JP3632141B2 - Solid epoxy resin, method for producing the same, and curable composition containing solid epoxy resin - Google Patents

Solid epoxy resin, method for producing the same, and curable composition containing solid epoxy resin Download PDF

Info

Publication number
JP3632141B2
JP3632141B2 JP13022996A JP13022996A JP3632141B2 JP 3632141 B2 JP3632141 B2 JP 3632141B2 JP 13022996 A JP13022996 A JP 13022996A JP 13022996 A JP13022996 A JP 13022996A JP 3632141 B2 JP3632141 B2 JP 3632141B2
Authority
JP
Japan
Prior art keywords
epoxy resin
solid epoxy
molecular weight
mol
bifunctional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13022996A
Other languages
Japanese (ja)
Other versions
JPH09316168A (en
Inventor
宣久 斉藤
正良 花房
恭幸 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohto Kasei Co Ltd
Original Assignee
Tohto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohto Kasei Co Ltd filed Critical Tohto Kasei Co Ltd
Priority to JP13022996A priority Critical patent/JP3632141B2/en
Publication of JPH09316168A publication Critical patent/JPH09316168A/en
Application granted granted Critical
Publication of JP3632141B2 publication Critical patent/JP3632141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Epoxy Resins (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規な固形エポキシ樹脂およびその固形エポキシ樹脂の製造方法並びに該固形エポキシ樹脂を含有する硬化性樹脂組成物に関するものであり、更に詳しくは、実質的に低分子量成分を含まない新規な固形エポキシ樹脂およびその製造方法、並びに該固形エポキシ樹脂と硬化剤よりなる硬化性樹脂組成物に関するものである。
【0002】
【従来技術】
エポキシ樹脂は、その優れた化学的、物理的特性により塗料、電気、土木、接着剤等の広範な用途に使用され、各用途に応じて要求される性能はますます高度化してきている。例えば、粉体塗料や成形材料等の分野では、低エポキシ当量で、高流動性のものが求められているが、従来の固形エポキシ樹脂ではエポキシ当量の低いものを用いるとブロッキングし易くなり貯蔵安定性に劣るという問題があった。特に耐ブロッキング性を考えると、同一軟化点では一般式(1)におけるn=0の低分子量成分が少ない方が好ましく、また流動性の面からも分子量分布がシャープな固形エポキシ樹脂が望まれているが、n=0及びn=1以下の低分子成分を含まない固形エポキシ樹脂については報告例がなく、製造方法に関する技術も見当らなかった。
【0003】
従来より、固形のエポキシ樹脂については、ビスフェノール類とエピハリヒドリンとをアルカリ金属水酸化物の存在下で反応せしめる直接合成法と、この直接合成法により得られたエポキシ樹脂にビスフェノール類を重付加反応せしめる間接合成法が知られている。直接合成法と間接合成法で製造された固形エポキシ樹脂には、分子量分布に大きな差があることが知られており、直接合成法の場合にはn=0、1、2、3……と偶数と奇数の重合度が全て現れるが、間接合成法の場合には主として、n=0、2、4……と偶数の重合度のピークが現れる。いずれの方法でも、これら従来より公知の方法で得られる固形エポキシ樹脂は、種々の重合度を有する分子の混合物として得られるものであり、n=0及びn=1の低分子量成分が含まれている。例えば、市販されている直接合成法のビスフェノールA型固形エポキシ樹脂YD−013(東都化成社製;エポキシ当量853g/eq;軟化点91℃)は、一般式(1)でGPCによる面積百分率により求めるとn=0(分子量340)が3.5%、n=1(分子量624)が6.3%含まれており、間接合成法によるYD−902(エポキシ当量655g/eq;軟化点86℃)についても、n=0が8.4%、n=1が1.6%含まれている。
【0004】
従来、これら固形エポキシ樹脂中の低分子成分を除去する方法としては、例えば低分子成分を分子蒸留によって除去する方法が知られているが、この方法ではn=1以上の成分を除去することは難しくまた蒸留時に高温とする必要があるため、固形エポキシ樹脂が熱で分解する問題があるのと、n=0成分を完全に除去するには数回の蒸留を行う必要があり、工業的にも有利な方法ではなかった。また、特開昭61−231018にはキシレン等の炭化水素溶媒と接触させて低分子量成分を除去する方法が報告されているが、この方法ではn=0やn=1の成分のみを選択的に除去することはできず、それ以上の成分も一緒に除去されてしまうのと、低分子量成分を完全に除去することはできないという問題があった。また、特開平1−230678には数平均分子量2000〜6000の高分子量エポキシ樹脂を親溶媒中で低級アルコールと接触させて分子量800以下の成分を低減もしくは除去した精製ビスフェノール型エポキシ樹脂が報告されている。しかしこの方法ではエポキシ樹脂は高分子量のためn=0やn=1の低分子成分の含有量が2%以下のものを低減もしくは削減するものであるが、アルコールによる洗浄作業を5回繰り返してもこれらの低分子量成分を完全に除去できておらず、工業的にも有利な方法ではなかった。
【0005】
【本発明が解決しようとする課題】
本発明者等は、低分子成分を実質的に含有しない固形エポキシ樹脂を得る方法について鋭意検討を重ねた結果、本発明に到達した。即ち、本発明は、従来公知の製造方法では到底得ることができなかったn=0やn=1の低分子成分を実質的に含まない固形のエポキシ樹脂とその製造方法及びその組成物を提供するものである。
【0006】
【課題を解決するための手段】
本発明の要旨は、2官能エポキシ樹脂1モルと2官能フェノール1.2モル〜10モルとを反応させた後、残存する未反応の2官能フェノールを除去することにより得られた生成物を、エピハロヒドリンでエポキシ化することを特徴とする、エポキシ当量が450〜2,500g/eqであって、一般式(1)で示される繰り返し単位数nの値が1以下の成分を実質的に含有しないことを特徴とする固形エポキシ樹脂とその硬化性組成物を提供するものである。
【0007】
【化2】

Figure 0003632141
【0008】
(式(1)中、A、Bは2官能フェノールから水素原子を除いた2価の残基であり、A=BでもA≠Bでも良い。また、nは繰り返し単位数で1より大きい整数である。)
【0009】
【発明の実施の形態】
本発明に用いることのできる2官能フェノールとしては、ビスフェノールA、ビスフェノールF、ビスフェノールS、テトラブロモビスフェノールA、ビスフェノールAD、ビスフェノールC、カテコール、レゾルシン、ハイドロキノン等が挙げられる。また、2官能のエポキシ樹脂としては、これらの2官能フェノール類の単独もしくは2種類以上を併用してエポキシ化したエポキシ樹脂や、水添ビスフェノールA、1、6ヘキサンジオール、ポリプロピレングリコール等のアルコールのジグリシジルエーテル類、ヘキサヒドロフタル酸、ダイマー酸等のジグリシジルエステル類等が挙げられるが、特にビスフェノール型エポキシ樹脂が好ましい。ビスフェノール型エポキシ樹脂としては、直接合成法により得られる低分子量のものが好ましく、汎用液状タイプとして市販されているビスフェノールA型やビスフェノールF型液状エポキシ樹脂が特に好ましい。
【0010】
本発明のエポキシ樹脂の原料として用いられるフェノール性水酸基を有する樹脂は、前述の2官能エポキシ樹脂1モルに対して2官能フェノール類を1.2モル〜10モルの範囲内で過剰に反応させるものであり、反応に用いる2官能フェノール類としては前述したフェノール類を単独または2種類以上併用して用いることができる。
【0011】
また、エポキシ樹脂と2官能フェノール類との反応は、エポキシ基とは反応しない溶剤中で行う事ができ、具体的にはトルエン、キシレン等の芳香族炭化水素類、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン、アセトン等のケトン類、ジエチレングリコールメチルエーテル、プロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテル等のグリコールエーテル類、ジエチルエーテル、ジブチルエーテル、エチルプロピルエーテル等の脂肪族エーテル類、ジオキサン、テトラヒドロフラン等の脂環式エーテル類が挙げられる。また反応はエポキシ樹脂とビスフェノール類とを一括で仕込んでも良く、2官能フェノール類にエポキシ樹脂を徐々に添加していっても良い。
【0012】
また、反応は触媒存在下30℃〜220℃の範囲で、30分〜20時間、好ましくは80℃〜160℃で1〜6時間で行うことができる。また使用できる触媒としては水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物類、トリエチルアミン、ベンジルジメチルアミン等の3級アミン類、2−メチルイミダゾール、2−エチル4メチルイミダゾール等のイミダゾール類、テトラメチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムブロマイド等の4級アンモニウム塩類、トリフェニルホスフィン、トリブチルホスフィン等のホスフィン類、n−ブチルトリフェニルホスホニウムブロミド等のホスホニウム塩類等が挙げられる。触媒の使用量は反応に使用される2官能フェノール類に対して、10〜10,000ppmの範囲内が好ましい。なおエポキシ基が消失した時点を反応の終点とする。
【0013】
上記の反応は化学量論的には2官能エポキシ樹脂1モルに対して2官能フェノール2モルを反応させれば良いが、実際に反応するとエポキシ樹脂との反応により生成する末端フェノール性水酸基含有樹脂にもエポキシ樹脂が反応するために高分子量体が生成するのと未反応の2官能フェノールが残ってくる。高分子量体の生成を抑制するには大過剰の2官能フェノールを用いれば良いが、多量に未反応で残ってくるため工業的に不利になる。一方、未反応の2官能フェノールを低減するには反応時の2官能フェノールの仕込み量を減らせば良いが、高分子量体が多くなり固形化するのが難しくなる。このため2官能エポキシ樹脂1モルに対して2官能フェノールは1.2〜10モル、より好ましくは1.5〜6モルの範囲とする。
【0014】
反応終了後に残存してくる未反応の2官能フェノールを除去する方法としては、溶媒抽出法、再結晶法、分子蒸留法、分離膜による処理法、アルカリ水溶液に溶解して除去する方法等が挙げられ、何れの方法も用いることが出来るが、工業的には分子蒸留法やアルカリ水溶液溶解法が好ましい。
アルカリ水溶液溶解法としては、2官能エポキシ樹脂と2官能フェノールとの反応終了後に前述した溶媒を固形分が20〜50%になる様に添加して希釈した後、生成した末端フェノール性水酸基変性樹脂と未反応フェノール類のフェノール性水酸基の合計に対して1.0〜1.5モルに相当するアルカリ金属水酸化物を加えて反応し、アルカリ金属フェノラートを生成させる。反応は30℃〜100℃で、10分〜5時間程度で実施することが出来る。次に溶剤に溶解している高分子量の生成物より、フェノール類のアルカリ金属フェノラートのみを水分離するものである。アルカリ金属水酸化物としては苛性ソーダや苛性カリの水溶液が好ましく、特に苛性ソーダの水溶液が好ましい。一回の分離操作で殆どの残存2官能フェノール類は除去することができるが、更に同様の操作を1〜2回繰り返すことにより完全に除去することができる。
残存する未反応フェノール類を除去した後、燐酸や燐酸ソーダ等の酸により中和及び水洗してから、溶剤を留去することにより、末端にフェノール性水酸基を有する固形樹脂が得られる。
【0015】
本発明の固形エポキシ樹脂は、上記の様にして得られた末端にフェノール性水酸基を有する固形樹脂を、エピハロヒドリンによりアルカリ金属水酸化物の存在下でエポキシ化する公知の方法により得ることが出来る。エピハロヒドリンとしてはエピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリン等が挙げられるがエピクロロヒドリンが好ましい。またアルカリ金属水酸化物としては苛性ソーダが好ましい。原料樹脂のフェノール性水酸基1モルに対してエピハロヒドリンを2〜30モル、より好ましくは7〜15モルの過剰量を使用し、アルカリ金属水酸化物の使用量は原料のフェノール性水酸基当量に対して0.7〜1.1モルの範囲である。反応温度は40〜120℃の範囲で生成した水を系外に除去しながら反応させることが望ましい。
【0016】
反応終了後に過剰のエピクロロヒドリンを留去した後、メチルイソブチルケトンやトルエン等の溶剤に溶解して、更に生成したエポキシ樹脂の加水分解性塩素に対し1〜50モルのアルカリ金属水酸化物を添加して精製反応を行った後、副生成した塩を水洗または濾過等により除去し、溶媒を留去することにより、エポキシ当量が450〜2500g/eqで低分子量成分を含有しない本発明のエポキシ樹脂を得ることができる。尚、エポキシ当量が450g/eq以下のものは原料のフェノールを製造する際に生産性が悪いことと、2500g/eq以上のものはエポキシ化後の溶媒除去が困難となるためであり、より好ましくは500〜1500g/eqの範囲である。
また、本発明で2官能エポキシ樹脂がビスフェノール型エポキシ樹脂で、2官能フェノールがビスフェノールの時に得られるビスフェノール型の固形エポキシ樹脂の軟化点は、60〜150℃の範囲が好ましい。60℃以下では貯蔵中の耐ブロッキング性が悪くなり150℃を超えると加熱硬化時の流動性が悪くなるためであり、より好ましくは70〜120℃の範囲である。
【0017】
本発明の硬化性組成物は、少なくとも該固形エポキシ樹脂と硬化剤より成るものである。硬化剤としては、一般的にエポキシ樹脂の硬化剤として用いられている物を使用することができる。例えば、ジエチレントリアミン、トリエチレントリアミン、イソホロンジアミン、メタキシレンジアミン、ジアミノジフェニルメタン等のアミン類、無水フタル酸、無水ヘキサヒドロフタル酸、無水ナジック酸、無水トリメリット酸等の酸無水物、酸官能基末端のポリエステル樹脂、ダイマー酸とジエチレントリアミン、トリエチルアミン等との縮合物であるアミノポリアミド樹脂、メルカプタン基を末端に持つポリスルフィド樹脂、三弗化ホウ素アミンコンプレックス、フェノール類とホルマリンの縮合反応により得られるノボラック樹脂、フェノール性水酸基を有する各種の化合物、ジシアンジアミド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等の有機酸ジヒドラジド、ポリイソシアネート類、イミダゾール類、レゾールフェノール樹脂、アミノ樹脂等が挙げられる。
【0018】
本発明の硬化性組成物には、必要に応じて通常のエポキシ樹脂、例えばビスフェノールAおよびビスフェノールF等のビスフェノール類のポリグリシジルエーテル、ポリエチレングリコールやポリプロピレングリコール等のアルコール類のポリグリシジルエーテル、ヘキサヒドロフタル酸やダイマー酸等のポリグリシジルエステル、ジアミノジフェニルメタン等のポリグリシジルアミン、フェノールノボラックやクレゾールノボラック等のノボラック型ポリグリシジルエーテル等の1種または数種類を選択して添加することができる。なお、これら通常のエポキシ樹脂の添加量はエポキシ樹脂100重量%のうち70重量%を超えると本発明の効果が得られなくなるため、70重量%未満より好ましくは50重量%未満とする。
また、必要に応じて充填剤、希釈剤、硬化促進剤等を添加することができる。本発明の硬化性組成物は、重防食塗料、粉体塗料、PCM塗料、缶塗料等の塗料用途や土木・建設用途、接着用途、電気絶縁(粉体)用、半導体チップ仮止剤等の電気・電子部品用途及び積層板(プリント配線基盤)や炭素繊維強化プラスチック(CFRP)を始めとする各種複合材料用途等に適している。
【0019】
【実施例】
以下、実施例により本発明を具体的に説明するが、これらに限定されるものではない。なお、特に断わらない限り実施例及び比較例中の「部」及び「%」は、それぞれ「重量部」及び「重量%」を示す。
実施例1.
攪拌機、温度計及び冷却管を備えた反応装置にYD−128(東都化成社製;エポキシ当量186g/eq、粘度12500mPa・s/25℃)を200部とビスフェノールAを608部仕込み、120℃に加熱溶融させた後、トリフェニルホスフィンを0.2部添加し、150℃で5時間反応した。その後、メチルイソブチルケトンを1153部仕込溶解し、10.7%の水酸化ナトリウム水溶液を1908部仕込み、90℃で30分攪拌した後、靜置分液し、樹脂溶液層を燐酸で中和、更に水洗してからメチルイソブチルケトンを留去して、フェノール性水酸基当量が435g/eq、軟化点が97℃の末端フェノール性水酸基変性樹脂を得た。なお、水酸基当量は、テトラヒドロフランとメタノール3重量%の混合溶液中でフェノール性水酸基にテトラメチルアンモニウムヒドロキサイドを作用させて発色させ、分光光度計を用いて、305nmにおける吸光度を測定し、予めビスフェノールAを標準として同様の操作により作成した検量線により換算して求めた。また、軟化点はJIS K−7234により測定した。
【0020】
攪拌機、温度計、滴下装置及び反応水回収装置を備えた反応器に、前記で得られた樹脂130部とエピクロロヒドリン260部を仕込み、樹脂を溶解させた。次いで系内を80℃まで加熱し、49%苛性ソーダ水溶液18.6部を2時間にわたって滴下した。この間系内温度を80〜85℃に保ち、反応により生成する水及び苛性ソーダ水溶液の水をエピクロロヒドリンとの共沸混合物の形で反応系から除去し、蒸気を濃縮させてエピクロロヒドリンは系中に戻した。
次に、苛性ソーダ水溶液の滴下終了後、系内を常圧に戻し2時間熟成させた後、過剰のエピクロロヒドリンを蒸発除去し、生成したエポキシ樹脂及び塩化ナトリウムの混合物にMIBK(メチルイソブチルケトン)を245部と水150部を加えて溶解させ、30分静置後水を分液した。更に樹脂層に20%苛性ソーダ水溶液を14.1部加え、80〜85℃で2時間精製反応を行った。反応後、MIBK40部と水150部を加え、80℃まで加熱してから30分静置し、水層を分離した。次に10%燐酸ソーダ水溶液5部と水100部を加え中和、分液し更に水100部で水洗、分液してから脱水した。次に濾過してからMIBKを蒸発除去して、固形のエポキシ樹脂を得た。得られた固形エポキシ樹脂のエポキシ当量、軟化点、一般式におけるn=0、n=1、n=2の含有量、数平均分子量、重量平均分子量、重量平均分子量/数平均分子量、ガラス転移温度を表1に示す。
【0021】
実施例2.
実施例1と同様の反応装置にエポキシ樹脂としてYD−128、300部とビスフェノールAを364.9部加え、120℃で溶融させた後、触媒としてトリフェニルホスフィンを0.2部加えて170℃で3時間反応させた。次にメチルイソブチルケトンを1666部仕込、6.6%の水酸化ナトリウム水溶液を1156部加えて、90℃で30分攪拌後靜置して、水層を分液した。更に樹脂溶液を、燐酸で中和、水洗してからメチルイソブチルケトンを留去することにより、水酸基当量664g/eq、軟化点が105℃の末端フェノール性水酸基変性樹脂を得た。
攪拌機、温度計、滴下装置及び反応水回収装置を備えた反応器に、前記で得られた樹脂150部とエピクロロヒドリン330部を仕込み、樹脂を溶解させた。次いで系内を80℃まで加熱し、49%苛性ソーダ水溶液16.2部を2時間にわたって滴下した。以下実施例1と同様に、熟成反応、エピクロロヒドリンの蒸発除去、MIBK溶解、水分離、精製反応、中和、水洗、脱水、濾過、MIBK蒸発除去操作を行って、固形のエポキシ樹脂を得た。得られたエポキシ樹脂の性状を表1に示す。
【0022】
比較例1.
ビスフェノールA型液状エポキシ樹脂とビスフェノールAとの間接法により合成される市販の汎用固形エポキシ樹脂、YD−902(東都化成社製)の性状を表1に示す。
比較例2.
ビスフェノールAとエピクロロヒドリンとの直接法で合成される市販の汎用固形エポキシ樹脂、YD−013(東都化成社製)の性状を表1に示す。
【0023】
表1における各項目の測定方法は次の方法によった。
・エポキシ当量;JIS K−7236により測定した。
・n=0、n=1、n=2の含有量
数平均分子量、重量平均分子量、重量平均分子量/数平均分子量
以下の条件でGPCの分析により、面積百分率によりn=0〜2の含有量と数平均分子量、重量平均分子量を求めた。
GPC分析条件
装置;東ソー社製HLC−802A
溶媒;THF
カラム;東ソー社製、TSK−GEL、G2000Hを1本、G3000Hを1本、G4000Hを1本。
カラム温度;40℃
移動相;THF
流量;1.5ml/min.
検出器;東ソー社製RI−8型
試料濃度;5mg/l
検量線;ビスフェノールA型エポキシ樹脂
・ガラス転移温度(Tg)
示差走査熱量計(DSC)により昇温速度10℃/分で測定した。
【0024】
【表1】
Figure 0003632141
【0025】
実施例3.
実施例1で得られたエポキシ樹脂100部、ジシアンジアミド3.8部、2ーメチルイミダゾール0.2部、酸化チタン40部、流れ調整剤としてモダフロー0.5部をドライブレンド後にエクストルーダー(池貝鉄工社製PCM−30)で溶融混練を行い、冷却後に微粉砕して粉体塗料を得た。エクストルーダーの溶融混練条件は次の条件で行った。
シリンダー1;冷却、シリンダー2;80℃、シリンダー3;90℃、
ヘッド;110℃、メインスクリュー;200rpm、フィードスクリュー;20rpm。
得られた粉体塗料をサンドブラスト処理を行った軟鋼板(150×70×0.8mm)に静電粉体塗装を行い、200℃のオーブンで20分焼き付けを行い膜厚100μmの塗装試験片を得た。粉体塗料の耐ブロッキング性、流れ性、焼き付け塗装試験片の塗膜の光沢、密着性、エリクセン、耐衝撃性等を評価して表2に示した。
【0026】
実施例4.
実施例2で得られたエポキシ樹脂を用いた以外は実施例3と同様の配合、混練、冷却、粉砕を行って粉体塗料を得、これを静電粉体塗装後に焼付けて実施例4の塗装試験片を得た。得られた試験片について、実施例3と同様に評価を行いその結果を表2に示した。
【0027】
比較例3.
比較例1のエポキシ樹脂を用いた以外は実施例3と同様の配合、混練、冷却、粉砕を行って粉体塗料を得、これを静電粉体塗装後に焼き付けて比較例3の塗装試験片を得た。得られた試験片について、実施例3と同様に評価を行いその結果を表2に示した。
比較例4.
比較例2のエポキシ樹脂を用いた以外は実施例4と同様の配合、混練、冷却、粉砕を行って粉体塗料を得、これを静電粉体塗装後に焼き付けて比較例2の塗装試験片を得た。得られた試験片について、実施例3と同様に評価を行いその結果を表2に示した。
【0028】
表2における評価方法は下記のとおりである。
・耐ブロッキング性;粉体塗料を40℃の恒温槽に10日間入れたのちブロッキングの状態を調べた。(○;流動性がある。 ×;流動性がない。)
・流れ性;粉体塗料0.5gを採取して常温で100kg/cmの圧力で直径13mmのタブレットを作成した。このタブレットを傾斜角が30°に調整された軟鋼板にセットし、200℃のオーブン中に放置して塗料の流れた距離を測定し、次式により流れ性を求めた。
流れ性=(試料の流れた距離(mm)−13(mm))/タブレットの厚さ(mm)
・光沢;JIS K 5400,6.7(60゜鏡面反射率)に準じて光沢(%)を測定した。
・密着性;塗装試験片を水中に浸し、100℃で2時間熱水処理を行った後、1mm碁盤目テープ剥離試験を行い、塗膜上に残った碁盤目数を測定した。
・エリクセン;エリクセン試験器を用いて、ポンチを10mm押し出し、塗膜のピンホールの有無を調べた。(○;ピンホール無し、×;ピンホール有り)
・耐衝撃性;JIS K−5400に従いデュポン衝撃試験機により1/2インチの撃心とこれに対応する台を用いて1kgの重りを50cmの高さより落下させて、塗膜の割れや剥がれを目視で判定した。(○;異状無し、×;塗膜に割れや剥がれ有り)
【0029】
【表2】
Figure 0003632141
【0030】
【発明の効果】
本発明のエポキシ樹脂は、低分子量成分を含有していないため一般に市販されているエポキシ樹脂と比べて分子量分布がシャープで、流動性に優れる。またエポキシ当量600g/eq程度と低いものでもガラス転移温度が高いため耐ブロッキング性に優れる。更に該樹脂を用いた組成物もその硬化物は密着性や加工性、耐衝撃性等に優れる。
【図面の簡単な説明】
【図1】実施例1で得られたエポキシ樹脂のGPCチャートである。
【図2】比較例1で用いたエポキシ樹脂のGPCチャートである。
【図3】実施例1で得られたエポキシ樹脂の赤外吸収スペクトルチャートである。
【図4】実施例2で得られたエポキシ樹脂のGPCチャートである。
【図5】比較例2で用いたエポキシ樹脂のGPCチャートである。
【図6】実施例2で得られたエポキシ樹脂の赤外吸収スペクトルチャートである。
【符号の説明】
図1、図2及び図4、図5における縦軸は溶離量を、横軸は溶離時間を示す。尚、図1と図4は校正曲線における溶離時間(横軸)と分子量の対数(縦軸;logM)を同時にプロットしたものである。また、図3と図6における縦軸は吸収強度を、横軸は吸収波長を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel solid epoxy resin, a method for producing the solid epoxy resin, and a curable resin composition containing the solid epoxy resin, and more specifically, a novel solid epoxy resin substantially free of low molecular weight components. The present invention relates to a solid epoxy resin, a method for producing the same, and a curable resin composition comprising the solid epoxy resin and a curing agent.
[0002]
[Prior art]
Epoxy resins are used in a wide range of applications such as paints, electricity, civil engineering, and adhesives due to their excellent chemical and physical properties, and the performance required for each application is becoming increasingly sophisticated. For example, in the fields of powder coatings and molding materials, low epoxy equivalents and high fluidity are required, but conventional solid epoxy resins that have low epoxy equivalents can be easily blocked and storage stable. There was a problem of inferiority. In particular, considering blocking resistance, it is preferable that the low molecular weight component of n = 0 in the general formula (1) is smaller at the same softening point, and a solid epoxy resin having a sharp molecular weight distribution is desired from the viewpoint of fluidity. However, there has been no report on a solid epoxy resin containing no low molecular components of n = 0 and n = 1 or less, and no technique relating to the production method has been found.
[0003]
Conventionally, for solid epoxy resins, a direct synthesis method in which bisphenols and epihalhydrin are reacted in the presence of an alkali metal hydroxide, and a polyaddition reaction of bisphenols with the epoxy resin obtained by this direct synthesis method. Indirect synthesis methods are known. Solid epoxy resins produced by the direct synthesis method and the indirect synthesis method are known to have a large difference in molecular weight distribution. In the case of the direct synthesis method, n = 0, 1, 2, 3,. Even and odd polymerization degrees all appear, but in the case of the indirect synthesis method, peaks of even polymerization degrees appear mainly as n = 0, 2, 4. In any method, the solid epoxy resins obtained by these conventionally known methods are obtained as a mixture of molecules having various degrees of polymerization, and include low molecular weight components of n = 0 and n = 1. Yes. For example, a commercially available bisphenol A-type solid epoxy resin YD-013 (manufactured by Tohto Kasei Co., Ltd .; epoxy equivalent 853 g / eq; softening point 91 ° C.) is determined by area percentage by GPC in the general formula (1). And n = 0 (molecular weight 340) is 3.5%, n = 1 (molecular weight 624) is 6.3%, YD-902 by the indirect synthesis method (epoxy equivalent 655 g / eq; softening point 86 ° C.) In addition, n = 0 includes 8.4% and n = 1 includes 1.6%.
[0004]
Conventionally, as a method of removing low molecular components in these solid epoxy resins, for example, a method of removing low molecular components by molecular distillation is known. However, in this method, it is possible to remove components of n = 1 or more. It is difficult and requires a high temperature during distillation, so that there is a problem that the solid epoxy resin decomposes by heat, and in order to completely remove the n = 0 component, it is necessary to perform several distillations, and industrially Was also not an advantageous method. JP-A-61-231018 reports a method of removing low molecular weight components by contacting with a hydrocarbon solvent such as xylene. In this method, only components of n = 0 or n = 1 are selectively used. However, if other components are also removed together, the low molecular weight component cannot be completely removed. JP-A-1-230678 reports a purified bisphenol type epoxy resin in which a high molecular weight epoxy resin having a number average molecular weight of 2000 to 6000 is contacted with a lower alcohol in a parent solvent to reduce or remove components having a molecular weight of 800 or less. Yes. However, in this method, the epoxy resin has a high molecular weight, so that the content of low molecular components of n = 0 or n = 1 is reduced or reduced by 2% or less, but the washing operation with alcohol is repeated five times. However, these low molecular weight components were not completely removed, and this was not an industrially advantageous method.
[0005]
[Problems to be solved by the present invention]
The inventors of the present invention have arrived at the present invention as a result of intensive studies on a method for obtaining a solid epoxy resin substantially free of low molecular components. That is, the present invention provides a solid epoxy resin substantially free of low-molecular components of n = 0 or n = 1 that could not be obtained by a conventionally known production method, a production method thereof, and a composition thereof. To do.
[0006]
[Means for Solving the Problems]
The gist of the present invention is that a product obtained by reacting 1 mol of a bifunctional epoxy resin with 1.2 mol to 10 mol of a bifunctional phenol and then removing the remaining unreacted bifunctional phenol, Epoxy equivalent is 450 to 2,500 g / eq, characterized by epoxidizing with epihalohydrin, and contains substantially no component having a repeating unit number n of 1 or less represented by general formula (1) The present invention provides a solid epoxy resin and a curable composition thereof.
[0007]
[Chemical formula 2]
Figure 0003632141
[0008]
(In the formula (1), A and B are divalent residues obtained by removing a hydrogen atom from a bifunctional phenol, and A = B or A ≠ B. N is an integer greater than 1 in terms of the number of repeating units. .)
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the bifunctional phenol that can be used in the present invention include bisphenol A, bisphenol F, bisphenol S, tetrabromobisphenol A, bisphenol AD, bisphenol C, catechol, resorcin, and hydroquinone. In addition, as the bifunctional epoxy resin, an epoxy resin obtained by epoxidizing these bifunctional phenols singly or in combination of two or more kinds, alcohols such as hydrogenated bisphenol A, 1, 6 hexanediol, polypropylene glycol, etc. Examples include diglycidyl ethers, diglycidyl esters such as hexahydrophthalic acid and dimer acid, and bisphenol type epoxy resins are particularly preferable. As the bisphenol type epoxy resin, those having a low molecular weight obtained by a direct synthesis method are preferable, and bisphenol A type and bisphenol F type liquid epoxy resins commercially available as general-purpose liquid types are particularly preferable.
[0010]
The resin having a phenolic hydroxyl group used as a raw material for the epoxy resin according to the present invention is obtained by excessively reacting a bifunctional phenol within a range of 1.2 mol to 10 mol with respect to 1 mol of the above-mentioned bifunctional epoxy resin. As the bifunctional phenols used in the reaction, the above-described phenols can be used alone or in combination of two or more.
[0011]
The reaction between the epoxy resin and the bifunctional phenols can be carried out in a solvent that does not react with the epoxy group. Specifically, aromatic hydrocarbons such as toluene and xylene, methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone. , Ketones such as acetone, glycol ethers such as diethylene glycol methyl ether, propylene glycol methyl ether and dipropylene glycol methyl ether, aliphatic ethers such as diethyl ether, dibutyl ether and ethylpropyl ether, and alicyclic rings such as dioxane and tetrahydrofuran And formula ethers. In addition, the reaction may be performed by adding an epoxy resin and bisphenols all at once, and the epoxy resin may be gradually added to the bifunctional phenols.
[0012]
The reaction can be carried out in the presence of a catalyst in the range of 30 ° C. to 220 ° C. for 30 minutes to 20 hours, preferably 80 ° C. to 160 ° C. for 1 to 6 hours. Examples of catalysts that can be used include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, tertiary amines such as triethylamine and benzyldimethylamine, imidazoles such as 2-methylimidazole and 2-ethyl4-methylimidazole, Examples include quaternary ammonium salts such as tetramethylammonium bromide and benzyltrimethylammonium bromide, phosphines such as triphenylphosphine and tributylphosphine, and phosphonium salts such as n-butyltriphenylphosphonium bromide. The amount of the catalyst used is preferably in the range of 10 to 10,000 ppm with respect to the bifunctional phenols used in the reaction. The time when the epoxy group disappears is taken as the end point of the reaction.
[0013]
The above reaction may be carried out stoichiometrically by reacting 2 mol of bifunctional phenol with 1 mol of bifunctional epoxy resin, but terminal phenolic hydroxyl group-containing resin produced by reaction with epoxy resin when actually reacted. In addition, since the epoxy resin reacts, a high molecular weight product is formed and an unreacted bifunctional phenol remains. A large excess of bifunctional phenol may be used to suppress the formation of a high molecular weight product, but a large amount remains unreacted, which is industrially disadvantageous. On the other hand, in order to reduce the unreacted bifunctional phenol, it is sufficient to reduce the amount of the bifunctional phenol charged during the reaction, but the amount of high molecular weight increases and it becomes difficult to solidify. For this reason, bifunctional phenol is 1.2-10 mol with respect to 1 mol of bifunctional epoxy resins, More preferably, it shall be the range of 1.5-6 mol.
[0014]
Examples of methods for removing unreacted bifunctional phenol remaining after completion of the reaction include solvent extraction, recrystallization, molecular distillation, separation membrane treatment, and dissolution in an alkaline aqueous solution. Any method can be used, but industrially, a molecular distillation method or an alkaline aqueous solution dissolution method is preferable.
As the alkaline aqueous solution dissolution method, after the reaction between the bifunctional epoxy resin and the bifunctional phenol is completed, the above-described solvent is added and diluted so that the solid content is 20 to 50%, and then the resulting terminal phenolic hydroxyl group-modified resin is formed. Then, an alkali metal hydroxide corresponding to 1.0 to 1.5 mol is added to the total of the phenolic hydroxyl groups of the unreacted phenols and reacted to form an alkali metal phenolate. The reaction can be carried out at 30 ° C. to 100 ° C. for about 10 minutes to 5 hours. Next, only the alkali metal phenolate of phenol is separated from the high molecular weight product dissolved in the solvent. As the alkali metal hydroxide, an aqueous solution of caustic soda or caustic potash is preferable, and an aqueous solution of caustic soda is particularly preferable. Although most of the remaining bifunctional phenols can be removed by a single separation operation, it can be completely removed by repeating the same operation once or twice.
After removing the remaining unreacted phenols, the resin is neutralized with an acid such as phosphoric acid or sodium phosphate and washed with water, and then the solvent is distilled off to obtain a solid resin having a phenolic hydroxyl group at the terminal.
[0015]
The solid epoxy resin of the present invention can be obtained by a known method of epoxidizing a solid resin having a phenolic hydroxyl group at the terminal obtained as described above with epihalohydrin in the presence of an alkali metal hydroxide. Examples of the epihalohydrin include epichlorohydrin, epibromohydrin, epiiodohydrin, and the like, but epichlorohydrin is preferable. As the alkali metal hydroxide, caustic soda is preferable. An excess of 2 to 30 mol, more preferably 7 to 15 mol of epihalohydrin is used per 1 mol of phenolic hydroxyl group of the raw material resin, and the amount of alkali metal hydroxide used is relative to the phenolic hydroxyl group equivalent of the raw material. The range is 0.7 to 1.1 mol. It is desirable that the reaction is carried out while removing the water generated in the reaction temperature range of 40 to 120 ° C. out of the system.
[0016]
Excess epichlorohydrin is distilled off after completion of the reaction, and then dissolved in a solvent such as methyl isobutyl ketone or toluene, and further 1 to 50 mol of alkali metal hydroxide with respect to the hydrolyzable chlorine of the produced epoxy resin. After the purification reaction was performed by adding the salt, the by-produced salt was removed by washing or filtration, and the solvent was distilled off, whereby the epoxy equivalent was 450-2500 g / eq and no low molecular weight component was contained. An epoxy resin can be obtained. In addition, when the epoxy equivalent is 450 g / eq or less, productivity is poor when producing the raw material phenol, and 2500 g / eq or more is because it is difficult to remove the solvent after epoxidation. Is in the range of 500-1500 g / eq.
In the present invention, the softening point of the bisphenol-type solid epoxy resin obtained when the bifunctional epoxy resin is a bisphenol-type epoxy resin and the bifunctional phenol is bisphenol is preferably in the range of 60 to 150 ° C. If it is 60 ° C. or lower, blocking resistance during storage deteriorates, and if it exceeds 150 ° C., fluidity at the time of heat curing deteriorates, more preferably in the range of 70 to 120 ° C.
[0017]
The curable composition of the present invention comprises at least the solid epoxy resin and a curing agent. As a hardening | curing agent, the thing generally used as a hardening | curing agent of an epoxy resin can be used. For example, amines such as diethylenetriamine, triethylenetriamine, isophoronediamine, metaxylenediamine, diaminodiphenylmethane, acid anhydrides such as phthalic anhydride, hexahydrophthalic anhydride, nadic acid anhydride, trimellitic anhydride, acid functional group terminal Polyester resins, aminopolyamide resins that are condensates of dimer acid and diethylenetriamine, triethylamine, etc., polysulfide resins having terminal mercaptan groups, boron trifluoride amine complexes, novolac resins obtained by the condensation reaction of phenols and formalin, Various compounds having a phenolic hydroxyl group, organic acid dihydrazides such as dicyandiamide, adipic acid dihydrazide, sebacic acid dihydrazide, polyisocyanates, imidazoles, resole Lumpur resins, amino resins.
[0018]
The curable composition of the present invention contains, as necessary, a normal epoxy resin, for example, polyglycidyl ethers of bisphenols such as bisphenol A and bisphenol F, polyglycidyl ethers of alcohols such as polyethylene glycol and polypropylene glycol, hexahydro One or several kinds of polyglycidyl esters such as phthalic acid and dimer acid, polyglycidyl amines such as diaminodiphenylmethane, and novolac-type polyglycidyl ethers such as phenol novolak and cresol novolak can be selected and added. In addition, since the effect of this invention will not be acquired when the addition amount of these normal epoxy resins exceeds 70 weight% out of 100 weight% of epoxy resins, it is less than 70 weight%, Preferably it is less than 50 weight%.
Moreover, a filler, a diluent, a hardening accelerator, etc. can be added as needed. The curable composition of the present invention can be used in coatings such as heavy anticorrosion coatings, powder coatings, PCM coatings, can coatings, civil engineering / construction applications, bonding applications, electrical insulation (powder) applications, semiconductor chip temporary fixing agents, etc. It is suitable for electrical / electronic component applications and various composite materials including laminates (printed circuit boards) and carbon fiber reinforced plastics (CFRP).
[0019]
【Example】
Hereinafter, the present invention will be specifically described by way of examples, but is not limited thereto. Unless otherwise specified, “parts” and “%” in Examples and Comparative Examples represent “parts by weight” and “% by weight”, respectively.
Example 1.
A reactor equipped with a stirrer, a thermometer and a cooling tube was charged with 200 parts of YD-128 (manufactured by Tohto Kasei Co., Ltd .; epoxy equivalent 186 g / eq, viscosity 12500 mPa · s / 25 ° C.) and 608 parts of bisphenol A at 120 ° C. After melting by heating, 0.2 part of triphenylphosphine was added and reacted at 150 ° C. for 5 hours. Thereafter, 1153 parts of methyl isobutyl ketone was charged and dissolved, 1908 parts of a 10.7% aqueous sodium hydroxide solution was added, and the mixture was stirred at 90 ° C. for 30 minutes, followed by liquid separation, and the resin solution layer was neutralized with phosphoric acid. Further, after washing with water, methyl isobutyl ketone was distilled off to obtain a terminal phenolic hydroxyl group-modified resin having a phenolic hydroxyl group equivalent of 435 g / eq and a softening point of 97 ° C. The hydroxyl group equivalent was determined by allowing tetramethylammonium hydroxide to act on a phenolic hydroxyl group in a mixed solution of tetrahydrofuran and methanol at 3% by weight, and measuring the absorbance at 305 nm using a spectrophotometer. Was converted by a calibration curve prepared by the same operation as a standard. The softening point was measured according to JIS K-7234.
[0020]
In a reactor equipped with a stirrer, a thermometer, a dropping device, and a reaction water recovery device, 130 parts of the resin obtained above and 260 parts of epichlorohydrin were charged to dissolve the resin. Next, the system was heated to 80 ° C., and 18.6 parts of a 49% sodium hydroxide aqueous solution was added dropwise over 2 hours. During this time, the temperature in the system is kept at 80 to 85 ° C., water generated by the reaction and water of the caustic soda aqueous solution are removed from the reaction system in the form of an azeotrope with epichlorohydrin, and the vapor is concentrated to epichlorohydrin. Returned to the system.
Next, after the dripping of the caustic soda aqueous solution is completed, the system is returned to normal pressure and aged for 2 hours. Then, excess epichlorohydrin is removed by evaporation, and MIBK (methyl isobutyl ketone) is added to the resulting mixture of epoxy resin and sodium chloride. ) And 245 parts and 150 parts of water were added and dissolved, and after standing for 30 minutes, water was separated. Further, 14.1 parts of a 20% aqueous sodium hydroxide solution was added to the resin layer, and a purification reaction was performed at 80 to 85 ° C. for 2 hours. After the reaction, 40 parts of MIBK and 150 parts of water were added, heated to 80 ° C. and allowed to stand for 30 minutes to separate the aqueous layer. Next, 5 parts of a 10% sodium phosphate aqueous solution and 100 parts of water were added to neutralize and separate, and after further washing with 100 parts of water and liquid separation, dehydration. Next, after filtration, MIBK was removed by evaporation to obtain a solid epoxy resin. Epoxy equivalent of the obtained solid epoxy resin, softening point, content of n = 0, n = 1, n = 2 in the general formula, number average molecular weight, weight average molecular weight, weight average molecular weight / number average molecular weight, glass transition temperature Is shown in Table 1.
[0021]
Example 2
In the same reactor as in Example 1, 300 parts of YD-128 as epoxy resin and 364.9 parts of bisphenol A were added and melted at 120 ° C. Then, 0.2 part of triphenylphosphine was added as a catalyst and 170 ° C. For 3 hours. Next, 1666 parts of methyl isobutyl ketone was charged, 1156 parts of a 6.6% aqueous sodium hydroxide solution was added, and the mixture was stirred at 90 ° C. for 30 minutes and then placed to separate the aqueous layer. Further, the resin solution was neutralized with phosphoric acid and washed with water, and then methyl isobutyl ketone was distilled off to obtain a terminal phenolic hydroxyl group-modified resin having a hydroxyl group equivalent of 664 g / eq and a softening point of 105 ° C.
In a reactor equipped with a stirrer, a thermometer, a dropping device and a reaction water recovery device, 150 parts of the resin obtained above and 330 parts of epichlorohydrin were charged to dissolve the resin. Next, the system was heated to 80 ° C., and 16.2 parts of 49% aqueous sodium hydroxide solution was added dropwise over 2 hours. In the same manner as in Example 1, aging reaction, epichlorohydrin evaporative removal, MIBK dissolution, water separation, purification reaction, neutralization, water washing, dehydration, filtration, MIBK evaporative removal operation were performed to obtain a solid epoxy resin. Obtained. Table 1 shows the properties of the obtained epoxy resin.
[0022]
Comparative Example 1
Table 1 shows properties of a commercially available general-purpose solid epoxy resin, YD-902 (manufactured by Tohto Kasei Co., Ltd.) synthesized by the indirect method of bisphenol A type liquid epoxy resin and bisphenol A.
Comparative Example 2
Table 1 shows the properties of YD-013 (manufactured by Tohto Kasei Co., Ltd.), a commercially available general-purpose solid epoxy resin synthesized by a direct method of bisphenol A and epichlorohydrin.
[0023]
The measuring method of each item in Table 1 was based on the following method.
Epoxy equivalent: measured according to JIS K-7236.
-Content of n = 0, n = 1, n = 2 Number average molecular weight, weight average molecular weight, weight average molecular weight / number average molecular weight According to GPC analysis, content of n = 0-2 by area percentage The number average molecular weight and the weight average molecular weight were determined.
GPC analysis condition apparatus; HLC-802A manufactured by Tosoh Corporation
Solvent; THF
Column: manufactured by Tosoh Corporation, one TSK-GEL and G2000H, one G3000H, and one G4000H.
Column temperature: 40 ° C
Mobile phase: THF
Flow rate: 1.5 ml / min.
Detector; RI-8 type sample concentration manufactured by Tosoh Corporation; 5 mg / l
Calibration curve: bisphenol A type epoxy resin, glass transition temperature (Tg)
It measured with the temperature increase rate of 10 degree-C / min with the differential scanning calorimeter (DSC).
[0024]
[Table 1]
Figure 0003632141
[0025]
Example 3 FIG.
100 parts of the epoxy resin obtained in Example 1, 3.8 parts of dicyandiamide, 0.2 part of 2-methylimidazole, 40 parts of titanium oxide, and 0.5 part of Modaflow as a flow control agent were dry blended before an extruder (Ikegai Iron Works). PCM-30) was used for melt kneading, and after cooling, pulverized to obtain a powder coating material. Extruder melt kneading conditions were as follows.
Cylinder 1; cooling, cylinder 2; 80 ° C., cylinder 3; 90 ° C.
Head: 110 ° C., main screw: 200 rpm, feed screw: 20 rpm.
The obtained powder coating is coated with electrostatic powder on a sandblasted mild steel plate (150 x 70 x 0.8 mm) and baked in an oven at 200 ° C for 20 minutes to obtain a coating specimen having a thickness of 100 µm. Obtained. The blocking resistance and flowability of the powder coating material, and the gloss, adhesion, elixsen, impact resistance and the like of the coating film of the baked coating test piece were evaluated and shown in Table 2.
[0026]
Example 4
Except for using the epoxy resin obtained in Example 2, the same composition, kneading, cooling, and pulverization as in Example 3 were performed to obtain a powder paint, which was baked after electrostatic powder coating, and A painted specimen was obtained. The obtained test pieces were evaluated in the same manner as in Example 3, and the results are shown in Table 2.
[0027]
Comparative Example 3
Except for using the epoxy resin of Comparative Example 1, the same composition, kneading, cooling, and pulverization as in Example 3 were performed to obtain a powder coating, which was baked after electrostatic powder coating, and the coating test piece of Comparative Example 3 Got. The obtained test pieces were evaluated in the same manner as in Example 3, and the results are shown in Table 2.
Comparative Example 4
Except for using the epoxy resin of Comparative Example 2, the same composition, kneading, cooling, and pulverization as in Example 4 were carried out to obtain a powder coating, which was baked after electrostatic powder coating, and a coating test piece of Comparative Example 2 Got. The obtained test pieces were evaluated in the same manner as in Example 3, and the results are shown in Table 2.
[0028]
The evaluation methods in Table 2 are as follows.
Blocking resistance: The powder coating was placed in a constant temperature bath at 40 ° C. for 10 days, and then the blocking state was examined. (○: fluidity ×: no fluidity)
Flowability: 0.5 g of powder coating material was sampled and a tablet having a diameter of 13 mm was prepared at a normal temperature and a pressure of 100 kg / cm 2 . This tablet was set on a mild steel plate whose inclination angle was adjusted to 30 °, and was left in an oven at 200 ° C. to measure the distance that the paint flowed, and the flowability was obtained by the following equation.
Flowability = (Distance flowed by sample (mm) −13 (mm)) / tablet thickness (mm)
Gloss: Gloss (%) was measured according to JIS K 5400, 6.7 (60 ° specular reflectance).
-Adhesiveness: A coating test piece was immersed in water and subjected to hydrothermal treatment at 100 ° C for 2 hours, and then a 1 mm cross-cut tape peeling test was performed to measure the number of cross-cuts remaining on the coating film.
Eriksen: Using an Eriksen tester, the punch was extruded 10 mm, and the presence or absence of pinholes in the coating was examined. (○: No pinhole, ×: With pinhole)
・ Impact resistance: according to JIS K-5400, using a DuPont impact tester and dropping a 1 kg weight from a height of 50 cm using a ½ inch striker and a stand corresponding thereto, the coating film is cracked or peeled off. Judgment was made visually. (○: No abnormality, ×: Cracking or peeling on the coating)
[0029]
[Table 2]
Figure 0003632141
[0030]
【The invention's effect】
Since the epoxy resin of the present invention does not contain a low molecular weight component, it has a sharp molecular weight distribution and excellent fluidity compared to commercially available epoxy resins. Further, even a low epoxy equivalent of about 600 g / eq is excellent in blocking resistance because of its high glass transition temperature. Furthermore, the cured product of the composition using the resin is excellent in adhesion, workability, impact resistance and the like.
[Brief description of the drawings]
1 is a GPC chart of an epoxy resin obtained in Example 1. FIG.
2 is a GPC chart of an epoxy resin used in Comparative Example 1. FIG.
3 is an infrared absorption spectrum chart of the epoxy resin obtained in Example 1. FIG.
4 is a GPC chart of the epoxy resin obtained in Example 2. FIG.
5 is a GPC chart of an epoxy resin used in Comparative Example 2. FIG.
6 is an infrared absorption spectrum chart of the epoxy resin obtained in Example 2. FIG.
[Explanation of symbols]
1, 2, 4, and 5, the vertical axis represents the elution amount, and the horizontal axis represents the elution time. 1 and 4 are plots of the elution time (horizontal axis) and the logarithm of molecular weight (vertical axis; log M) at the same time in the calibration curve. 3 and 6, the vertical axis represents the absorption intensity, and the horizontal axis represents the absorption wavelength.

Claims (5)

2官能エポキシ樹脂1モルに対して2官能フェノール1.2モル〜10モルとを反応させた後、残存する未反応の2官能フェノールを除去し、得られた生成物をエピハロヒドリンでエポキシ化することを特徴とする固形エポキシ樹脂の製造方法。After reacting 1.2 mol to 10 mol of bifunctional phenol with respect to 1 mol of bifunctional epoxy resin, the remaining unreacted bifunctional phenol is removed, and the obtained product is epoxidized with epihalohydrin. The manufacturing method of the solid epoxy resin characterized by these. 請求項1記載の方法によって得られた下記一般式(1)で表わされる繰り返し単位数nの値が1以下の成分を含有せず、エポキシ当量が450〜2,500g/eq内であることを特徴とする固形エポキシ樹脂。
Figure 0003632141
(式(1)中、A、Bは2官能フェノールから水素原子を除いた2価の残基であり、A=BでもA≠Bでも良い。また、nは繰り返し単位数で1より大きい整数である。)
The value of the repeating unit number n represented by the following general formula (1) obtained by the method according to claim 1 does not contain a component of 1 or less, and the epoxy equivalent is within 450 to 2,500 g / eq. Characteristic solid epoxy resin.
Figure 0003632141
(In the formula (1), A and B are divalent residues obtained by removing a hydrogen atom from a bifunctional phenol, and A = B or A ≠ B. N is an integer greater than 1 in terms of the number of repeating units. .)
請求項1記載の方法によって得られた下記一般式(1)で表わされる繰り返し単位数nの値が1以下の成分を含有せず、エポキシ当量が450〜2,500g/eq内で、且つ、軟化点60〜150℃のビスフェノ−ル型固形エポキシ樹脂であることを特徴とする固形エポキシ樹脂。
Figure 0003632141
(式(1)中、A、Bは2官能フェノールから水素原子を除いた2価の残基であり、A=BでもA≠Bでも良い。また、nは繰り返し単位数で1より大きい整数である。)
The value of the repeating unit number n represented by the following general formula (1) obtained by the method according to claim 1 does not contain a component of 1 or less, an epoxy equivalent is within 450 to 2,500 g / eq, and A solid epoxy resin characterized by being a bisphenol type solid epoxy resin having a softening point of 60 to 150 ° C.
Figure 0003632141
(In the formula (1), A and B are divalent residues obtained by removing a hydrogen atom from a bifunctional phenol, and A = B or A ≠ B. N is an integer greater than 1 in terms of the number of repeating units. .)
エポキシ樹脂と硬化剤より成る硬化性組成物において、前記エポキシ樹脂の30重量%以上が請求項2記載のエポキシ樹脂であることを特徴とする硬化性組成物。A curable composition comprising an epoxy resin and a curing agent, wherein 30% by weight or more of the epoxy resin is the epoxy resin according to claim 2. エポキシ樹脂と硬化剤より成る硬化性組成物において、前記エポキシ樹脂の30重量%以上請求項3記載のエポキシ樹脂であることを特徴とする硬化性組成物。A curable composition comprising an epoxy resin and a curing agent, wherein the epoxy resin according to claim 3 is 30% by weight or more of the epoxy resin.
JP13022996A 1996-05-24 1996-05-24 Solid epoxy resin, method for producing the same, and curable composition containing solid epoxy resin Expired - Fee Related JP3632141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13022996A JP3632141B2 (en) 1996-05-24 1996-05-24 Solid epoxy resin, method for producing the same, and curable composition containing solid epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13022996A JP3632141B2 (en) 1996-05-24 1996-05-24 Solid epoxy resin, method for producing the same, and curable composition containing solid epoxy resin

Publications (2)

Publication Number Publication Date
JPH09316168A JPH09316168A (en) 1997-12-09
JP3632141B2 true JP3632141B2 (en) 2005-03-23

Family

ID=15029196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13022996A Expired - Fee Related JP3632141B2 (en) 1996-05-24 1996-05-24 Solid epoxy resin, method for producing the same, and curable composition containing solid epoxy resin

Country Status (1)

Country Link
JP (1) JP3632141B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212266A (en) * 2001-01-18 2002-07-31 Yaskawa Electric Corp Thermosetting resin composition for vacuum device and its manufacturing method, and vacuum device using the same
JP5330330B2 (en) * 2010-08-05 2013-10-30 パナソニック株式会社 Method for measuring epoxy equivalent of epoxy group-containing resin or composition containing the same
JP5497102B2 (en) * 2011-06-08 2014-05-21 株式会社Uacj Pre-coated aluminum alloy plate for heat dissipation member and heat dissipation member using the same

Also Published As

Publication number Publication date
JPH09316168A (en) 1997-12-09

Similar Documents

Publication Publication Date Title
US20170218273A1 (en) Flame-retardant epoxy resin, method for preparing same, and flame-retardant epoxy resin composition containing same
TWI445726B (en) Epoxy resin, epoxy resin composition and hardened product thereof
US20050131195A1 (en) Process for producing high-purity epoxy resin and epoxy resin composition
JP2006036801A (en) High-molecular weight epoxy resin composition, film obtained using the same and cured product of the same
JP4100791B2 (en) Production method of naphthol resin
JP3719469B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JP3632141B2 (en) Solid epoxy resin, method for producing the same, and curable composition containing solid epoxy resin
JP3639984B2 (en) Solid epoxy resin, production method thereof and composition thereof
JP3894628B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JP4863434B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH04323214A (en) Novolak resin, its production, epoxy resin, resin composition and its cured product
JP4175590B2 (en) Epoxy resin, epoxy resin solution containing the same, epoxy resin composition, and method for producing epoxy resin
JP3632285B2 (en) Phenolic hydroxyl group-containing modified epoxy resin, method for producing the same, and powder coating composition thereof
JP4113289B2 (en) Powder coating composition
JP4404821B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JP3436794B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2879860B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3938592B2 (en) Phenolic compounds
JPH06329741A (en) Resin, epoxy resin, its production, resin composition and cured product of said composition
JP4540080B2 (en) High softening point o-cresol-novolak type epoxy resin, epoxy resin solution containing the same, epoxy resin composition and method for producing epoxy resin
JP4311587B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2006002017A (en) Epoxy resin, method for producing the same, and epoxy resin composition
JPH09110847A (en) Monoepoxy compound containing cyclic terpene skeleton and epoxy resin composition using the same as reactive diluent
JPH11140069A (en) Epoxy resin, production of the epoxy resin, composition containing the epoxy resin, and epoxy resin composition for sealing semiconductor comprising the composition
JPH0710971A (en) Resin, epoxy resin, its production, resin composition and cured product thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees