JP3631666B2 - Millimeter wave transceiver - Google Patents

Millimeter wave transceiver Download PDF

Info

Publication number
JP3631666B2
JP3631666B2 JP2000193382A JP2000193382A JP3631666B2 JP 3631666 B2 JP3631666 B2 JP 3631666B2 JP 2000193382 A JP2000193382 A JP 2000193382A JP 2000193382 A JP2000193382 A JP 2000193382A JP 3631666 B2 JP3631666 B2 JP 3631666B2
Authority
JP
Japan
Prior art keywords
frequency
millimeter wave
line
diode
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000193382A
Other languages
Japanese (ja)
Other versions
JP2002014155A (en
Inventor
俊彦 河田
浩紀 喜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000193382A priority Critical patent/JP3631666B2/en
Priority to DE10040957A priority patent/DE10040957B4/en
Priority to US09/645,100 priority patent/US6630870B1/en
Publication of JP2002014155A publication Critical patent/JP2002014155A/en
Priority to US10/630,484 priority patent/US6744402B2/en
Application granted granted Critical
Publication of JP3631666B2 publication Critical patent/JP3631666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Connection Structure (AREA)
  • Waveguides (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ミリ波集積回路等の高周波回路を用いた非放射性誘電体線路型のミリ波レーダー等に好適なミリ波送受信器に関するものである。
【0002】
【従来の技術】
従来の非放射性誘電体線路型のミリ波送受信器を図13,図14に示す。まず、非放射性誘電体線路(NonRadiative Dielectric waveguideで、以下、NRDガイドという)について説明する。NRDガイドは、一対の平行平板導体を、それらの間隔zをz≦λ/2として設置することにより、これらの平行平板導体間に配置された誘電体線路に対し外部からノイズの侵入をなくし、かつ誘電体線路から外部への高周波信号(以下、信号ともいう)の放射をなくして信号を伝送させるものである。なお、λは使用周波数において空気中を伝搬する電磁波(高周波信号)の波長である。
【0003】
そして、図13,図14に示したミリ波送受信器は、一対の平行平板導体間に各種部品を配置した上記NRDガイド型のものであり、図13は送信アンテナと受信アンテナが一体化されたものの平面図、図14は送信アンテナと受信アンテナが独立したものの平面図である。
【0004】
図13において、41は一方の平行平板導体(他方は省略する)、42は第1の誘電体線路43の一端に設けられた電圧制御型のミリ波信号発振部、即ち電圧制御発振部であり、バイアス電圧印加方向が高周波信号の電界方向に合致するように、第1の誘電体線路43の高周波ダイオード近傍に配置された可変容量ダイオードのバイアス電圧を周期的に制御して、三角波,正弦波等とすることにより、周波数変調した送信用のミリ波信号として出力する。
【0005】
43は、高周波ダイオードから出力された高周波信号が変調されたミリ波信号を伝搬させる第1の誘電体線路、44は、第1,第3,第4の誘電体線路にそれぞれ結合される第1,第2,第3の接続部(図示せず)を有する、フェライト円板44a等から成るサーキュレータ、45は、サーキュレータ44の第2の接続部に接続され、ミリ波信号を伝搬させるとともに先端部に送受信アンテナ46を有する第3の誘電体線路、46は、第3の誘電体線路45の先端をテーパー状等とすることにより構成された送受信アンテナである。
【0006】
また47は、送受信アンテナ46で受信され第3の誘電体線路45を伝搬してサーキュレータ44の第3の接続部より出力した受信波をミキサー49側へ伝搬させる第4の誘電体線路、48は、第1の誘電体線路43に一端側が電磁結合するように近接配置されて、送信用のミリ波信号の一部をミキサー49側へ伝搬させる第2の誘電体線路、48aは、第2の誘電体線路48のミキサー49と反対側の一端部に設けられた無反射終端部(ターミネータ)である。また、図中M1は、第2の誘電体線路48の中途と第4の誘電体線路47の中途とを近接させて電磁結合させることにより、送信用のミリ波信号の一部と受信波とを混合して中間周波信号を発生するミキサー部である。
【0007】
また、送信アンテナと受信アンテナを独立させた図14のタイプにおいて、51は一方の平行平板導体(他方は省略する)、52は第1の誘電体線路53の一端に設けられた電圧制御型のミリ波信号発振部であり、バイアス電圧印加方向が高周波信号の電界方向に合致するように第1の誘電体線路53の高周波ダイオード近傍に配置された可変容量ダイオードのバイアス電圧を周期的に制御して、三角波,正弦波等とすることにより、周波数変調した送信用のミリ波信号として出力する。
【0008】
53は、高周波ダイオードから出力された高周波信号が変調されたミリ波信号を伝搬させる第1の誘電体線路、54は、第1,第3,第5の誘電体線路53,55,57にそれぞれ接続される第1,第2,第3の接続部(図示せず)を有する、フェライト円板54a等から成るサーキュレータ、55は、サーキュレータ54の第2の接続部に接続され、ミリ波信号を伝搬させるとともに先端部に送信アンテナ56を有する第3の誘電体線路、56は、第3の誘電体線路55の先端をテーパー状等とすることにより構成された送信アンテナ、57は、サーキュレータ54の第3の接続部に接続され、送信用のミリ波信号を減衰させる無反射終端部57aが先端に設けられた第5の誘電体線路である。
【0009】
また58は、第1の誘電体線路53に一端側が電磁結合するように近接配置されて、送信用のミリ波信号の一部をミキサー61側へ伝搬させる第2の誘電体線路、58aは、第2の誘電体線路58のミキサー61と反対側の一端部に設けられた無反射終端部、59は、受信アンテナ60で受信された受信波をミキサー61側へ伝搬させる第4の誘電体線路である。また、図中M2は、第2の誘電体線路58の中途と第4の誘電体線路59の中途とを近接させて電磁結合させることにより、送信用のミリ波信号の一部と受信波とを混合
して中間周波信号を発生するミキサー部である。
【0010】
このようなミリ波送受信器において、高周波ダイオードを備えたミリ波信号発振部42,52は、図15,図16に示すような構成とされていた。図15において、1は一対の平行平板導体であり、それらの間隔zはz≦λ/2であり、NRDガイドを構成する。尚、λは使用周波数において空気中を伝搬する電磁波(高周波信号)の波長である。
【0011】
また、2は高周波ダイオードとしてのガンダイオードを設置(マウント)するための金属ブロック等の金属部材、3はガンダイオード、4は金属部材2の一側面に設置され、ガンダイオード3にバイアス電圧を供給するとともに高周波信号の漏れを防ぐローパスフィルタとして機能するチョーク型バイアス供給線路4aを形成した配線基板、5はチョーク型バイアス供給線路4aとガンダイオード3の上部導体とを接続する金属箔リボン等の帯状導体、6は誘電体基体に共振用の金属ストリップ線路6aを設けた金属ストリップ共振器、7は金属ストリップ共振器6により共振した高周波信号を外部へ伝送させる誘電体線路(上記第1の誘電体線路43,53に相当する)である。尚、図15では、内部を透視するために平行平板導体1の上側を一部切り欠いている。
【0012】
図15のミリ波信号発振部(ガンダイオード発振器)は、一対の平行平板導体1の間に、ガンダイオード3を搭載した金属部材2が配置されており、ガンダイオード3から発振されたミリ波,マイクロ波等の高周波信号(電磁波)は、金属ストリップ線路6aを有する金属ストリップ共振器6を介して誘電体線路7に導出される。そして、チョーク型バイアス供給線路4aは、図16に示すように、幅の広い線路の長さと幅の狭い線路の長さがそれぞれ略λ/4とされ、それらが反復形成されたチョークを構成しており、また帯状導体5の長さも略λ/4に設定されローパスフィルタの一部として機能している。
【0013】
さらに、図17,図18に示すように、誘電体線路7の中途には、周波数変調用ダイオードであって可変容量ダイオードの1種であるバラクタダイオード110を装荷した配線基板18を設置しており、このバラクタダイオード110のバイアス電圧印加方向Bは誘電体線路7での高周波信号の伝搬方向Dに垂直かつ平行平板導体1の主面に平行な方向とされている。このバイアス電圧印加方向Bは、誘電体線路7中を伝搬するLSM01モードの高周波信号の電界方向Eに合致しており、これにより高周波信号とバラクタダイオード110とを電磁結合させ、バイアス電圧を制御することによりバラクタダイオード110の静電容量を変化させることで、高周波信号の発振周波数を制御可能となる。また、図17において、19はバラクタダイオード110と誘電体線路7とのインピーダンス整合をとるための高比誘電率の誘電体板である。
【0014】
また図18に示すように、配線基板18の一主面には第2のチョーク型バイアス供給線路112が形成され、第2のチョーク型バイアス供給線路112の中途にビームリードタイプのバラクタダイオード110が配置される。第2のチョーク型バイアス供給線路112のバラクタダイオード110との接続部には、電極111が形成されている。
【0015】
そして、ガンダイオード3から発振された高周波信号は、金属ストリップ共振器6を通して誘電体線路7に導出される。次いで、高周波信号の一部はバラクタダイオード110部で反射されてガンダイオード3側へ戻る。この反射信号がバラクタダイオード110の容量とともに変化することにより、発振周波数が変化する。
【0016】
【発明が解決しようとする課題】
しかしながら、上記従来のミリ波信号発振部においては、金属ストリップ共振器6、金属部材2と誘電体線路7を各々個別に位置決め配置し、平行平板導体1,1で挟持するように構成しており、このため、金属ストリップ共振器6の加工精度が低いと、金属ストリップ共振器6が振動や自重で位置ずれを起こし、またその位置決めが正確でないと、誘電体線路7への伝搬特性が劣化していた。即ち、金属ストリップ共振器6の加工精度および位置決め精度の管理が必要であり、また製造の作業性が悪く、従って量産に向かないという問題点があった。
【0017】
また、金属部材2,誘電体線路7,金属ストリップ共振器6等の各部品の設置位置が微妙にくるうと、発振周波数が微妙に変化してしまい、ミリ波レーダ等に適用した場合、その探知距離、ターゲットの位置探知、ターゲットの速度探知等の性能が低下して正確な探知が困難になるという問題点があった。
【0018】
さらに、上記従来のミリ波信号発振部においては、高周波信号がバラクタダイオード110を設置した配線基板18を透過する構造となっているため、高周波信号出力が低下するという問題点があった。また、高周波信号の周波数変調幅を調整するには、バラクタダイオード110の挿入位置を変化させる必要があるが、位置調整による周波数変調幅の制御は困難であり、容易に周波数変調幅を制御できなかった。
【0019】
このようなミリ波信号発振部を備えたミリ波送受信器では、発振周波数がずれた場合にそれを調整するのが困難なため、ミリ波レーダ等に適用した際に正確な探知が困難になるという問題があった。
【0020】
従って、本発明は上記事情に鑑みて完成されたものであり、その目的は、各部品の加工および位置決めの困難性を軽減し、加工精度および位置決め精度の管理を容易にし、また組み立ての作業性が良好なものとし、また発振周波数の微調整を再現性良く可能とすることである。また、高出力の高周波信号が得られ、周波数変調幅を容易に制御可能なものとすることである。
【0021】
そして、ミリ波レーダ等に適用した場合に、探知レンジ、探知距離、ターゲットの位置探知、ターゲットの速度探知等の性能が向上するとともに安定したものとすることである。
【0022】
【課題を解決するための手段】
本発明のミリ波送受信器は、ミリ波信号の波長λの2分の1以下の間隔で配置した平行平板導体間に、高周波ダイオードが一端部に付設され、前記高周波ダイオードから出力されたミリ波信号を伝搬させる第1の誘電体線路と、該第1の誘電体線路の一端にバイアス電圧印加方向が前記ミリ波信号の電界方向に合致するように配置され、前記バイアス電圧を周期的に制御することによって前記ミリ波信号を周波数変調した送信用のミリ波信号として出力する周波数変調用ダイオードと、前記第1の誘電体線路に一端側が電磁結合するように近接配置されるかまたは前記第1の誘電体線路に一端が接合されて、前記送信用のミリ波信号の一部をミキサー側へ伝搬させる第2の誘電体線路と、前記平行平板導体に平行に配設されたフェライト板の周縁部に所定間隔で配置され、かつそれぞれ前記ミリ波信号の入出力端とされた第1の接続部,第2の接続部および第3の接続部を有し、一つの接続部から入力された前記ミリ波信号を前記フェライト板の面内で時計回りまたは反時計回りに隣接する他の接続部より出力するサーキュレータであって、前記第1の誘電体線路の前記送信用のミリ波信号の出力端に前記第1の接続部が接合されるサーキュレータと、該サーキュレータの前記第2の接続部に接合され、前記ミリ波信号を伝搬させるとともに先端部に送受信アンテナを有する第3の誘電体線路と、前記送受信アンテナで受信され前記第3の誘電体線路を伝搬して前記サーキュレータの前記第3の接続部より出力した受信波を前記ミキサー側へ伝搬させる第4の誘電体線路と、前記第2の誘電体線路の中途と前記第4の誘電体線路の中途とを近接させて電磁結合させるかまたは接合させることにより、前記送信用のミリ波信号の一部と前記受信波とを混合して中間周波信号を発生するミキサー部と、を設けたミリ波送受信器において、前記高周波ダイオードは金属部材の一側面に設置されており、該金属部材は、幅の広い線路と幅の狭い線路とが交互に形成され、前記高周波ダイオードに前記バイアス電圧を供給するチョーク型バイアス供給線路を形成した配線基板と、前記チョーク型バイアス供給線路および前記高周波ダイオードを直線状に接続する、中途部分が宙に浮いた状態となっている帯状導体とが設けられているとともに、前記チョーク型バイアス供給線路の前記幅の広い線路および前記幅の狭い線路の長さがそれぞれ略λ/4(λは使用周波数において空気中を伝搬する高周波信号の波長)であり、前記帯状導体の長さが略{(3/4)+n}λ(nは0以上の整数)であることを特徴とするものである。
【0023】
本発明のミリ波送受信器によれば、このような構成により、チョーク型バイアス供給線路と帯状導体とが高周波ダイオードの発振周波数を決定する共振器として機能し、金属ストリップ共振器等の別個の共振器が不要となり、従って高周波ダイオードマウント用の金属部材と誘電体線路との位置決めが容易になり、製造の作業性が大幅に向上する。また、金属ストリップ共振器等の別個の共振器による損失が解消され、高周波信号の伝搬特性が向上し、その結果、ミリ波レーダ等に適用した場合に、探知レンジ、探知距離、ターゲットの位置探知、ターゲットの速度探知等の性能が向上するとともに安定したものとなる。
【0024】
本発明において、好ましくは、前記帯状導体の主面と対向する主面を有する誘電体チップを、前記帯状導体に近接配置して電磁結合させたことを特徴とする。
【0025】
上記の構成により、高周波ダイオード発振器の発振周波数の調整が容易になり、発振周波数が安定するため製造歩留まりが向上し量産性も向上する。
【0026】
また好ましくは、バイアス電圧印加方向が前記帯状導体に生じる電界に平行な方向とされた前記周波数変調用ダイオードを前記帯状導体に近接配置して電磁結合させたことを特徴とする。
【0027】
上記の構成により、帯状導体に周波数変調用ダイオードを設けた変調回路基板を近接配置して電磁結合させるとともに、周波数変調用ダイオードに印加するバイアス電圧を変化させることで、発振周波数を制御できる。また、誘電体線路中に周波数変調用ダイオードを配置する必要がないため、損失が小さく高出力が得られるとともに、全体が小型化する。さらに、周波数変調用ダイオードの位置を調整することにより、共振器としても機能する帯状導体と周波数変調用ダイオードとの電磁結合の強さを変えることができ、それにより周波数変調幅を調整し得る。
【0028】
本発明において、好ましくは、前記周波数変調用ダイオードは、第2のチョーク型バイアス供給線路が主面に形成され、かつ該主面が前記平行平板導体に対し垂直に設置される配線基板と、前記第2のチョーク型バイアス供給線路の中途に立設され、かつ前記第2のチョーク型バイアス供給線路に連続する接続導体をその主面上に有する補助基板とから成る変調回路基板上に設置されて、前記補助基板の前記接続導体の中途に接続されていることを特徴とする。
【0029】
上記構成により、変調回路基板の上面視における形状が凸型となり、位置ずれや捩じれ等が小さくなり設置の安定性がきわめて高くなる。また、周波数変調用ダイオードのバイアス電圧印加方向を高周波信号の電界方向に合致させた状態で、周波数変調用ダイオードを帯状導体に近接配置し、位置調整できるため、容易に周波数変調幅を調整可能となる。
【0030】
また好ましくは、前記周波数変調用ダイオードと前記帯状導体との間隔をλ以下としたことを特徴とする。
【0031】
上記の範囲内に調整することで、高周波信号の出力を大きくして周波数変調幅を広げることができる。
【0032】
また好ましくは、少なくとも一方の前記平行平板導体の前記帯状導体近傍に貫通孔を形成し、かつ該貫通孔に前記平行平板導体間側の表面に突出して前記帯状導体と電磁結合する柱状の周波数調整部材を設けたことを特徴とする。
【0033】
上記構成により、帯状導体に周波数調整部材を近接配置して電磁結合させる際に、周波数調整部材の位置を容易かつ再現性良く微調整可能な構成とすることで、共振器の実質的な共振器長を微妙に調整でき、その結果発振周波数を再現性良く微調整できる。また、周波数調整部材を小型化して位置の微調整を可能とすることで全体が小型化される。
【0034】
また好ましくは、前記周波数調整部材と前記帯状導体との距離がλ/2以下であることを特徴とする。
【0035】
上記構成により、周波数調整部材と帯状導体とが良好に電磁結合し、その状態で電磁結合の度合いを微調整することにより、共振器の実質的な共振器長を微調整できる。
【0036】
また、本発明のミリ波送受信器は、ミリ波信号の波長λの2分の1以下の間隔で配置した平行平板導体間に、高周波ダイオードが一端部に付設され、前記高周波ダイオードから出力されたミリ波信号を伝搬させる第1の誘電体線路と、該第1の誘電体線路の一端にバイアス電圧印加方向が前記ミリ波信号の電界方向に合致するように配置され、前記バイアス電圧を周期的に制御することによって前記ミリ波信号を周波数変調した送信用のミリ波信号として出力する周波数変調用ダイオードと、前記第1の誘電体線路に一端側が電磁結合するように近接配置されるかまたは前記第1の誘電体線路に一端が接合されて、前記送信用のミリ波信号の一部をミキサー側へ伝搬させる第2の誘電体線路と、前記平行平板導体に平行に配設されたフェライト板の周縁部に所定間隔で配置され、かつそれぞれ前記ミリ波信号の入出力端とされた第1の接続部,第2の接続部および第3の接続部を有し、一つの接続部から入力された前記ミリ波信号を前記フェライト板の面内で時計回りまたは反時計回りに隣接する他の接続部より出力するサーキュレータであって、前記第1の誘電体線路の前記送信用のミリ波信号の出力端に前記第1の接続部が接合されるサーキュレータと、該サーキュレータの前記第2の接続部に接続され、前記送信用のミリ波信号を伝搬させるとともに先端部に送信アンテナを有する第3の誘電体線路と、先端部に受信アンテナ、他端部に前記ミキサーが各々設けられ、前記受信アンテナで受信された受信波を前記ミキサー側へ伝搬させる第4の誘電体線路と、前記サーキュレータの前記第3の接続部に接続され、前記送信アンテナで受信混入したミリ波信号を伝搬させるとともに先端部に設けられた無反射終端部で前記受信混入したミリ波信号を減衰させる第5の誘電体線路と、前記第2の誘電体線路の中途と前記第4の誘電体線路の中途とを近接させて電磁結合させるかまたは接合させることにより、前記送信用のミリ波信号の一部と前記受信波とを混合して中間周波信号を発生するミキサー部と、を設けたミリ波送受信器において、前記高周波ダイオードは金属部材の一側面に設置されており、該金属部材は、幅の広い線路と幅の狭い線路とが交互に形成され、前記高周波ダイオードに前記バイアス電圧を供給するチョーク型バイアス供給線路を形成した配線基板と、前記チョーク型バイアス供給線路および前記高周波ダイオードを直線状に接続する、中途部分が宙に浮いた状態となっている帯状導体とが設けられているとともに、前記チョーク型バイアス供給線路の前記幅の広い線路および前記幅の狭い線路の長さがそれぞれ略λ/4(λは使用周波数において空気中を伝搬する高周波信号の波長)であり、前記帯状導体の長さが略{(3/4)+n}λ(nは0以上の整数)であることを特徴とするものである。
【0037】
本発明のミリ波送受信器によれば、このような構成により、チョーク型バイアス供給線路と帯状導体とが高周波ダイオードの発振周波数を決定する共振器として機能し、金属ストリップ共振器等の別個の共振器が不要となり、従って高周波ダイオードマウント用の金属部材と誘電体線路との位置決めが容易になり、製造の作業性が大幅に向上する。また、金属ストリップ共振器等の別個の共振器による損失が解消され、高周波信号の伝搬特性が向上し、その結果、ミリ波レーダ等に適用した場合に、探知レンジ、探知距離、ターゲットの位置探知、ターゲットの速度探知等の性能が向上するとともに安定したものとなる。また、送信用のミリ波信号がサーキュレータを介してミキサーへ混入することがなく、その結果、受信信号のノイズが低減して探知距離が増大し、ミリ波信号の伝送特性に優れたものとなる。
【0038】
本発明において、好ましくは、前記帯状導体の主面と対向する主面を有する誘電体チップを、前記帯状導体に近接配置して電磁結合させたことを特徴とする。
【0039】
上記の構成により、高周波ダイオード発振器の発振周波数の調整が容易になり、発振周波数が安定するため製造歩留まりが向上し量産性も向上する。
【0040】
また好ましくは、バイアス電圧印加方向が前記帯状導体に生じる電界に平行な方向とされた前記周波数変調用ダイオードを前記帯状導体に近接配置して電磁結合させたことを特徴とする。
【0041】
上記の構成により、帯状導体に周波数変調用ダイオードを設けた変調回路基板を近接配置して電磁結合させるとともに、周波数変調用ダイオードに印加するバイアス電圧を変化させることで、発振周波数を制御できる。また、誘電体線路中に周波数変調用ダイオードを配置する必要がないため、損失が小さく高出力が得られるとともに、全体が小型化する。さらに、周波数変調用ダイオードの位置を調整することにより、共振器としても機能する帯状導体と周波数変調用ダイオードとの電磁結合の強さを変えることができ、それにより周波数変調幅を調整し得る。
【0042】
本発明において、好ましくは、前記周波数変調用ダイオードは、第2のチョーク型バイアス供給線路が主面に形成され、かつ該主面が前記平行平板導体に対し垂直に設置される配線基板と、前記第2のチョーク型バイアス供給線路の中途に立設され、かつ前記第2のチョーク型バイアス供給線路に連続する接続導体をその主面上に有する補助基板とから成る変調回路基板上に設置されて、前記補助基板の前記接続導体の中途に接続されていることを特徴とする。
【0043】
上記構成により、変調回路基板の上面視における形状が凸型となり、位置ずれや捩じれ等が小さくなり設置の安定性がきわめて高くなる。また、周波数変調用ダイオードのバイアス電圧印加方向を高周波信号の電界方向に合致させた状態で、周波数変調用ダイオードを帯状導体に近接配置し、位置調整できるため、容易に周波数変調幅を調整可能となる。
【0044】
また好ましくは、前記周波数変調用ダイオードと前記帯状導体との間隔をλ以下としたことを特徴とする。
【0045】
上記の範囲内に調整することで、高周波信号の出力を大きくして周波数変調幅を広げることができる。
【0046】
また好ましくは、少なくとも一方の前記平行平板導体の前記帯状導体近傍に貫通孔を形成し、かつ該貫通孔に前記平行平板導体間側の表面に突出して前記帯状導体と電磁結合する柱状の周波数調整部材を設けたことを特徴とする。
【0047】
上記構成により、帯状導体に周波数調整部材を近接配置して電磁結合させる際に、周波数調整部材の位置を容易かつ再現性良く微調整可能な構成とすることで、共振器の実質的な共振器長を微妙に調整でき、その結果発振周波数を再現性良く微調整できる。また、周波数調整部材を小型化して位置の微調整を可能とすることで全体が小型化される。
【0048】
また好ましくは、前記周波数調整部材と前記帯状導体との距離がλ/2以下であることを特徴とする。
【0049】
上記構成により、周波数調整部材と帯状導体とが良好に電磁結合し、その状態で電磁結合の度合いを微調整することにより、共振器の実質的な共振器長を微調整できる。
【0050】
【発明の実施の形態】
本発明のミリ波送受信器について、以下に説明する。本発明のミリ波送受信器は、全体の基本的構成は図13,図14に示したものと同様であり、以下これらの図に基き説明する。図13は送信アンテナと受信アンテナが一体化されたものの平面図、図14は送信アンテナと受信アンテナが独立したものの平面図である。
【0051】
図13において、41は一方の平行平板導体(他方は省略する)、42は第1の誘電体線路43の一端に設けられた電圧制御型のミリ波信号発振部、即ち電圧制御発振部であり、バイアス電圧印加方向が高周波信号の電界方向に合致するように、第1の誘電体線路43の高周波ダイオード近傍に配置された可変容量ダイオードのバイアス電圧を周期的に制御して、三角波,正弦波等とすることにより、周波数変調した送信用のミリ波信号として出力する。
【0052】
43は、高周波ダイオードから出力された高周波信号が変調されたミリ波信号を伝搬させる第1の誘電体線路、44は、第1,第3,第4の誘電体線路にそれぞれ結合される第1,第2,第3の接続部(図示せず)を有する、フェライト円板44a等から成るサーキュレータ、45は、サーキュレータ44の第2の接続部に接続され、ミリ波信号を伝搬させるとともに先端部に送受信アンテナ46を有する第3の誘電体線路、46は、第3の誘電体線路45の先端をテーパー状等とすることにより構成された送受信アンテナである。
【0053】
また47は、送受信アンテナ46で受信され第3の誘電体線路45を伝搬してサーキュレータ44の第3の接続部より出力した受信波をミキサー49側へ伝搬させる第4の誘電体線路、48は、第1の誘電体線路43に一端側が電磁結合するように近接配置されて、送信用のミリ波信号の一部をミキサー49側へ伝搬させる第2の誘電体線路、48aは、第2の誘電体線路48のミキサー49と反対側の一端部に設けられた無反射終端部(ターミネータ)である。また、図中M1は、第2の誘電体線路48の中途と第4の誘電体線路47の中途とを近接させて電磁結合させることにより、送信用のミリ波信号の一部と受信波とを混合して中間周波信号を発生するミキサー部である。
【0054】
サーキュレータ44は、平行平板導体41,41間に平行に配設された一対のフェライト円板44aの周縁部に所定間隔、例えばフェライト円板44aの中心点に関して角度で120°間隔で配置され、かつそれぞれミリ波信号の入出力端とされた第1の接続部,第2の接続部および第3の接続部を有し、一つの接続部から入力されたミリ波信号をフェライト円板44aの面内で時計回りまたは反時計回りに隣接する他の接続部より出力させるものである。また、平行平板導体41の外側主面のフェライト円板44aに相当する部位には、フェライト円板44aを伝搬する電磁波の波面を回転させるための磁石が、磁力線がフェライト円板44aに対し略垂直方向(略上下方向)に通過するように設けられる。なお、本発明のフェライト円板44aは円板状のものに限らず、多角形状等のものでもよい。
【0055】
また、本発明のミリ波送受信器の他の実施形態として、送信アンテナと受信アンテナを独立させた図14のタイプがある。同図において、51は一方の平行平板導体(他方は省略する)、52は第1の誘電体線路53の一端に設けられた電圧制御型のミリ波信号発振部であり、バイアス電圧印加方向が高周波信号の電界方向に合致するように第1の誘電体線路53の高周波ダイオード近傍に配置された可変容量ダイオードのバイアス電圧を周期的に制御して、三角波,正弦波等とすることにより、周波数変調した送信用のミリ波信号として出力する。
【0056】
53は、高周波ダイオードから出力された高周波信号が変調されたミリ波信号を伝搬させる第1の誘電体線路、54は、第1,第3,第5の誘電体線路53,55,57にそれぞれ接続される第1,第2,第3の接続部(図示せず)を有する、フェライト円板54a等から成るサーキュレータ、55は、サーキュレータ54の第2の接続部に接続され、ミリ波信号を伝搬させるとともに先端部に送信アンテナ56を有する第3の誘電体線路、56は、第3の誘電体線路55の先端をテーパー状等とすることにより構成された送信アンテナ、57は、サーキュレータ54の第3の接続部に接続され、送信用のミリ波信号を減衰させる無反射終端部57aが先端に設けられた第5の誘電体線路である。
【0057】
また58は、第1の誘電体線路53に一端側が電磁結合するように近接配置されて、送信用のミリ波信号の一部をミキサー61側へ伝搬させる第2の誘電体線路、58aは、第2の誘電体線路58のミキサー61と反対側の一端部に設けられた無反射終端部、59は、受信アンテナ60で受信された受信波をミキサー61側へ伝搬させる第4の誘電体線路である。また、図中M2は、第2の誘電体線路58の中途と第4の誘電体線路59の中途とを近接させて電磁結合させることにより、送信用のミリ波信号の一部と受信波とを混合して中間周波信号を発生するミキサー部である。
【0058】
本発明では、図13において、第1の誘電体線路43に第2の誘電体線路48の一端側を近接配置するかまたは一端部を接合するが、接合する場合、接合部において、第1の誘電体線路43を直線状、第2の誘電体線路48を円弧状となし、その円弧状部の曲率半径rを高周波信号の波長λ以上とする。これにより、高周波信号を損失を小さくして均等の出力で分岐させることができる。また、接合部において、第2の誘電体線路48を直線状、第1の誘電体線路43を円弧状となし、その円弧状部の曲率半径rを高周波信号の波長λ以上としてもよく、この場合も上記と同様の効果が得られる。
【0059】
また、ミキサー49部において、第2の誘電体線路48と第4の誘電体線路47とを接合することもでき、この場合、上記と同様に、これらの誘電体線路48,47のうちいずれか一方の接合部を円弧状となし、その円弧状部の曲率半径rを高周波信号の波長λ以上とするのがよい。また、第2の誘電体線路48と第4の誘電体線路47とを接合させずに、電磁結合するように近接配置する場合、その近接部において、第2の誘電体線路48と第4の誘電体線路47との近接部の少なくとも一方を円弧状とすることにより、近接配置の構成とすることができる。
【0060】
また好ましくは、接合部の曲率半径rは3λ以下が良く、3λを超えると接合構造が大きくなり小型化のメリットが得られない。接合部の曲率半径rを波長λより小さく設定すると、円弧状の接合部を有する誘電体線路への分岐強度は小さくなる。
【0061】
このような第1の誘電体線路43と第2の誘電体線路48との接合構造、および第2の誘電体線路48と第4の誘電体線路47との接合構造、並びに第2の誘電体線路48と第4の誘電体線路47との近接配置の構成については、図14の場合も上記と同様である。
【0062】
そして、これらの各種部品は、ミリ波信号の波長の2分の1以下の間隔で配置した平行平板導体間に設けられている。
【0063】
図13のものにおいて、第1の誘電体線路43の中途にスイッチを設け、それをON−OFFすることでパルス変調制御することもできる。例えば、図18に示すように、配線基板18の一主面に第2のチョーク型バイアス供給線路112を形成し、その中途に半田実装されたビームリードタイプのPINダイオードやショットキーバリアダイオードを設けたスイッチである。この配線基板18を、第1の誘電体線路43の第2の誘電体線路48との信号分岐部とサーキュレータ44との間に、PINダイオードやショットキーバリアダイオードのパルス変調用ダイオードのバイアス電圧印加方向がLSMモードの高周波信号の電界方向に合致するように配置し、第1の誘電体線路43に介在させるものである。また、第1の誘電体線路43にもう一つのサーキュレータを介在させ、その第1,第3の接続部に第1の誘電体線路43を接続し、第2の接続部に他の誘電体線路を接続し、その誘電体線路の先端部の端面に、図18のような構成でショットキーバリアダイオードを設けたスイッチを設置してもよい。
【0064】
図14のものにおいて、サーキュレータ54をなくし、第1の誘電体線路53の先端部に送信アンテナ56を接続した構成とすることもできる。この場合、小型化されたものとなるが、受信波の一部が電圧制御発振部52に混入しノイズ等の原因となり易いため、図14のタイプが好ましい。
【0065】
また、図14のタイプにおいて、第2の誘電体線路58は、第3の誘電体線路55に一端側が電磁結合するように近接配置されるか第3の誘電体線路55に一端が接合されて、送信用のミリ波信号の一部をミキサー61側へ伝搬させるように配置されていてもよい。この構成においても、図14のものと同様の機能、作用効果を有する。
【0066】
この図14のものにおいて、第1の誘電体線路53の中途に、図18に示したものと同様に構成したスイッチを設け、それをON−OFFすることでパルス変調制御することもできる。例えば、図18のように、配線基板18の一主面に第2のチョーク型バイアス供給線路112を形成し、その中途に半田実装されたビームリードタイプのPINダイオードやショットキーバリアダイオードを設けたスイッチである。この配線基板18を、第1の誘電体線路53の第2の誘電体線路58との信号分岐部と、サーキュレータ54との間に、PINダイオードやショットキーバリアダイオードのバイアス電圧印加方向がLSMモードの高周波信号の電界方向に合致するように配置し、第1の誘電体線路53に介在させるものである。
【0067】
また、第1の誘電体線路53にもう一つのサーキュレータを介在させ、その第1,第3の接続部に第1の誘電体線路53を接続し、第2の接続部に他の誘電体線路を接続し、その誘電体線路の先端部の端面に、図18のような構成のショットキーバリアダイオードを設けたスイッチを設置してもよい。
【0068】
また、これらのミリ波送受信器において、平行平板導体間の間隔は、ミリ波信号の空気中での波長であって、使用周波数での波長の2分の1以下となる。
【0069】
また、図13,図14のミリ波送受信器はFMCW(Frequency Modulation Continuous Waves)方式であり、FMCW方式の動作原理は以下のようなものである。電圧制御発振部の変調信号入力用のMODIN端子に、電圧振幅の時間変化が三角波等となる入力信号を入力し、その出力信号を周波数変調し、電圧制御発振部の出力周波数偏移を三角波等になるように偏移させる。そして、送受信アンテナ46,送信アンテナ56より出力信号(送信波)を放射した場合、送受信用アンテナ46,送信アンテナ56の前方にターゲットが存在すると、電波の伝搬速度の往復分の時間差をともなって、反射波(受信波)が戻ってくる。この時、ミキサー49,61の出力側のIFOUT端子には、送信波と受信波の周波数差が出力される。
【0070】
このIFOUT端子の出力周波数等の周波数成分を解析することで、Fif=4R・fm・Δf/c{Fif:IF(Intermediate Frequency)出力周波数,R:距離,fm:変調周波数,Δf:周波数偏移幅,c:光速}という関係式から距離を求めることができる。
【0071】
このように、自動車のミリ波レーダ等に適用した場合、自動車の周囲の障害物および他の自動車に対しミリ波を照射し、反射波を元のミリ波と合成して中間周波信号を得、この中間周波信号を分析することにより障害物および他の自動車までの距離、それらの移動速度等が測定できる。
【0072】
本発明のミリ波送受信器における誘電体線路は、Mg,Al,Siの複合酸化物を主成分としたセラミックスを用いるのが好ましく、このセラミックスは比誘電率4.5〜8程度が良い。比誘電率が4.5未満の場合、LSMモードの電磁波のLSEモードへの変換が大きくなり、比誘電率が8を超えると、50GHz以上の周波数で使用する際、誘電体線路の幅を非常に細くしなければならず、加工が困難になって形状精度が劣化し、強度の点でも問題が生じる。
【0073】
また、誘電体線路の材料として、使用周波数50〜90GHzでのQ値が1000以上である、Mg,Al,Siの複合酸化物を主成分としたセラミックを用いるのがよい。これは、近年におけるマイクロ波帯域,ミリ波帯に含まれる50〜90GHzで使用される誘電体線路として、十分な低損失性を実現する。特に、コーディエライト(2MgO・2Al・5SiO)セラミックスがよい。
【0074】
さらに、その他の材料として、テフロン(登録商標)(テフロン(登録商標)は登録商標である。),ポリスチレン,ガラスエポキシ樹脂等の樹脂系のもの、アルミナセラミックス,ガラスセラミックス,フォルステライトセラミックス等のものでもよいが、誘電特性、加工性、強度、小型化、信頼性等の点でコーディエライトセラミックスが好ましい。
【0075】
このコーディエライトセラミックスに対し、Y,La,Ce,Pr,Nd,Sm,Eu,Dy,Ho,Er,Tm,Yb,Luから選ばれる少なくとも1種を含有させることにより、Q値等の誘電特性を向上させ、低損失の伝送特性となる。
【0076】
本発明のミリ波送受信器における誘電体線路用の誘電体磁器組成物は、以下のようにして製造する。原料粉末として、例えばMgCO粉末,Al粉末,SiO粉末を用い、これらを所定割合で秤量し、湿式混合した後乾燥し、この混合物を大気中において1100〜1300℃で仮焼した後、粉砕し粉末状とする。得られた粉末に適量の樹脂バインダを加えて成形し、この成形体を大気中1300〜1450℃で焼成することにより得られる。
【0077】
原料粉末中に含まれるMg,Al,Siの各元素は、それぞれ酸化物,炭酸塩,酢酸塩等の無機化合物、もしくは有機金属等の有機化合物のいずれであってもよく、焼成により酸化物となるものであれば良い。
【0078】
なお、誘電体線路用の誘電体磁器組成物の主成分は、Mg,Al,Siの複合酸化物を主成分とし、50〜90GHzでのQ値を1000以上であるという特性を損なわない範囲で、上記元素以外に、粉砕ボールや原料粉末の不純物が混入したり、焼結温度範囲の制御、機械的特性向上を目的に他の成分を含有させても良い。例えば、希土類元素化合物、Ba,Sr,Ca,Ni,Co,In,Ga,Ti等の酸化物、ならびに窒化ケイ素等の窒化物などの非酸化物である。これらは単独または複数種が含まれていても良い。
【0079】
本発明のミリ波送受信器における高周波ダイオード発振器を用いた電圧制御発振部42,52について以下に説明する。図1,図2は本発明のミリ波送受信器におけるNRDガイド型の高周波ダイオード発振器を示し、これらの図において、1は一対の平行平板導体、2はガンダイオード3を設置(マウント)するための略直方体状の金属ブロック等の金属部材、3はマイクロ波,ミリ波を発振する高周波ダイオードの1種であるガンダイオード、4は金属部材2の一側面に設置され、ガンダイオード3にバイアス電圧を供給するとともに高周波信号の漏れを防ぐローパスフィルタとして機能するチョーク型バイアス供給線路4aを形成した配線基板、5はチョーク型バイアス供給線路4aとガンダイオード3の上部導体とを接続する金属箔リボン等の帯状導体、7はガンダイオード3の近傍に配置され、高周波信号を受信し外部へ伝搬させる誘電体線路(第1の誘電体線路43,53)である。
【0080】
また図2において、チョーク型バイアス供給線路4aは、幅の広い線路および幅の狭い線路の長さがそれぞれ略λ/4の広狭線路から成り、また帯状導体5の長さは略{(3/4)+n}λ(nは0以上の整数)である。この帯状導体5の長さは略3λ/4〜略{(3/4)+3}λが良く、略{(3/4)+3}λを超えると帯状導体5が長くなり、撓み、捩じれ等が生じ易くなり、個々の高周波ダイオード発振器間で発振周波数等の特性のばらつきが大きくなるとともに、種々の共振モードが発生して、所望の発振周波数と異なる周波数の信号が発生するという問題が生じる。より好ましくは、略3λ/4,略{(3/4)+1}λである。
【0081】
また、略{(3/4)+n}λとしたのは、{(3/4)+n}λから多少ずれていても共振は可能だからである。例えば、帯状導体5を{(3/4)+n}λよりも10〜20%程度長く形成しても良く、その場合、帯状導体5の接するチョーク型バイアス供給線路4aの1パターン目の長さλ/4のうち一部が共振に寄与すると考えられるからである。従って、帯状導体5の長さは{(3/4)+n}λ±20%程度の範囲内で変化させることができる。
【0082】
これらチョーク型バイアス供給線路4aおよび帯状導体5の材料は、Cu,Al,Au,Ag,W,Ti,Ni,Cr,Pd,Pt等から成り、特にCu,Agが、電気伝導度が良好であり、損失が小さく、発振出力が大きくなるといった点で好ましい。
【0083】
また、帯状導体5は金属部材2の表面から所定間隔をあけて金属部材2と電磁結合しており、チョーク型バイアス供給線路4aとガンダイオード3間に架け渡されている。即ち、帯状導体5の一端はチョーク型バイアス供給線路4aの一端に半田付け等により接続され、帯状導体5の他端はガンダイオード3の上部導体に半田付け等により接続されており、帯状導体5の接続部を除く中途部分は宙に浮いた状態となっている。
【0084】
そして、金属部材2は、ガンダイオード3の電気的な接地(アース)を兼ねているため金属導体であれば良く、その材料は金属(合金を含む)導体であれば特に限定するものではなく、真鍮(黄銅:Cu−Zn合金),Al,Cu,SUS(ステンレススチール),Ag,Au,Pt等から成る。また金属部材2は、全体が金属から成る金属ブロック、セラミックスやプラスチック等の絶縁基体の表面全体または部分的に金属メッキしたもの、絶縁基体の表面全体または部分的に導電性樹脂材料等をコートしたものであっても良い。
【0085】
また、誘電体線路7は、図13,図14の第1の誘電体線路43,53に相当するものであり、その材料は上記の通りコーディエライト(2MgO・2Al・5SiO)セラミックス(比誘電率4〜5)等好ましく、これらは高周波帯域において低損失である。ガンダイオード3と誘電体線路7との間隔は1.0mm程度以下が好ましく、1.0mmを超えると損失を小さくして電磁的結合が可能な最大離間幅を超える。
【0086】
本発明でいう高周波帯域は、数10〜数100GHz帯域のマイクロ波帯域およびミリ波帯域に相当し、例えば30GHz以上、特に50GHz以上、更には70GHz以上の高周波帯域が好適である。
【0087】
また、本発明の高周波ダイオードとしては、インパット(impatt:impact ionisation avalanche transit time)・ダイオード,トラパット(trapatt:trapped plasma avalanche triggered transit)・ダイオード,ガンダイオード等のマイクロ波ダイオードおよびミリ波ダイオードが好適に使用される。
【0088】
本発明のミリ波送受信器におけるNRDガイド用の平行平板導体1は、高い電気伝導度および加工性等の点で、Cu,Al,Fe,SUS(ステンレススチール),Ag,Au,Pt等の導体板、あるいはセラミックス,樹脂等から成る絶縁板の表面にこれらの導体層を形成したものでもよい。
【0089】
本発明において、好ましくは、図3および図4の断面図に示すように、高周波信号の発振周波数を調整する誘電体チップ8を、帯状導体5に近接させて配置する。尚、同図において9はガンダイオード3のネジ止め部である。この誘電体チップ8の形状は特に限定するものではないが、帯状導体5の主面に対向し近接する平行な主面Aを有する直方体状,板状,四角錐状,三角柱等の角柱状,蒲鉾状等が良く、帯状導体5を伝搬する高周波信号との電磁結合を主面Aにより制御し易いという利点がある。そして、主面Aの長さLを調整する、または種々の長さLを有する誘電体チップ8を用意しておき、長さLを変化させることにより、発振周波数を制御できる。即ち、誘電体チップ8を帯状導体5に近接させることで、チョーク型バイアス供給線路4aと帯状導体5とから成る共振器の実質的な共振器長を微妙に調整でき、例えば帯状導体5の電気的な共振器長を{(3/4)+n}λよりも僅かに大きくし、発振周波数を低くすることが可能である。
【0090】
そして、誘電体チップ8はコーディエライトセラミックス,アルミナセラミックス等が好ましく、これらは高周波帯域において低損失である。また、誘電体チップ8の主面Aと帯状導体5の主面との間隔Bは0.1mm〜1.0mmが良く、0.1mm未満では、振動等により誘電体チップ8が位置ずれしたり、熱変形、撓み等を起こして帯状導体5に接触し、高周波の伝搬特性が変化し易くなる。1.0mmを超えると、帯状導体5と誘電体チップ8との電磁結合が弱すぎて、発振周波数の制御が困難となる。
【0091】
本発明の他の実施形態として、周波数調整部材を金属部材2の内部に設けた例を図5〜図7に示す。なお、図6,図7は周波数調整部材周辺の部分断面図である。これらの図に示すように、金属部材2の帯状導体5に対応する位置に孔9a,11が形成されており、その孔9a,11には柱状の周波数調整部材10,12が挿入配置され、かつ金属部材2の表面より周波数調整部材10,12の端部が突出して帯状導体5に近接し電磁結合している。これらの孔9a,11は貫通孔であってもよく、その場合、金属部材2の帯状導体5と反対側の面より周波数調整部材10,12を挿入して、位置調整をすることができ好適である。
【0092】
また図7の実施形態は、孔11を内面にネジ切りを施したネジ孔とし、この孔11にネジ状の周波数調整部材12をネジ込み、回転挿入させて位置の微調整をより微妙に行えるようにしたものである。これにより、さらに微妙な発振周波数の制御が可能となる。これらの周波数調整部材10,12は、金属部材2の帯状導体5に対応する位置に複数設けても良く、例えば断面積の大きなものと断面積の小さなものとを設け、断面積の大きなものにより周波数を粗調整し、断面積の小さなものにより周波数を微調整することもできる。
【0093】
周波数調整部材10,12の材料としては、コーディエライト(2MgO・2Al・5SiO),アルミナ(Al)等の誘電体、またはCu,Al,Fe,SUS(ステンレス)等の金属が良く、上記誘電体は高周波信号に対する誘電体損失が小さく、上記金属は加工性に優れる。
【0094】
このように、周波数調整部材10,12を帯状導体5に近接させてこれらの間隔を調整することで、帯状導体5と周波数調整部材10,12との間の結合容量を変化させ、その結果、チョーク型バイアス供給線路4aと帯状導体5とから成る共振器の実質的な共振器長を微妙に調整できる。例えば、帯状導体5の電気的な共振器長を略{(3/4)+n}λよりも僅かに大きくし、発振周波数を低くすることが可能となる。
【0095】
そして、周波数調整部材10,12と帯状導体5との間隔d(図6)は、0.05〜0.1mmとするのが良く、0.05mm未満では、周波数調整部材10,12と帯状導体5とが接触し易くなり、0.1mmを超えると、周波数調整部材10,12と帯状導体5とが電磁結合し難くなり、発振周波数の制御が困難になる。
【0096】
さらに、周波数調整部材10,12と帯状導体5との間隔dだけでなく、周波数調整部材10,12の帯状導体5に対向する端面の面積を調整することによっても、発振周波数の制御が可能であり、その端面の面積が小さい場合は細かな制御ができるとともに周波数変調可能幅が小さくなり、端面の面積が大きい場合は相対的に粗い制御となり周波数変調可能幅も大きくなる。好ましくは、端面の面積は0.1〜2mmが良く、0.1mm未満では発振周波数の制御が困難であり、2mmを超えると、周波数調整部材10,12の断面の幅が大きくなり、平行平板導体1と接触し易くなるうえ、帯状導体5よりはみ出した部分は周波数制御に殆ど影響しない。より好ましくは、0.13〜0.8mmである。
【0097】
本発明の他の実施形態を図8,図9に示す。これらの図において、20は補助基板14に設置された周波数変調用ダイオードとしてのバラクタダイオードであり、そのバイアス電圧印加方向は帯状導体5に生じ空間に放射形成される電磁界の電界に平行な方向とされ、即ち電界方向と合致した状態とされ、帯状導体5に近接配置されて電磁結合している。21は、補助基板14に形成されたバラクタダイオード20接続用の電極(接続導体)、22は、配線基板23の主面に形成された第2のチョーク型バイアス供給線路である。23は、バラクタダイオード20を設けた変調回路基板であり、第2のチョーク型バイアス供給線路22が主面に形成され、かつその主面が平行平板導体1に対し垂直に設置される配線基板13と、第2のチョーク型バイアス供給線路22の中途に立設され、かつ第2のチョーク型バイアス供給線路22に連続する接続導体をその主面に有する補助基板14とから成る。
【0098】
本実施形態において、好ましくは、周波数変調用ダイオードのバラクタダイオード20と帯状導体5との間隔をλ以下とする。λよりも大きいと、バラクタダイオード20の容量変化による周波数の変調が困難となり、周波数変調幅が小さくなる。より好ましくは、周波数変調用ダイオードと帯状導体5との間隔は0.1mm〜λであり、0.1mm未満では電極21と帯状導体5とが接触し易くなる。
【0099】
また、バラクタダイオード20の帯状導体5に対する位置は、帯状導体5の中心部から、チョーク型バイアス供給線路4a側、またはガンダイオード3側へ帯状導体5の長さの1/4程度までの範囲が良い。バラクタダイオード20が、帯状導体5の中心部よりもガンダイオード3側へ帯状導体5の長さの1/4を超えて近くなると発振出力が低下し、チョーク型バイアス供給線路4a側へ帯状導体5の長さの1/4を超えて配置されると、周波数変調幅が小さくなる。
【0100】
上記実施形態では、バラクタダイオード20のバイアス電圧印加方向が、帯状導体5で生じる電界の方向、即ち平行平板導体1に平行な方向かつ帯状導体5表面に垂直な方向に合致するようにしたが、帯状導体5より生じる電界は帯状導体5から離れるに従い広がり、平行平板導体1に垂直な方向の成分が発生する。従って、平行平板導体1に垂直な方向の電界にバラクタダイオード20のバイアス電圧印加方向を合致させるように設けることもできる。
【0101】
さらに、本発明の他の実施形態について、図10〜図12に示す。図11(a),(b)、図12(a),(b)は、2種類の周波数調整部材周辺の部分平面図および側断面図をそれぞれ示すものである。これらの図に示すように、一方の平行平板導体1には、帯状導体5近傍に位置し厚さ方向に貫通する貫通孔28と、貫通孔28に挿置され、かつ平行平板導体1間側の表面より突出して帯状導体5に近接し電磁結合する柱状の周波数調整部材29とが設けられている。この場合、平行平板導体1の外側より周波数調整部材29を挿入して、位置調整をすることができる。
【0102】
また図12の実施形態は、貫通孔30にネジ切りを施し、これにネジ状の周波数調整部材31を螺合させ挿入することで、ネジの回転により周波数調整部材31の突出長を微調整でき、さらに微妙な発振周波数の制御が可能になる。
【0103】
これらの実施形態において、周波数調整部材29,31の高周波ダイオード発振器内部への突出部の形状を先細り状,テーパー状とすることにより、さらに微妙な制御ができる。また、突出部の形状を種々に変化させたものを複数用意し、それらを所望の特性に応じて使用することもできる。例えば、発振周波数の変化幅、発振周波数の変化率、Q特性等について、種々の制御が可能なように、複数種の周波数調整部材29,31を使用してもよい。これらの周波数調整部材29,31は、帯状導体5に近接する位置に複数設けても良く、例えば断面積の大きなものと断面積の小さなものとを設け、断面積の大きなものにより周波数を粗調整し、断面積の小さなものにより周波数を微調整することもできる。
【0104】
さらには、一対の平行平板導体1,1の両方に対向する貫通孔を設け、それらの貫通孔に一本の周波数調整部材29,31を挿入する、または平行平板導体1,1の両方に対向しない貫通孔を設け、それらの貫通孔に周波数調整部材29,31を一本ずつ挿入することもできる。上記実施形態においては、円柱状の周波数調整部材29について説明したが、円柱状に限らず、三角柱状,四角柱状等の角柱状、円錐状,角錐状、突出端部が半球状のもの等種々の形状とし得る。また、周波数調整部材29の断面形状を凸型,逆T型等として、一端に突出長さを制限する止め部を設けてもよい。あるいは、周波数調整部材29,31の内部を空洞として軽量化、低コスト化を行ってもよく、また周波数調整部材29,31を複数種の材質から構成してもよい。
【0105】
周波数調整部材29,31の材料としては、コーディエライト(2MgO・2Al・5SiO)セラミックス,アルミナ(Al)セラミックス等の誘電体、またはCu,Al,Fe,SUS(ステンレス)等の金属が良く、上記誘電体は高周波信号に対する誘電体損失が小さく、上記金属は加工性に優れる。
【0106】
このように、周波数調整部材29,31を帯状導体5に近接させ、周波数調整部材29,31の突出長さ、即ち電磁結合長を調整することで、帯状導体5と周波数調整部材29,31との間の結合容量を変化させ、その結果、チョーク型バイアス供給線路4aと帯状導体5とから成る共振器の実質的な共振器長を微妙に調整できる。例えば、帯状導体5の電気的な共振器長を略{(3/4)+n}λよりも僅かに大きくし、発振周波数を低くすることが可能となる。
【0107】
そして、周波数調整部材29,31と帯状導体5との距離はλ/2以下が好ましく、λ/4以下がより好ましい。例えば、発振周波数が約77GHzでは0.05〜2mmとするのが良い。0.05mm未満では周波数調整部材29,31と帯状導体5とが接触し易くなり、2mmを超えると周波数調整部材29,31と帯状導体5とが電磁結合し難くなり、発振周波数の制御が困難になる。
【0108】
さらに、周波数調整部材29,31と帯状導体5との距離だけでなく、周波数調整部材29,31の帯状導体5に対向する面の面積を調整することによっても、発振周波数の制御が可能であり、対向する面の面積が小さい場合は細かな制御ができるとともに周波数変調可能幅が小さくなり、対向する面の面積が大きい場合は相対的に粗い制御となり周波数変調可能幅も大きくなる。好ましくは、対向する面の面積は0.5〜3mmが良く、0.5mm未満では発振周波数の制御が困難であり、3mmを超えると、周波数調整部材9,11と誘電体線路6とが電磁結合しそれが無視できない程度に大きくなる。
【0109】
かくして、本発明のミリ波送受信器によれば、チョーク型バイアス供給線路と帯状導体とが高周波ダイオードの発振周波数を決定する共振器として機能し、金属ストリップ共振器等の別個の共振器が不要となり、従って高周波ダイオードマウント用の金属部材と誘電体線路との位置決めが容易になり、製造の作業性が大幅に向上する。また、金属ストリップ共振器等の別個の共振器による損失が解消され、高周波信号の伝搬特性が向上し、その結果、ミリ波レーダ等に適用した場合に、探知レンジ、探知距離、ターゲットの位置探知、ターゲットの速度探知等の性能が向上するとともに安定したものとなる。さらに、本発明によれば、ミリ波信号の伝送特性に優れ、ミリ波レーダーの探知距離を増大し得るものとなり(図13のもの)、また送信用のミリ波信号がサーキュレータを介してミキサーへ混入することがなく、その結果、受信信号のノイズが低減し探知距離がさらに増大する(図14のもの)。
【0110】
なお、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を行うことは何等差し支えない。
【0111】
【発明の効果】
本発明のミリ波送受信器によれば、送信アンテナと受信アンテナとが一体化したミリ波送受信器、または送信アンテナと受信アンテナとが独立したミリ波送受信器において、高周波ダイオードは金属部材の一側面に設置されており、金属部材は、幅の広い線路と幅の狭い線路とが交互に形成され、高周波ダイオードにバイアス電圧を供給するチョーク型バイアス供給線路を形成した配線基板と、チョーク型バイアス供給線路および高周波ダイオードを直線状に接続する、中途部分が宙に浮いた状態となっている帯状導体とが設けられているとともに、チョーク型バイアス供給線路の幅の広い線路および幅の狭い線路の長さがそれぞれ略λ/4(λは使用周波数において空気中を伝搬する高周波信号の波長)であり、帯状導体の長さが略{(3/4)+n}λ(nは0以上の整数)であることにより、チョーク型バイアス供給線路と帯状導体とが高周波ダイオードの発振周波数を決定する共振器として機能し、金属ストリップ共振器等の別個の共振器が不要となり、従って高周波ダイオードマウント用の金属部材と誘電体線路との位置決めが容易になり、製造の作業性が大幅に向上する。また、金属ストリップ共振器等の別個の共振器による損失が解消され、高周波信号の伝搬特性が向上し、その結果、ミリ波レーダ等に適用した場合に、探知レンジ、探知距離、ターゲットの位置探知、ターゲットの速度探知等の性能が向上するとともに安定したものとなる。
【0112】
また本発明のミリ波送受信器によれば、好ましくは、帯状導体の主面と対向する主面を有する誘電体チップを、帯状導体に近接配置して電磁結合させたことにより、高周波ダイオード発振器の発振周波数の調整が容易になり、発振周波数が安定するため製造歩留まりが向上し量産性も向上する。
【0113】
また好ましくは、バイアス電圧印加方向が帯状導体に生じる電界に平行な方向とされた周波数変調用ダイオードを帯状導体に近接配置して電磁結合させたことにより、帯状導体に周波数変調用ダイオードを設けた変調回路基板を近接配置して電磁結合させるとともに、周波数変調用ダイオードに印加するバイアス電圧を変化させることで、発振周波数を制御できる。また、誘電体線路中に周波数変調用ダイオードを配置する必要がないため、損失が小さく高出力が得られるとともに、全体が小型化する。さらに、周波数変調用ダイオードの位置を調整することにより、共振器としても機能する帯状導体と周波数変調用ダイオードとの電磁結合の強さを変えることができ、それにより周波数変調幅を調整し得る。
【0114】
また好ましくは、周波数変調用ダイオードは、第2のチョーク型バイアス供給線路が主面に形成されかつその主面が平行平板導体に対し垂直に設置される配線基板と、第2のチョーク型バイアス供給線路の中途に立設されかつ第2のチョーク型バイアス供給線路に連続する接続導体をその主面上に有する補助基板とから成る変調回路基板上に設置されて、補助基板の前記接続導体の中途に接続されていることにより、変調回路基板の上面視における形状が凸型となり、位置ずれや捩じれ等が小さくなり設置の安定性がきわめて高くなる。また、周波数変調用ダイオードのバイアス電圧印加方向を高周波信号の電界方向に合致させた状態で、周波数変調用ダイオードを帯状導体に近接配置し、位置調整できるため、容易に周波数変調幅を調整可能となる。
【0115】
また好ましくは、周波数変調用ダイオードと帯状導体との間隔をλ以下としたことで、高周波信号の出力を大きくして周波数変調幅を広げることができる。
【0116】
また好ましくは、少なくとも一方の平行平板導体の帯状導体近傍に貫通孔を形成し、かつその貫通孔に平行平板導体間側の表面に突出して帯状導体と電磁結合する柱状の周波数調整部材を設けたことにより、帯状導体に周波数調整部材を近接配置して電磁結合させる際に、周波数調整部材の位置を容易かつ再現性良く微調整可能な構成とすることで、共振器の実質的な共振器長を微妙に調整でき、その結果、発振周波数を再現性良く微調整できる。また、周波数調整部材を小型化して位置の微調整を可能とすることで全体が小型化される。
【0117】
また好ましくは、周波数調整部材と帯状導体との距離がλ/2以下であることにより、周波数調整部材と帯状導体とが良好に電磁結合し、その状態で電磁結合の度合いを微調整することにより、共振器の実質的な共振器長を微調整できる。
【図面の簡単な説明】
【図1】本発明のミリ波送受信器用の高周波ダイオード発振器の一実施形態の斜視図である。
【図2】図1の高周波ダイオード発振器のチョーク型バイアス供給線路と帯状導体を示す平面図である。
【図3】本発明のミリ波送受信器用の高周波ダイオード発振器の他の実施形態の斜視図である。
【図4】図3において、誘電体チップと帯状導体およびガンダイオード周辺の部分断面図である。
【図5】本発明のミリ波送受信器用の高周波ダイオード発振器の他の実施形態の斜視図である。
【図6】図5において、周波数調整部材周辺の部分断面図である。
【図7】図5において、他の周波数調整部材周辺の部分断面図である。
【図8】本発明のミリ波送受信器用の高周波ダイオード発振器の他の実施形態の斜視図である。
【図9】図8において、周波数変調用ダイオードを設けた変調回路基板の斜視図である。
【図10】本発明のミリ波送受信器用の高周波ダイオード発振器の他の実施形態の斜視図である。
【図11】図10において、(a)はチョーク型バイアス供給線路,帯状導体および円柱状の周波数調整部材の平面図、(b)は(a)の側断面図である。
【図12】図10において、(a)はチョーク型バイアス供給線路,帯状導体およびネジ状の周波数調整部材の平面図、(b)は(a)の側断面図である。
【図13】本発明の送受信アンテナを備えたNRDガイド型のミリ波送受信器の内部の平面図である。
【図14】本発明の送信アンテナと受信アンテナを備えたNRDガイド型のミリ波送受信器の内部の平面図である。
【図15】従来の高周波ダイオード発振器の斜視図である。
【図16】図15の高周波ダイオード発振器のチョーク型バイアス供給線路と帯状導体を示す平面図である。
【図17】従来の発振周波数を変調可能な高周波ダイオード発振器の斜視図である。
【図18】図17の周波数変調用のバラクタダイオードを設けた配線基板の斜視図である。
【符号の説明】
1:平行平板導体
2:金属部材
3:ガンダイオード
4:配線基板
5:帯状導体
7:誘電体線路
43:第1の誘電体線路
44:サーキュレータ
46:送受信アンテナ
45:第3の誘電体線路
47:第4の誘電体線路
48:第2の誘電体線路
49:ミキサー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a millimeter wave transceiver suitable for a nonradiative dielectric line type millimeter wave radar using a high frequency circuit such as a millimeter wave integrated circuit.
[0002]
[Prior art]
A conventional non-radiative dielectric line type millimeter wave transceiver is shown in FIGS. First, a non-radiative dielectric line (non-radioactive dielectric waveguide, hereinafter referred to as an NRD guide) will be described. The NRD guide eliminates intrusion of noise from the outside to the dielectric line arranged between the parallel plate conductors by installing a pair of parallel plate conductors with the interval z as z ≦ λ / 2. In addition, a signal is transmitted without radiation of a high-frequency signal (hereinafter also referred to as a signal) from the dielectric line to the outside. Note that λ is the wavelength of an electromagnetic wave (high frequency signal) propagating in the air at the operating frequency.
[0003]
The millimeter wave transceiver shown in FIGS. 13 and 14 is of the NRD guide type in which various components are arranged between a pair of parallel plate conductors, and FIG. 13 is an integrated transmission antenna and reception antenna. FIG. 14 is a plan view of a transmission antenna and a reception antenna that are independent.
[0004]
In FIG. 13, reference numeral 41 denotes one parallel plate conductor (the other is omitted), and 42 denotes a voltage-controlled millimeter-wave signal oscillating unit provided at one end of the first dielectric line 43, that is, a voltage-controlled oscillating unit. The bias voltage of the variable capacitance diode disposed in the vicinity of the high frequency diode of the first dielectric line 43 is periodically controlled so that the bias voltage application direction matches the electric field direction of the high frequency signal, and a triangular wave or a sine wave By doing so, it is output as a frequency-modulated millimeter wave signal for transmission.
[0005]
Reference numeral 43 denotes a first dielectric line for propagating a millimeter-wave signal obtained by modulating a high-frequency signal output from the high-frequency diode, and reference numeral 44 denotes a first dielectric line coupled to the first, third, and fourth dielectric lines, respectively. , A circulator 45 having a ferrite disk 44a and the like, having second and third connection portions (not shown), is connected to the second connection portion of the circulator 44 and propagates a millimeter wave signal and has a tip portion The third dielectric line 46 having the transmission / reception antenna 46 is a transmission / reception antenna configured by tapering the tip of the third dielectric line 45.
[0006]
Reference numeral 47 denotes a fourth dielectric line that propagates the received wave received by the transmitting / receiving antenna 46 through the third dielectric line 45 and output from the third connection portion of the circulator 44 to the mixer 49 side. The second dielectric line 48a, which is disposed close to the first dielectric line 43 so that one end side thereof is electromagnetically coupled and propagates a part of the millimeter wave signal for transmission to the mixer 49 side, This is a non-reflective terminal (terminator) provided at one end of the dielectric line 48 opposite to the mixer 49. Also, M1 in the figure indicates that a part of the millimeter wave signal for transmission and a received wave are obtained by electromagnetically coupling the middle of the second dielectric line 48 and the middle of the fourth dielectric line 47 close to each other. Is a mixer section for generating an intermediate frequency signal.
[0007]
In the type of FIG. 14 in which the transmitting antenna and the receiving antenna are independent, 51 is one parallel plate conductor (the other is omitted), and 52 is a voltage control type provided at one end of the first dielectric line 53. It is a millimeter wave signal oscillating unit, and periodically controls the bias voltage of a variable capacitance diode arranged near the high frequency diode of the first dielectric line 53 so that the bias voltage application direction matches the electric field direction of the high frequency signal. Thus, a triangular wave, a sine wave, or the like is output as a frequency-modulated millimeter wave signal for transmission.
[0008]
Reference numeral 53 denotes a first dielectric line for propagating a millimeter-wave signal obtained by modulating a high-frequency signal output from the high-frequency diode, and reference numeral 54 denotes the first, third, and fifth dielectric lines 53, 55, and 57, respectively. A circulator 55 including a ferrite disk 54a and the like having first, second, and third connection portions (not shown) to be connected is connected to the second connection portion of the circulator 54, and a millimeter wave signal is transmitted. A third dielectric line that propagates and has a transmission antenna 56 at the tip, 56 is a transmission antenna configured by tapering the tip of the third dielectric line 55, and 57 is a circulator 54. The fifth dielectric line is connected to the third connection part and is provided with a non-reflection terminal part 57a for attenuating a millimeter wave signal for transmission at the tip.
[0009]
Reference numeral 58 denotes a second dielectric line that is disposed close to the first dielectric line 53 so that one end thereof is electromagnetically coupled and propagates a part of the millimeter wave signal for transmission to the mixer 61 side. A non-reflective termination 59 provided at one end of the second dielectric line 58 opposite to the mixer 61 is a fourth dielectric line that propagates the received wave received by the receiving antenna 60 to the mixer 61 side. It is. Further, M2 in the figure indicates that a part of the millimeter wave signal for transmission and a received wave are obtained by electromagnetically coupling the middle of the second dielectric line 58 and the middle of the fourth dielectric line 59 close to each other. Mixed
And a mixer section for generating an intermediate frequency signal.
[0010]
In such a millimeter wave transmitter / receiver, the millimeter wave signal oscillating units 42 and 52 each including a high frequency diode are configured as shown in FIGS. 15 and 16. In FIG. 15, 1 is a pair of parallel plate conductors, and the interval z between them is z ≦ λ / 2, which constitutes an NRD guide. Note that λ is the wavelength of an electromagnetic wave (high frequency signal) propagating in the air at the operating frequency.
[0011]
2 is a metal member such as a metal block for mounting (mounting) a Gunn diode as a high-frequency diode, 3 is a Gunn diode, 4 is installed on one side of the metal member 2, and supplies a bias voltage to the Gunn diode 3. And a wiring board 5 on which a choke-type bias supply line 4a that functions as a low-pass filter that prevents leakage of high-frequency signals is formed. Conductor, 6 is a metal strip resonator in which a metal strip line 6a for resonance is provided on a dielectric substrate, and 7 is a dielectric line for transmitting a high-frequency signal resonated by the metal strip resonator 6 to the outside (the first dielectric body). Corresponding to the lines 43 and 53). In FIG. 15, a part of the upper side of the parallel plate conductor 1 is notched in order to see through the inside.
[0012]
In the millimeter wave signal oscillating unit (Gun diode oscillator) of FIG. 15, a metal member 2 on which a Gunn diode 3 is mounted is disposed between a pair of parallel plate conductors 1. A high-frequency signal (electromagnetic wave) such as a microwave is led to the dielectric line 7 through the metal strip resonator 6 having the metal strip line 6a. As shown in FIG. 16, the choke-type bias supply line 4a has a wide line length and a narrow line length of about λ / 4, respectively. In addition, the length of the strip-shaped conductor 5 is also set to approximately λ / 4 and functions as a part of the low-pass filter.
[0013]
Further, as shown in FIGS. 17 and 18, a wiring board 18 loaded with a varactor diode 110, which is a frequency modulation diode and a kind of variable capacitance diode, is installed in the middle of the dielectric line 7. The bias voltage application direction B of the varactor diode 110 is a direction perpendicular to the propagation direction D of the high-frequency signal in the dielectric line 7 and parallel to the main surface of the parallel plate conductor 1. This bias voltage application direction B is the LSM propagating in the dielectric line 7. 01 The high-frequency signal matches the electric field direction E of the mode high-frequency signal, thereby electromagnetically coupling the high-frequency signal and the varactor diode 110 and controlling the bias voltage to change the capacitance of the varactor diode 110, thereby The oscillation frequency can be controlled. In FIG. 17, reference numeral 19 denotes a high dielectric constant dielectric plate for impedance matching between the varactor diode 110 and the dielectric line 7.
[0014]
As shown in FIG. 18, a second choke type bias supply line 112 is formed on one main surface of the wiring board 18, and a beam lead type varactor diode 110 is provided in the middle of the second choke type bias supply line 112. Be placed. An electrode 111 is formed at a connection portion between the second choke-type bias supply line 112 and the varactor diode 110.
[0015]
The high frequency signal oscillated from the Gunn diode 3 is led to the dielectric line 7 through the metal strip resonator 6. Next, part of the high-frequency signal is reflected by the varactor diode 110 and returns to the Gunn diode 3 side. As the reflected signal changes with the capacitance of the varactor diode 110, the oscillation frequency changes.
[0016]
[Problems to be solved by the invention]
However, in the conventional millimeter wave signal oscillating unit, the metal strip resonator 6, the metal member 2, and the dielectric line 7 are individually positioned and arranged, and are sandwiched between the parallel plate conductors 1 and 1. Therefore, if the processing accuracy of the metal strip resonator 6 is low, the metal strip resonator 6 is displaced due to vibration or its own weight, and if the positioning is not accurate, the propagation characteristic to the dielectric line 7 is deteriorated. It was. That is, there is a problem that the processing accuracy and the positioning accuracy of the metal strip resonator 6 need to be managed, the workability of the manufacturing is poor, and therefore it is not suitable for mass production.
[0017]
Further, if the installation position of each component such as the metal member 2, the dielectric line 7 and the metal strip resonator 6 is slightly changed, the oscillation frequency changes slightly. There has been a problem that performance such as distance, target position detection, target speed detection, and the like deteriorates and accurate detection becomes difficult.
[0018]
Further, the conventional millimeter-wave signal oscillating unit has a problem that the high-frequency signal output is reduced because the high-frequency signal is transmitted through the wiring board 18 on which the varactor diode 110 is installed. In order to adjust the frequency modulation width of the high-frequency signal, it is necessary to change the insertion position of the varactor diode 110. However, it is difficult to control the frequency modulation width by position adjustment, and the frequency modulation width cannot be easily controlled. It was.
[0019]
In a millimeter wave transmitter / receiver equipped with such a millimeter wave signal oscillating unit, it is difficult to adjust the oscillation frequency when the oscillation frequency is deviated, so that accurate detection is difficult when applied to a millimeter wave radar or the like. There was a problem.
[0020]
Therefore, the present invention has been completed in view of the above circumstances, and its purpose is to reduce the difficulty of processing and positioning of each part, facilitate the management of processing accuracy and positioning accuracy, and workability of assembly. And to enable fine adjustment of the oscillation frequency with good reproducibility. In addition, a high-output high-frequency signal can be obtained and the frequency modulation width can be easily controlled.
[0021]
When applied to a millimeter wave radar or the like, performances such as a detection range, a detection distance, a target position detection, and a target speed detection are improved and stable.
[0022]
[Means for Solving the Problems]
The millimeter wave transmitter / receiver of the present invention has a high frequency diode attached to one end between parallel plate conductors arranged at intervals of 1/2 or less of the wavelength λ of a millimeter wave signal, and the millimeter wave output from the high frequency diode. A first dielectric line for propagating a signal, and one end of the first dielectric line are arranged so that a bias voltage application direction coincides with an electric field direction of the millimeter wave signal, and the bias voltage is periodically controlled. By doing so, a frequency modulation diode that outputs the millimeter wave signal as a frequency-modulated millimeter wave signal is disposed close to the first dielectric line so that one end side thereof is electromagnetically coupled, or the first One end of which is joined to the dielectric line, a second dielectric line for propagating a part of the millimeter wave signal for transmission to the mixer side, and a ferrite plate disposed in parallel to the parallel plate conductor The first connection portion, the second connection portion, and the third connection portion, which are arranged at predetermined intervals on the edge and are respectively input and output ends of the millimeter wave signal, are input from one connection portion. A circulator for outputting the millimeter wave signal from another connecting part adjacent in a clockwise or counterclockwise direction within the plane of the ferrite plate, the millimeter wave signal for transmission of the first dielectric line being A circulator having the first connection portion joined to the output end, and a third dielectric line joined to the second connection portion of the circulator to propagate the millimeter wave signal and to have a transmitting / receiving antenna at the tip portion A fourth dielectric line that propagates through the third dielectric line received by the transmission / reception antenna and that is output from the third connection part of the circulator to the mixer side; and 2 A part of the millimeter wave signal for transmission and the reception wave are mixed by bringing the middle of the dielectric line and the middle of the fourth dielectric line close to each other and electromagnetically coupling or joining them. In the millimeter wave transmitter / receiver provided with a mixer section for generating an intermediate frequency signal, the high frequency diode is installed on one side of a metal member, and the metal member includes a wide line and a narrow line. Alternatingly formed wiring board on which the choke-type bias supply line for supplying the bias voltage to the high-frequency diode is formed, and the choke-type bias supply line and the high-frequency diode are connected in a straight line. And the lengths of the wide line and the narrow line of the choke-type bias supply line are This is approximately λ / 4 (λ is the wavelength of the high-frequency signal propagating in the air at the operating frequency), and the length of the strip conductor is approximately {(3/4) + n} λ (n is an integer of 0 or more). It is characterized by being.
[0023]
According to the millimeter-wave transceiver of the present invention, with such a configuration, the choke-type bias supply line and the strip conductor function as a resonator that determines the oscillation frequency of the high-frequency diode, and separate resonance such as a metal strip resonator. Therefore, positioning of the metal member for high-frequency diode mounting and the dielectric line becomes easy, and the workability of manufacturing is greatly improved. In addition, loss due to a separate resonator such as a metal strip resonator is eliminated, improving the propagation characteristics of high-frequency signals. As a result, when applied to millimeter wave radar, etc., the detection range, detection distance, target position detection In addition, the target speed detection performance and the like are improved and stabilized.
[0024]
In the present invention, it is preferable that a dielectric chip having a main surface opposite to the main surface of the strip conductor is disposed close to the strip conductor and electromagnetically coupled.
[0025]
With the above configuration, the oscillation frequency of the high-frequency diode oscillator can be easily adjusted, and the oscillation frequency is stabilized, so that the manufacturing yield is improved and the mass productivity is improved.
[0026]
Preferably, the frequency modulation diode, in which a bias voltage application direction is parallel to an electric field generated in the strip conductor, is disposed close to the strip conductor and electromagnetically coupled.
[0027]
With the above-described configuration, the oscillation circuit can be controlled by changing the bias voltage applied to the frequency modulation diode while the modulation circuit board provided with the frequency modulation diode on the strip conductor is disposed close to and electromagnetically coupled. In addition, since it is not necessary to dispose a frequency modulation diode in the dielectric line, the loss is small and a high output is obtained, and the whole is downsized. Furthermore, by adjusting the position of the frequency modulation diode, it is possible to change the strength of electromagnetic coupling between the band-shaped conductor that also functions as a resonator and the frequency modulation diode, and thereby the frequency modulation width can be adjusted.
[0028]
In the present invention, preferably, the frequency modulation diode includes a wiring board in which a second choke-type bias supply line is formed on a main surface, and the main surface is installed perpendicular to the parallel plate conductor; Installed on a modulation circuit board, which is erected in the middle of the second choke-type bias supply line and includes an auxiliary board having a connection conductor on the main surface thereof, which is continuous with the second choke-type bias supply line. The auxiliary conductor is connected in the middle of the connection conductor.
[0029]
With the above configuration, the shape of the modulation circuit board in a top view is a convex shape, and positional deviation and twist are reduced, so that the installation stability is extremely high. Also, the frequency modulation width can be easily adjusted because the frequency modulation diode can be placed close to the strip conductor and the position can be adjusted with the bias voltage application direction of the frequency modulation diode aligned with the electric field direction of the high frequency signal. Become.
[0030]
Preferably, the interval between the frequency modulation diode and the strip conductor is λ or less.
[0031]
By adjusting within the above range, the output of the high frequency signal can be increased and the frequency modulation width can be expanded.
[0032]
Preferably, at least one of the parallel plate conductors is formed with a through hole in the vicinity of the strip-shaped conductor, and the through-hole protrudes on the surface between the parallel plate conductors to electromagnetically couple with the strip-shaped conductor. A member is provided.
[0033]
With the above configuration, when the frequency adjusting member is disposed close to the strip conductor and electromagnetically coupled, the position of the frequency adjusting member can be easily and finely adjusted with good reproducibility. The length can be finely adjusted, and as a result, the oscillation frequency can be finely adjusted with good reproducibility. In addition, the overall size can be reduced by downsizing the frequency adjusting member to enable fine adjustment of the position.
[0034]
Preferably, a distance between the frequency adjusting member and the strip conductor is λ / 2 or less.
[0035]
With the above configuration, the frequency adjustment member and the strip conductor are electromagnetically coupled well, and the fine resonator length of the resonator can be finely adjusted by finely adjusting the degree of electromagnetic coupling in this state.
[0036]
In the millimeter wave transmitter / receiver according to the present invention, a high frequency diode is provided at one end between parallel plate conductors arranged at intervals of 1/2 or less of the wavelength λ of the millimeter wave signal, and is output from the high frequency diode. A first dielectric line for propagating a millimeter wave signal and a bias voltage application direction at one end of the first dielectric line so as to coincide with the electric field direction of the millimeter wave signal, And a frequency modulation diode that outputs the millimeter wave signal as a transmission millimeter wave signal that is frequency-modulated to the first dielectric line so that one end side is electromagnetically coupled to the first dielectric line, or One end joined to the first dielectric line, a second dielectric line for propagating a part of the millimeter wave signal for transmission to the mixer side, and a ferrite disposed in parallel to the parallel plate conductor A first connection portion, a second connection portion, and a third connection portion, which are arranged at predetermined intervals on a peripheral portion of the plate and are respectively input / output ends of the millimeter wave signal; A circulator for outputting the inputted millimeter wave signal from another connection part adjacent in the clockwise or counterclockwise direction within the plane of the ferrite plate, wherein the transmitting millimeter wave of the first dielectric line A circulator having the first connecting portion joined to a signal output end; and a second circulator connected to the second connecting portion of the circulator for propagating the millimeter wave signal for transmission and having a transmitting antenna at a tip portion. 3 dielectric lines, a receiving antenna at the front end, and the mixer at the other end, respectively, a fourth dielectric line for propagating the received wave received by the receiving antenna to the mixer side, and the circular A millimeter wave signal received and mixed by the transmitting antenna is propagated, and the received and mixed millimeter wave signal is attenuated by a non-reflective terminal provided at the tip. A part of the millimeter wave signal for transmission can be obtained by electromagnetically coupling or joining a dielectric line, a middle part of the second dielectric line, and a middle part of the fourth dielectric line. In the millimeter wave transmitter / receiver provided with a mixer unit that mixes the received wave and generates an intermediate frequency signal, the high frequency diode is installed on one side of the metal member, and the metal member is wide. A wiring board in which lines and narrow lines are alternately formed, and a choke-type bias supply line for supplying the bias voltage to the high-frequency diode is formed; the choke-type bias supply line; A band-shaped conductor that connects the frequency diodes in a straight line, and in which a midway portion is suspended in the air, and the wide line and the narrow line of the choke-type bias supply line are provided. Each of the lengths is approximately λ / 4 (λ is the wavelength of the high-frequency signal propagating in the air at the operating frequency), and the length of the strip conductor is approximately {(3/4) + n} λ (n is 0 or more) An integer).
[0037]
According to the millimeter-wave transceiver of the present invention, with such a configuration, the choke-type bias supply line and the strip conductor function as a resonator that determines the oscillation frequency of the high-frequency diode, and separate resonance such as a metal strip resonator. Therefore, positioning of the metal member for high-frequency diode mounting and the dielectric line becomes easy, and the workability of manufacturing is greatly improved. In addition, loss due to a separate resonator such as a metal strip resonator is eliminated, improving the propagation characteristics of high-frequency signals. As a result, when applied to millimeter wave radar, etc., the detection range, detection distance, target position detection In addition, the target speed detection performance and the like are improved and stabilized. Also, the millimeter wave signal for transmission does not enter the mixer via the circulator, and as a result, the noise of the received signal is reduced, the detection distance is increased, and the transmission characteristics of the millimeter wave signal are excellent. .
[0038]
In the present invention, it is preferable that a dielectric chip having a main surface opposite to the main surface of the strip conductor is disposed close to the strip conductor and electromagnetically coupled.
[0039]
With the above configuration, the oscillation frequency of the high-frequency diode oscillator can be easily adjusted, and the oscillation frequency is stabilized, so that the manufacturing yield is improved and the mass productivity is improved.
[0040]
Preferably, the frequency modulation diode, in which a bias voltage application direction is parallel to an electric field generated in the strip conductor, is disposed close to the strip conductor and electromagnetically coupled.
[0041]
With the above-described configuration, the oscillation circuit can be controlled by changing the bias voltage applied to the frequency modulation diode while the modulation circuit board provided with the frequency modulation diode on the strip conductor is disposed close to and electromagnetically coupled. In addition, since it is not necessary to dispose a frequency modulation diode in the dielectric line, the loss is small and a high output is obtained, and the whole is downsized. Furthermore, by adjusting the position of the frequency modulation diode, it is possible to change the strength of electromagnetic coupling between the band-shaped conductor that also functions as a resonator and the frequency modulation diode, and thereby the frequency modulation width can be adjusted.
[0042]
In the present invention, preferably, the frequency modulation diode includes a wiring board in which a second choke-type bias supply line is formed on a main surface, and the main surface is installed perpendicular to the parallel plate conductor; Installed on a modulation circuit board, which is erected in the middle of the second choke-type bias supply line and includes an auxiliary board having a connection conductor on the main surface thereof, which is continuous with the second choke-type bias supply line. The auxiliary conductor is connected in the middle of the connection conductor.
[0043]
With the above configuration, the shape of the modulation circuit board in a top view is a convex shape, and positional deviation and twist are reduced, so that the installation stability is extremely high. Also, the frequency modulation width can be easily adjusted because the frequency modulation diode can be placed close to the strip conductor and the position can be adjusted with the bias voltage application direction of the frequency modulation diode aligned with the electric field direction of the high frequency signal. Become.
[0044]
Preferably, the interval between the frequency modulation diode and the strip conductor is λ or less.
[0045]
By adjusting within the above range, the output of the high frequency signal can be increased and the frequency modulation width can be expanded.
[0046]
Preferably, at least one of the parallel plate conductors is formed with a through hole in the vicinity of the strip-shaped conductor, and the through-hole protrudes on the surface between the parallel plate conductors to electromagnetically couple with the strip-shaped conductor. A member is provided.
[0047]
With the above configuration, when the frequency adjusting member is disposed close to the strip conductor and electromagnetically coupled, the position of the frequency adjusting member can be easily and finely adjusted with good reproducibility. The length can be finely adjusted, and as a result, the oscillation frequency can be finely adjusted with good reproducibility. In addition, the overall size can be reduced by downsizing the frequency adjusting member to enable fine adjustment of the position.
[0048]
Preferably, a distance between the frequency adjusting member and the strip conductor is λ / 2 or less.
[0049]
With the above configuration, the frequency adjustment member and the strip conductor are electromagnetically coupled well, and the fine resonator length of the resonator can be finely adjusted by finely adjusting the degree of electromagnetic coupling in this state.
[0050]
DETAILED DESCRIPTION OF THE INVENTION
The millimeter wave transceiver according to the present invention will be described below. The basic configuration of the millimeter wave transceiver according to the present invention is the same as that shown in FIGS. 13 and 14, and will be described below with reference to these drawings. FIG. 13 is a plan view of an integrated transmission antenna and reception antenna, and FIG. 14 is a plan view of an independent transmission antenna and reception antenna.
[0051]
In FIG. 13, reference numeral 41 denotes one parallel plate conductor (the other is omitted), and 42 denotes a voltage-controlled millimeter-wave signal oscillating unit provided at one end of the first dielectric line 43, that is, a voltage-controlled oscillating unit. The bias voltage of the variable capacitance diode disposed in the vicinity of the high frequency diode of the first dielectric line 43 is periodically controlled so that the bias voltage application direction matches the electric field direction of the high frequency signal, and a triangular wave or a sine wave By doing so, it is output as a frequency-modulated millimeter wave signal for transmission.
[0052]
Reference numeral 43 denotes a first dielectric line for propagating a millimeter-wave signal obtained by modulating a high-frequency signal output from the high-frequency diode, and reference numeral 44 denotes a first dielectric line coupled to the first, third, and fourth dielectric lines, respectively. , A circulator 45 having a ferrite disk 44a and the like, having second and third connection portions (not shown), is connected to the second connection portion of the circulator 44 and propagates a millimeter wave signal and has a tip portion The third dielectric line 46 having the transmission / reception antenna 46 is a transmission / reception antenna configured by tapering the tip of the third dielectric line 45.
[0053]
Reference numeral 47 denotes a fourth dielectric line that propagates the received wave received by the transmitting / receiving antenna 46 through the third dielectric line 45 and output from the third connection portion of the circulator 44 to the mixer 49 side. The second dielectric line 48a, which is disposed close to the first dielectric line 43 so that one end side thereof is electromagnetically coupled and propagates a part of the millimeter wave signal for transmission to the mixer 49 side, This is a non-reflective terminal (terminator) provided at one end of the dielectric line 48 opposite to the mixer 49. Also, M1 in the figure indicates that a part of the millimeter wave signal for transmission and a received wave are obtained by electromagnetically coupling the middle of the second dielectric line 48 and the middle of the fourth dielectric line 47 close to each other. Is a mixer section for generating an intermediate frequency signal.
[0054]
The circulator 44 is arranged at a predetermined interval, for example, at an interval of 120 ° in angle with respect to the center point of the ferrite disc 44a, at the periphery of the pair of ferrite discs 44a arranged in parallel between the parallel plate conductors 41, 41, and Each of the first and second connection portions, which is an input / output end of a millimeter wave signal, has a third connection portion, and the millimeter wave signal input from one connection portion is converted into a surface of the ferrite disk 44a. Output from another connection part adjacent in the clockwise or counterclockwise direction. A magnet for rotating the wavefront of the electromagnetic wave propagating through the ferrite disk 44a is provided at a portion corresponding to the ferrite disk 44a on the outer principal surface of the parallel plate conductor 41, and the magnetic field lines are substantially perpendicular to the ferrite disk 44a. It is provided so as to pass in the direction (substantially up and down direction). The ferrite disc 44a of the present invention is not limited to a disc shape, and may be a polygonal shape.
[0055]
As another embodiment of the millimeter wave transceiver of the present invention, there is a type shown in FIG. 14 in which a transmitting antenna and a receiving antenna are made independent. In the figure, 51 is one parallel plate conductor (the other is omitted), 52 is a voltage-controlled millimeter-wave signal oscillating unit provided at one end of the first dielectric line 53, and the bias voltage application direction is By periodically controlling the bias voltage of the variable capacitance diode disposed in the vicinity of the high frequency diode of the first dielectric line 53 so as to match the electric field direction of the high frequency signal, the frequency is obtained by making a triangular wave, a sine wave, or the like. Output as a modulated millimeter wave signal for transmission.
[0056]
Reference numeral 53 denotes a first dielectric line for propagating a millimeter-wave signal obtained by modulating a high-frequency signal output from the high-frequency diode, and reference numeral 54 denotes the first, third, and fifth dielectric lines 53, 55, and 57, respectively. A circulator 55 including a ferrite disk 54a and the like having first, second, and third connection portions (not shown) to be connected is connected to the second connection portion of the circulator 54, and a millimeter wave signal is transmitted. A third dielectric line that propagates and has a transmission antenna 56 at the tip, 56 is a transmission antenna configured by tapering the tip of the third dielectric line 55, and 57 is a circulator 54. The fifth dielectric line is connected to the third connection part and is provided with a non-reflection terminal part 57a for attenuating a millimeter wave signal for transmission at the tip.
[0057]
Reference numeral 58 denotes a second dielectric line that is disposed close to the first dielectric line 53 so that one end thereof is electromagnetically coupled and propagates a part of the millimeter wave signal for transmission to the mixer 61 side. A non-reflective termination 59 provided at one end of the second dielectric line 58 opposite to the mixer 61 is a fourth dielectric line that propagates the received wave received by the receiving antenna 60 to the mixer 61 side. It is. Further, M2 in the figure indicates that a part of the millimeter wave signal for transmission and a received wave are obtained by electromagnetically coupling the middle of the second dielectric line 58 and the middle of the fourth dielectric line 59 close to each other. Is a mixer section for generating an intermediate frequency signal.
[0058]
In the present invention, in FIG. 13, one end side of the second dielectric line 48 is arranged close to the first dielectric line 43 or one end part is joined. The dielectric line 43 is linear, the second dielectric line 48 is arcuate, and the radius of curvature r of the arcuate part is greater than or equal to the wavelength λ of the high-frequency signal. As a result, the high-frequency signal can be branched with a uniform output with reduced loss. Further, at the junction, the second dielectric line 48 may be linear, the first dielectric line 43 may be arcuate, and the radius of curvature r of the arcuate part may be greater than or equal to the wavelength λ of the high frequency signal. In this case, the same effect as described above can be obtained.
[0059]
Further, in the mixer 49, the second dielectric line 48 and the fourth dielectric line 47 can be joined. In this case, any one of these dielectric lines 48 and 47 is used as described above. One of the joints is preferably formed in an arc shape, and the radius of curvature r of the arc-shaped portion is preferably not less than the wavelength λ of the high frequency signal. In addition, when the second dielectric line 48 and the fourth dielectric line 47 are arranged close to each other without being joined, the second dielectric line 48 and the fourth dielectric line 47 are connected to each other in the proximity portion. By making at least one of the proximity portions to the dielectric line 47 into an arc shape, a configuration of proximity arrangement can be achieved.
[0060]
Preferably, the curvature radius r of the joint is 3λ or less, and if it exceeds 3λ, the joint structure becomes large, and the merit of miniaturization cannot be obtained. If the curvature radius r of the junction is set smaller than the wavelength λ, the branching strength to the dielectric line having the arc-shaped junction is reduced.
[0061]
Such a junction structure between the first dielectric line 43 and the second dielectric line 48, a junction structure between the second dielectric line 48 and the fourth dielectric line 47, and the second dielectric The configuration of the proximity arrangement of the line 48 and the fourth dielectric line 47 is the same as described above in the case of FIG.
[0062]
These various components are provided between parallel plate conductors arranged at intervals of 1/2 or less of the wavelength of the millimeter wave signal.
[0063]
In FIG. 13, it is possible to control the pulse modulation by providing a switch in the middle of the first dielectric line 43 and turning it on and off. For example, as shown in FIG. 18, a second choke-type bias supply line 112 is formed on one main surface of the wiring board 18, and a beam lead type PIN diode or Schottky barrier diode mounted in the middle is provided. Switch. Applying a bias voltage of a pulse modulation diode such as a PIN diode or a Schottky barrier diode between the wiring board 18 and a circulator 44 between a signal branching portion of the first dielectric line 43 and the second dielectric line 48. The direction is arranged so as to match the electric field direction of the high-frequency signal in the LSM mode, and is interposed in the first dielectric line 43. Further, another circulator is interposed in the first dielectric line 43, the first dielectric line 43 is connected to the first and third connection portions, and another dielectric line is connected to the second connection portion. And a switch provided with a Schottky barrier diode in the configuration shown in FIG. 18 may be installed on the end face of the tip of the dielectric line.
[0064]
In the configuration shown in FIG. 14, the circulator 54 may be eliminated, and the transmission antenna 56 may be connected to the tip of the first dielectric line 53. In this case, although the size is reduced, the type shown in FIG. 14 is preferable because part of the received wave is likely to be mixed into the voltage-controlled oscillator 52 and cause noise and the like.
[0065]
In the type of FIG. 14, the second dielectric line 58 is disposed close to the third dielectric line 55 so that one end side is electromagnetically coupled, or one end is joined to the third dielectric line 55. In addition, a part of the millimeter wave signal for transmission may be arranged to propagate to the mixer 61 side. This configuration also has the same functions and effects as those of FIG.
[0066]
In FIG. 14, a switch having the same configuration as that shown in FIG. 18 is provided in the middle of the first dielectric line 53, and pulse modulation can be controlled by turning it on and off. For example, as shown in FIG. 18, a second choke-type bias supply line 112 is formed on one main surface of the wiring board 18, and a beam lead type PIN diode or a Schottky barrier diode mounted in the middle is provided. Switch. A bias voltage application direction of a PIN diode or a Schottky barrier diode is set to an LSM mode between the wiring substrate 18 and a signal branching portion between the first dielectric line 53 and the second dielectric line 58 and the circulator 54. Are arranged so as to match the electric field direction of the high-frequency signal, and are interposed in the first dielectric line 53.
[0067]
Further, another circulator is interposed in the first dielectric line 53, the first dielectric line 53 is connected to the first and third connection portions, and another dielectric line is connected to the second connection portion. And a switch provided with a Schottky barrier diode configured as shown in FIG. 18 may be installed on the end face of the tip of the dielectric line.
[0068]
In these millimeter wave transceivers, the distance between the parallel plate conductors is the wavelength of the millimeter wave signal in the air and is less than or equal to half the wavelength at the operating frequency.
[0069]
13 and FIG. 14 is an FMCW (Frequency Modulation Continuous Waves) system, and the operation principle of the FMCW system is as follows. An input signal whose voltage amplitude changes with time is a triangular wave or the like is input to the MODIN terminal for the modulation signal input of the voltage controlled oscillator, the output signal is frequency-modulated, and the output frequency shift of the voltage controlled oscillator is a triangular wave or the like Shift to be. When an output signal (transmission wave) is radiated from the transmission / reception antenna 46 and the transmission antenna 56, if there is a target in front of the transmission / reception antenna 46 and the transmission antenna 56, a time difference corresponding to the round-trip of the propagation speed of the radio wave occurs. The reflected wave (received wave) returns. At this time, the frequency difference between the transmission wave and the reception wave is output to the IFOUT terminal on the output side of the mixers 49 and 61.
[0070]
By analyzing the frequency components such as the output frequency of the IFOUT terminal, Fif = 4R · fm · Δf / c {Fif: IF (Intermediate Frequency) output frequency, R: distance, fm: modulation frequency, Δf: frequency shift The distance can be obtained from the relational expression of width, c: speed of light}.
[0071]
In this way, when applied to a millimeter wave radar of an automobile, the millimeter wave is irradiated to obstacles around the automobile and other automobiles, and the reflected wave is synthesized with the original millimeter wave to obtain an intermediate frequency signal, By analyzing this intermediate frequency signal, it is possible to measure the distance to obstacles and other automobiles, their moving speed, and the like.
[0072]
The dielectric line in the millimeter wave transceiver of the present invention is preferably made of ceramics whose main component is a composite oxide of Mg, Al and Si, and the ceramics preferably have a relative dielectric constant of about 4.5-8. When the relative dielectric constant is less than 4.5, the conversion of the LSM mode electromagnetic wave into the LSE mode becomes large, and when the relative dielectric constant exceeds 8, the width of the dielectric line becomes very large when used at a frequency of 50 GHz or more. However, the processing becomes difficult, the shape accuracy is deteriorated, and there is a problem in terms of strength.
[0073]
Further, as a material for the dielectric line, it is preferable to use a ceramic whose main component is a composite oxide of Mg, Al, and Si having a Q value of 1000 or more at a use frequency of 50 to 90 GHz. This realizes a sufficiently low loss property as a dielectric line used at 50 to 90 GHz included in the microwave band and the millimeter wave band in recent years. In particular, cordierite (2MgO · 2Al 2 O 3 ・ 5SiO 2 ) Ceramics are good.
[0074]
Further, as other materials, Teflon (registered trademark) (Teflon (registered trademark) is a registered trademark), polystyrene, glass epoxy resin, etc., alumina ceramics, glass ceramics, forsterite ceramics, etc. However, cordierite ceramics are preferable in terms of dielectric properties, workability, strength, size reduction, reliability, and the like.
[0075]
By including at least one selected from Y, La, Ce, Pr, Nd, Sm, Eu, Dy, Ho, Er, Tm, Yb, and Lu in this cordierite ceramic, a dielectric such as a Q value is obtained. The characteristics are improved and the transmission characteristics are low loss.
[0076]
The dielectric ceramic composition for a dielectric line in the millimeter wave transceiver of the present invention is manufactured as follows. As raw material powder, for example, MgCO 3 Powder, Al 2 O 3 Powder, SiO 2 Using powder, these are weighed at a predetermined ratio, wet-mixed and then dried. The mixture is calcined at 1100 to 1300 ° C. in the air and then pulverized to obtain a powder. It is obtained by adding an appropriate amount of a resin binder to the obtained powder and molding it, and firing this molded body at 1300 to 1450 ° C. in the atmosphere.
[0077]
Each element of Mg, Al, and Si contained in the raw material powder may be either an inorganic compound such as an oxide, carbonate, or acetate, or an organic compound such as an organic metal. If it becomes.
[0078]
The main component of the dielectric porcelain composition for dielectric lines is a composite oxide of Mg, Al, and Si as a main component, and the Q value at 50 to 90 GHz is 1000 or more within a range that does not impair the characteristic. In addition to the above elements, impurities in the pulverized ball and raw material powder may be mixed, or other components may be included for the purpose of controlling the sintering temperature range and improving mechanical properties. For example, rare earth element compounds, oxides such as Ba, Sr, Ca, Ni, Co, In, Ga, and Ti, and non-oxides such as nitrides such as silicon nitride. These may be contained alone or in combination.
[0079]
The voltage controlled oscillators 42 and 52 using the high frequency diode oscillator in the millimeter wave transceiver of the present invention will be described below. 1 and 2 show an NRD guide type high-frequency diode oscillator in a millimeter-wave transceiver according to the present invention. In these drawings, 1 is a pair of parallel plate conductors, and 2 is for mounting (mounting) a Gunn diode 3 A metal member such as a substantially rectangular parallelepiped metal block, 3 is a Gunn diode that is a kind of high-frequency diode that oscillates microwaves and millimeter waves, 4 is installed on one side of the metal member 2, and a bias voltage is applied to the Gunn diode 3. A wiring board 5 having a choke-type bias supply line 4a that functions as a low-pass filter that supplies and prevents leakage of high-frequency signals is provided, such as a metal foil ribbon that connects the choke-type bias supply line 4a and the upper conductor of the Gunn diode 3 A strip-like conductor 7 is disposed in the vicinity of the Gunn diode 3 and receives a high-frequency signal and propagates it to the outside (first dielectric line). A dielectric line 43 and 53).
[0080]
In FIG. 2, a choke-type bias supply line 4a includes a wide line and a narrow line each having a length of approximately λ / 4, and the length of the strip-shaped conductor 5 is approximately {(3 / 4) + n} λ (n is an integer of 0 or more). The length of the strip-shaped conductor 5 is preferably approximately 3λ / 4 to approximately {(3/4) +3} λ. If the length exceeds approximately {(3/4) +3} λ, the strip-shaped conductor 5 becomes long, and is bent, twisted, or the like. As a result, the variation in characteristics such as the oscillation frequency among individual high-frequency diode oscillators increases, and various resonance modes are generated, thereby generating a signal having a frequency different from the desired oscillation frequency. More preferably, it is approximately 3λ / 4, approximately {(3/4) +1} λ.
[0081]
Further, the reason why it is substantially {(3/4) + n} λ is that resonance is possible even if it is slightly deviated from {(3/4) + n} λ. For example, the strip conductor 5 may be formed to be approximately 10 to 20% longer than {(3/4) + n} λ, and in this case, the length of the first pattern of the choke-type bias supply line 4a with which the strip conductor 5 is in contact. This is because a part of λ / 4 is considered to contribute to resonance. Therefore, the length of the strip-shaped conductor 5 can be changed within a range of about {(3/4) + n} λ ± 20%.
[0082]
The choke-type bias supply line 4a and the strip conductor 5 are made of Cu, Al, Au, Ag, W, Ti, Ni, Cr, Pd, Pt, etc., and particularly Cu and Ag have good electrical conductivity. It is preferable in that it has a small loss and a large oscillation output.
[0083]
The strip-shaped conductor 5 is electromagnetically coupled to the metal member 2 at a predetermined interval from the surface of the metal member 2, and is stretched between the choke-type bias supply line 4 a and the Gunn diode 3. That is, one end of the strip conductor 5 is connected to one end of the choke-type bias supply line 4a by soldering or the like, and the other end of the strip conductor 5 is connected to the upper conductor of the Gunn diode 3 by soldering or the like. The middle part except for the connection part of is floating in the air.
[0084]
The metal member 2 may be a metal conductor because it also serves as an electrical ground (earth) of the Gunn diode 3, and the material is not particularly limited as long as the material is a metal (including alloy) conductor. It consists of brass (brass: Cu—Zn alloy), Al, Cu, SUS (stainless steel), Ag, Au, Pt, and the like. Also, the metal member 2 is a metal block made entirely of metal, a surface of an insulating base such as ceramics or plastic that is partially metal-plated, or a surface of the insulating base that is partially or partially coated with a conductive resin material. It may be a thing.
[0085]
The dielectric line 7 corresponds to the first dielectric lines 43 and 53 in FIGS. 13 and 14, and the material thereof is cordierite (2MgO · 2Al as described above). 2 O 3 ・ 5SiO 2 ) Ceramics (relative dielectric constant 4-5) and the like are preferable, and these have low loss in a high frequency band. The distance between the Gunn diode 3 and the dielectric line 7 is preferably about 1.0 mm or less, and if it exceeds 1.0 mm, the loss is reduced and the maximum separation width capable of electromagnetic coupling is exceeded.
[0086]
The high frequency band referred to in the present invention corresponds to a microwave band and a millimeter wave band of several tens to several hundreds GHz, and for example, a high frequency band of 30 GHz or higher, particularly 50 GHz or higher, and more preferably 70 GHz or higher is preferable.
[0087]
Further, as the high-frequency diode of the present invention, a microwave, such as an impulse (transacted avalanche transit time) diode, a trapat (trapped plasma avalanche triggered transition) diode, and a Gunn diode is suitable. used.
[0088]
The parallel plate conductor 1 for NRD guide in the millimeter wave transceiver of the present invention is a conductor such as Cu, Al, Fe, SUS (stainless steel), Ag, Au, Pt, etc. in terms of high electrical conductivity and workability. The conductive layer may be formed on the surface of a plate or an insulating plate made of ceramic, resin, or the like.
[0089]
In the present invention, preferably, as shown in the cross-sectional views of FIGS. 3 and 4, the dielectric chip 8 for adjusting the oscillation frequency of the high-frequency signal is disposed close to the strip-shaped conductor 5. In the figure, 9 is a screwing portion of the Gunn diode 3. The shape of the dielectric chip 8 is not particularly limited, but is a rectangular parallelepiped shape having a parallel main surface A facing and close to the main surface of the strip-shaped conductor 5, a plate shape, a quadrangular pyramid shape, a prismatic shape such as a triangular prism, There is an advantage that the hook-like shape is good, and the main surface A can easily control the electromagnetic coupling with the high-frequency signal propagating through the strip-like conductor 5. The oscillation frequency can be controlled by adjusting the length L of the main surface A or by preparing the dielectric chip 8 having various lengths L and changing the length L. That is, by bringing the dielectric chip 8 close to the strip conductor 5, the substantial resonator length of the resonator composed of the choke-type bias supply line 4a and the strip conductor 5 can be finely adjusted. The typical resonator length can be made slightly larger than {(3/4) + n} λ, and the oscillation frequency can be lowered.
[0090]
The dielectric chip 8 is preferably cordierite ceramic, alumina ceramic or the like, and these have low loss in the high frequency band. The distance B between the main surface A of the dielectric chip 8 and the main surface of the strip conductor 5 is preferably 0.1 mm to 1.0 mm. If the distance B is less than 0.1 mm, the dielectric chip 8 may be displaced due to vibration or the like. Then, thermal deformation, bending, etc. are caused to come into contact with the belt-like conductor 5 and the high-frequency propagation characteristics are likely to change. If it exceeds 1.0 mm, the electromagnetic coupling between the strip conductor 5 and the dielectric chip 8 is too weak, and it becomes difficult to control the oscillation frequency.
[0091]
As other embodiment of this invention, the example which provided the frequency adjustment member in the inside of the metal member 2 is shown in FIGS. 6 and 7 are partial cross-sectional views around the frequency adjusting member. As shown in these drawings, holes 9a and 11 are formed at positions corresponding to the strip-shaped conductor 5 of the metal member 2, and columnar frequency adjusting members 10 and 12 are inserted and arranged in the holes 9a and 11, Further, the end portions of the frequency adjusting members 10 and 12 protrude from the surface of the metal member 2 and are close to the band-shaped conductor 5 and are electromagnetically coupled. These holes 9a and 11 may be through holes. In this case, the frequency adjustment members 10 and 12 are inserted from the surface of the metal member 2 on the side opposite to the band-like conductor 5 so that the position can be adjusted. It is.
[0092]
In the embodiment of FIG. 7, the hole 11 is a screw hole whose inner surface is threaded, and a screw-like frequency adjusting member 12 is screwed into the hole 11 and rotated to be finely adjusted. It is what I did. This makes it possible to control the oscillation frequency more delicately. A plurality of these frequency adjusting members 10 and 12 may be provided at positions corresponding to the strip-like conductor 5 of the metal member 2. For example, a member having a large cross-sectional area and a member having a small cross-sectional area are provided. It is also possible to coarsely adjust the frequency and finely adjust the frequency with a small cross-sectional area.
[0093]
As a material of the frequency adjusting members 10 and 12, cordierite (2MgO · 2Al 2 O 3 ・ 5SiO 2 ), Alumina (Al 2 O 3 ) Or a metal such as Cu, Al, Fe, and SUS (stainless steel). The dielectric has a low dielectric loss with respect to a high-frequency signal, and the metal has excellent workability.
[0094]
Thus, by adjusting the distance between the frequency adjusting members 10 and 12 close to the strip conductor 5, the coupling capacitance between the strip conductor 5 and the frequency adjusting members 10 and 12 is changed, and as a result, The substantial resonator length of the resonator composed of the choke-type bias supply line 4a and the strip conductor 5 can be finely adjusted. For example, the electrical resonator length of the strip conductor 5 can be made slightly larger than approximately {(3/4) + n} λ, and the oscillation frequency can be lowered.
[0095]
The distance d (FIG. 6) between the frequency adjusting members 10 and 12 and the strip-shaped conductor 5 is preferably 0.05 to 0.1 mm, and if less than 0.05 mm, the frequency adjusting members 10 and 12 and the strip-shaped conductor 5 5 is easily contacted, and if it exceeds 0.1 mm, it becomes difficult for the frequency adjusting members 10 and 12 and the strip conductor 5 to be electromagnetically coupled, and the control of the oscillation frequency becomes difficult.
[0096]
Furthermore, the oscillation frequency can be controlled not only by adjusting the distance d between the frequency adjusting members 10 and 12 and the strip conductor 5 but also by adjusting the area of the end face of the frequency adjusting members 10 and 12 facing the strip conductor 5. In addition, when the area of the end face is small, fine control can be performed and the frequency modulation possible width becomes small, and when the end face area is large, the control becomes relatively rough and the frequency modulation possible width becomes large. Preferably, the end face area is 0.1 to 2 mm. 2 0.1mm 2 Is less than 2 mm, it is difficult to control the oscillation frequency. 2 If it exceeds the upper limit, the width of the cross section of the frequency adjusting members 10 and 12 becomes large, and it becomes easy to come into contact with the parallel plate conductor 1, and the portion protruding from the strip conductor 5 hardly affects the frequency control. More preferably, 0.13 to 0.8 mm 2 It is.
[0097]
Another embodiment of the present invention is shown in FIGS. In these figures, reference numeral 20 denotes a varactor diode as a frequency modulation diode installed on the auxiliary substrate 14, and the bias voltage application direction is parallel to the electric field of the electromagnetic field generated in the strip conductor 5 and radiated in the space. In other words, it is in a state that matches the direction of the electric field, and is disposed close to the strip conductor 5 and is electromagnetically coupled. Reference numeral 21 denotes an electrode (connection conductor) for connecting the varactor diode 20 formed on the auxiliary substrate 14, and 22 denotes a second choke-type bias supply line formed on the main surface of the wiring substrate 23. Reference numeral 23 denotes a modulation circuit board provided with a varactor diode 20. The wiring board 13 has a second choke-type bias supply line 22 formed on the main surface, and the main surface is installed perpendicular to the parallel plate conductor 1. And an auxiliary substrate 14 that is provided in the middle of the second choke-type bias supply line 22 and has a connecting conductor on the main surface thereof that is continuous with the second choke-type bias supply line 22.
[0098]
In the present embodiment, the interval between the varactor diode 20 of the frequency modulation diode and the strip conductor 5 is preferably λ or less. If it is larger than λ, it becomes difficult to modulate the frequency due to the capacitance change of the varactor diode 20, and the frequency modulation width becomes small. More preferably, the distance between the frequency modulation diode and the strip-shaped conductor 5 is 0.1 mm to λ. If the distance is less than 0.1 mm, the electrode 21 and the strip-shaped conductor 5 are likely to contact each other.
[0099]
Further, the position of the varactor diode 20 with respect to the band-shaped conductor 5 has a range from the center of the band-shaped conductor 5 to about ¼ of the length of the band-shaped conductor 5 toward the choke-type bias supply line 4a side or the Gunn diode 3 side. good. When the varactor diode 20 is closer to the Gunn diode 3 side than the center of the strip conductor 5 by more than ¼ of the length of the strip conductor 5, the oscillation output is reduced and the strip conductor 5 is moved to the choke-type bias supply line 4 a side. If it is arranged to exceed 1/4 of the length, the frequency modulation width becomes small.
[0100]
In the above embodiment, the bias voltage application direction of the varactor diode 20 matches the direction of the electric field generated in the strip conductor 5, that is, the direction parallel to the parallel plate conductor 1 and the direction perpendicular to the surface of the strip conductor 5. The electric field generated from the strip conductor 5 spreads away from the strip conductor 5 and a component in a direction perpendicular to the parallel plate conductor 1 is generated. Therefore, the bias voltage application direction of the varactor diode 20 can be matched with the electric field perpendicular to the parallel plate conductor 1.
[0101]
Furthermore, other embodiments of the present invention are shown in FIGS. 11 (a), 11 (b), 12 (a), and 12 (b) respectively show a partial plan view and a side sectional view of the periphery of two types of frequency adjusting members. As shown in these drawings, one parallel plate conductor 1 has a through hole 28 located in the vicinity of the strip-like conductor 5 and penetrating in the thickness direction, and is inserted in the through hole 28 and between the parallel plate conductors 1. A columnar frequency adjusting member 29 that protrudes from the surface and is electromagnetically coupled close to the strip conductor 5 is provided. In this case, the position can be adjusted by inserting the frequency adjusting member 29 from the outside of the parallel plate conductor 1.
[0102]
In the embodiment of FIG. 12, the protruding length of the frequency adjusting member 31 can be finely adjusted by rotating the screw by threading the through hole 30 and screwing the screw-like frequency adjusting member 31 into the through hole 30. Furthermore, it becomes possible to control the oscillation frequency more delicately.
[0103]
In these embodiments, further fine control can be performed by making the shape of the protruding portion of the frequency adjusting members 29 and 31 into the high-frequency diode oscillator into a tapered shape or a tapered shape. It is also possible to prepare a plurality of protrusions having various shapes and use them according to desired characteristics. For example, a plurality of types of frequency adjusting members 29 and 31 may be used so that various controls can be performed with respect to the change width of the oscillation frequency, the change rate of the oscillation frequency, the Q characteristic, and the like. A plurality of these frequency adjusting members 29 and 31 may be provided at positions close to the strip-shaped conductor 5. For example, a member having a large cross-sectional area and a member having a small cross-sectional area are provided, and the frequency is roughly adjusted by a member having a large cross-sectional area. However, the frequency can be finely adjusted with a small cross-sectional area.
[0104]
Furthermore, a through-hole facing both of the pair of parallel plate conductors 1, 1 is provided, and one frequency adjusting member 29, 31 is inserted into these through-holes, or opposed to both of the parallel plate conductors 1, 1. It is also possible to provide non-through holes and insert the frequency adjusting members 29 and 31 into the through holes one by one. In the above embodiment, the columnar frequency adjusting member 29 has been described. However, the columnar frequency adjusting member 29 is not limited to a columnar shape. The shape may be Further, the cross-sectional shape of the frequency adjustment member 29 may be a convex shape, an inverted T shape, or the like, and a stop portion that restricts the protruding length may be provided at one end. Alternatively, the inside of the frequency adjusting members 29 and 31 may be hollow to reduce the weight and cost, and the frequency adjusting members 29 and 31 may be made of a plurality of types of materials.
[0105]
As the material of the frequency adjusting members 29 and 31, cordierite (2MgO · 2Al 2 O 3 ・ 5SiO 2 ) Ceramics, Alumina (Al 2 O 3 ) A dielectric such as ceramics or a metal such as Cu, Al, Fe, or SUS (stainless steel) is preferable. The dielectric has a low dielectric loss with respect to a high-frequency signal, and the metal is excellent in workability.
[0106]
In this way, by adjusting the frequency adjusting members 29 and 31 close to the strip-shaped conductor 5 and adjusting the protruding length of the frequency adjusting members 29 and 31, that is, the electromagnetic coupling length, the band-shaped conductor 5 and the frequency adjusting members 29 and 31. As a result, the substantial resonator length of the resonator composed of the choke-type bias supply line 4a and the strip-shaped conductor 5 can be finely adjusted. For example, the electrical resonator length of the strip conductor 5 can be made slightly larger than approximately {(3/4) + n} λ, and the oscillation frequency can be lowered.
[0107]
The distance between the frequency adjusting members 29 and 31 and the strip conductor 5 is preferably λ / 2 or less, and more preferably λ / 4 or less. For example, when the oscillation frequency is about 77 GHz, 0.05 to 2 mm is preferable. If it is less than 0.05 mm, the frequency adjusting members 29 and 31 and the strip conductor 5 are likely to contact each other, and if it exceeds 2 mm, the frequency adjusting members 29 and 31 and the strip conductor 5 are difficult to be electromagnetically coupled, making it difficult to control the oscillation frequency. become.
[0108]
Furthermore, not only the distance between the frequency adjusting members 29 and 31 and the strip conductor 5, but also the area of the surface of the frequency adjusting members 29 and 31 facing the strip conductor 5 can be adjusted to control the oscillation frequency. When the area of the facing surface is small, fine control can be performed and the frequency modulation possible width is reduced, and when the area of the opposing surface is large, the control is relatively rough and the frequency modulation possible width is also increased. Preferably, the area of the opposing surface is 0.5-3 mm 2 0.5mm 2 Is less than 3 mm, it is difficult to control the oscillation frequency. 2 Exceeds the frequency, the frequency adjusting members 9 and 11 and the dielectric line 6 are electromagnetically coupled and become so large that they cannot be ignored.
[0109]
Thus, according to the millimeter wave transceiver of the present invention, the choke-type bias supply line and the strip conductor function as a resonator that determines the oscillation frequency of the high-frequency diode, and a separate resonator such as a metal strip resonator is not required. Therefore, the positioning of the metal member for high-frequency diode mounting and the dielectric line becomes easy, and the workability of manufacturing is greatly improved. In addition, loss due to a separate resonator such as a metal strip resonator is eliminated, improving the propagation characteristics of high-frequency signals. As a result, when applied to millimeter wave radar, etc., the detection range, detection distance, target position detection In addition, the target speed detection performance and the like are improved and stabilized. Furthermore, according to the present invention, the transmission characteristics of the millimeter wave signal are excellent, and the detection distance of the millimeter wave radar can be increased (as shown in FIG. 13), and the millimeter wave signal for transmission is sent to the mixer via the circulator. As a result, the noise of the received signal is reduced and the detection distance is further increased (as shown in FIG. 14).
[0110]
The present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present invention.
[0111]
【The invention's effect】
According to the millimeter wave transceiver of the present invention, in the millimeter wave transceiver in which the transmission antenna and the reception antenna are integrated, or in the millimeter wave transceiver in which the transmission antenna and the reception antenna are independent, the high frequency diode is one side surface of the metal member. The metal member is formed by alternately forming a wide line and a narrow line, and forming a choke-type bias supply line for supplying a bias voltage to a high-frequency diode, and a choke-type bias supply A line-shaped conductor that connects the line and the high-frequency diode in a straight line, and a strip-shaped conductor that is suspended in mid-air. Is approximately λ / 4 (λ is the wavelength of the high-frequency signal propagating in the air at the operating frequency), and the length of the strip conductor is approximately {(3 / 4) Since + n} λ (n is an integer of 0 or more), the choke-type bias supply line and the strip conductor function as a resonator that determines the oscillation frequency of the high-frequency diode. A resonator is not required, so that positioning of the metal member for high-frequency diode mounting and the dielectric line is facilitated, and the workability of manufacturing is greatly improved. In addition, loss due to a separate resonator such as a metal strip resonator is eliminated, improving the propagation characteristics of high-frequency signals. As a result, when applied to millimeter wave radar, etc., the detection range, detection distance, target position detection In addition, the target speed detection performance and the like are improved and stabilized.
[0112]
According to the millimeter wave transceiver of the present invention, preferably, a dielectric chip having a main surface opposite to the main surface of the strip conductor is disposed close to the strip conductor and electromagnetically coupled, thereby The oscillation frequency can be easily adjusted, and the oscillation frequency is stabilized, so that the manufacturing yield is improved and the mass productivity is improved.
[0113]
Preferably, a frequency modulation diode having a bias voltage application direction parallel to an electric field generated in the strip conductor is disposed close to the strip conductor and electromagnetically coupled, thereby providing the frequency modulation diode on the strip conductor. The oscillation frequency can be controlled by arranging the modulation circuit boards close to each other and electromagnetically coupling them, and changing the bias voltage applied to the frequency modulation diode. In addition, since it is not necessary to dispose a frequency modulation diode in the dielectric line, the loss is small and a high output is obtained, and the whole is downsized. Furthermore, by adjusting the position of the frequency modulation diode, it is possible to change the strength of electromagnetic coupling between the band-shaped conductor that also functions as a resonator and the frequency modulation diode, and thereby the frequency modulation width can be adjusted.
[0114]
Preferably, the frequency modulation diode includes a wiring board in which a second choke-type bias supply line is formed on a main surface and the main surface is installed perpendicular to the parallel plate conductor, and a second choke-type bias supply. A halfway connecting line that is connected to the second choke-type bias supply line and that is provided on a modulation circuit board having an auxiliary board on the main surface thereof. By connecting to the modulation circuit board, the shape of the modulation circuit board in a top view becomes a convex shape, and positional deviation and twist are reduced, so that the installation stability is extremely high. Also, the frequency modulation width can be easily adjusted because the frequency modulation diode can be placed close to the strip conductor and the position can be adjusted with the bias voltage application direction of the frequency modulation diode aligned with the electric field direction of the high frequency signal. Become.
[0115]
Preferably, the interval between the frequency modulation diode and the strip conductor is λ or less, so that the output of the high frequency signal can be increased and the frequency modulation width can be widened.
[0116]
Preferably, a through-hole is formed in the vicinity of the strip-shaped conductor of at least one of the parallel plate conductors, and a columnar frequency adjusting member that protrudes from the through-hole to the surface between the parallel plate conductors and is electromagnetically coupled to the strip-shaped conductor is provided Therefore, when the frequency adjusting member is placed close to the strip conductor and electromagnetically coupled, the position of the frequency adjusting member can be easily finely adjusted with good reproducibility. As a result, the oscillation frequency can be finely adjusted with good reproducibility. In addition, the overall size can be reduced by downsizing the frequency adjusting member to enable fine adjustment of the position.
[0117]
Preferably, the distance between the frequency adjusting member and the strip conductor is λ / 2 or less, whereby the frequency adjusting member and the strip conductor are electromagnetically coupled well, and the degree of electromagnetic coupling is finely adjusted in that state. The substantial resonator length of the resonator can be finely adjusted.
[Brief description of the drawings]
FIG. 1 is a perspective view of an embodiment of a high-frequency diode oscillator for a millimeter wave transceiver according to the present invention.
2 is a plan view showing a choke-type bias supply line and a strip-shaped conductor of the high-frequency diode oscillator of FIG. 1. FIG.
FIG. 3 is a perspective view of another embodiment of a high-frequency diode oscillator for a millimeter wave transceiver according to the present invention.
4 is a partial cross-sectional view of the periphery of a dielectric chip, a strip conductor, and a Gunn diode in FIG. 3;
FIG. 5 is a perspective view of another embodiment of a high-frequency diode oscillator for a millimeter wave transceiver according to the present invention.
FIG. 6 is a partial cross-sectional view around the frequency adjusting member in FIG.
FIG. 7 is a partial cross-sectional view around another frequency adjusting member in FIG. 5;
FIG. 8 is a perspective view of another embodiment of a high-frequency diode oscillator for a millimeter wave transceiver according to the present invention.
FIG. 9 is a perspective view of a modulation circuit board provided with a frequency modulation diode in FIG. 8;
FIG. 10 is a perspective view of another embodiment of a high-frequency diode oscillator for a millimeter wave transceiver according to the present invention.
11A is a plan view of a choke-type bias supply line, a strip-like conductor, and a cylindrical frequency adjusting member, and FIG. 11B is a side sectional view of FIG.
12A is a plan view of a choke-type bias supply line, a strip-shaped conductor, and a screw-shaped frequency adjusting member, and FIG. 12B is a side sectional view of FIG.
FIG. 13 is a plan view of the inside of an NRD guide type millimeter wave transceiver including the transceiver antenna of the present invention.
FIG. 14 is a plan view of the inside of an NRD guide type millimeter wave transceiver including a transmitting antenna and a receiving antenna according to the present invention.
FIG. 15 is a perspective view of a conventional high-frequency diode oscillator.
16 is a plan view showing a choke-type bias supply line and a strip-shaped conductor of the high-frequency diode oscillator of FIG.
FIG. 17 is a perspective view of a conventional high-frequency diode oscillator capable of modulating the oscillation frequency.
18 is a perspective view of a wiring board provided with the frequency modulation varactor diode of FIG. 17. FIG.
[Explanation of symbols]
1: Parallel plate conductor
2: Metal member
3: Gunn diode
4: Wiring board
5: Strip conductor
7: Dielectric line
43: first dielectric line
44: Circulator
46: Transmitting and receiving antenna
45: Third dielectric line
47: Fourth dielectric line
48: Second dielectric line
49: Mixer

Claims (14)

ミリ波信号の波長λの2分の1以下の間隔で配置した平行平板導体間に、
高周波ダイオードが一端部に付設され、前記高周波ダイオードから出力されたミリ波信号を伝搬させる第1の誘電体線路と、
該第1の誘電体線路の一端にバイアス電圧印加方向が前記ミリ波信号の電界方向に合致するように配置され、前記バイアス電圧を周期的に制御することによって前記ミリ波信号を周波数変調した送信用のミリ波信号として出力する周波数変調用ダイオードと、
前記第1の誘電体線路に一端側が電磁結合するように近接配置されるかまたは前記第1の誘電体線路に一端が接合されて、前記送信用のミリ波信号の一部をミキサー側へ伝搬させる第2の誘電体線路と、
前記平行平板導体に平行に配設されたフェライト板の周縁部に所定間隔で配置されかつそれぞれ前記ミリ波信号の入出力端とされた第1の接続部,第2の接続部および第3の接続部を有し、一つの接続部から入力された前記ミリ波信号を前記フェライト板の面内で時計回りまたは反時計回りに隣接する他の接続部より出力るサーキュレータであって、前記第1の誘電体線路の前記送信用のミリ波信号の出力端に前記第1の接続部が接合されるサーキュレータと、
該サーキュレータの前記第2の接続部に接合され、前記ミリ波信号を伝搬させるとともに先端部に送受信アンテナを有する第3の誘電体線路と、
前記送受信アンテナで受信され前記第3の誘電体線路を伝搬して前記サーキュレータの前記第3の接続部より出力した受信波を前記ミキサー側へ伝搬させる第4の誘電体線路と、
前記第2の誘電体線路の中途と前記第4の誘電体線路の中途とを近接させて電磁結合させるかまたは接合させることにより、前記送信用のミリ波信号の一部と前記受信波とを混合て中間周波信号を発生るミキサー部と、を設けたミリ波送受信器において、
前記高周波ダイオードは金属部材の一側面に設置されており、該金属部材は、幅の広い線路と幅の狭い線路が交互に形成され前記高周波ダイオードに前記バイアス電圧を供給するチョーク型バイアス供給線路を形成した配線基板と、前記チョーク型バイアス供給線路および前記高周波ダイオードを直線状に接続する、中途部分が宙に浮いた状態となっている帯状導体とが設けられているとともに、前記チョーク型バイアス供給線路の前記幅の広い線路および前記幅の狭い線路の長さがそれぞれ略λ/4(λは使用周波数において空気中を伝搬する高周波信号の波長)であり、前記帯状導体の長さが略{(3/4)+n}λ(nは0以上の整数)であることを特徴とするミリ波送受信器。
Between parallel plate conductors arranged at intervals of 1/2 or less of the wavelength λ of the millimeter wave signal,
A first dielectric line having a high-frequency diode attached to one end thereof and propagating a millimeter-wave signal output from the high-frequency diode;
A bias voltage application direction is arranged at one end of the first dielectric line so as to match the electric field direction of the millimeter wave signal, and the millimeter wave signal is frequency-modulated by periodically controlling the bias voltage. A frequency modulation diode that outputs as a reliable millimeter wave signal;
Proximity is arranged so that one end side is electromagnetically coupled to the first dielectric line, or one end is joined to the first dielectric line, and a part of the millimeter wave signal for transmission is propagated to the mixer side A second dielectric line,
Wherein are arranged at predetermined intervals in the peripheral portion of the parallel disposed ferrite plate parallel flat conductors, and a first connecting portion which is the output end of each of the millimeter wave signal, a second connecting portion, and a third of a connecting portion, a further circulator you output from the connection portion adjacent said millimeter wave signal inputted from one connection part in a clockwise or counter-clockwise in the plane of the ferrite plate A circulator having the first connecting portion joined to an output end of the millimeter wave signal for transmission of the first dielectric line;
A third dielectric line having a transmission and reception antenna on the tip portion with joined to the second connecting portion of the circulator, to propagate the millimeter wave signal,
A fourth dielectric line propagating a received wave output from the third connecting portion of said received at the transmitting and receiving antenna propagates through the third dielectric waveguide circulator to the mixer side,
By the second or bonding dielectric waveguide was midway between close the middle of the fourth dielectric waveguide of to electromagnetic coupling, a part of the millimeter-wave signal for the transmitting and the receiving wave a mixer that occur the intermediate frequency signal mixing, in the provided millimeter wave transceiver,
The RF diode has been installed on one side surface of the metal member, the metal member includes a narrow line wide line width width are alternately formed, the high-frequency diode to the choke type bias supply for supplying the bias voltage a wiring substrate provided with the line, connecting the choke-type bias supply line and the high-frequency diode linearly, and a strip conductor is provided which middle portion in a state of floating in the air Tei Rutotomoni, the choke type is said wide line and the narrow line lengths are respectively approximately lambda / 4 of the bias supply line (wavelength of the high frequency signal lambda is propagating in air at the usage frequency), the length of the strip conductor Millimeter wave transceiver characterized by being approximately {(3/4) + n} λ (n is an integer of 0 or more).
前記帯状導体の主面と対向する主面を有する誘電体チップを、前記帯状導体に近接配置し電磁結合させたことを特徴とする請求項1記載のミリ波送受信Said dielectric chip having a main surface and opposite major surfaces of the ribbon conductor, the millimeter-wave transceiver according to claim 1, characterized in that is electromagnetically coupled disposed close to said strip conductor. バイアス電圧印加方向が前記帯状導体に生じる電界に平行な方向とされた前記周波数変調用ダイオードを前記帯状導体に近接配置して電磁結合させたことを特徴とする請求項1記載のミリ波送受信器。2. The millimeter wave transceiver according to claim 1, wherein the frequency modulation diode having a bias voltage application direction parallel to an electric field generated in the strip conductor is electromagnetically coupled by being disposed close to the strip conductor. . 前記周波数変調用ダイオードは、第2のチョーク型バイアス供給線路が主面に形成されかつ該主面が前記平行平板導体に対し垂直に設置される配線基板と、前記第2のチョーク型バイアス供給線路の中途に立設されかつ前記第2のチョーク型バイアス供給線路に連続する接続導体をその主面上に有する補助基板とから成る変調回路基板上に設置されて、前記補助基板の前記接続導体の中途に接続されていることを特徴とする請求項3記載のミリ波送受信器。The frequency modulation diode includes a wiring board in which a second choke-type bias supply line is formed on a main surface , and the main surface is installed perpendicular to the parallel plate conductor; and the second choke-type bias supply is erected in the middle of the line, and is installed in the second choke type bias the connection conductor contiguous to the supply line consists of an auxiliary substrate having on its main surface modulation circuit board, the connection of the auxiliary substrate 4. The millimeter wave transceiver according to claim 3, wherein the millimeter wave transceiver is connected in the middle of the conductor. 前記周波数変調用ダイオードと前記帯状導体との間隔をλ以下としたことを特徴とする請求項3または請求項4記載のミリ波送受信器。5. The millimeter wave transmitter / receiver according to claim 3, wherein an interval between the frequency modulation diode and the strip conductor is λ or less. 少なくとも一方の前記平行平板導体の前記帯状導体近傍に貫通孔を形成し、かつ該貫通孔に前記平行平板導体間側の表面に突出して前記帯状導体と電磁結合する柱状の周波数調整部材を設けたことを特徴とする請求項1記載のミリ波送受信器。A through hole is formed in the vicinity of the strip conductor of at least one of the parallel plate conductors, and a columnar frequency adjusting member that protrudes from the surface between the parallel plate conductors and is electromagnetically coupled to the strip conductor is provided in the through hole. The millimeter wave transceiver according to claim 1. 前記周波数調整部材と前記帯状導体との距離がλ/2以下であることを特徴とする請求項6記載のミリ波送受信器。The millimeter wave transceiver according to claim 6, wherein a distance between the frequency adjusting member and the strip conductor is λ / 2 or less. ミリ波信号の波長λの2分の1以下の間隔で配置した平行平板導体間に、
高周波ダイオードが一端部に付設され、前記高周波ダイオードから出力されたミリ波信号を伝搬させる第1の誘電体線路と、
該第1の誘電体線路の一端にバイアス電圧印加方向が前記ミリ波信号の電界方向に合致するように配置され、前記バイアス電圧を周期的に制御することによって前記ミリ波信号を周波数変調した送信用のミリ波信号として出力する周波数変調用ダイオードと、
前記第1の誘電体線路に一端側が電磁結合するように近接配置されるかまたは前記第1の誘電体線路に一端が接合されて、前記送信用のミリ波信号の一部をミキサー側へ伝搬させる第2の誘電体線路と、
前記平行平板導体に平行に配設されたフェライト板の周縁部に所定間隔で配置されかつそれぞれ前記ミリ波信号の入出力端とされた第1の接続部,第2の接続部および第3の接続部を有し、一つの接続部から入力された前記ミリ波信号を前記フェライト板の面内で時計回りまたは反時計回りに隣接する他の接続部より出力るサーキュレータであって、前記第1の誘電体線路の前記送信用のミリ波信号の出力端に前記第1の接続部が接合されるサーキュレータと、
該サーキュレータの前記第2の接続部に接続され、前記送信用のミリ波信号を伝搬させるとともに先端部に送信アンテナを有する第3の誘電体線路と、
先端部に受信アンテナ、他端部に前記ミキサーが各々設けられ、前記受信アンテナで受信された受信波を前記ミキサー側へ伝搬させる第4の誘電体線路と、
前記サーキュレータの前記第3の接続部に接続され、前記送信アンテナで受信混入したミリ波信号を伝搬させるとともに先端部に設けられた無反射終端部で前記受信混入したミリ波信号を減衰させる第5の誘電体線路と、
前記第2の誘電体線路の中途と前記第4の誘電体線路の中途とを近接させて電磁結合させるかまたは接合させることにより、前記送信用のミリ波信号の一部と前記受信波とを混合て中間周波信号を発生るミキサー部と、を設けたミリ波送受信器において、
前記高周波ダイオードは金属部材の一側面に設置されており、該金属部材は、幅の広い線路と幅の狭い線路が交互に形成され前記高周波ダイオードに前記バイアス電圧を供給するチョーク型バイアス供給線路を形成した配線基板と、前記チョーク型バイアス供給線路および前記高周波ダイオードを直線状に接続する、中途部分が宙に浮いた状態となっている帯状導体とが設けられているとともに、前記チョーク型バイアス供給線路の前記幅の広い線路および前記幅の狭い線路の長さがそれぞれ略λ/4(λは使用周波数において空気中を伝搬する高周波信号の波長)であり、前記帯状導体の長さが略{(3/4)+n}λ(nは0以上の整数)であることを特徴とするミリ波送受信器。
Between parallel plate conductors arranged at intervals of 1/2 or less of the wavelength λ of the millimeter wave signal,
A first dielectric line having a high-frequency diode attached to one end thereof and propagating a millimeter-wave signal output from the high-frequency diode;
A bias voltage application direction is arranged at one end of the first dielectric line so as to match the electric field direction of the millimeter wave signal, and the millimeter wave signal is frequency-modulated by periodically controlling the bias voltage. A frequency modulation diode that outputs as a reliable millimeter wave signal;
Proximity is arranged so that one end side is electromagnetically coupled to the first dielectric line, or one end is joined to the first dielectric line, and a part of the millimeter wave signal for transmission is propagated to the mixer side A second dielectric line,
Wherein are arranged at predetermined intervals in the peripheral portion of the parallel disposed ferrite plate parallel flat conductors, and a first connecting portion which is the output end of each of the millimeter wave signal, a second connecting portion, and a third of a connecting portion, a further circulator you output from the connection portion adjacent said millimeter wave signal inputted from one connection part in a clockwise or counter-clockwise in the plane of the ferrite plate A circulator having the first connecting portion joined to an output end of the millimeter wave signal for transmission of the first dielectric line;
A third dielectric line having a transmitting antenna at the tip with is connected to the second connecting portion of the circulator, to propagate the millimeter wave signal for the transmission,
Receiving a tip antenna, the mixer is provided each at the other end, and a fourth dielectric waveguide for propagating the received wave received by the receiving antenna to the mixer side,
Is connected to the third connection of the circulator, fifth attenuate millimeter wave signal thus received mixed with reflection-free termination portion provided at a front end portion with propagating the millimeter wave signal received mixed with the transmit antenna A dielectric line of
By the second or bonding dielectric waveguide was midway between close the middle of the fourth dielectric waveguide of to electromagnetic coupling, a part of the millimeter-wave signal for the transmitting and the receiving wave a mixer that occur the intermediate frequency signal mixing, in the provided millimeter wave transceiver,
The RF diode has been installed on one side surface of the metal member, the metal member includes a narrow line wide line width width are alternately formed, the high-frequency diode to the choke type bias supply for supplying the bias voltage a wiring substrate provided with the line, connecting the choke-type bias supply line and the high-frequency diode linearly, and a strip conductor is provided which middle portion in a state of floating in the air Tei Rutotomoni, the choke type is said wide line and the narrow line lengths are respectively approximately lambda / 4 of the bias supply line (wavelength of the high frequency signal lambda is propagating in air at the usage frequency), the length of the strip conductor Millimeter wave transceiver characterized by being approximately {(3/4) + n} λ (n is an integer of 0 or more).
前記帯状導体の主面と対向する主面を有する誘電体チップを、前記帯状導体に近接配置し電磁結合させたことを特徴とする請求項8記載のミリ波送受信Said dielectric chip having a main surface and opposite major surfaces of the ribbon conductor, the millimeter-wave transceiver according to claim 8, characterized in that is electromagnetically coupled disposed close to said strip conductor. バイアス電圧印加方向が前記帯状導体に生じる電界に平行な方向とされた前記周波数変調用ダイオードを前記帯状導体に近接配置して電磁結合させたことを特徴とする請求項8記載のミリ波送受信器。9. The millimeter wave transmitter / receiver according to claim 8, wherein the frequency modulation diode having a bias voltage application direction parallel to an electric field generated in the strip conductor is electromagnetically coupled by being disposed close to the strip conductor. . 前記周波数変調用ダイオードは、第2のチョーク型バイアス供給線路が主面に形成されかつ該主面が前記平行平板導体に対し垂直に設置される配線基板と、前記第2のチョーク型バイアス供給線路の中途に立設されかつ前記第2のチョーク型バイアス供給線路に連続する接続導体をその主面上に有する補助基板とから成る変調回路基板上に設置されて、前記補助基板の前記接続導体の中途に接続されていることを特徴とする請求項10記載のミリ波送受信器。The frequency modulation diode includes a wiring board in which a second choke-type bias supply line is formed on a main surface , and the main surface is installed perpendicular to the parallel plate conductor; and the second choke-type bias supply is erected in the middle of the line, and is installed in the second choke type bias the connection conductor contiguous to the supply line consists of an auxiliary substrate having on its main surface modulation circuit board, the connection of the auxiliary substrate The millimeter wave transceiver according to claim 10, wherein the millimeter wave transceiver is connected in the middle of the conductor. 前記周波数変調用ダイオードと前記帯状導体との間隔をλ以下としたことを特徴とする請求項10または請求項11記載のミリ波送受信器。The millimeter wave transceiver according to claim 10 or 11, wherein a distance between the frequency modulation diode and the strip conductor is λ or less. 少なくとも一方の前記平行平板導体の前記帯状導体近傍に貫通孔を形成し、かつ該貫通孔に前記平行平板導体間側の表面に突出して前記帯状導体と電磁結合する柱状の周波数調整部材を設けたことを特徴とする請求項8記載のミリ波送受信器。A through hole is formed in the vicinity of the strip conductor of at least one of the parallel plate conductors, and a columnar frequency adjusting member that protrudes from the surface between the parallel plate conductors and is electromagnetically coupled to the strip conductor is provided in the through hole. The millimeter wave transceiver according to claim 8. 前記周波数調整部材と前記帯状導体との距離がλ/2以下であることを特徴とする請求項13記載のミリ波送受信器。The millimeter wave transceiver according to claim 13, wherein a distance between the frequency adjusting member and the strip conductor is λ / 2 or less.
JP2000193382A 1999-08-24 2000-06-27 Millimeter wave transceiver Expired - Fee Related JP3631666B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000193382A JP3631666B2 (en) 2000-06-27 2000-06-27 Millimeter wave transceiver
DE10040957A DE10040957B4 (en) 1999-08-24 2000-08-22 High frequency diode oscillator and device for transmitting / receiving millimeter waves
US09/645,100 US6630870B1 (en) 1999-08-24 2000-08-23 High-frequency diode oscillator and millimeter-wave transmitting/receiving apparatus
US10/630,484 US6744402B2 (en) 1999-08-24 2003-07-29 High-frequency diode oscillator and millimeter-wave transmitting/receiving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000193382A JP3631666B2 (en) 2000-06-27 2000-06-27 Millimeter wave transceiver

Publications (2)

Publication Number Publication Date
JP2002014155A JP2002014155A (en) 2002-01-18
JP3631666B2 true JP3631666B2 (en) 2005-03-23

Family

ID=18692382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000193382A Expired - Fee Related JP3631666B2 (en) 1999-08-24 2000-06-27 Millimeter wave transceiver

Country Status (1)

Country Link
JP (1) JP3631666B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073177A (en) * 2003-08-27 2005-03-17 Kyocera Corp Substrate for diode mounting, and millimeter wave module

Also Published As

Publication number Publication date
JP2002014155A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
US6882253B2 (en) Non-radiative dielectric waveguide and millimeter wave transmitting/receiving apparatus
JP3631666B2 (en) Millimeter wave transceiver
US6630870B1 (en) High-frequency diode oscillator and millimeter-wave transmitting/receiving apparatus
JP2002232212A (en) Pulse modulator for nonradiative dielectric line and millimeter-wave transmitter/receiver using the same
JP3600799B2 (en) Non-radiative dielectric line and millimeter wave transceiver
JP3559530B2 (en) Non-radiative dielectric line and millimeter wave transceiver
JP3631645B2 (en) Millimeter wave radar module
JP2002016405A (en) Non-radiative dielectric line and millimeter wave transmitter/receiver
JP3574793B2 (en) Non-radiative dielectric line and millimeter wave transceiver
JP3659480B2 (en) Circulator for non-radiative dielectric lines and millimeter wave transceiver using the same
JP2003032009A (en) Nonradioactive dielectric line and millimeter wave transmitter-receiver
JP2001345609A (en) Milliwave transmitter-receiver
JP3677475B2 (en) Non-radiative dielectric lines and millimeter-wave transceivers
JP3777099B2 (en) High frequency diode oscillator and millimeter wave transceiver using the same
JP2002135056A (en) High-frequency diode oscillator and millimeter wave transmitter/receiver using the same
JP2001237615A (en) Circulator for non-radiative dielectric line and millimeter wave transmitter/receiver using the same
JP2001203510A (en) Circulator for non-radiative dielectric line and millimeter wave transmitter-receiver using it
JP3623146B2 (en) Mode suppressor for non-radiative dielectric lines and millimeter wave transceiver using the same
JP2002135010A (en) Non-radiative dielectric line and millimeter wave transmitter-receiver
JP3638533B2 (en) Connection structure between nonradiative dielectric line and metal waveguide, and millimeter wave transceiver
JP3571000B2 (en) Pulse modulator for non-radiative dielectric line and millimeter wave transceiver using the same
JP3699664B2 (en) Connection structure between nonradiative dielectric line and metal waveguide, and millimeter wave transceiver
JP3702135B2 (en) High frequency diode oscillator
JP2002344211A (en) Non-radiative dielectric line and millimeter wave transmitter/receiver
JP2002076776A (en) Radio frequency diode oscillator and millimeter wave transceiver using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees