異なる。したがって、試料中に微粒子が含まれる場合と含まれない場合の両方の検量線を作成して定量を行うことが適当である。
【0021】
ところで、第1工程で測定を行う溶出液中には微粒子型PSS、溶解性高分子量PSS及び溶解性低分子量PSSが存在し、第2工程で測定を行う溶出液中には溶解性高分子量PSS及び溶解性低分子量PSSが存在するが、両工程では高分子量PSSのみ、すなわち第1工程では微粒子型PSS及び溶解性高分子量PSS、第2工程では溶解性高分子量PSSを定量することが好ましい。具体的には、分子量1,600以上、特に10,000以上のPSSを定量することが好ましい。溶離液を接触させたときに陽イオン交換樹脂から溶出するPSSは、例えば復水脱塩装置等の実際の水処理系において陽イオン交換樹脂から溶出するものとほぼ同じであると考えられるが、溶出するPSSのうち分子量が約1,600未満の低分子量のものは、たとえ溶出してもこの陽イオン交換樹脂と対で使用される陰イオン交換樹脂を汚染してその反応性を低下させることはほとんどない。したがって、このような低分子量のPSSの溶出はあまり問題とならない。これに対して、分子量が1,600以上のPSSは、比較的少量でも陰イオン交換樹脂を汚染してその反応性を低下させるので、その存在は陰イオン交換樹脂に対して重大な影響を及ぼすこととなる。したがって、陽イオン交換樹脂の性能評価の指標としては、陽イオン交換樹脂と対で使用される陰イオン交換樹脂の性能低下に大きな影響を及ぼす、比較的高分子量のPSSのを指標とするのがよい。
【0022】
本発明では、前記第1及び第2工程で得られたPSS量から算出される微粒子型PSS量に基づいて、陽イオン交換樹脂の劣化度合いを評価することが好ましい。すなわち、第1工程では、微粒子型PSS、溶解性高分子量PSS及び溶解性低分子量PSSの合計量又は微粒子型PSS及び溶解性高分子量PSSの合計量が測定される。また、第2工程では、溶解性高分子量PSS及び溶解性低分子量PSSの合計量又は溶解性高分子量PSSの量が測定される。したがって、第1工程で得られたPSS量から第2工程で得られたPSS量を差し引くことにより、微粒子型PSS量を得ることができる。
【0023】
なお、前記第1及び第2工程は、陽イオン交換樹脂のみに対して実施してもよく、陽イオン交換樹脂と陰イオン交換樹脂との混合物に対して実施してもよい。また、陽イオン交換樹脂の再生処理を行ってから第1及び第2工程を実施してもよい。
【0024】
本発明では、陽イオン交換樹脂を加速劣化させてから前記第1及び第2工程を行うことができ、これによって陽イオン交換樹脂の劣化度合いをさらに精度よく評価することが可能となる。
【0025】
陽イオン交換樹脂を加速劣化させる方法の一例として、陽イオン交換樹脂に液体を接触させる前に、陽イオン交換樹脂に銅イオン及び/又は鉄イオンを吸着させ、さらにヒドラジン水溶液を接触させる方法を挙げることができる。
【0026】
この場合、陽イオン交換樹脂に銅イオン及び/又は鉄イオンを吸着させる方法はいかなるものでもよく、例えばこれらの金属イオンを含む水溶液に陽イオン交換樹脂を浸漬する浸漬法や、陽イオン交換樹脂を充填したカラムに上記金属イオンを含む水溶液を通液するカラム法等が挙げられる。銅イオン及び/又は鉄イオンを吸着させた陽イオン交換樹脂にヒドラジン水溶液を接触させるとなぜ陽イオン交換樹脂が加速劣化するのかは明らかではないが、上記金属イオンとヒドラジンとの反応によって酸化剤である過酸化水素(H22)が発生するためではないかと推定される。
【0027】
陽イオン交換樹脂にヒドラジン水溶液を接触させる方法も特に限定はなく、例えば上記金属イオン吸着の場合と同様な浸漬法やカラム法を用いることができるが、好適には浸漬法によって接触させるとよく、具体的には上記金属イオン吸着後の陽イオン交換樹脂を例えば濃度0.01〜1.0wt%のヒドラジン水溶液中に浸漬し、撹拌下に10〜70時間程度接触させるとよい。
【0028】
上述の加速劣化手段を採用する場合において、陽イオン交換樹脂に接触させる溶離液としてヒドラジンを含有する水溶液を用いるときには、加速劣化させた陽イオン交換樹脂に液体を接触させる前に、加速劣化させた陽イオン交換樹脂に酸水溶液を接触させて陽イオン交換樹脂に吸着されている銅イオン及び/又は鉄イオンを脱離させることが好ましい。銅イオン及び/又は鉄イオンを吸着させ、さらにヒドラジン水溶液を接触させて劣化処理を行った陽イオン交換樹脂に、PSSを測定するための溶離液としてヒドラジンを含有する水溶液を接触させる場合は、銅イオン及び/又は鉄イオンが陽イオン交換樹脂に吸着されたままだと溶離液中のヒドラジンとの接触によって陽イオン交換樹脂の劣化がさらに進行し、その結果、溶出するPSSの量や分子量に変化が生じて正確な性能評価が行えなくなるおそれがある。そのため、劣化処理を行った陽イオン交換樹脂に塩酸、硫酸等の酸水溶液を接触させて、樹脂に吸着されている銅イオン及び/又は鉄イオンを予め脱離させてから溶離液と接触させるようにするとよい。
【0029】
陽イオン交換樹脂を加速劣化させる方法の他の例としては、陽イオン交換樹脂に溶離液を接触させる際に、陽イオン交換樹脂に結晶金属を添加する方法を挙げることができる。結晶金属とはイオン状ではない金属をいい、例としてはFe34、Fe23、CuOなどが挙げられる。陽イオン交換樹脂に結晶金属を添加することにより、実際のイオン交換装置において考えられるのと同様な物理的な劣化を陽イオン交換樹脂に与えることができ、これにより陽イオン交換樹脂の加速劣化を引き起こすことができる。
【0030】
なお、陽イオン交換樹脂に銅イオン及び/又は鉄イオンを吸着させ、さらにヒドラジン水溶液を接触させる加速劣化方法と、陽イオン交換樹脂に結晶金属を添加する加速劣化方法とを併用してもよい。
【0031】
【実施例】
以下に本発明を実施例に基づいて具体的に示す。
(実験1)
新品の強酸性陽イオン交換樹脂50mlを硫酸銅(CuSO4)水溶液中に浸漬し、上記陽イオン交換樹脂に銅イオンを樹脂1リットル当たりCuとして0.4g吸着させた。次いで、この銅イオン吸着樹脂をヒドラジン水溶液中に樹脂1リットル当たり0.15当量のヒドラジン量となる条件で16時間浸漬し、加速劣化させた。その後、この樹脂に5%塩酸水溶液を樹脂1リットル当たり400g(35%HCl水溶液として)の割合で通液して該樹脂を再生し、樹脂に吸着されている銅イオンを脱離させた。
【0032】
再生後の陽イオン交換樹脂を純水で洗浄した後、濃度1%のアンモニアと濃度0.2%のヒドラジンを含む水溶液(溶離液)100ml中に浸漬し、40℃に加温して16時間振とうした。16時間振とう後、溶出液中に含まれる分子量10,000以上のPSS量をGFCで測定した。その結果、溶出液中に含まれる分子量10,000以上のPSS量はゼロであり、新品の陽イオン交換樹脂では、上記の処理によっては分子量10,000以上のPSSは溶出しないことがわかった。
【0033】
(実験2)
溶解性低分子量PSS、溶解性高分子量PSS及び微粒子型PSSの陰イオン交換樹脂への付着量と、陰イオン交換樹脂の物質移動係数(MTC)との関係を調べた。結果を図1に示す。図1より、微粒子型PSSは溶解性低分子量PSS、溶解性高分子量PSSに較べ、陰イオン交換樹脂の反応性低下に大きく影響を与えることが確認された。
【0034】
(実施例1)
実際の混床式復水脱塩装置において使用している強酸性陽イオン交換樹脂A及びB(ただし、A,Bはそれぞれ別の装置から採取したもの)のそれぞれ50mlに、5%塩酸水溶液を樹脂1リットル当たり400g(35%HCl水溶液として)の割合で通液して該樹脂を再生した。
【0035】
再生後の陽イオン交換樹脂を純水で洗浄した後、濃度1%のアンモニアと濃度0.2%のヒドラジンを含む水溶液(溶離液)100ml中に浸漬し、40℃に加温して16時間振とうした。16時間振とう後、溶出液中に含まれる分子量10,000以上のPSS量(PSS量1)及び分子量10,000未満のPSS量(PSS量2)をGFCでそれぞれ測定した(第1工程)。一方、前記溶出液を回転数45000rpm、回転時間60分の条件で遠心分離し、さらに孔径0.1μmのメンブレンフィルタで濾過した後、溶出液中に含まれる分子量10,000以上のPSS量(PSS量3)及び分子量10,000未満のPSS量(PSS量4)をGFCでそれぞれ測定した(第2工程)。そして、PSS量1からPSS量3を差し引いた値を微粒子型PSS量とした。結果を下記表1に示す。
【0036】
【表1】

Figure 0004583570
【0037】
(検討)
陽イオン交換樹脂Aを使用している実際の脱塩装置(Aプラント)では、使用開始後約3年で樹脂交換の必要があることがわかっている。この実績から、Aプラントでは、図2に示すように、高分子PSS発生量(前記PSS量1に相当するPSS量)1mgPSS/L−樹脂を基準として樹脂交換を行っている。Bプラントでは、同じく前記PSS量1に相当する高分子PSSの発生量が1mgPSS/L−樹脂となるのは、使用開始後約2年である。しかし、Bプラントでは、実際には2年経過後も陰イオン交換樹脂の物質移動係数は低下しておらず、樹脂交換の必要はない。一方、Aプラント及びBプラントにおける微粒子型PSS発生量の経時変化は図3に示す通りであり、Aプラントでは微粒子型PSS発生量が1mgPSS/L−樹脂となるのは約3年程度であって、図2の高分子PSS発生量の場合とほぼ同じであるが、Bプラントでは4年以上が経過しても微粒子型PSS発生量は1mgPSS/L−樹脂に達していない。したがって、微粒子型PSS発生量を指標とすれば、前記PSS量1に相当する高分子PSS量を指標として性能評価を行う従来法に比べ、陽イオン交換樹脂の劣化度合いを精度よく評価して、陽イオン交換樹脂の交換時期を的確に予測することができる。
【0038】
(実施例2)
実際の混床式復水脱塩装置において使用している強酸性陽イオン交換樹脂A及びB(ただし、A及びBはそれぞれ別の装置から採取したもの)のそれぞれ50mlを硫酸銅(CuSO4)水溶液又は硫酸第一鉄(FeSO4)水溶液中に浸漬し、これら陽イオン交換樹脂にそれぞれ銅イオン又は鉄イオンを樹脂1リットル当たりCuとして0.4g又はFeとして0.37g吸着させた。次いで、この銅イオン又は鉄イオン吸着樹脂をヒドラジン水溶液中に樹脂1リットル当たり0.15当量のヒドラジン量となる条件で16時間浸漬し、加速劣化させた。その後、この樹脂に5%塩酸水溶液を樹脂1リットル当たり400g(35%HCl水溶液として)の割合で通液して該樹脂を再生し、樹脂に吸着されている銅イオン又は鉄イオンを脱離させた。
【0039】
再生後の陽イオン交換樹脂を純水で洗浄した後、実施例1と同様の方法で溶出液中に含まれる分子量10,000以上のPSS量(PSS量1)及び分子量10,000未満のPSS量(PSS量2)をGFCでそれぞれ測定した(第1工程)。また、実施例1と同様の方法で遠心分離、濾過を行った後、溶出液中に含まれる分子量10,000以上のPSS量(PSS量3)及び分子量10,000未満のPSS量(PSS量4)をGFCでそれぞれ測定した(第2工程)。そして、PSS量1からPSS量3を差し引いた値を微粒子型PSS量とした。結果を下記表2に示す。
【0040】
【表2】
Figure 0004583570
【0041】
(実施例3)
実際の混床式復水脱塩装置において使用している強酸性陽イオン交換樹脂A及びB(ただし、A及びBはそれぞれ別の装置から採取したもの)のそれぞれ50mlに5%塩酸水溶液を樹脂1リットル当たり400g(35%HCl水溶液として)の割合で通液して該樹脂を再生した。
【0042】
再生後の陽イオン交換樹脂を純水で洗浄し、次いで陽イオン交換樹脂に結晶金属として酸化第二銅(CuO)又は四酸化三鉄(Fe34)を樹脂1リットル当たりCu又はFeとして0.5g添加した。その後、実施例1と同様の方法で溶出液中に含まれる分子量10,000以上のPSS量(PSS量1)及び分子量10,000未満のPSS量(PSS量2)をGFCでそれぞれ測定した(第1工程)。また、実施例1と同様の方法で遠心分離、濾過を行った後、溶出液中に含まれる分子量10,000以上のPSS量(PSS量3)及び分子量10,000未満のPSS量(PSS量4)をGFCでそれぞれ測定した(第2工程)。そして、PSS量1からPSS量3を差し引いた値を微粒子型PSS量とした。結果を下記表3に示す。
【0043】
【表3】
Figure 0004583570
【0044】
【発明の効果】
以上のように、本発明によれば、陽イオン交換樹脂の劣化度合いを精度よく評価することができ、陽イオン交換樹脂の交換時期を的確に予測することが可能となる。
【図面の簡単な説明】
【図1】低分子量PSS、溶解性PSS及び微粒子型PSSの陰イオン交換樹脂への付着量と、陰イオン交換樹脂の物質移動係数(MTC)との関係を示すグラフである。
【図2】実際の復水脱塩装置で使用した陽イオン交換樹脂からの高分子PSSの発生量の経時変化を示すグラフである。
【図3】実際の復水脱塩装置で使用した陽イオン交換樹脂からの微粒子型PSSの発生量の経時変化を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for evaluating the degree of deterioration of a cation exchange resin used in a condensate demineralizer of a thermal power plant and a nuclear power plant, a polisher of a pure water production device in the electronics industry, and the like. Moreover, this invention relates to the management method of the water treatment system using the said evaluation method.
[0002]
[Prior art]
The following method is known as a method for evaluating the performance of an ion exchange resin in a desalination apparatus in which a cation exchange resin and an anion exchange resin are combined. That is, (1) the resin is sampled from the desalting apparatus, (2) when mixed, separated by a method such as backwashing, and (3) when regeneration is required, the cation exchange resin is acid such as hydrochloric acid. Regenerant is adjusted to H form, and anion exchange resin is adjusted to OH form by applying alkali regenerant such as caustic soda, and then thoroughly washed. (4) Resin demineralizer (5) Fill this into a test tube, let water containing a certain concentration of salt flow through the test tube, and let the amount of ions leaking into the treated water be the value of electrical conductivity. It is a method of measuring.
[0003]
However, the ion exchange resin performance evaluation method described above can detect a decrease in the reaction rate of the ion exchange resin, but predicts the use limit of the ion exchange resin in advance before a problem occurs in the water quality of the desalinizer. I couldn't. In addition, the degree of oxidative degradation of the cation exchange resin can be evaluated by increasing the TOC elution amount, increasing the water retention capacity, increasing the polymer substance in the TOC eluate, and the like. However, the amount of eluate from the cation exchange resin does not necessarily gradually increase with the period of use, but increases relatively rapidly from a certain period. Therefore, the performance evaluation method predicts the use limit of the cation exchange resin. I couldn't.
[0004]
In contrast, the present applicant, as a method of predicting the use limit of the cation exchange resin, after adsorbing copper ions and / or iron ions to the cation exchange resin, contact the hydrazine aqueous solution to accelerate deterioration, Then, an eluent was brought into contact with the deteriorated cation exchange resin, and a method for evaluating the performance of the cation exchange resin was proposed in which the amount of polystyrenesulfonic acid eluted from the resin at this time was measured (Japanese Patent Laid-Open No. 9-210977). In this method, after the cation exchange resin is accelerated and deteriorated, the polystyrene sulfonic acid elution amount from the deteriorated cation exchange resin is measured, and the replacement time of the cation exchange resin is determined based on the measured value. is there.
[0005]
That is, a cation exchange resin usually used in a desalting apparatus is a strongly acidic cation exchange resin having a sulfonic acid group as an ion exchange group, and the main component of the eluate is polystyrene sulfonic acid (hereinafter, depending on circumstances). Called PSS). When this cation exchange resin is used for a long time, a part of the cation exchange resin is deteriorated by oxidative decomposition, and PSS having various molecular weights is eluted. The eluted PSS is known to reduce the reaction rate of the anion exchange resin used in pairs with the cation exchange resin, and therefore, a method for evaluating the degree of deterioration of the cation exchange resin has been desired. However, even if PSS is eluted, since a significant decrease in the ion exchange performance of the cation exchange resin itself is not usually observed, a method for evaluating the degree of deterioration based on the amount of PSS eluted has been desired. The method disclosed in Japanese Patent Laid-Open No. 9-210977 meets this demand.
[0006]
[Problems to be solved by the invention]
However, as a result of studies by the present inventors, it has been found that the method disclosed in Japanese Patent Laid-Open No. 9-210977 has the following problems. That is, polystyrene sulfonic acid eluted from a deteriorated cation exchange resin includes low molecular weight polystyrene sulfonic acid (hereinafter referred to as low molecular weight PSS) and high molecular weight polystyrene sulfonic acid (hereinafter referred to as high molecular weight PSS). In the high molecular weight PSS, the present inventors include soluble polystyrene sulfonic acid (hereinafter referred to as soluble PSS) and insoluble polystyrene sulfonic acid (hereinafter referred to as insoluble PSS). It has been found that insoluble PSS particularly affects the decrease in the reactivity of the ion exchange resin. However, since insoluble PSS has the characteristics of PSS, in the evaluation method of JP-A-9-210977, insoluble PSS cannot be quantified separately from soluble PSS. Only high molecular weight PSS and low molecular weight PSS could be distinguished. Therefore, it has been found that the degree of deterioration of the cation exchange resin may not be evaluated well depending on the ratio of soluble PSS and insoluble PSS in PSS quantified as high molecular weight PSS.
[0007]
The present invention has been made in view of the above-described circumstances, and is a method for evaluating the degree of deterioration of a cation exchange resin based on the amount of PSS eluted from the cation exchange resin. The object is to provide a method that can be evaluated well.
[0008]
[Means for Solving the Problems]
In order to achieve the above-described problem, the present inventor firstly performs a filtration treatment using a membrane filter for the purpose of separating insoluble PSS from PSS contained in the liquid after contact with the cation exchange resin. Attempted to separate insoluble PSS from the liquid by However, this method has a problem that the filter is clogged, the soluble PSS remains on the filter, and the measured value of the soluble PSS becomes low. Therefore, further examination revealed that the fine particles contained in the liquid were separated by centrifugation, and further filtered through a membrane filter, whereby it was possible to separate insoluble PSS from the liquid. It was found that soluble PSS and insoluble PSS can be quantified without affecting the measured value of PSS.
[0009]
The present invention has been made on the basis of the above findings, and provides a method for evaluating the performance of cation exchange resins shown in the following (1) to ( 7 ) and a method for managing a water treatment system shown in ( 8 ) below. . The present invention can be applied to the evaluation of various strongly acidic cation exchange resins, and any type of cation exchange resin (eg, gel type, MR type, porous type, etc.) can be evaluated. be able to.
[0010]
(1) A step of measuring the amount of polystyrene sulfonic acid contained in the liquid after contacting the liquid with the cation exchange resin and then contacting with the cation exchange resin, and after contacting with the cation exchange resin Centrifuge the liquid, and then filter the liquid after centrifugation through a membrane filter, and then measure the amount of polystyrene sulfonic acid contained in the filtrate, and calculate from the amount of polystyrene sulfonic acid obtained in both steps A method for evaluating the performance of a cation exchange resin, wherein the degree of deterioration of the cation exchange resin is evaluated on the basis of the amount of particulate polystyrene sulfonic acid to be produced.
( 2 ) Before bringing the liquid into contact with the cation exchange resin, copper ions and / or iron ions are adsorbed on the cation exchange resin and further brought into contact with an aqueous hydrazine solution to accelerate the cation exchange resin (1 ). Cation exchange resin performance evaluation method.
( 3 ) Before bringing the liquid into contact with the accelerated cation exchange resin, the copper ion and / or iron ion adsorbed on the cation exchange resin by bringing the acid aqueous solution into contact with the accelerated cation exchange resin. ( 2 ) A method for evaluating the performance of a cation exchange resin.
( 4 ) The method for evaluating the performance of the cation exchange resin according to (1 ), wherein when the liquid is brought into contact with the cation exchange resin, the cation exchange resin is accelerated and deteriorated by adding a crystalline metal to the cation exchange resin.
( 5 ) The method for evaluating the performance of the cation exchange resin according to any one of (1) to ( 4 ), wherein the amount of polystyrenesulfonic acid is measured by gel filtration chromatography.
( 6 ) The particulate polystyrene sulfonic acid is an insoluble polystyrene sulfonic acid having a size that passes through a membrane filter having a pore size of 0.4 to 0.45 μm and does not pass through a membrane filter having a pore size of 0.1 μm or less. A method for evaluating the performance of the cation exchange resin of ( 5 ).
( 7 ) The method for evaluating the performance of the cation exchange resin according to any one of (1) to ( 6 ), wherein the number of rotations is 30000 rpm or more in the centrifugation.
( 8 ) A method for managing a water treatment system, wherein the degree of deterioration of the cation exchange resin is evaluated using the method for evaluating the performance of the cation exchange resin according to (1) to ( 7 ).
[0011]
In the present invention, the fine particle type PSS means an insoluble PSS, which is not large enough to pass through a membrane filter having a pore size of 0.4 to 0.45 μm and not pass through a membrane filter having a pore size of 0.1 μm or less. It refers to soluble PSS. In the present invention, the insoluble PSS and the particulate PSS are substantially the same. Therefore, in the present specification, insoluble PSS is hereinafter referred to as fine particle type PSS.
[0012]
The present inventors have found that the elution amount of the particulate PSS from the cation exchange resin correlates with the degree of reactivity decrease of the anion exchange resin. In the present invention, the degree of deterioration of the cation exchange resin can be accurately evaluated based on the particulate PSS amount calculated from the PSS amount obtained in the two steps.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail. In the present invention, a step of measuring the amount of PSS contained in a liquid (hereinafter also referred to as an eluate) after contacting the liquid with the cation exchange resin and then contacting with the cation exchange resin (hereinafter referred to as the first step). (It may be one step). In the eluate to be measured in the first step, there are fine particle type PSS, soluble high molecular weight PSS and soluble low molecular weight PSS.
[0014]
As a liquid to be brought into contact with the cation exchange resin (hereinafter sometimes referred to as an eluent), for example, pure water or an electrolyte such as sodium chloride, sodium sulfate, ammonia, hydrazine, or sodium hydroxide is relatively low in pure water. An electrolyte aqueous solution dissolved at a concentration can be mentioned, but a mixed aqueous solution containing ammonia and hydrazine is particularly preferable in that the elution effect of PSS is high. The method of bringing the eluent into contact with the cation exchange resin is not particularly limited, but it is preferable to use an immersion method in which the cation exchange resin is immersed in the eluent and brought into contact with stirring. The temperature is preferably about 40 ° C.
[0015]
There is no limitation on the method for measuring the amount of PSS contained in the liquid after contact with the cation exchange resin (hereinafter sometimes referred to as eluate), and any method may be used. Gel filtration chromatography (GFC) Is particularly preferred. GFC is a kind of liquid chromatography, and is a method for separating and quantifying substances dissolved in a solvent based on the difference in their molecular sizes. As the GFC detector, for example, an ultraviolet detector, a differential refraction detector, or the like can be used. However, since the fine particle type PSS is different in size but has the characteristics of PSS, Quantification can be performed at the same wavelength. In this case, the ultraviolet detector is particularly preferable because it can be easily quantified by measuring the peak area. Since fine particles other than the fine particle type PSS eluted from the cation exchange resin are not detected, there is no error in quantification.
[0016]
Further, in the present invention, the eluate is centrifuged, and then the centrifuged eluate is filtered through a membrane filter, and then the amount of PSS contained in the filtrate is measured (hereinafter sometimes referred to as a second step). ). By the centrifugation and filtration, the particulate PSS is removed from the eluate.
[0017]
Centrifugation is performed for the purpose of removing most of the fine particles in the eluate, and the conditions are not particularly limited, but it is appropriate that the rotational speed of the container be 30000 rpm or more, particularly 45000 rpm or more. Although this rotation speed is higher than usual, the separation of fine particles can be satisfactorily performed by this rotation speed. The rotation time is preferably 30 minutes to 3 hours. For example, when the rotation speed is 45000 rpm, the rotation time is suitably about 1 hour.
[0018]
Filtration with a membrane filter is performed for the purpose of removing fine particles remaining in the eluate after centrifugation, and it is preferable to use a membrane filter having a pore size of 0.1 μm or less. The pore size of 0.1 μm is a value calculated by a physical measurement method such as the bubble point method (JIS-K3832) or a particle retention measurement method such as JIS-Z8901 which measures using a powder having a constant particle size. It is. Further, it may be measured by a method other than the above, and is generally referred to as an average pore diameter. In the present invention, any membrane filter such as a microfiltration membrane and an ultrafiltration membrane can be used as long as it has the above pore diameter. Is particularly preferred.
[0019]
The means for measuring the amount of PSS in the second step is not limited, but it is particularly preferable to use GFC as in the first step.
[0020]
In the measurement of the PSS amount by GFC in the first step and the second step, when an ultraviolet detector is used, since the ultraviolet ray is affected by scattering and reflection in the suspended substance, the sample contains fine particles. The relationship between the PSS concentration and the absorbance is different from the case where it is not included. Therefore, it is appropriate to perform the quantification by creating a calibration curve for both the case where the sample contains fine particles and the case where the fine particles are not contained.
[0021]
By the way, fine particle type PSS, soluble high molecular weight PSS, and soluble low molecular weight PSS exist in the eluate measured in the first step, and soluble high molecular weight PSS exists in the eluate measured in the second step. However, it is preferable to quantify only the high molecular weight PSS in both steps, that is, the fine particle type PSS and the soluble high molecular weight PSS in the first step, and the soluble high molecular weight PSS in the second step. Specifically, it is preferable to quantify PSS having a molecular weight of 1,600 or more, particularly 10,000 or more. The PSS eluted from the cation exchange resin when the eluent is brought into contact is considered to be almost the same as that eluted from the cation exchange resin in an actual water treatment system such as a condensate demineralizer, Among the eluted PSS, those with a low molecular weight of less than about 1,600 will contaminate the anion exchange resin used in pairs with this cation exchange resin and reduce its reactivity. There is almost no. Therefore, the elution of such low molecular weight PSS is not a problem. On the other hand, PSS having a molecular weight of 1,600 or more contaminates the anion exchange resin even in a relatively small amount and lowers its reactivity, and its presence has a significant effect on the anion exchange resin. It will be. Therefore, as an index for evaluating the performance of the cation exchange resin, a relatively high molecular weight PSS having a large effect on the performance deterioration of the anion exchange resin used in a pair with the cation exchange resin is used as an index. Good.
[0022]
In the present invention, it is preferable to evaluate the degree of deterioration of the cation exchange resin based on the particulate PSS amount calculated from the PSS amount obtained in the first and second steps. That is, in the first step, the total amount of fine particle type PSS, soluble high molecular weight PSS and soluble low molecular weight PSS or the total amount of fine particle type PSS and soluble high molecular weight PSS is measured. In the second step, the total amount of the soluble high molecular weight PSS and the soluble low molecular weight PSS or the amount of the soluble high molecular weight PSS is measured. Therefore, the fine PSS amount can be obtained by subtracting the PSS amount obtained in the second step from the PSS amount obtained in the first step.
[0023]
The first and second steps may be performed only on the cation exchange resin, or may be performed on a mixture of the cation exchange resin and the anion exchange resin. Further, the first and second steps may be performed after the regeneration treatment of the cation exchange resin.
[0024]
In the present invention, the first and second steps can be performed after the cation exchange resin is accelerated and deteriorated, whereby the degree of deterioration of the cation exchange resin can be more accurately evaluated.
[0025]
As an example of a method for accelerating and degrading a cation exchange resin, before bringing a liquid into contact with the cation exchange resin, a method in which copper ions and / or iron ions are adsorbed on the cation exchange resin and further brought into contact with a hydrazine aqueous solution is given. be able to.
[0026]
In this case, any method for adsorbing copper ions and / or iron ions to the cation exchange resin may be used. For example, an immersion method in which the cation exchange resin is immersed in an aqueous solution containing these metal ions, or a cation exchange resin may be used. Examples include a column method in which an aqueous solution containing the above metal ions is passed through a packed column. It is not clear why the cation exchange resin is accelerated and deteriorated when the aqueous solution of hydrazine is brought into contact with a cation exchange resin adsorbed with copper ions and / or iron ions, but the reaction between the metal ions and hydrazine causes an oxidant. It is presumed that some hydrogen peroxide (H 2 O 2 ) is generated.
[0027]
There is no particular limitation on the method for bringing the hydrazine aqueous solution into contact with the cation exchange resin, and for example, the same dipping method or column method as in the case of the metal ion adsorption can be used. Specifically, the cation exchange resin after adsorption of the metal ions may be immersed in, for example, an aqueous hydrazine solution having a concentration of 0.01 to 1.0 wt% and contacted for about 10 to 70 hours with stirring.
[0028]
In the case of employing the above-described accelerated deterioration means, when using an aqueous solution containing hydrazine as an eluent to be brought into contact with the cation exchange resin, the deterioration is accelerated before bringing the liquid into contact with the accelerated cation exchange resin. It is preferable to contact the cation exchange resin with an acid aqueous solution to desorb copper ions and / or iron ions adsorbed on the cation exchange resin. When an aqueous solution containing hydrazine as an eluent for measuring PSS is brought into contact with a cation exchange resin that has adsorbed copper ions and / or iron ions and further contacted with a hydrazine aqueous solution and subjected to deterioration treatment, copper As the ions and / or iron ions are adsorbed on the cation exchange resin, the cation exchange resin further deteriorates due to contact with the hydrazine in the eluent, resulting in changes in the amount and molecular weight of the eluted PSS. This may cause an inaccurate performance evaluation. For this reason, an acid aqueous solution such as hydrochloric acid or sulfuric acid is brought into contact with the cation exchange resin that has been subjected to the deterioration treatment so that copper ions and / or iron ions adsorbed on the resin are previously desorbed and then contacted with the eluent. It is good to.
[0029]
As another example of the method of accelerating and degrading the cation exchange resin, there can be mentioned a method of adding a crystalline metal to the cation exchange resin when the eluent is brought into contact with the cation exchange resin. A crystalline metal refers to a metal that is not ionic, and examples include Fe 3 0 4 , Fe 2 0 3 , and CuO. By adding a crystalline metal to the cation exchange resin, it is possible to give the cation exchange resin the same physical deterioration as that expected in an actual ion exchange device, thereby accelerating the deterioration of the cation exchange resin. Can cause.
[0030]
In addition, you may use together the accelerated deterioration method which makes a cation exchange resin adsorb | suck a copper ion and / or an iron ion, and also contacts hydrazine aqueous solution, and the accelerated deterioration method which adds a crystalline metal to a cation exchange resin.
[0031]
【Example】
The present invention will be specifically described below based on examples.
(Experiment 1)
50 ml of a new strong acidic cation exchange resin was immersed in an aqueous solution of copper sulfate (CuSO 4 ), and 0.4 g of copper ion was adsorbed on the cation exchange resin as Cu per liter of resin. Next, this copper ion adsorption resin was immersed in an aqueous hydrazine solution for 16 hours under the condition that the amount of hydrazine was 0.15 equivalent per liter of resin, and accelerated deterioration was caused. Thereafter, a 5% aqueous hydrochloric acid solution was passed through the resin at a rate of 400 g (as a 35% aqueous HCl solution) per liter of the resin to regenerate the resin and desorb copper ions adsorbed on the resin.
[0032]
After washing the regenerated cation exchange resin with pure water, it is immersed in 100 ml of an aqueous solution (eluent) containing 1% ammonia and 0.2% hydrazine and heated to 40 ° C. for 16 hours. Shake. After shaking for 16 hours, the amount of PSS having a molecular weight of 10,000 or more contained in the eluate was measured by GFC. As a result, the amount of PSS having a molecular weight of 10,000 or more contained in the eluate was zero, and it was found that a new cation exchange resin did not elute PSS having a molecular weight of 10,000 or more by the above treatment.
[0033]
(Experiment 2)
The relationship between the amount of the soluble low molecular weight PSS, the soluble high molecular weight PSS and the fine particle type PSS attached to the anion exchange resin and the mass transfer coefficient (MTC) of the anion exchange resin was examined. The results are shown in FIG. From FIG. 1, it was confirmed that the fine particle type PSS greatly affects the reactivity reduction of the anion exchange resin as compared with the soluble low molecular weight PSS and the soluble high molecular weight PSS.
[0034]
Example 1
Add 5% hydrochloric acid aqueous solution to 50 ml of strongly acidic cation exchange resins A and B (A and B are collected from different devices) used in the actual mixed-bed condensate demineralizer. The resin was regenerated by passing it at a rate of 400 g (as 35% aqueous HCl) per liter of resin.
[0035]
After washing the regenerated cation exchange resin with pure water, it is immersed in 100 ml of an aqueous solution (eluent) containing 1% ammonia and 0.2% hydrazine and heated to 40 ° C. for 16 hours. Shake. After shaking for 16 hours, the amount of PSS having a molecular weight of 10,000 or more (PSS amount 1) and the amount of PSS having a molecular weight of less than 10,000 (PSS amount 2) contained in the eluate were respectively measured by GFC (first step). . On the other hand, the eluate is centrifuged at a rotational speed of 45,000 rpm and a rotation time of 60 minutes, and further filtered through a membrane filter having a pore diameter of 0.1 μm, and then the amount of PSS (PSS) having a molecular weight of 10,000 or more contained in the eluate. Amount 3) and an amount of PSS less than 10,000 (PSS amount 4) were respectively measured by GFC (second step). The value obtained by subtracting the PSS amount 3 from the PSS amount 1 was defined as the fine particle type PSS amount. The results are shown in Table 1 below.
[0036]
[Table 1]
Figure 0004583570
[0037]
(Consideration)
In an actual desalination apparatus (A plant) using the cation exchange resin A, it is known that the resin needs to be replaced about three years after the start of use. From this result, as shown in FIG. 2, the A plant performs resin replacement based on the amount of polymer PSS generated (PSS amount corresponding to the PSS amount 1) of 1 mg PSS / L-resin. In the B plant, the amount of polymer PSS generated corresponding to the PSS amount of 1 becomes 1 mg PSS / L-resin in about 2 years after the start of use. However, in the B plant, the mass transfer coefficient of the anion exchange resin does not actually decrease even after two years have passed, and there is no need for resin replacement. On the other hand, the change with time of the amount of particulate PSS generated in the A plant and the B plant is as shown in FIG. 3. In the A plant, the amount of particulate PSS generated becomes 1 mg PSS / L-resin for about 3 years. 2 is almost the same as the amount of polymer PSS generated in FIG. 2, but the amount of fine particle-type PSS generated in the B plant does not reach 1 mgPSS / L-resin even after 4 years or more. Therefore, if the amount of particulate PSS generated is used as an index, the degree of degradation of the cation exchange resin is accurately evaluated as compared with the conventional method in which performance evaluation is performed using the amount of polymer PSS corresponding to the PSS amount 1 as an index. The exchange time of the cation exchange resin can be accurately predicted.
[0038]
(Example 2)
50 ml each of strongly acidic cation exchange resins A and B used in the actual mixed bed condensate desalination apparatus (however, A and B were collected from different apparatuses) are each copper sulfate (CuSO 4 ). It was immersed in an aqueous solution or a ferrous sulfate (FeSO 4 ) aqueous solution, and copper ions or iron ions were adsorbed to these cation exchange resins by 0.4 g as Cu or 0.37 g as Fe per liter of the resin, respectively. Subsequently, this copper ion or iron ion adsorbing resin was immersed in a hydrazine aqueous solution for 16 hours under the condition that the amount of hydrazine was 0.15 equivalent per liter of resin, and accelerated deterioration was caused. Thereafter, a 5% aqueous hydrochloric acid solution is passed through the resin at a rate of 400 g (as a 35% aqueous HCl solution) per liter of the resin to regenerate the resin and desorb copper ions or iron ions adsorbed on the resin. It was.
[0039]
After washing the regenerated cation exchange resin with pure water, the PSS amount (PSS amount 1) having a molecular weight of 10,000 or more and the PSS having a molecular weight of less than 10,000 are contained in the eluate by the same method as in Example 1. The amount (PSS amount 2) was measured by GFC (first step). Further, after centrifugation and filtration in the same manner as in Example 1, the amount of PSS having a molecular weight of 10,000 or more (PSS amount 3) and the amount of PSS having a molecular weight of less than 10,000 (PSS amount) contained in the eluate. 4) was measured by GFC, respectively (second step). The value obtained by subtracting the PSS amount 3 from the PSS amount 1 was defined as the fine particle type PSS amount. The results are shown in Table 2 below.
[0040]
[Table 2]
Figure 0004583570
[0041]
(Example 3)
Resin each of 50 ml of strongly acidic cation exchange resins A and B used in actual mixed-bed condensate demineralization equipment (A and B were collected from different equipment), respectively. The resin was regenerated at a rate of 400 g per liter (as 35% HCl aqueous solution).
[0042]
The regenerated cation exchange resin is washed with pure water, and then cupric oxide (CuO) or triiron tetroxide (Fe 3 O 4 ) as a crystalline metal in the cation exchange resin as Cu or Fe per liter of resin. 0.5 g was added. Thereafter, the amount of PSS having a molecular weight of 10,000 or more (PSS amount 1) and the amount of PSS having a molecular weight of less than 10,000 (PSS amount 2) contained in the eluate were respectively measured by GFC in the same manner as in Example 1. First step). Further, after centrifugation and filtration in the same manner as in Example 1, the amount of PSS having a molecular weight of 10,000 or more (PSS amount 3) and the amount of PSS having a molecular weight of less than 10,000 (PSS amount) contained in the eluate. 4) was measured by GFC, respectively (second step). The value obtained by subtracting the PSS amount 3 from the PSS amount 1 was defined as the fine particle type PSS amount. The results are shown in Table 3 below.
[0043]
[Table 3]
Figure 0004583570
[0044]
【The invention's effect】
As described above, according to the present invention, the degree of deterioration of the cation exchange resin can be accurately evaluated, and the replacement time of the cation exchange resin can be accurately predicted.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of low molecular weight PSS, soluble PSS, and particulate PSS attached to an anion exchange resin and the mass transfer coefficient (MTC) of the anion exchange resin.
FIG. 2 is a graph showing changes over time in the amount of polymer PSS generated from a cation exchange resin used in an actual condensate demineralizer.
FIG. 3 is a graph showing the change over time of the amount of particulate PSS generated from the cation exchange resin used in an actual condensate demineralizer.

Claims (8)

陽イオン交換樹脂に液体を接触させ、次いで陽イオン交換樹脂に接触させた後の液体中に含まれるポリスチレンスルホン酸量を測定する工程と、
前記陽イオン交換樹脂に接触させた後の液体を遠心分離し、次いで遠心分離後の液体をメンブレンフィルタで濾過した後、濾液中に含まれるポリスチレンスルホン酸量を測定する工程とを備え
前記両工程で得られたポリスチレンスルホン酸量から算出される微粒子型ポリスチレンスルホン酸量に基づいて前記陽イオン交換樹脂の劣化度合いを評価することを特徴とする陽イオン交換樹脂の性能評価方法。
Measuring the amount of polystyrene sulfonic acid contained in the liquid after contacting the liquid with the cation exchange resin and then contacting with the cation exchange resin;
Centrifuging the liquid after contacting the cation exchange resin, and then filtering the liquid after centrifugation through a membrane filter, and then measuring the amount of polystyrene sulfonic acid contained in the filtrate ,
A method for evaluating the performance of a cation exchange resin, wherein the degree of deterioration of the cation exchange resin is evaluated based on the amount of particulate polystyrene sulfonic acid calculated from the amount of polystyrene sulfonic acid obtained in both steps .
陽イオン交換樹脂に液体を接触させる前に、陽イオン交換樹脂に銅イオン及び/又は鉄イオンを吸着させ、さらにヒドラジン水溶液を接触させて陽イオン交換樹脂を加速劣化させる請求項に記載の陽イオン交換樹脂の性能評価方法。The cation exchange resin according to claim 1 , wherein copper ions and / or iron ions are adsorbed on the cation exchange resin before bringing the liquid into contact with the cation exchange resin and further brought into contact with an aqueous hydrazine solution to accelerate the cation exchange resin. Ion exchange resin performance evaluation method. 加速劣化させた陽イオン交換樹脂に液体を接触させる前に、加速劣化させた陽イオン交換樹脂に酸水溶液を接触させて陽イオン交換樹脂に吸着されている銅イオン及び/又は鉄イオンを脱離させる請求項に記載の陽イオン交換樹脂の性能評価方法。Prior to bringing the liquid into contact with the accelerated cation exchange resin, the acid aqueous solution is brought into contact with the accelerated cation exchange resin to desorb copper ions and / or iron ions adsorbed on the cation exchange resin. The method for evaluating the performance of the cation exchange resin according to claim 2 . 陽イオン交換樹脂に液体を接触させる際に、陽イオン交換樹脂に結晶金属を添加して陽イオン交換樹脂を加速劣化させる請求項に記載の陽イオン交換樹脂の性能評価方法。The method for evaluating the performance of a cation exchange resin according to claim 1 , wherein when the liquid is brought into contact with the cation exchange resin, the cation exchange resin is accelerated and deteriorated by adding a crystalline metal to the cation exchange resin. ポリスチレンスルホン酸量の測定をゲルフィルトレーションクロマトグラフィーにより行う請求項1〜のいずれか1項に記載の陽イオン交換樹脂の性能評価方法。The method for evaluating the performance of a cation exchange resin according to any one of claims 1 to 4 , wherein the amount of polystyrene sulfonic acid is measured by gel filtration chromatography. 微粒子型ポリスチレンスルホン酸が、孔径0.4〜0.45μmのメンブレンフィルタを透過し、孔径0.1μm以下のメンブレンフィルタを透過しない大きさの不溶解性ポリスチレンスルホン酸である請求項1〜のいずれか1項に記載の陽イオン交換樹脂の性能評価方法。Particulate polystyrene sulfonic acid, having a pore size 0.4~0.45μm the membrane filter passes through the size which does not transmit the following membrane filter pore size 0.1μm of claims 1 to 5 which is insoluble polystyrene sulfonic acid The performance evaluation method of the cation exchange resin of any one of Claims 1. 遠心分離において回転数を30000rpm以上とする請求項1〜のいずれか1項に記載の陽イオン交換樹脂の性能評価方法。The method for evaluating the performance of a cation exchange resin according to any one of claims 1 to 6 , wherein the number of rotations in centrifugation is 30000 rpm or more. 請求項1〜のいずれか1項に記載の陽イオン交換樹脂の性能評価方法を用いて陽イオン交換樹脂の劣化度合いを評価することを特徴とする水処理系の管理方法。A method for managing a water treatment system, wherein the degree of deterioration of a cation exchange resin is evaluated using the method for evaluating the performance of a cation exchange resin according to any one of claims 1 to 7 .
JP2000294281A 1999-12-06 2000-09-27 Cation exchange resin performance evaluation method and water treatment system management method using the same Expired - Fee Related JP4583570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000294281A JP4583570B2 (en) 1999-12-06 2000-09-27 Cation exchange resin performance evaluation method and water treatment system management method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34600699 1999-12-06
JP11-346006 1999-12-06
JP2000294281A JP4583570B2 (en) 1999-12-06 2000-09-27 Cation exchange resin performance evaluation method and water treatment system management method using the same

Publications (2)

Publication Number Publication Date
JP2001228134A JP2001228134A (en) 2001-08-24
JP4583570B2 true JP4583570B2 (en) 2010-11-17

Family

ID=26578163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000294281A Expired - Fee Related JP4583570B2 (en) 1999-12-06 2000-09-27 Cation exchange resin performance evaluation method and water treatment system management method using the same

Country Status (1)

Country Link
JP (1) JP4583570B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505103B2 (en) * 2000-04-17 2010-07-21 オルガノ株式会社 Cation exchange resin performance evaluation method and water treatment system management method using the method
JP4229649B2 (en) * 2002-07-11 2009-02-25 オルガノ株式会社 Cation exchange resin evaluation method and water treatment system management method using the same
JP4738381B2 (en) * 2007-05-14 2011-08-03 株式会社荏原製作所 Exchange management method of ion exchange resin in nuclear power plant condensate demineralizer
CN112666290B (en) * 2021-01-16 2023-03-14 西安热工研究院有限公司 Method for rapidly detecting cation exchange resin dissolved substance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966403A (en) * 1982-10-07 1984-04-14 Mitsubishi Chem Ind Ltd Preparation of cation exchange resin
JPH05104000A (en) * 1991-10-16 1993-04-27 Toshiba Corp Method for estimating life of ion-exchange resin
JPH08248019A (en) * 1995-03-08 1996-09-27 Japan Organo Co Ltd Method and system for evaluating performance of cation-exchange resin, and method for managing water processing system using the evaluation method
JPH08304364A (en) * 1995-05-10 1996-11-22 Mitsubishi Heavy Ind Ltd Performance testing method for ion-exchange resin in condensate treatment device
JPH09178737A (en) * 1995-12-27 1997-07-11 Japan Organo Co Ltd Performance evaluation method for anion exchange resin and method for managing water treatment system using the performance evaluation method
JPH09210977A (en) * 1996-01-30 1997-08-15 Japan Organo Co Ltd Property evaluating method for cation exchange resin and water treatment system control method using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966403A (en) * 1982-10-07 1984-04-14 Mitsubishi Chem Ind Ltd Preparation of cation exchange resin
JPH05104000A (en) * 1991-10-16 1993-04-27 Toshiba Corp Method for estimating life of ion-exchange resin
JPH08248019A (en) * 1995-03-08 1996-09-27 Japan Organo Co Ltd Method and system for evaluating performance of cation-exchange resin, and method for managing water processing system using the evaluation method
JPH08304364A (en) * 1995-05-10 1996-11-22 Mitsubishi Heavy Ind Ltd Performance testing method for ion-exchange resin in condensate treatment device
JPH09178737A (en) * 1995-12-27 1997-07-11 Japan Organo Co Ltd Performance evaluation method for anion exchange resin and method for managing water treatment system using the performance evaluation method
JPH09210977A (en) * 1996-01-30 1997-08-15 Japan Organo Co Ltd Property evaluating method for cation exchange resin and water treatment system control method using it

Also Published As

Publication number Publication date
JP2001228134A (en) 2001-08-24

Similar Documents

Publication Publication Date Title
Wilczak et al. Kinetics of sorption and desorption of copper (II) and lead (II) on activated carbon
CN108404686B (en) Preparation method of metal ion adsorption sewage separation membrane
US3920397A (en) Apparatus and method for quantitative analysis of ionic species by liquid column chromatography
JP4583570B2 (en) Cation exchange resin performance evaluation method and water treatment system management method using the same
WO1994010551A1 (en) Method for particulate reagent sample treatment
US4017262A (en) Chromatographic apparatus for analysis of ionic species
JP2013255864A (en) Apparatus for producing purified water
JP2006297244A (en) Pretreatment column for ion chromatography unit and its regeneration method, and ion chromatography unit
US6391185B1 (en) Composite regenerable adsorption carbon material and its regeneration method
KR960008859B1 (en) Method for absorbing and separating heavy metal elements by using a tanin absorbent and method of rogenerating the absorbent
JP3316125B2 (en) Method for evaluating performance of cation exchange resin and method for managing water treatment system by said method
JP4505103B2 (en) Cation exchange resin performance evaluation method and water treatment system management method using the method
JP4229649B2 (en) Cation exchange resin evaluation method and water treatment system management method using the same
JP3561350B2 (en) Measurement method of glycated hemoglobin
US5387348A (en) Method of mixed-bed filtration and demineralization with ion-exchange resins
JP3659716B2 (en) Use point filter system
De Mora et al. The efficiency of chelating resins for the pre-concentration of lead from tap water
JP2000009703A (en) Performance evaluation method for anion-exchange resin
JP4081503B2 (en) Mixed bed type ion exchange resin
EP0149792B1 (en) Method for treating aqueous solutions with weakly acidic cation exhange resins
JP3584308B2 (en) Method for monitoring breakthrough of ion adsorption membrane for ultrapure water production
WO2008151208A1 (en) Rapid sensing of toxic metals with hybrid inorganic materials
JP2021053547A (en) Device and method for detecting impurity
JP4788509B2 (en) Anion exchange resin performance evaluation method
JP7437276B2 (en) Ion exchanger analysis method and ion exchanger pretreatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees