JP2002014155A - Millimeter-wave transceiver - Google Patents
Millimeter-wave transceiverInfo
- Publication number
- JP2002014155A JP2002014155A JP2000193382A JP2000193382A JP2002014155A JP 2002014155 A JP2002014155 A JP 2002014155A JP 2000193382 A JP2000193382 A JP 2000193382A JP 2000193382 A JP2000193382 A JP 2000193382A JP 2002014155 A JP2002014155 A JP 2002014155A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- diode
- millimeter
- dielectric line
- millimeter wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Waveguide Connection Structure (AREA)
- Waveguides (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ミリ波集積回路等
の高周波回路を用いた非放射性誘電体線路型のミリ波レ
ーダー等のミリ波送受信器に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a millimeter wave transceiver such as a nonradiative dielectric line type millimeter wave radar using a high frequency circuit such as a millimeter wave integrated circuit.
【0002】[0002]
【従来の技術】従来の非放射性誘電体線路型のミリ波送
受信器を図13,図14に示す。まず、非放射性誘電体
線路(NonRadiative Dielectric waveguideで、以
下、NRDガイドという)について説明する。NRDガ
イドは、一対の平行平板導体を、それらの間隔zをz≦
λ/2として設置することにより、これらの平行平板導
体間に配置された誘電体線路に対し外部からノイズの侵
入をなくし、かつ誘電体線路から外部への高周波信号
(以下、信号ともいう)の放射をなくして信号を伝送さ
せるものである。なお、λは使用周波数において空気中
を伝搬する電磁波(高周波信号)の波長である。2. Description of the Related Art A conventional nonradiative dielectric line type millimeter wave transceiver is shown in FIGS. First, a non-radiative dielectric waveguide (hereinafter referred to as an NRD guide) will be described. The NRD guide includes a pair of parallel plate conductors, and the distance z between them is z ≦
By setting it as λ / 2, noise is prevented from entering the dielectric line disposed between these parallel plate conductors from the outside, and high-frequency signals (hereinafter also referred to as signals) from the dielectric line to the outside are eliminated. Signals are transmitted without radiation. Here, λ is the wavelength of an electromagnetic wave (high-frequency signal) propagating in air at the used frequency.
【0003】そして、図13,図14に示したミリ波送
受信器は、一対の平行平板導体間に各種部品を配置した
上記NRDガイド型のものであり、図13は送信アンテ
ナと受信アンテナが一体化されたものの平面図、図14
は送信アンテナと受信アンテナが独立したものの平面図
である。The millimeter wave transceiver shown in FIGS. 13 and 14 is of the above-mentioned NRD guide type in which various components are arranged between a pair of parallel plate conductors. FIG. 13 shows an integrated transmission antenna and reception antenna. FIG. 14 is a plan view of the
FIG. 3 is a plan view of an independent transmitting antenna and receiving antenna.
【0004】図13において、41は本発明の一方の平
行平板導体(他方は省略する)、42は第1の誘電体線
路43の一端に設けられた電圧制御型のミリ波信号発振
部、即ち電圧制御発振部であり、バイアス電圧印加方向
が高周波信号の電界方向に合致するように、第1の誘電
体線路43の高周波ダイオード近傍に配置された可変容
量ダイオードのバイアス電圧を周期的に制御して、三角
波,正弦波等とすることにより、周波数変調した送信用
のミリ波信号として出力する。In FIG. 13, reference numeral 41 denotes one parallel plate conductor of the present invention (the other is omitted), and reference numeral 42 denotes a voltage-controlled millimeter-wave signal oscillating unit provided at one end of a first dielectric line 43, that is, A voltage-controlled oscillating unit that periodically controls a bias voltage of a variable capacitance diode disposed near the high-frequency diode of the first dielectric line 43 so that the bias voltage application direction matches the electric field direction of the high-frequency signal. Then, by forming a triangular wave, a sine wave or the like, the signal is output as a frequency-modulated millimeter wave signal for transmission.
【0005】43は、高周波ダイオードから出力された
高周波信号が変調されたミリ波信号を伝搬させる第1の
誘電体線路、44は、第1,第3,第4の誘電体線路に
それぞれ結合される第1,第2,第3の接続部(図示せ
ず)を有する、フェライト円板44a等から成るサーキ
ュレータ、45は、サーキュレータ44の第2の接続部
に接続され、ミリ波信号を伝搬させるとともに先端部に
送受信アンテナ46を有する第3の誘電体線路、46
は、第3の誘電体線路45の先端をテーパー状等とする
ことにより構成された送受信アンテナである。Reference numeral 43 denotes a first dielectric line for transmitting a millimeter-wave signal obtained by modulating a high-frequency signal output from a high-frequency diode, and reference numeral 44 denotes a first dielectric line and a third dielectric line, respectively. A circulator 45 comprising a ferrite disk 44a and the like having first, second, and third connection portions (not shown) is connected to the second connection portion of the circulator 44 to propagate a millimeter wave signal. And a third dielectric line having a transmitting / receiving antenna 46 at its tip,
Is a transmitting / receiving antenna formed by making the tip of the third dielectric line 45 tapered or the like.
【0006】また47は、送受信アンテナ46で受信さ
れ第3の誘電体線路45を伝搬してサーキュレータ44
の第3の接続部より出力した受信波をミキサー49側へ
伝搬させる第4の誘電体線路、48は、第1の誘電体線
路43に一端側が電磁結合するように近接配置されて、
ミリ波信号の一部をミキサー49側へ伝搬させる第2の
誘電体線路、48aは、第2の誘電体線路48のミキサ
ー49と反対側の一端部に設けられた無反射終端部(タ
ーミネータ)である。また、図中M1は、第2の誘電体
線路48の中途と第4の誘電体線路47の中途とを近接
させて電磁結合させることにより、ミリ波信号の一部と
受信波を混合させて中間周波信号を発生させるミキサー
部である。A circulator 47 receives a signal transmitted and received by a transmitting / receiving antenna 46 and propagates through a third dielectric line 45.
The fourth dielectric line 48 for transmitting the received wave output from the third connection portion to the mixer 49 side is disposed close to the first dielectric line 43 such that one end side is electromagnetically coupled to the first dielectric line 43,
A second dielectric line 48a for transmitting a part of the millimeter wave signal to the mixer 49 side is a non-reflection terminator (terminator) provided at one end of the second dielectric line 48 opposite to the mixer 49. It is. In the figure, M1 mixes a part of the millimeter wave signal and the received wave by bringing the middle of the second dielectric line 48 and the middle of the fourth dielectric line 47 close to each other and electromagnetically coupling them. This is a mixer section for generating an intermediate frequency signal.
【0007】また、送信アンテナと受信アンテナを独立
させた図14のタイプにおいて、51は一方の平行平板
導体(他方は省略する)、52は第1の誘電体線路53
の一端に設けられた電圧制御型のミリ波信号発振部であ
り、バイアス電圧印加方向が高周波信号の電界方向に合
致するように第1の誘電体線路53の高周波ダイオード
近傍に配置された可変容量ダイオードのバイアス電圧を
周期的に制御して、三角波,正弦波等とすることによ
り、周波数変調した送信用のミリ波信号として出力す
る。In the type of FIG. 14 in which the transmitting antenna and the receiving antenna are independent, 51 is one parallel plate conductor (the other is omitted), and 52 is a first dielectric line 53.
, A voltage-controlled millimeter-wave signal oscillating unit provided at one end of the first dielectric line 53, and a variable capacitor disposed near the high-frequency diode of the first dielectric line 53 such that the bias voltage application direction matches the electric field direction of the high-frequency signal. By periodically controlling the bias voltage of the diode to make it a triangular wave, a sine wave, or the like, it outputs a frequency-modulated transmission millimeter wave signal.
【0008】53は、高周波ダイオードから出力された
高周波信号が変調されたミリ波信号を伝搬させる第1の
誘電体線路、54は、第1,第3,第5の誘電体線路5
3,55,57にそれぞれ接続される第1,第2,第3
の接続部(図示せず)を有する、フェライト円板54a
等から成るサーキュレータ、55は、サーキュレータ5
4の第2の接続部に接続され、ミリ波信号を伝搬させる
とともに先端部に送信アンテナ56を有する第3の誘電
体線路、56は、第3の誘電体線路55の先端をテーパ
ー状等とすることにより構成された送信アンテナ、57
は、サーキュレータ54の第3の接続部に接続され、送
信用のミリ波信号を減衰させる無反射終端部57aが先
端に設けられた第5の誘電体線路である。Reference numeral 53 denotes a first dielectric line for transmitting a millimeter-wave signal obtained by modulating a high-frequency signal output from the high-frequency diode, and 54 denotes a first, third, and fifth dielectric line 5.
3, 55, 57 respectively connected to the first, second, third
Ferrite disk 54a having a connection portion (not shown)
A circulator 55 comprising
4, a third dielectric line which is connected to the second connection portion, propagates the millimeter wave signal, and has a transmission antenna 56 at the distal end. The third dielectric line 56 has a tapered tip end of the third dielectric line 55. Transmitting antenna, 57
Is a fifth dielectric line connected to the third connection part of the circulator 54 and provided at the tip with a non-reflection termination 57a for attenuating a millimeter-wave signal for transmission.
【0009】また58は、第1の誘電体線路53に一端
側が電磁結合するように近接配置されて、ミリ波信号の
一部をミキサー61側へ伝搬させる第2の誘電体線路、
58aは、第2の誘電体線路58のミキサー61と反対
側の一端部に設けられた無反射終端部、59は、受信ア
ンテナ60で受信された受信波をミキサー61側へ伝搬
させる第4の誘電体線路である。また、図中M2は、第
2の誘電体線路58の中途と第4の誘電体線路59の中
途とを近接させて電磁結合させることにより、ミリ波信
号の一部と受信波とを混合させて中間周波信号を発生さ
せるミキサー部である。Reference numeral 58 denotes a second dielectric line which is disposed close to the first dielectric line 53 so that one end thereof is electromagnetically coupled, and transmits a part of the millimeter wave signal to the mixer 61 side.
Reference numeral 58a denotes a non-reflection terminal provided at one end of the second dielectric line 58 on the opposite side to the mixer 61, and reference numeral 59 denotes a fourth which propagates a reception wave received by the reception antenna 60 to the mixer 61 side. This is a dielectric line. In the figure, M2 mixes a part of the millimeter wave signal and the received wave by bringing the middle of the second dielectric line 58 and the middle of the fourth dielectric line 59 close to each other and electromagnetically coupling them. Is a mixer section for generating an intermediate frequency signal.
【0010】このようなミリ波送受信器において、高周
波ダイオードを備えたミリ波信号発振部42,52は、
図15,図16に示すような構成とされていた。図15
において、1は一対の平行平板導体であり、それらの間
隔zはz≦λ/2であり、NRDガイドを構成する。
尚、λは使用周波数において空気中を伝搬する電磁波
(高周波信号)の波長である。In such a millimeter-wave transceiver, the millimeter-wave signal oscillating units 42 and 52 having high-frequency diodes are
The configuration was as shown in FIGS. FIG.
, 1 is a pair of parallel plate conductors, and the interval z between them is z ≦ λ / 2, and constitutes an NRD guide.
Here, λ is the wavelength of an electromagnetic wave (high-frequency signal) propagating in the air at the operating frequency.
【0011】また、2は高周波ダイオードとしてのガン
ダイオードを設置(マウント)するための金属ブロック
等の金属部材、3はガンダイオード、4は金属部材2の
一側面に設置され、ガンダイオード3にバイアス電圧を
供給するとともに高周波信号の漏れを防ぐローパスフィ
ルタとして機能するチョーク型バイアス供給線路4aを
形成した配線基板、5はチョーク型バイアス供給線路4
aとガンダイオード3の上部導体とを接続する金属箔リ
ボン等の帯状導体、6は誘電体基体に共振用の金属スト
リップ線路6aを設けた金属ストリップ共振器、7は金
属ストリップ共振器6により共振した高周波信号を外部
へ伝送させる誘電体線路(上記第1の誘電体線路43,
53に相当する)である。尚、図15では、内部を透視
するために平行平板導体1の上側を一部切り欠いてい
る。Reference numeral 2 denotes a metal member such as a metal block for mounting (mounting) a gun diode as a high-frequency diode. Reference numeral 3 denotes a gun diode. Reference numeral 4 denotes a metal member. A wiring board on which a choke-type bias supply line 4a functioning as a low-pass filter for supplying a voltage and preventing leakage of a high-frequency signal is formed.
a, a band-shaped conductor such as a metal foil ribbon connecting the upper conductor of the Gunn diode 3, 6 is a metal strip resonator provided with a metal strip line 6 a for resonance on a dielectric substrate, and 7 is a resonance by the metal strip resonator 6. A dielectric line for transmitting the high-frequency signal to the outside (the first dielectric line 43,
53). In FIG. 15, a part of the upper side of the parallel plate conductor 1 is partially cut away for seeing through the inside.
【0012】図15のミリ波信号発振部(ガンダイオー
ド発振器)は、一対の平行平板導体1の間に、ガンダイ
オード3を搭載した金属部材2が配置されており、ガン
ダイオード3から発振されたミリ波,マイクロ波等の高
周波信号(電磁波)は、金属ストリップ線路6aを有す
る金属ストリップ共振器6を介して誘電体線路7に導出
される。そして、チョーク型バイアス供給線路4aは、
図16に示すように、幅の広い線路の長さと幅の狭い線
路の長さがそれぞれ略λ/4とされ、それらが反復形成
されたチョークを構成しており、また帯状導体5の長さ
も略λ/4に設定されローパスフィルタの一部として機
能している。In the millimeter wave signal oscillating section (Gun diode oscillator) shown in FIG. 15, a metal member 2 having a Gun diode 3 mounted thereon is disposed between a pair of parallel flat conductors 1 and oscillated from the Gun diode 3. High-frequency signals (electromagnetic waves) such as millimeter waves and microwaves are guided to the dielectric line 7 via the metal strip resonator 6 having the metal strip line 6a. And the choke type bias supply line 4a is
As shown in FIG. 16, the length of the wide line and the length of the narrow line are respectively set to approximately λ / 4, and they constitute a choke in which they are repeatedly formed. It is set to approximately λ / 4 and functions as a part of a low-pass filter.
【0013】さらに、図17,図18に示すように、誘
電体線路7の中途には、周波数変調用ダイオードであっ
て可変容量ダイオードの1種であるバラクタダイオード
110を装荷した配線基板18を設置しており、このバ
ラクタダイオード110のバイアス電圧印加方向Bは誘
電体線路7での高周波信号の伝搬方向Dに垂直かつ平行
平板導体1の主面に平行な方向とされている。このバイ
アス電圧印加方向Bは、誘電体線路7中を伝搬するLS
M01モードの高周波信号の電界方向Eに合致しており、
これにより高周波信号とバラクタダイオード110とを
電磁結合させ、バイアス電圧を制御することによりバラ
クタダイオード110の静電容量を変化させることで、
高周波信号の発振周波数を制御可能となる。また、図1
7において、19はバラクタダイオード110と誘電体
線路7とのインピーダンス整合をとるための高比誘電率
の誘電体板である。Further, as shown in FIGS. 17 and 18, a wiring board 18 loaded with a varactor diode 110, which is a type of variable capacitance diode and is a frequency modulation diode, is provided in the middle of the dielectric line 7. The bias voltage application direction B of the varactor diode 110 is a direction perpendicular to the propagation direction D of the high-frequency signal in the dielectric line 7 and parallel to the main surface of the parallel plate conductor 1. This bias voltage application direction B is determined by the LS propagating in the dielectric line 7.
It matches the electric field direction E of the high frequency signal of M01 mode,
Thereby, the high-frequency signal is electromagnetically coupled to the varactor diode 110, and the capacitance of the varactor diode 110 is changed by controlling the bias voltage.
The oscillation frequency of the high frequency signal can be controlled. FIG.
In FIG. 7, reference numeral 19 denotes a dielectric plate having a high relative dielectric constant for achieving impedance matching between the varactor diode 110 and the dielectric line 7.
【0014】また図18に示すように、配線基板18の
一主面には第2のチョーク型バイアス供給線路112が
形成され、第2のチョーク型バイアス供給線路112の
中途にビームリードタイプのバラクタダイオード110
が配置される。第2のチョーク型バイアス供給線路11
2のバラクタダイオード110との接続部には、電極1
11が形成されている。As shown in FIG. 18, a second choke type bias supply line 112 is formed on one main surface of the wiring board 18, and a beam lead type varactor is provided in the middle of the second choke type bias supply line 112. Diode 110
Is arranged. Second choke type bias supply line 11
2 is connected to the varactor diode 110 at the electrode 1
11 are formed.
【0015】そして、ガンダイオード3から発振された
高周波信号は、金属ストリップ共振器6を通して誘電体
線路7に導出される。次いで、高周波信号の一部はバラ
クタダイオード110部で反射されてガンダイオード3
側へ戻る。この反射信号がバラクタダイオード110の
容量とともに変化することにより、発振周波数が変化す
る。The high-frequency signal oscillated from the Gunn diode 3 is guided to the dielectric line 7 through the metal strip resonator 6. Next, a part of the high-frequency signal is reflected by the varactor diode 110 to form the Gunn diode 3.
Return to the side. When this reflected signal changes with the capacitance of the varactor diode 110, the oscillation frequency changes.
【0016】[0016]
【発明が解決しようとする課題】しかしながら、上記従
来のミリ波信号発振部においては、金属ストリップ共振
器6、金属部材2と誘電体線路7を各々個別に位置決め
配置し、平行平板導体1,1で挟持するように構成して
おり、このため、金属ストリップ共振器6の加工精度が
低いと、金属ストリップ共振器6が振動や自重で位置ず
れを起こし、またその位置決めが正確でないと、誘電体
線路7への伝搬特性が劣化していた。即ち、金属ストリ
ップ共振器6の加工精度および位置決め精度の管理が必
要であり、また製造の作業性が悪く、従って量産に向か
ないという問題点があった。However, in the above-described conventional millimeter-wave signal oscillating section, the metal strip resonator 6, the metal member 2 and the dielectric line 7 are individually positioned and arranged, and the parallel plate conductors 1, 1 are arranged. Therefore, if the processing accuracy of the metal strip resonator 6 is low, the metal strip resonator 6 is displaced by vibration or its own weight, and if the positioning is not accurate, the dielectric material is The propagation characteristics to the line 7 were deteriorated. That is, it is necessary to control the processing accuracy and the positioning accuracy of the metal strip resonator 6, and there is a problem that the workability of the manufacturing is poor, so that it is not suitable for mass production.
【0017】また、金属部材2,誘電体線路7,金属ス
トリップ共振器6等の各部品の設置位置が微妙にくるう
と、発振周波数が微妙に変化してしまい、ミリ波レーダ
等に適用した場合、その探知距離、ターゲットの位置探
知、ターゲットの速度探知等の性能が低下して正確な探
知が困難になるという問題点があった。When the installation positions of the components such as the metal member 2, the dielectric line 7, and the metal strip resonator 6 are delicately shifted, the oscillation frequency is delicately changed. However, there is a problem that the performance of the detection distance, the target position detection, the target speed detection, and the like is deteriorated and accurate detection becomes difficult.
【0018】さらに、上記従来のミリ波信号発振部にお
いては、高周波信号がバラクタダイオード110を設置
した配線基板18を透過する構造となっているため、高
周波信号出力が低下するという問題点があった。また、
高周波信号の周波数変調幅を調整するには、バラクタダ
イオード110の挿入位置を変化させる必要があるが、
位置調整による周波数変調幅の制御は困難であり、容易
に周波数変調幅を制御できなかった。Further, the conventional millimeter-wave signal oscillating section has a problem that the high-frequency signal output is reduced because the high-frequency signal is transmitted through the wiring board 18 on which the varactor diode 110 is installed. . Also,
To adjust the frequency modulation width of the high-frequency signal, it is necessary to change the insertion position of the varactor diode 110.
It is difficult to control the frequency modulation width by adjusting the position, and the frequency modulation width cannot be easily controlled.
【0019】このようなミリ波信号発振部を備えたミリ
波送受信器では、発振周波数がずれた場合にそれを調整
するのが困難なため、ミリ波レーダ等に適用した際に正
確な探知が困難になるという問題があった。In such a millimeter wave transmitter / receiver equipped with a millimeter wave signal oscillating unit, it is difficult to adjust the oscillating frequency when the oscillating frequency is shifted. There was a problem that it became difficult.
【0020】従って、本発明は上記事情に鑑みて完成さ
れたものであり、その目的は、各部品の加工および位置
決めの困難性を軽減し、加工精度および位置決め精度の
管理を容易にし、また組み立ての作業性が良好なものと
し、また発振周波数の微調整を再現性良く可能とするこ
とである。また、高出力の高周波信号が得られ、周波数
変調幅を容易に制御可能なものとすることである。Accordingly, the present invention has been completed in view of the above circumstances, and has as its object to reduce the difficulty in processing and positioning each part, to facilitate management of processing accuracy and positioning accuracy, and to assemble. And to enable fine adjustment of the oscillation frequency with good reproducibility. Another object is to obtain a high-output high-frequency signal and to easily control a frequency modulation width.
【0021】そして、ミリ波レーダ等に適用した場合
に、探知レンジ、探知距離、ターゲットの位置探知、タ
ーゲットの速度探知等の性能が向上するとともに安定し
たものとすることである。When the present invention is applied to a millimeter wave radar or the like, the performance of the detection range, the detection distance, the target position detection, the target speed detection, and the like is improved and the stability is improved.
【0022】[0022]
【課題を解決するための手段】本発明のミリ波送受信器
は、ミリ波信号の波長λの2分の1以下の間隔で配置し
た平行平板導体間に、高周波ダイオードが一端部に付設
され、前記高周波ダイオードから出力されたミリ波信号
を伝搬させる第1の誘電体線路と、バイアス電圧印加方
向が前記ミリ波信号の電界方向に合致するように配置さ
れ、前記バイアス電圧を周期的に制御することによって
前記ミリ波信号を周波数変調した送信用のミリ波信号と
して出力する周波数変調用ダイオードと、前記第1の誘
電体線路に一端側が電磁結合するように近接配置される
かまたは前記第1の誘電体線路に一端が接合されて、前
記ミリ波信号の一部をミキサー側へ伝搬させる第2の誘
電体線路と、前記平行平板導体に平行に配設されたフェ
ライト板の周縁部に所定間隔で配置されかつそれぞれ前
記ミリ波信号の入出力端とされた第1の接続部,第2の
接続部および第3の接続部を有し、一つの前記接続部か
ら入力された前記ミリ波信号をフェライト板の面内で時
計回りまたは反時計回りに隣接する他の接続部より出力
させるサーキュレータであって、前記第1の誘電体線路
の前記ミリ波信号の出力端に前記第1の接続部が接合さ
れるサーキュレータと、該サーキュレータの第2の接続
部に接合され、前記ミリ波信号を伝搬させるとともに先
端部に送受信アンテナを有する第3の誘電体線路と、前
記送受信アンテナで受信され第3の誘電体線路を伝搬し
て前記サーキュレータの第3の接続部より出力した受信
波をミキサー側へ伝搬させる第4の誘電体線路と、前記
第2の誘電体線路の中途と前記第4の誘電体線路の中途
とを近接させて電磁結合させるかまたは接合させること
により、ミリ波信号の一部と受信波とを混合させて中間
周波信号を発生させるミキサー部と、を設けたミリ波送
受信器において、前記高周波ダイオードは金属部材に設
置されており、該金属部材は、幅の広い線路と幅の狭い
線路が交互に形成され前記高周波ダイオードにバイアス
電圧を供給するチョーク型バイアス供給線路と、該チョ
ーク型バイアス供給線路および前記高周波ダイオードを
直線状に接続する帯状導体とが設けられるとともに、前
記チョーク型バイアス供給線路の幅の広い線路および幅
の狭い線路の長さがそれぞれ略λ/4、前記帯状導体の
長さが略{(3/4)+n}λ(nは0以上の整数)で
あることを特徴とする。According to the present invention, a high-frequency diode is provided at one end between parallel plate conductors arranged at an interval of one half or less of a wavelength λ of a millimeter wave signal. A first dielectric line for transmitting the millimeter-wave signal output from the high-frequency diode, and a bias voltage application direction arranged so as to match the direction of the electric field of the millimeter-wave signal, for periodically controlling the bias voltage; A frequency-modulating diode that outputs the millimeter-wave signal as a frequency-modulated millimeter-wave signal for transmission, and one end of the frequency-modulation diode that is electromagnetically coupled to the first dielectric line, or A second dielectric line having one end joined to the dielectric line and transmitting a part of the millimeter wave signal to the mixer side, and a peripheral portion of a ferrite plate disposed in parallel with the parallel plate conductor A first connection unit, a second connection unit, and a third connection unit which are arranged at predetermined intervals and serve as input / output terminals of the millimeter wave signal, respectively, and the millimeters input from one of the connection units; A circulator for outputting a wave signal from another connecting portion adjacent to the clockwise or counterclockwise direction in the plane of the ferrite plate, wherein the first dielectric line has an output terminal for the millimeter wave signal, A circulator to which a connection portion is joined; a third dielectric line joined to a second connection portion of the circulator, which propagates the millimeter wave signal and has a transmission / reception antenna at a tip end; and a third dielectric line received by the transmission / reception antenna. A fourth dielectric line for propagating the reception wave output from the third connection portion of the circulator to the mixer side by propagating through the third dielectric line, and a middle portion of the second dielectric line and the fourth dielectric line; of A millimeter-wave transmission / reception provided with a mixer section for generating an intermediate frequency signal by mixing a part of the millimeter-wave signal and a reception wave by electromagnetically coupling or joining the dielectric line close to the middle of the dielectric line; In the device, the high-frequency diode is provided on a metal member, and the metal member includes a choke-type bias supply line configured to alternately form a wide line and a narrow line to supply a bias voltage to the high-frequency diode, The choke-type bias supply line and a band-shaped conductor that linearly connect the high-frequency diode are provided, and the wide and narrow lines of the choke-type bias supply line have a length of approximately λ / 4, respectively. The length of the strip conductor is substantially {(3/4) + n + λ (n is an integer of 0 or more).
【0023】本発明は、このような構成により、チョー
ク型バイアス供給線路と帯状導体とが高周波ダイオード
の発振周波数を決定する共振器として機能し、金属スト
リップ共振器等の別個の共振器が不要となり、従って高
周波ダイオードマウント用の金属部材と誘電体線路との
位置決めが容易になり、製造の作業性が大幅に向上す
る。また、金属ストリップ共振器等の別個の共振器によ
る損失が解消され、高周波信号の伝搬特性が向上し、そ
の結果、ミリ波レーダ等に適用した場合に、探知レン
ジ、探知距離、ターゲットの位置探知、ターゲットの速
度探知等の性能が向上するとともに安定したものとな
る。According to the present invention, with such a configuration, the choke-type bias supply line and the strip conductor function as a resonator that determines the oscillation frequency of the high-frequency diode, and a separate resonator such as a metal strip resonator becomes unnecessary. Therefore, the positioning between the metal member for high-frequency diode mounting and the dielectric line is facilitated, and the workability in manufacturing is greatly improved. In addition, the loss due to a separate resonator such as a metal strip resonator is eliminated, and the propagation characteristics of a high-frequency signal are improved. As a result, when applied to a millimeter-wave radar or the like, a detection range, a detection distance, and a target position detection are obtained. Thus, the performance of detecting the speed of the target can be improved and the target can be stabilized.
【0024】本発明において、好ましくは、前記帯状導
体の主面と対向する主面を有する誘電体チップを、前記
帯状導体に近接配置し電磁結合させたことを特徴とす
る。In the present invention, preferably, a dielectric chip having a main surface opposed to the main surface of the strip conductor is disposed close to the strip conductor and electromagnetically coupled.
【0025】上記の構成により、高周波ダイオード発振
器の発振周波数の調整が容易になり、発振周波数が安定
するため製造歩留まりが向上し量産性も向上する。With the above configuration, the adjustment of the oscillation frequency of the high-frequency diode oscillator is facilitated, and the oscillation frequency is stabilized, so that the production yield is improved and the mass productivity is improved.
【0026】また好ましくは、バイアス電圧印加方向が
前記帯状導体に生じる電界に平行な方向とされた前記周
波数変調用ダイオードを前記帯状導体に近接配置して電
磁結合させたことを特徴とする。[0026] Preferably, the frequency modulation diode in which the bias voltage is applied in a direction parallel to the electric field generated in the strip conductor is arranged close to the strip conductor and electromagnetically coupled.
【0027】上記の構成により、帯状導体に周波数変調
用ダイオードを設けた変調回路基板を近接配置して電磁
結合させるとともに、周波数変調用ダイオードに印加す
るバイアス電圧を変化させることで、発振周波数を制御
できる。また、誘電体線路中に周波数変調用ダイオード
を配置する必要がないため、損失が小さく高出力が得ら
れるとともに、全体が小型化する。さらに、周波数変調
用ダイオードの位置を調整することにより、共振器とし
ても機能する帯状導体と周波数変調用ダイオードとの電
磁結合の強さを変えることができ、それにより周波数変
調幅を調整し得る。According to the above configuration, the modulation circuit board provided with the frequency modulation diode on the band-shaped conductor is closely arranged for electromagnetic coupling, and the oscillation frequency is controlled by changing the bias voltage applied to the frequency modulation diode. it can. Further, since it is not necessary to dispose a frequency modulation diode in the dielectric line, loss is small, high output is obtained, and the whole is downsized. Further, by adjusting the position of the frequency modulation diode, the strength of the electromagnetic coupling between the band-shaped conductor, which also functions as a resonator, and the frequency modulation diode can be changed, thereby adjusting the frequency modulation width.
【0028】本発明において、好ましくは、前記周波数
変調用ダイオードは、第2のチョーク型バイアス供給線
路が主面に形成されかつ該主面が前記平行平板導体に対
し垂直に設置される配線基板と、前記第2のチョーク型
バイアス供給線路の中途に立設されかつ前記第2のチョ
ーク型バイアス供給線路に連続する接続導体をその主面
上に有する補助基板とから成る変調回路基板上に設置さ
れて、前記補助基板の前記接続導体の中途に接続されて
いることを特徴とする。In the present invention, preferably, the frequency modulation diode comprises a wiring board on which a second choke type bias supply line is formed on a main surface and the main surface is installed perpendicular to the parallel plate conductor. A modulation circuit board, which is provided on the main surface of the second choke-type bias supply line, and has an auxiliary substrate having a connection conductor continuous on the main surface of the second choke-type bias supply line. And being connected in the middle of the connection conductor of the auxiliary substrate.
【0029】上記構成により、変調回路基板の上面視に
おける形状が凸型となり、位置ずれや捩じれ等が小さく
なり設置の安定性がきわめて高くなる。また、周波数変
調用ダイオードのバイアス電圧印加方向を高周波信号の
電界方向に合致させた状態で、周波数変調用ダイオード
を帯状導体に近接配置し、位置調整できるため、容易に
周波数変調幅を調整可能となる。According to the above configuration, the shape of the modulation circuit board as viewed from above is convex, the displacement and the twist are reduced, and the installation stability is extremely enhanced. In addition, the frequency modulation diode can be positioned close to the strip conductor and the position can be adjusted with the bias voltage application direction of the frequency modulation diode matched with the electric field direction of the high-frequency signal, so that the frequency modulation width can be easily adjusted. Become.
【0030】また好ましくは、前記周波数変調用ダイオ
ードと前記帯状導体との間隔をλ以下としたことを特徴
とする。Preferably, a distance between the frequency modulation diode and the strip conductor is set to λ or less.
【0031】上記の範囲内に調整することで、高周波信
号の出力を大きくして周波数変調幅を広げることができ
る。By adjusting within the above range, the output of the high frequency signal can be increased and the frequency modulation width can be increased.
【0032】また好ましくは、少なくとも一方の前記平
行平板導体の前記帯状導体近傍に貫通孔を形成し、かつ
該貫通孔に前記平行平板導体間側の表面に突出して前記
帯状導体と電磁結合する柱状の周波数調整部材を設けた
ことを特徴とする。Preferably, a through-hole is formed in the vicinity of the band-shaped conductor of at least one of the parallel plate-shaped conductors, and the through-hole protrudes from the surface between the parallel plate-shaped conductors so as to be electromagnetically coupled with the band-shaped conductor. Is provided.
【0033】上記構成により、帯状導体に周波数調整部
材を近接配置して電磁結合させる際に、周波数調整部材
の位置を容易かつ再現性良く微調整可能な構成とするこ
とで、共振器の実質的な共振器長を微妙に調整でき、そ
の結果発振周波数を再現性良く微調整できる。また、周
波数調整部材を小型化して位置の微調整を可能とするこ
とで全体が小型化される。According to the above configuration, when the frequency adjusting member is disposed close to the strip conductor and electromagnetically coupled, the position of the frequency adjusting member can be finely adjusted easily and with good reproducibility. The resonator length can be finely adjusted, and as a result, the oscillation frequency can be finely adjusted with good reproducibility. In addition, the overall size is reduced by miniaturizing the frequency adjusting member and enabling fine adjustment of the position.
【0034】また好ましくは、前記周波数調整部材と前
記帯状導体との距離がλ/2以下であることを特徴とす
る。Preferably, a distance between the frequency adjusting member and the band-shaped conductor is λ / 2 or less.
【0035】上記構成により、周波数調整部材と帯状導
体とが良好に電磁結合し、その状態で電磁結合の度合い
を微調整することにより、共振器の実質的な共振器長を
微調整できる。According to the above configuration, the frequency adjusting member and the band-shaped conductor are satisfactorily electromagnetically coupled, and the degree of the electromagnetic coupling is finely adjusted in this state, so that the substantial resonator length of the resonator can be finely adjusted.
【0036】また、本発明のミリ波送受信器は、ミリ波
信号の波長λの2分の1以下の間隔で配置した平行平板
導体間に、高周波ダイオードが一端部に付設され、前記
高周波ダイオードから出力されたミリ波信号を伝搬させ
る第1の誘電体線路と、バイアス電圧印加方向が前記ミ
リ波信号の電界方向に合致するように配置され、前記バ
イアス電圧を周期的に制御することによって前記ミリ波
信号を周波数変調した送信用のミリ波信号として出力す
る周波数変調用ダイオードと、前記第1の誘電体線路に
一端側が電磁結合するように近接配置されるかまたは前
記第1の誘電体線路に一端が接合されて、前記ミリ波信
号の一部をミキサー側へ伝搬させる第2の誘電体線路
と、前記平行平板導体に平行に配設されたフェライト板
の周縁部に所定間隔で配置されかつそれぞれ前記ミリ波
信号の入出力端とされた第1の接続部,第2の接続部お
よび第3の接続部を有し、一つの前記接続部から入力さ
れた前記ミリ波信号をフェライト板の面内で時計回りま
たは反時計回りに隣接する他の接続部より出力させるサ
ーキュレータであって、前記第1の誘電体線路の前記ミ
リ波信号の出力端に前記第1の接続部が接合されるサー
キュレータと、該サーキュレータの第2の接続部に接続
され、前記ミリ波信号を伝搬させるとともに先端部に送
信アンテナを有する第3の誘電体線路と、先端部に受信
アンテナ、他端部にミキサーが各々設けられた第4の誘
電体線路と、前記サーキュレータの第3の接続部に接続
され、前記送信アンテナで受信混入したミリ波信号を伝
搬させるとともに先端部に設けられた無反射終端部で前
記ミリ波信号を減衰させる第5の誘電体線路と、前記第
2の誘電体線路の中途と前記第4の誘電体線路の中途と
を近接させて電磁結合させるかまたは接合させることに
より、ミリ波信号の一部と受信波とを混合させて中間周
波信号を発生させるミキサー部と、を設けたミリ波送受
信器において、前記高周波ダイオードは金属部材に設置
されており、該金属部材は、幅の広い線路と幅の狭い線
路が交互に形成され前記高周波ダイオードにバイアス電
圧を供給するチョーク型バイアス供給線路と、該チョー
ク型バイアス供給線路および前記高周波ダイオードを直
線状に接続する帯状導体とが設けられるとともに、前記
チョーク型バイアス供給線路の幅の広い線路および幅の
狭い線路の長さがそれぞれ略λ/4、前記帯状導体の長
さが略{(3/4)+n}λ(nは0以上の整数)であ
ることを特徴とする。Further, in the millimeter wave transceiver according to the present invention, a high-frequency diode is provided at one end between parallel plate conductors arranged at an interval of one half or less of the wavelength λ of the millimeter wave signal. A first dielectric line for transmitting the output millimeter-wave signal, and a bias voltage application direction arranged so as to match the direction of the electric field of the millimeter-wave signal, and the millimeter-wave signal is controlled by periodically controlling the bias voltage. A frequency modulation diode that outputs a wave signal as a millimeter-wave signal for transmission that is frequency-modulated, and one end of the frequency modulation diode is disposed close to the first dielectric line so as to be electromagnetically coupled to the first dielectric line, or is connected to the first dielectric line. One end is joined, a second dielectric line for transmitting a part of the millimeter wave signal to the mixer side, and a predetermined distance between the periphery of a ferrite plate disposed in parallel with the parallel plate conductor. A first connection unit, a second connection unit, and a third connection unit, which are arranged and serve as input / output terminals of the millimeter-wave signal, respectively, and the millimeter-wave signal input from one of the connection units is A circulator for outputting clock signals or counterclockwise signals from another adjacent connection portion in the plane of the ferrite plate, wherein the first connection portion is provided at an output end of the millimeter wave signal of the first dielectric line. A circulator to be joined, a third dielectric line connected to a second connection portion of the circulator for transmitting the millimeter wave signal and having a transmission antenna at a distal end, a receiving antenna at a distal end, and another end A fourth dielectric line provided with a mixer and a third connection portion of the circulator are connected to each other to propagate a millimeter-wave signal received and mixed by the transmission antenna, and to be provided at a tip portion thereof. A fifth dielectric line that attenuates the millimeter-wave signal at the reflection terminating portion, and a middle part of the second dielectric line and a middle part of the fourth dielectric line are brought close to each other and electromagnetically coupled or joined. Thus, in a millimeter wave transceiver provided with a mixer unit that mixes a part of the millimeter wave signal and the reception wave to generate an intermediate frequency signal, the high frequency diode is installed on a metal member, and the metal The member includes a choke-type bias supply line in which a wide line and a narrow line are alternately formed to supply a bias voltage to the high-frequency diode, and a belt-shaped line connecting the choke-type bias supply line and the high-frequency diode in a straight line. And a length of the wide and narrow lines of the choke-type bias supply line is approximately λ / 4, and a length of the strip-shaped conductor. Characterized in that it is substantially {(3/4) + n} λ (n is an integer of 0 or more).
【0037】本発明は、このような構成により、チョー
ク型バイアス供給線路と帯状導体とが高周波ダイオード
の発振周波数を決定する共振器として機能し、金属スト
リップ共振器等の別個の共振器が不要となり、従って高
周波ダイオードマウント用の金属部材と誘電体線路との
位置決めが容易になり、製造の作業性が大幅に向上す
る。また、金属ストリップ共振器等の別個の共振器によ
る損失が解消され、高周波信号の伝搬特性が向上し、そ
の結果、ミリ波レーダ等に適用した場合に、探知レン
ジ、探知距離、ターゲットの位置探知、ターゲットの速
度探知等の性能が向上するとともに安定したものとな
る。また、送信用のミリ波信号がサーキュレータを介し
てミキサーへ混入することがなく、その結果受信信号の
ノイズが低減して探知距離が増大し、ミリ波信号の伝送
特性に優れたものとなる。According to the present invention, with such a configuration, the choke-type bias supply line and the strip conductor function as a resonator for determining the oscillation frequency of the high-frequency diode, and a separate resonator such as a metal strip resonator becomes unnecessary. Therefore, the positioning between the metal member for high-frequency diode mounting and the dielectric line is facilitated, and the workability in manufacturing is greatly improved. In addition, the loss due to a separate resonator such as a metal strip resonator is eliminated, and the propagation characteristics of a high-frequency signal are improved. As a result, when applied to a millimeter-wave radar or the like, a detection range, a detection distance, and a target position detection are obtained. Thus, the performance of detecting the speed of the target can be improved and the target can be stabilized. Further, the millimeter-wave signal for transmission does not enter the mixer via the circulator. As a result, the noise of the received signal is reduced, the detection distance is increased, and the transmission characteristic of the millimeter-wave signal is improved.
【0038】本発明において、好ましくは、前記帯状導
体の主面と対向する主面を有する誘電体チップを、前記
帯状導体に近接配置し電磁結合させたことを特徴とす
る。In the present invention, preferably, a dielectric chip having a main surface facing the main surface of the strip-shaped conductor is arranged close to the strip-shaped conductor and electromagnetically coupled.
【0039】上記の構成により、高周波ダイオード発振
器の発振周波数の調整が容易になり、発振周波数が安定
するため製造歩留まりが向上し量産性も向上する。With the above configuration, the adjustment of the oscillation frequency of the high-frequency diode oscillator is facilitated, and the oscillation frequency is stabilized, so that the production yield is improved and the mass productivity is improved.
【0040】また好ましくは、バイアス電圧印加方向が
前記帯状導体に生じる電界に平行な方向とされた前記周
波数変調用ダイオードを前記帯状導体に近接配置して電
磁結合させたことを特徴とする。[0040] Preferably, the frequency modulation diode whose bias voltage is applied in a direction parallel to an electric field generated in the strip conductor is disposed close to the strip conductor and electromagnetically coupled.
【0041】上記の構成により、帯状導体に周波数変調
用ダイオードを設けた変調回路基板を近接配置して電磁
結合させるとともに、周波数変調用ダイオードに印加す
るバイアス電圧を変化させることで、発振周波数を制御
できる。また、誘電体線路中に周波数変調用ダイオード
を配置する必要がないため、損失が小さく高出力が得ら
れるとともに、全体が小型化する。さらに、周波数変調
用ダイオードの位置を調整することにより、共振器とし
ても機能する帯状導体と周波数変調用ダイオードとの電
磁結合の強さを変えることができ、それにより周波数変
調幅を調整し得る。According to the above configuration, a modulation circuit substrate having a frequency modulation diode provided on a strip conductor is closely arranged for electromagnetic coupling, and the oscillation frequency is controlled by changing a bias voltage applied to the frequency modulation diode. it can. Further, since it is not necessary to dispose a frequency modulation diode in the dielectric line, loss is small, high output is obtained, and the whole is downsized. Further, by adjusting the position of the frequency modulation diode, the strength of the electromagnetic coupling between the band-shaped conductor, which also functions as a resonator, and the frequency modulation diode can be changed, thereby adjusting the frequency modulation width.
【0042】本発明において、好ましくは、前記周波数
変調用ダイオードは、第2のチョーク型バイアス供給線
路が主面に形成されかつ該主面が前記平行平板導体に対
し垂直に設置される配線基板と、前記第2のチョーク型
バイアス供給線路の中途に立設されかつ前記第2のチョ
ーク型バイアス供給線路に連続する接続導体をその主面
上に有する補助基板とから成る変調回路基板上に設置さ
れて、前記補助基板の前記接続導体の中途に接続されて
いることを特徴とする。In the present invention, preferably, the frequency modulation diode includes a wiring board on which a second choke type bias supply line is formed on a main surface and the main surface is installed perpendicular to the parallel plate conductor. A modulation circuit board, which is provided on the main surface of the second choke-type bias supply line, and has an auxiliary substrate having a connection conductor continuous on the main surface of the second choke-type bias supply line. And being connected in the middle of the connection conductor of the auxiliary substrate.
【0043】上記構成により、変調回路基板の上面視に
おける形状が凸型となり、位置ずれや捩じれ等が小さく
なり設置の安定性がきわめて高くなる。また、周波数変
調用ダイオードのバイアス電圧印加方向を高周波信号の
電界方向に合致させた状態で、周波数変調用ダイオード
を帯状導体に近接配置し、位置調整できるため、容易に
周波数変調幅を調整可能となる。According to the above configuration, the shape of the modulation circuit board as viewed from above is convex, the displacement and the twist are small, and the installation stability is extremely high. In addition, the frequency modulation diode can be positioned close to the strip conductor and the position can be adjusted with the bias voltage application direction of the frequency modulation diode matched with the electric field direction of the high-frequency signal, so that the frequency modulation width can be easily adjusted. Become.
【0044】また好ましくは、前記周波数変調用ダイオ
ードと前記帯状導体との間隔をλ以下としたことを特徴
とする。Preferably, a distance between the frequency modulation diode and the band-shaped conductor is set to λ or less.
【0045】上記の範囲内に調整することで、高周波信
号の出力を大きくして周波数変調幅を広げることができ
る。By adjusting within the above range, the output of the high frequency signal can be increased and the frequency modulation width can be increased.
【0046】また好ましくは、少なくとも一方の前記平
行平板導体の前記帯状導体近傍に貫通孔を形成し、かつ
該貫通孔に前記平行平板導体間側の表面に突出して前記
帯状導体と電磁結合する柱状の周波数調整部材を設けた
ことを特徴とする。Preferably, a through hole is formed in the vicinity of the band-shaped conductor of at least one of the parallel plate conductors, and the through hole protrudes from the surface between the parallel plate conductors and is electromagnetically coupled with the band-shaped conductor. Is provided.
【0047】上記構成により、帯状導体に周波数調整部
材を近接配置して電磁結合させる際に、周波数調整部材
の位置を容易かつ再現性良く微調整可能な構成とするこ
とで、共振器の実質的な共振器長を微妙に調整でき、そ
の結果発振周波数を再現性良く微調整できる。また、周
波数調整部材を小型化して位置の微調整を可能とするこ
とで全体が小型化される。According to the above configuration, when the frequency adjusting member is disposed close to the band-shaped conductor and electromagnetically coupled, the position of the frequency adjusting member can be finely adjusted easily and with good reproducibility. The resonator length can be finely adjusted, and as a result, the oscillation frequency can be finely adjusted with good reproducibility. In addition, the overall size is reduced by miniaturizing the frequency adjusting member and enabling fine adjustment of the position.
【0048】また好ましくは、前記周波数調整部材と前
記帯状導体との距離がλ/2以下であることを特徴とす
る。Preferably, a distance between the frequency adjusting member and the band-shaped conductor is λ / 2 or less.
【0049】上記構成により、周波数調整部材と帯状導
体とが良好に電磁結合し、その状態で電磁結合の度合い
を微調整することにより、共振器の実質的な共振器長を
微調整できる。According to the above configuration, the frequency adjusting member and the strip conductor are satisfactorily electromagnetically coupled, and the degree of the electromagnetic coupling is finely adjusted in this state, so that the substantial resonator length of the resonator can be finely adjusted.
【0050】[0050]
【発明の実施の形態】本発明のミリ波送受信器につい
て、以下に説明する。本発明のミリ波送受信器は、全体
の基本的構成は図13,図14に示したものと同様であ
り、以下これらの図に基き説明する。図13は送信アン
テナと受信アンテナが一体化されたものの平面図、図1
4は送信アンテナと受信アンテナが独立したものの平面
図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS A millimeter wave transceiver according to the present invention will be described below. The millimeter wave transceiver according to the present invention has the same basic configuration as that shown in FIGS. 13 and 14, and will be described with reference to these drawings. FIG. 13 is a plan view of an integrated transmitting antenna and receiving antenna, and FIG.
FIG. 4 is a plan view of an independent transmitting antenna and receiving antenna.
【0051】図13において、41は本発明の一方の平
行平板導体(他方は省略する)、42は第1の誘電体線
路43の一端に設けられた電圧制御型のミリ波信号発振
部、即ち電圧制御発振部であり、バイアス電圧印加方向
が高周波信号の電界方向に合致するように、第1の誘電
体線路43の高周波ダイオード近傍に配置された可変容
量ダイオードのバイアス電圧を周期的に制御して、三角
波,正弦波等とすることにより、周波数変調した送信用
のミリ波信号として出力する。In FIG. 13, reference numeral 41 denotes one parallel plate conductor of the present invention (the other is omitted), and reference numeral 42 denotes a voltage-controlled millimeter-wave signal oscillating section provided at one end of a first dielectric line 43, that is, A voltage-controlled oscillating unit that periodically controls a bias voltage of a variable capacitance diode disposed near the high-frequency diode of the first dielectric line 43 so that the bias voltage application direction matches the electric field direction of the high-frequency signal. Then, by forming a triangular wave, a sine wave or the like, the signal is output as a frequency-modulated millimeter wave signal for transmission.
【0052】43は、高周波ダイオードから出力された
高周波信号が変調されたミリ波信号を伝搬させる第1の
誘電体線路、44は、第1,第3,第4の誘電体線路に
それぞれ結合される第1,第2,第3の接続部(図示せ
ず)を有する、フェライト円板44a等から成るサーキ
ュレータ、45は、サーキュレータ44の第2の接続部
に接続され、ミリ波信号を伝搬させるとともに先端部に
送受信アンテナ46を有する第3の誘電体線路、46
は、第3の誘電体線路45の先端をテーパー状等とする
ことにより構成された送受信アンテナである。Reference numeral 43 denotes a first dielectric line for transmitting a millimeter-wave signal obtained by modulating a high-frequency signal output from the high-frequency diode, and 44 is coupled to the first, third, and fourth dielectric lines, respectively. A circulator 45 comprising a ferrite disk 44a and the like having first, second, and third connection portions (not shown) is connected to the second connection portion of the circulator 44 to propagate a millimeter wave signal. And a third dielectric line having a transmitting / receiving antenna 46 at its tip,
Is a transmitting / receiving antenna formed by making the tip of the third dielectric line 45 tapered or the like.
【0053】また47は、送受信アンテナ46で受信さ
れ第3の誘電体線路45を伝搬してサーキュレータ44
の第3の接続部より出力した受信波をミキサー49側へ
伝搬させる第4の誘電体線路、48は、第1の誘電体線
路43に一端側が電磁結合するように近接配置されて、
ミリ波信号の一部をミキサー49側へ伝搬させる第2の
誘電体線路、48aは、第2の誘電体線路48のミキサ
ー49と反対側の一端部に設けられた無反射終端部(タ
ーミネータ)である。また、図中M1は、第2の誘電体
線路48の中途と第4の誘電体線路47の中途とを近接
させて電磁結合させることにより、ミリ波信号の一部と
受信波を混合させて中間周波信号を発生させるミキサー
部である。Reference numeral 47 denotes a circulator 44 which is received by the transmitting / receiving antenna 46 and propagates through the third dielectric line 45.
The fourth dielectric line 48 for transmitting the received wave output from the third connection portion to the mixer 49 side is disposed close to the first dielectric line 43 such that one end side is electromagnetically coupled to the first dielectric line 43,
A second dielectric line 48a for transmitting a part of the millimeter wave signal to the mixer 49 side is a non-reflection terminator (terminator) provided at one end of the second dielectric line 48 opposite to the mixer 49. It is. In the figure, M1 mixes a part of the millimeter wave signal and the received wave by bringing the middle of the second dielectric line 48 and the middle of the fourth dielectric line 47 close to each other and electromagnetically coupling them. This is a mixer section for generating an intermediate frequency signal.
【0054】本発明のサーキュレータ44は、平行平板
導体41,41間に平行に配設された一対のフェライト
円板44aの周縁部に所定間隔、例えばフェライト円板
44aの中心点に関して角度で120°間隔で配置さ
れ、かつそれぞれミリ波信号の入出力端とされた第1の
接続部,第2の接続部および第3の接続部を有し、一つの
接続部から入力されたミリ波信号をフェライト円板44
aの面内で時計回りまたは反時計回りに隣接する他の接
続部より出力させるものである。また、平行平板導体4
1の外側主面のフェライト円板44aに相当する部位に
は、フェライト円板44aを伝搬する電磁波の波面を回
転させるための磁石が、磁力線がフェライト円板44a
に対し略垂直方向(略上下方向)に通過するように設け
られる。なお、本発明のフェライト円板44aは円板状
のもの限らず、多角形状等のものでもよい。The circulator 44 of the present invention is provided at a predetermined interval, for example, at an angle of 120 ° with respect to the center point of the ferrite disk 44a, at the periphery of a pair of ferrite disks 44a disposed in parallel between the parallel plate conductors 41, 41. A first connection unit, a second connection unit, and a third connection unit which are arranged at intervals and are respectively input / output terminals of a millimeter wave signal, and a millimeter wave signal input from one connection unit is Ferrite disk 44
The signal is output from another connecting portion adjacent in the clockwise or counterclockwise direction in the plane a. In addition, the parallel plate conductor 4
A magnet for rotating the wave front of the electromagnetic wave propagating through the ferrite disk 44a is provided at a portion corresponding to the ferrite disk 44a on the outer main surface of the ferrite disk 44a.
Are provided so as to pass substantially vertically (substantially up and down directions). The ferrite disk 44a of the present invention is not limited to a disk-shaped one, but may be a polygonal one or the like.
【0055】また、本発明のミリ波送受信器の他の実施
形態として、送信アンテナと受信アンテナを独立させた
図14のタイプがある。同図において、51は一方の平
行平板導体(他方は省略する)、52は第1の誘電体線
路53の一端に設けられた電圧制御型のミリ波信号発振
部であり、バイアス電圧印加方向が高周波信号の電界方
向に合致するように第1の誘電体線路53の高周波ダイ
オード近傍に配置された可変容量ダイオードのバイアス
電圧を周期的に制御して、三角波,正弦波等とすること
により、周波数変調した送信用のミリ波信号として出力
する。Further, as another embodiment of the millimeter wave transceiver of the present invention, there is a type shown in FIG. 14 in which a transmitting antenna and a receiving antenna are made independent. In the figure, reference numeral 51 denotes one parallel plate conductor (the other is omitted); 52, a voltage-controlled millimeter-wave signal oscillator provided at one end of a first dielectric line 53; By periodically controlling the bias voltage of the variable capacitance diode disposed near the high-frequency diode of the first dielectric line 53 so as to match the direction of the electric field of the high-frequency signal, the triangular wave, the sine wave, etc. Output as a modulated transmission millimeter wave signal.
【0056】53は、高周波ダイオードから出力された
高周波信号が変調されたミリ波信号を伝搬させる第1の
誘電体線路、54は、第1,第3,第5の誘電体線路5
3,55,57にそれぞれ接続される第1,第2,第3
の接続部(図示せず)を有する、フェライト円板54a
等から成るサーキュレータ、55は、サーキュレータ5
4の第2の接続部に接続され、ミリ波信号を伝搬させる
とともに先端部に送信アンテナ56を有する第3の誘電
体線路、56は、第3の誘電体線路55の先端をテーパ
ー状等とすることにより構成された送信アンテナ、57
は、サーキュレータ54の第3の接続部に接続され、送
信用のミリ波信号を減衰させる無反射終端部57aが先
端に設けられた第5の誘電体線路である。Reference numeral 53 denotes a first dielectric line for transmitting a millimeter wave signal obtained by modulating a high-frequency signal output from the high-frequency diode, and reference numeral 54 denotes a first, third, and fifth dielectric line 5.
3, 55, 57 respectively connected to the first, second, third
Ferrite disk 54a having a connection portion (not shown)
A circulator 55 comprising
4, a third dielectric line which is connected to the second connection portion, propagates the millimeter wave signal, and has a transmission antenna 56 at the distal end. The third dielectric line 56 has a tapered tip end of the third dielectric line 55. Transmitting antenna, 57
Is a fifth dielectric line connected to the third connection part of the circulator 54 and provided at the tip with a non-reflection termination 57a for attenuating a millimeter-wave signal for transmission.
【0057】また58は、第1の誘電体線路53に一端
側が電磁結合するように近接配置されて、ミリ波信号の
一部をミキサー61側へ伝搬させる第2の誘電体線路、
58aは、第2の誘電体線路58のミキサー61と反対
側の一端部に設けられた無反射終端部、59は、受信ア
ンテナ60で受信された受信波をミキサー61側へ伝搬
させる第4の誘電体線路である。また、図中M2は、第
2の誘電体線路58の中途と第4の誘電体線路59の中
途とを近接させて電磁結合させることにより、ミリ波信
号の一部と受信波とを混合させて中間周波信号を発生さ
せるミキサー部である。Reference numeral 58 denotes a second dielectric line which is disposed in proximity to the first dielectric line 53 so that one end thereof is electromagnetically coupled, and transmits a part of the millimeter wave signal to the mixer 61 side.
Reference numeral 58a denotes a non-reflection terminal provided at one end of the second dielectric line 58 on the opposite side to the mixer 61, and reference numeral 59 denotes a fourth which propagates a reception wave received by the reception antenna 60 to the mixer 61 side. This is a dielectric line. In the figure, M2 mixes a part of the millimeter wave signal and the received wave by bringing the middle of the second dielectric line 58 and the middle of the fourth dielectric line 59 close to each other and electromagnetically coupling them. Is a mixer section for generating an intermediate frequency signal.
【0058】本発明では、図13において、第1の誘電
体線路43に第2の誘電体線路48の一端側を近接配置
するかまたは一端部を接合するが、接合する場合、接合
部において、第1の誘電体線路43を直線状、第2の誘
電体線路48を円弧状となし、その円弧状部の曲率半径
rを高周波信号の波長λ以上とする。これにより、高周
波信号を損失を小さくして均等の出力で分岐させること
ができる。また、接合部において、第2の誘電体線路4
8を直線状、第1の誘電体線路43を円弧状となし、そ
の円弧状部の曲率半径rを高周波信号の波長λ以上とし
てもよく、この場合も上記と同様の効果が得られる。In the present invention, in FIG. 13, one end of the second dielectric line 48 is arranged close to the first dielectric line 43 or one end thereof is joined. The first dielectric line 43 has a linear shape, the second dielectric line 48 has an arc shape, and the radius of curvature r of the arc portion is equal to or longer than the wavelength λ of the high-frequency signal. As a result, the loss of the high-frequency signal can be reduced and the high-frequency signal can be branched with an equal output. Also, at the joint, the second dielectric line 4
8 may be linear, the first dielectric line 43 may be arc-shaped, and the radius of curvature r of the arc-shaped portion may be equal to or longer than the wavelength λ of the high-frequency signal. In this case, the same effect as described above can be obtained.
【0059】また、ミキサー49部において、第2の誘
電体線路48と第4の誘電体線路47とを接合すること
もでき、この場合、上記と同様に、これらの誘電体線路
48,47のうちいずれか一方の接合部を円弧状とな
し、その円弧状部の曲率半径rを高周波信号の波長λ以
上とするのがよい。また、第2の誘電体線路48と第4
の誘電体線路47とを接合させずに、電磁結合するよう
に近接配置する場合、その近接部において、第2の誘電
体線路48と第4の誘電体線路47との近接部の少なく
とも一方を円弧状とすることにより、近接配置の構成と
することができる。Further, in the mixer 49, the second dielectric line 48 and the fourth dielectric line 47 can be joined. In this case, similarly to the above, the dielectric lines 48 and 47 are connected together. Preferably, one of the joints is formed in an arc shape, and the radius of curvature r of the arc portion is set to be equal to or longer than the wavelength λ of the high-frequency signal. Further, the second dielectric line 48 and the fourth
In this case, at least one of the adjacent portions of the second dielectric line 48 and the fourth dielectric line 47 is connected in the vicinity of the second dielectric line 48 and the fourth dielectric line 47 without being joined to each other. By making the shape of a circular arc, a configuration of close proximity arrangement can be obtained.
【0060】また好ましくは、接合部の曲率半径rは3
λ以下が良く、3λを超えると接合構造が大きくなり小
型化のメリットが得られない。接合部の曲率半径rを波
長λより小さく設定すると、円弧状の接合部を有する誘
電体線路への分岐強度は小さくなる。Preferably, the radius of curvature r of the joint is 3
If λ is smaller than λ, and if λ is larger than 3λ, the joining structure becomes large and the advantage of miniaturization cannot be obtained. When the radius of curvature r of the junction is set smaller than the wavelength λ, the branching strength to the dielectric line having the arc-shaped junction decreases.
【0061】このような第1の誘電体線路43と第2の
誘電体線路48との接合構造、および第2の誘電体線路
48と第4の誘電体線路47との接合構造、並びに第2
の誘電体線路48と第4の誘電体線路47との近接配置
の構成については、図14の場合も上記と同様である。The joint structure between the first dielectric line 43 and the second dielectric line 48, the joint structure between the second dielectric line 48 and the fourth dielectric line 47, and the second
The configuration of close proximity between the dielectric line 48 and the fourth dielectric line 47 is the same as above in the case of FIG.
【0062】そして、これらの各種部品は、ミリ波信号
の波長の2分の1以下の間隔で配置した平行平板導体間
に設けられている。[0062] These various components are provided between parallel plate conductors arranged at an interval equal to or less than half the wavelength of the millimeter wave signal.
【0063】図13のものにおいて、第1の誘電体線路
43の中途にスイッチを設け、それをON−OFFする
ことでパルス変調制御することもできる。例えば、図1
8に示すように、配線基板18の一主面に第2のチョー
ク型バイアス供給線路112を形成し、その中途に半田
実装されたビームリードタイプのPINダイオードやシ
ョットキーバリアダイオードを設けたスイッチである。
この配線基板18を、第1の誘電体線路43の第2の誘
電体線路48との信号分岐部とサーキュレータ44との
間に、PINダイオードやショットキーバリアダイオー
ドのパルス変調用ダイオードのバイアス電圧印加方向が
LSMモードの高周波信号の電界方向に合致するように
配置し、第1の誘電体線路43に介在させるものであ
る。また、第1の誘電体線路43にもう一つのサーキュ
レータを介在させ、その第1,第3の接続部に第1の誘
電体線路43を接続し、第2の接続部に他の誘電体線路
を接続し、その誘電体線路の先端部の端面に、図18の
ような構成でショットキーバリアダイオードを設けたス
イッチを設置してもよい。In FIG. 13, a pulse modulation control can be performed by providing a switch in the middle of the first dielectric line 43 and turning it on and off. For example, FIG.
As shown in FIG. 8, a second choke type bias supply line 112 is formed on one main surface of the wiring board 18, and a beam lead type PIN diode or a Schottky barrier diode which is solder-mounted is provided in the middle of the second choke type bias supply line 112. is there.
A bias voltage of a PIN diode or a pulse modulation diode such as a Schottky barrier diode is applied between the circulator 44 and the signal branch portion between the first dielectric line 43 and the second dielectric line 48 by using the wiring board 18. The direction is arranged so as to match the direction of the electric field of the high frequency signal of the LSM mode, and is interposed in the first dielectric line 43. Further, another circulator is interposed in the first dielectric line 43, the first dielectric line 43 is connected to the first and third connection portions, and another dielectric line is connected to the second connection portion. May be connected, and a switch provided with a Schottky barrier diode having a configuration as shown in FIG. 18 may be provided on the end face of the tip of the dielectric line.
【0064】図14のものにおいて、サーキュレータ5
4をなくし、第1の誘電体線路53の先端部に送信アン
テナ56を接続した構成とすることもできる。この場
合、小型化されたものとなるが、受信波の一部が電圧制
御発振部52に混入しノイズ等の原因となり易いため、
図14のタイプが好ましい。In FIG. 14, the circulator 5
4, the transmission antenna 56 may be connected to the distal end of the first dielectric line 53. In this case, although the size is reduced, a part of the received wave is likely to be mixed into the voltage controlled oscillator 52 and cause noise or the like.
The type of FIG. 14 is preferred.
【0065】また、図14のタイプにおいて、第2の誘
電体線路58は、第3の誘電体線路55に一端側が電磁
結合するように近接配置されるか第3の誘電体線路55
に一端が接合されて、ミリ波信号の一部をミキサー61
側へ伝搬させるように配置されていてもよい。この構成
においても、図14のものと同様の機能、作用効果を有
する。In the type shown in FIG. 14, the second dielectric line 58 is disposed close to the third dielectric line 55 such that one end is electromagnetically coupled to the third dielectric line 55 or the third dielectric line 55
Is connected to one end of the
It may be arranged to propagate to the side. This configuration also has the same functions, functions and effects as those in FIG.
【0066】この図14のものにおいて、第1の誘電体
線路53の中途に、図18に示したものと同様に構成し
たスイッチを設け、それをON−OFFすることでパル
ス変調制御することもできる。例えば、図18のよう
に、配線基板18の一主面に第2のチョーク型バイアス
供給線路112を形成し、その中途に半田実装されたビ
ームリードタイプのPINダイオードやショットキーバ
リアダイオードを設けたスイッチである。この配線基板
18を、第1の誘電体線路53の第2の誘電体線路58
との信号分岐部と、サーキュレータ54との間に、PI
Nダイオードやショットキーバリアダイオードのバイア
ス電圧印加方向がLSMモードの高周波信号の電界方向
に合致するように配置し、第1の誘電体線路53に介在
させるものである。In FIG. 14, a switch having the same configuration as that shown in FIG. 18 is provided in the middle of the first dielectric line 53, and pulse modulation control can be performed by turning it on and off. it can. For example, as shown in FIG. 18, a second choke type bias supply line 112 is formed on one main surface of the wiring board 18, and a beam lead type PIN diode or a Schottky barrier diode mounted by soldering is provided in the middle thereof. Switch. This wiring board 18 is connected to the second dielectric line 58 of the first dielectric line 53.
Between the signal diverter and the circulator 54
The bias voltage application direction of the N diode or the Schottky barrier diode is arranged so as to match the electric field direction of the high frequency signal of the LSM mode, and is interposed in the first dielectric line 53.
【0067】また、第1の誘電体線路53にもう一つの
サーキュレータを介在させ、その第1,第3の接続部に
第1の誘電体線路53を接続し、第2の接続部に他の誘
電体線路を接続し、その誘電体線路の先端部の端面に、
図18のような構成のショットキーバリアダイオードを
設けたスイッチを設置してもよい。Further, another circulator is interposed in the first dielectric line 53, the first dielectric line 53 is connected to the first and third connection portions, and another circulator is connected to the second connection portion. Connect the dielectric line, and on the end face of the tip of the dielectric line,
A switch provided with a Schottky barrier diode having a configuration as shown in FIG. 18 may be provided.
【0068】また、これらのミリ波送受信器において、
平行平板導体間の間隔は、ミリ波信号の空気中での波長
であって、使用周波数での波長の2分の1以下となる。In these millimeter wave transceivers,
The distance between the parallel plate conductors is the wavelength of the millimeter wave signal in the air, which is less than half the wavelength at the operating frequency.
【0069】また、図13,図14のミリ波送受信器は
FMCW(Frequency ModulationCotinuous Waves)
方式であり、FMCW方式の動作原理は以下のようなも
のである。電圧制御発振部の変調信号入力用のMODI
N端子に、電圧振幅の時間変化が三角波等となる入力信
号を入力し、その出力信号を周波数変調し、電圧制御発
振部の出力周波数偏移を三角波等になるように偏移させ
る。そして、送受信アンテナ46,送信アンテナ56よ
り出力信号(送信波)を放射した場合、送受信用アンテ
ナ46,送信アンテナ56の前方にターゲットが存在す
ると、電波の伝搬速度の往復分の時間差をともなって、
反射波(受信波)が戻ってくる。この時、ミキサー4
9,61の出力側のIFOUT端子には、送信波と受信
波の周波数差が出力される。The millimeter wave transceiver shown in FIGS. 13 and 14 is an FMCW (Frequency Modulation Continuous Waves).
The operation principle of the FMCW method is as follows. MODI for input of modulation signal of voltage controlled oscillator
An input signal whose voltage amplitude changes with time in the form of a triangular wave or the like is input to the N terminal, the output signal is frequency-modulated, and the output frequency shift of the voltage controlled oscillator is shifted so as to become a triangular wave or the like. When an output signal (transmission wave) is radiated from the transmission / reception antenna 46 and the transmission antenna 56, if a target is present in front of the transmission / reception antenna 46 and the transmission antenna 56, a time difference corresponding to the reciprocation of the propagation speed of the radio wave is obtained.
The reflected wave (received wave) returns. At this time, mixer 4
The frequency difference between the transmission wave and the reception wave is output to the IFOUT terminal on the output side of the outputs 9 and 61.
【0070】このIFOUT端子の出力周波数等の周波
数成分を解析することで、Fif=4R・fm・Δf/c
{Fif:IF(Intermediate Frequency)出力周波数,
R:距離,fm:変調周波数,Δf:周波数偏移幅,
c:光速}という関係式から距離を求めることができ
る。By analyzing frequency components such as the output frequency of the IFOUT terminal, Fif = 4R · fm · Δf / c
{Fif: IF (Intermediate Frequency) output frequency,
R: distance, fm: modulation frequency, Δf: frequency shift width,
c: The distance can be obtained from the relational expression of light speed}.
【0071】このように、自動車のミリ波レーダ等に適
用した場合、自動車の周囲の障害物および他の自動車に
対しミリ波を照射し、反射波を元のミリ波と合成して中
間周波信号を得、この中間周波信号を分析することによ
り障害物および他の自動車までの距離、それらの移動速
度等が測定できる。As described above, when the present invention is applied to a millimeter wave radar of an automobile, an obstacle around the automobile and other automobiles are irradiated with the millimeter wave, and the reflected wave is synthesized with the original millimeter wave to produce an intermediate frequency signal. By analyzing this intermediate frequency signal, the distance to obstacles and other vehicles, their moving speed, and the like can be measured.
【0072】本発明の誘電体線路は、Mg,Al,Si
の複合酸化物を主成分としたセラミックスを用いるのが
好ましく。このセラミックスは比誘電率4.5〜8程度
が良く、比誘電率が4.5未満の場合LSMモードの電
磁波のLSEモードへの変換が大きくなり、比誘電率が
8を超えると、50GHz以上の周波数で使用する際、
誘電体線路の幅を非常に細くしなければならず、加工が
困難になって形状精度が劣化し、強度の点でも問題が生
じる。The dielectric line according to the present invention comprises Mg, Al, Si
It is preferable to use ceramics containing the above composite oxide as a main component. The relative permittivity of this ceramic is preferably about 4.5 to 8, and when the relative permittivity is less than 4.5, the conversion of the LSM mode electromagnetic wave to the LSE mode becomes large, and when the relative permittivity exceeds 8, it is 50 GHz or more. When using at the frequency of
The width of the dielectric line must be made very thin, which makes processing difficult, deteriorates the shape accuracy, and causes a problem in strength.
【0073】また、誘電体線路の材料として、使用周波
数50〜90GHzでのQ値が1000以上である、M
g,Al,Siの複合酸化物を主成分としたセラミック
を用いるのがよい。これは、近年におけるマイクロ波帯
域,ミリ波帯に含まれる50〜90GHzで使用される
誘電体線路として、十分な低損失性を実現する。特に、
コーディエライト(2MgO・2Al2O3・5Si
O2)セラミックスがよい。Further, as a material of the dielectric line, the Q value at a working frequency of 50 to 90 GHz is 1000 or more.
It is preferable to use a ceramic mainly containing a composite oxide of g, Al, and Si. This realizes a sufficiently low loss property as a dielectric line used at 50 to 90 GHz included in a microwave band and a millimeter wave band in recent years. In particular,
Cordierite (2MgO.2Al 2 O 3 .5Si
O 2 ) Ceramics are good.
【0074】さらに、その他の材料として、テフロン
(登録商標),ポリスチレン,ガラスエポキシ樹脂等の
樹脂系のもの、アルミナセラミックス,ガラスセラミッ
クス,フォルステライトセラミックス等のものでもよい
が、誘電特性、加工性、強度、小型化、信頼性等の点で
コーディエライトセラミックスが好ましい。As other materials, resin materials such as Teflon (registered trademark), polystyrene, glass epoxy resin, and the like, alumina ceramics, glass ceramics, and forsterite ceramics may be used. Cordierite ceramics are preferred in terms of strength, miniaturization, reliability, and the like.
【0075】このコーディエライトセラミックスに対
し、Y,La,Ce,Pr,Nd,Sm,Eu,Dy,
Ho,Er,Tm,Yb,Luから選ばれる少なくとも
1種を含有させることにより、Q値等の誘電特性を向上
させ、低損失の伝送特性となる。For this cordierite ceramic, Y, La, Ce, Pr, Nd, Sm, Eu, Dy,
By containing at least one selected from Ho, Er, Tm, Yb, and Lu, the dielectric properties such as the Q value are improved, and the transmission properties are low.
【0076】本発明の誘電体線路用の誘電体磁器組成物
は、以下のようにして製造する。原料粉末として、例え
ばMgCO3粉末,Al2O3粉末,SiO2粉末を用い、
これらを所定割合で秤量し、湿式混合した後乾燥し、こ
の混合物を大気中において1100〜1300℃で仮焼
した後、粉砕し粉末状とする。得られた粉末に適量の樹
脂バインダを加えて成形し、この成形体を大気中130
0〜1450℃で焼成することにより得られる。The dielectric ceramic composition for a dielectric line according to the present invention is manufactured as follows. As the raw material powder, for example, MgCO 3 powder, Al 2 O 3 powder, SiO 2 powder is used,
These are weighed at a predetermined ratio, wet-mixed and dried, and the mixture is calcined at 1100 to 1300 ° C. in the air, and then pulverized to powder. An appropriate amount of a resin binder is added to the obtained powder and molded.
It is obtained by firing at 0 to 1450 ° C.
【0077】原料粉末中に含まれるMg,Al,Siの
各元素は、それぞれ酸化物,炭酸塩,酢酸塩等の無機化
合物、もしくは有機金属等の有機化合物のいずれであっ
てもよく、焼成により酸化物となるものであれば良い。Each element of Mg, Al and Si contained in the raw material powder may be any of inorganic compounds such as oxides, carbonates and acetates, or organic compounds such as organic metals. What is necessary is just to become an oxide.
【0078】なお、本発明の誘電体磁器組成物の主成分
は、Mg,Al,Siの複合酸化物を主成分とし、50
〜90GHzでのQ値を1000以上であるという特性
を損なわない範囲で、上記元素以外に、粉砕ボールや原
料粉末の不純物が混入したり、焼結温度範囲の制御、機
械的特性向上を目的に他の成分を含有させても良い。例
えば、希土類元素化合物、Ba,Sr,Ca,Ni,C
o,In,Ga,Ti等の酸化物、ならびに窒化ケイ素
等の窒化物などの非酸化物である。これらは単独または
複数種が含まれていても良い。The main component of the dielectric porcelain composition of the present invention is mainly composed of a composite oxide of Mg, Al and Si.
In the range that does not impair the characteristic that the Q value at ~ 90 GHz is 1000 or more, in addition to the above-mentioned elements, impurities of the pulverized ball or the raw material powder are mixed, and the sintering temperature range is controlled and the mechanical properties are improved. Other components may be included. For example, rare earth element compounds, Ba, Sr, Ca, Ni, C
Non-oxides such as oxides such as o, In, Ga and Ti, and nitrides such as silicon nitride. These may include one or more kinds.
【0079】本発明の高周波ダイオード発振器を用いた
電圧制御発振部42,52について以下に説明する。図
1,図2は本発明のNRDガイド型の高周波ダイオード
発振器を示し、これらの図において、1は一対の平行平
板導体、2はガンダイオード3を設置(マウント)する
ための略直方体状の金属ブロック等の金属部材、3はマ
イクロ波,ミリ波を発振する高周波ダイオードの1種で
あるガンダイオード、4は金属部材2の一側面に設置さ
れ、ガンダイオード3にバイアス電圧を供給するととも
に高周波信号の漏れを防ぐローパスフィルタとして機能
するチョーク型バイアス供給線路4aを形成した配線基
板、5はチョーク型バイアス供給線路4aとガンダイオ
ード3の上部導体とを接続する金属箔リボン等の帯状導
体、7はガンダイオード3の近傍に配置され高周波信号
を受信し外部へ伝搬させる誘電体線路(第1の誘電体線
路43,53)である。The voltage controlled oscillators 42 and 52 using the high-frequency diode oscillator of the present invention will be described below. 1 and 2 show an NRD guide type high-frequency diode oscillator according to the present invention. In these figures, 1 is a pair of parallel plate conductors, 2 is a substantially rectangular parallelepiped metal for mounting (mounting) a Gunn diode 3. A metal member 3 such as a block, 3 is a gun diode which is one kind of a high-frequency diode that oscillates microwaves and millimeter waves, and 4 is provided on one side surface of the metal member 2 to supply a bias voltage to the gun diode 3 A wiring board formed with a choke-type bias supply line 4a functioning as a low-pass filter for preventing leakage of the wire, 5 is a band-shaped conductor such as a metal foil ribbon connecting the choke-type bias supply line 4a and the upper conductor of the Gunn diode 3, and 7 is A dielectric line (first dielectric lines 43 and 53) arranged near the Gunn diode 3 to receive a high-frequency signal and propagate the signal to the outside. A.
【0080】また図2において、チョーク型バイアス供
給線路4aは、幅の広い線路および幅の狭い線路の長さ
がそれぞれ略λ/4の広狭線路から成り、また帯状導体
5の長さは略{(3/4)+n}λ(nは0以上の整
数)である。この帯状導体5の長さは略3λ/4〜略
{(3/4)+3}λが良く、略{(3/4)+3}λ
を超えると帯状導体5が長くなり、撓み、捩じれ等が生
じ易くなり、個々の高周波ダイオード発振器間で発振周
波数等の特性のばらつきが大きくなるとともに、種々の
共振モードが発生して、所望の発振周波数と異なる周波
数の信号が発生するという問題が生じる。より好ましく
は、略3λ/4,略{(3/4)+1}λである。In FIG. 2, the choke-type bias supply line 4a comprises a wide line and a narrow line each having a length of approximately λ / 4, and the length of the band-like conductor 5 is approximately {. (3/4) + n} λ (n is an integer of 0 or more). The length of the strip-shaped conductor 5 is preferably approximately 3λ / 4 to approximately {(3/4) +3} λ, and approximately {(3/4) +3} λ.
If the frequency exceeds the range, the band-shaped conductor 5 becomes longer, bending, twisting, and the like are likely to occur, and variations in characteristics such as oscillation frequency among individual high-frequency diode oscillators increase. There is a problem that a signal having a frequency different from the frequency is generated. More preferably, it is approximately 3λ / 4, approximately {(3/4) +1} λ.
【0081】また、略{(3/4)+n}λとしたの
は、{(3/4)+n}λから多少ずれていても共振は
可能だからである。例えば、帯状導体5を{(3/4)
+n}λよりも10〜20%程度長く形成しても良く、
その場合、帯状導体5の接するチョーク型バイアス供給
線路4aの1パターン目の長さλ/4のうち一部が共振
に寄与すると考えられるからである。従って、帯状導体
5の長さは{(3/4)+n}λ±20%程度の範囲内
で変化させることができる。Further, the reason why ({(3/4) + n} λ) is set is that resonance is possible even if it is slightly deviated from {(3/4) + n} λ. For example, the band-shaped conductor 5 is changed to {(3/4)
It may be formed about 10 to 20% longer than + n} λ,
In that case, it is considered that part of the length λ / 4 of the first pattern of the choke-type bias supply line 4a in contact with the strip conductor 5 contributes to resonance. Therefore, the length of the strip-shaped conductor 5 can be changed within a range of about {(3/4) + n} λ ± 20%.
【0082】これらチョーク型バイアス供給線路4aお
よび帯状導体5の材料は、Cu,Al,Au,Ag,
W,Ti,Ni,Cr,Pd,Pt等から成り、特にC
u,Agが、電気伝導度が良好であり、損失が小さく、
発振出力が大きくなるといった点で好ましい。The materials of the choke-type bias supply line 4a and the strip-shaped conductor 5 are Cu, Al, Au, Ag,
W, Ti, Ni, Cr, Pd, Pt, etc.
u and Ag have good electric conductivity, small loss,
This is preferable in that the oscillation output increases.
【0083】また、帯状導体5は金属部材2の表面から
所定間隔をあけて金属部材2と電磁結合しており、チョ
ーク型バイアス供給線路4aとガンダイオード3間に架
け渡されている。即ち、帯状導体5の一端はチョーク型
バイアス供給線路4aの一端に半田付け等により接続さ
れ、帯状導体5の他端はガンダイオード3の上部導体に
半田付け等により接続されており、帯状導体5の接続部
を除く中途部分は宙に浮いた状態となっている。The band-shaped conductor 5 is electromagnetically coupled to the metal member 2 at a predetermined distance from the surface of the metal member 2, and is bridged between the choke type bias supply line 4 a and the Gunn diode 3. That is, one end of the strip-shaped conductor 5 is connected to one end of the choke-type bias supply line 4a by soldering or the like, and the other end of the strip-shaped conductor 5 is connected to the upper conductor of the gun diode 3 by soldering or the like. The middle part except for the connection part is floating in the air.
【0084】そして、金属部材2は、ガンダイオード3
の電気的な接地(アース)を兼ねているため金属導体で
あれば良く、その材料は金属(合金を含む)導体であれ
ば特に限定するものではなく、真鍮(黄銅:Cu−Zn
合金),Al,Cu,SUS(ステンレススチール),
Ag,Au,Pt等から成る。また金属部材2は、全体
が金属から成る金属ブロック、セラミックスやプラスチ
ック等の絶縁基体の表面全体または部分的に金属メッキ
したもの、絶縁基体の表面全体または部分的に導電性樹
脂材料等をコートしたものであっても良い。The metal member 2 is a gun diode 3
Since it is also a metal conductor, the material is not particularly limited as long as it is a metal (including alloy) conductor, and brass (brass: Cu—Zn)
Alloy), Al, Cu, SUS (stainless steel),
It is made of Ag, Au, Pt or the like. The metal member 2 is made of a metal block made entirely of metal, an insulated substrate such as ceramics or plastic, which is entirely or partially metal-plated, and an insulated substrate entirely or partially coated with a conductive resin material or the like. It may be something.
【0085】また、誘電体線路7は、図13,図14の
第1の誘電体線路43,53に相当するものであり、そ
の材料は上記の通りコーディエライト(2MgO・2A
l2O3・5SiO2)セラミックス(比誘電率4〜5)
等好ましく、これらは高周波帯域において低損失であ
る。ガンダイオード3と誘電体線路7との間隔は1.0
mm程度以下が好ましく、1.0mmを超えると損失を
小さくして電磁的結合が可能な最大離間幅を超える。The dielectric line 7 corresponds to the first dielectric lines 43 and 53 shown in FIGS. 13 and 14, and is made of cordierite (2MgO.2A) as described above.
l 2 O 3 · 5SiO 2 ) ceramics (relative permittivity 4-5)
More preferably, they have low loss in the high frequency band. The distance between the Gunn diode 3 and the dielectric line 7 is 1.0
mm or less is preferable, and if it exceeds 1.0 mm, the loss is reduced to exceed the maximum separation width at which electromagnetic coupling is possible.
【0086】本発明でいう高周波帯域は、数10〜数1
00GHz帯域のマイクロ波帯域およびミリ波帯域に相
当し、例えば30GHz以上、特に50GHz以上、更
には70GHz以上の高周波帯域が好適である。The high frequency band referred to in the present invention is expressed by the following equation
A high frequency band corresponding to the microwave band and the millimeter wave band of the 00 GHz band, for example, 30 GHz or more, particularly 50 GHz or more, and more preferably 70 GHz or more is suitable.
【0087】また、本発明の高周波ダイオードとして
は、インパット(impatt:impact ionisation avalan
che transit time)・ダイオード,トラパット(trap
att:trapped plasma avalanche triggered transi
t)・ダイオード,ガンダイオード等のマイクロ波ダイ
オードおよびミリ波ダイオードが好適に使用される。The high-frequency diode according to the present invention includes an impatt (impact ionization avalan).
che transit time, diode, trap
att: trapped plasma avalanche triggered transi
t) Microwave diodes such as diodes and Gunn diodes and millimeter-wave diodes are preferably used.
【0088】本発明のNRDガイド用の平行平板導体1
は、高い電気伝導度および加工性等の点で、Cu,A
l,Fe,SUS(ステンレススチール),Ag,A
u,Pt等の導体板、あるいはセラミックス,樹脂等か
ら成る絶縁板の表面にこれらの導体層を形成したもので
もよい。Parallel Plate Conductor 1 for NRD Guide of the Present Invention
Are Cu, A in terms of high electrical conductivity and workability.
1, Fe, SUS (stainless steel), Ag, A
A conductor plate made of u, Pt, or the like, or an insulating plate made of ceramic, resin, or the like, on which the conductor layers are formed may be used.
【0089】本発明において、好ましくは、図3および
図4の断面図に示すように、高周波信号の発振周波数を
調整する誘電体チップ8を、帯状導体5に近接させて配
置する。尚、同図において9はガンダイオード3のネジ
止め部である。この誘電体チップ8の形状は特に限定す
るものではないが、帯状導体5の主面に対向し近接する
平行な主面Aを有する直方体状,板状,四角錐状,三角
柱等の角柱状,蒲鉾状等が良く、帯状導体5を伝搬する
高周波信号との電磁結合を主面Aにより制御し易いとい
う利点がある。そして、主面Aの長さLを調整する、ま
たは種々の長さLを有する誘電体チップ8を用意してお
き、長さLを変化させることにより、発振周波数を制御
できる。即ち、誘電体チップ8を帯状導体5に近接させ
ることで、チョーク型バイアス供給線路4aと帯状導体
5とから成る共振器の実質的な共振器長を微妙に調整で
き、例えば帯状導体5の電気的な共振器長を{(3/
4)+n}λよりも僅かに大きくし、発振周波数を低く
することが可能である。In the present invention, preferably, as shown in the sectional views of FIGS. 3 and 4, a dielectric chip 8 for adjusting the oscillation frequency of a high-frequency signal is arranged close to the strip-shaped conductor 5. In the figure, reference numeral 9 denotes a screwed portion of the gun diode 3. Although the shape of the dielectric chip 8 is not particularly limited, a rectangular parallelepiped, a plate, a quadrangular pyramid, a prism such as a triangular prism having a parallel main surface A facing and close to the main surface of the strip-shaped conductor 5, There is an advantage that the shape is good in a semi-cylindrical shape and the electromagnetic coupling with a high-frequency signal propagating through the band-shaped conductor 5 can be easily controlled by the main surface A. The oscillation frequency can be controlled by adjusting the length L of the main surface A or preparing the dielectric chips 8 having various lengths L and changing the length L. That is, by bringing the dielectric chip 8 close to the band-shaped conductor 5, the substantial resonator length of the resonator composed of the choke type bias supply line 4a and the band-shaped conductor 5 can be finely adjusted. Typical resonator length is {(3 /
4) It is possible to make the oscillation frequency slightly lower than + n} λ to lower the oscillation frequency.
【0090】そして、誘電体チップ8はコーディエライ
トセラミックス,アルミナセラミックス等が好ましく、
これらは高周波帯域において低損失である。また、誘電
体チップ8の主面Aと帯状導体5の主面との間隔Bは
0.1mm〜1.0mmが良く、0.1mm未満では、
振動等により誘電体チップ8が位置ずれしたり、熱変
形、撓み等を起こして帯状導体5に接触し、高周波の伝
搬特性が変化し易くなる。1.0mmを超えると、帯状
導体5と誘電体チップ8との電磁結合が弱すぎて、発振
周波数の制御が困難となる。The dielectric chip 8 is preferably made of cordierite ceramics, alumina ceramics, or the like.
These have low loss in the high frequency band. Further, the distance B between the main surface A of the dielectric chip 8 and the main surface of the strip-shaped conductor 5 is preferably 0.1 mm to 1.0 mm.
The dielectric chip 8 is displaced due to vibration or the like, or undergoes thermal deformation, bending, or the like, comes into contact with the strip-shaped conductor 5, and the high-frequency propagation characteristics are easily changed. If it exceeds 1.0 mm, the electromagnetic coupling between the strip-shaped conductor 5 and the dielectric chip 8 is too weak, and it becomes difficult to control the oscillation frequency.
【0091】本発明の他の実施形態として、周波数調整
部材を金属部材2の内部に設けた例を図5〜図7に示
す。なお、図6,図7は周波数調整部材周辺の部分断面
図である。これらの図に示すように、金属部材2の帯状
導体5に対応する位置に孔9a,11が形成されてお
り、その孔9a,11には柱状の周波数調整部材10,
12が挿入配置され、かつ金属部材2の表面より周波数
調整部材10,12の端部が突出して帯状導体5に近接
し電磁結合している。これらの孔9a,11は貫通孔で
あってもよく、その場合、金属部材2の帯状導体5と反
対側の面より周波数調整部材10,12を挿入して、位
置調整をすることができ好適である。As another embodiment of the present invention, an example in which the frequency adjusting member is provided inside the metal member 2 is shown in FIGS. 6 and 7 are partial cross-sectional views around the frequency adjusting member. As shown in these figures, holes 9a and 11 are formed at positions corresponding to the strip-shaped conductor 5 of the metal member 2, and the holes 9a and 11 have columnar frequency adjusting members 10 and 11, respectively.
12 are inserted and arranged, and the ends of the frequency adjusting members 10 and 12 project from the surface of the metal member 2 so as to be close to the band-shaped conductor 5 and electromagnetically coupled. These holes 9a and 11 may be through holes. In this case, the frequency adjustment members 10 and 12 can be inserted from the surface of the metal member 2 on the side opposite to the band-shaped conductor 5 to adjust the position. It is.
【0092】また図7の実施形態は、孔11を内面にネ
ジ切りを施したネジ孔とし、この孔11にネジ状の周波
数調整部材12をネジ込み、回転挿入させて位置の微調
整をより微妙に行えるようにしたものである。これによ
り、さらに微妙な発振周波数の制御が可能となる。これ
らの周波数調整部材10,12は、金属部材2の帯状導
体5に対応する位置に複数設けても良く、例えば断面積
の大きなものと断面積の小さなものとを設け、断面積の
大きなものにより周波数を粗調整し、断面積の小さなも
のにより周波数を微調整することもできる。In the embodiment shown in FIG. 7, the hole 11 is a screw hole having an inner surface threaded, and a screw-shaped frequency adjusting member 12 is screwed into the hole 11 and rotated and inserted to make fine adjustment of the position. It is something that can be done subtly. As a result, more delicate control of the oscillation frequency becomes possible. A plurality of these frequency adjusting members 10 and 12 may be provided at positions corresponding to the band-shaped conductor 5 of the metal member 2. For example, one having a large sectional area and one having a small sectional area are provided. The frequency can be roughly adjusted, and the frequency can be finely adjusted with a small cross-sectional area.
【0093】周波数調整部材10,12の材料として
は、コーディエライト(2MgO・2Al2O3・5Si
O2),アルミナ(Al2O3)等の誘電体、またはC
u,Al,Fe,SUS(ステンレス)等の金属が良
く、上記誘電体は高周波信号に対する誘電体損失が小さ
く、上記金属は加工性に優れる。The material of the frequency adjusting members 10 and 12 is cordierite (2MgO.2Al 2 O 3 .5Si).
O 2 ), a dielectric such as alumina (Al 2 O 3 ), or C
Metals such as u, Al, Fe, and SUS (stainless steel) are good. The dielectric has a small dielectric loss with respect to a high-frequency signal, and the metal has excellent workability.
【0094】このように、周波数調整部材10,12を
帯状導体5に近接させこれらの間隔を調整することで、
帯状導体5と周波数調整部材10,12との間の結合容
量を変化させ、その結果チョーク型バイアス供給線路4
aと帯状導体5とから成る共振器の実質的な共振器長を
微妙に調整できる。例えば、帯状導体5の電気的な共振
器長を略{(3/4)+n}λよりも僅かに大きくし、
発振周波数を低くすることが可能となる。As described above, by bringing the frequency adjusting members 10 and 12 close to the band-shaped conductor 5 and adjusting the interval between them,
The coupling capacitance between the band-shaped conductor 5 and the frequency adjusting members 10 and 12 is changed, so that the choke-type bias supply line 4 is changed.
The substantial resonator length of the resonator consisting of a and the band-shaped conductor 5 can be finely adjusted. For example, the electrical resonator length of the strip conductor 5 is made slightly larger than approximately {(3/4) + n} λ,
The oscillation frequency can be reduced.
【0095】そして、周波数調整部材10,12と帯状
導体5との間隔d(図6)は、0.05〜0.1mmと
するのが良く、0.05mm未満では、周波数調整部材
10,12と帯状導体5とが接触し易くなり、0.1m
mを超えると、周波数調整部材10,12と帯状導体5
とが電磁結合し難くなり、発振周波数の制御が困難にな
る。The distance d (FIG. 6) between the frequency adjusting members 10 and 12 and the strip conductor 5 is preferably set to 0.05 to 0.1 mm. And the strip-shaped conductor 5 are easily in contact with each other,
m, the frequency adjusting members 10 and 12 and the band-shaped conductor 5
Are difficult to electromagnetically couple, and it becomes difficult to control the oscillation frequency.
【0096】さらに、周波数調整部材10,12と帯状
導体5との間隔dだけでなく、周波数調整部材10,1
2の帯状導体5に対向する端面の面積を調整することに
よっても、発振周波数の制御が可能であり、その端面の
面積が小さい場合は細かな制御ができるとともに周波数
変調可能幅が小さくなり、端面の面積が大きい場合は相
対的に粗い制御となり周波数変調可能幅も大きくなる。
好ましくは、端面の面積は0.1〜2mm2が良く、
0.1mm2未満では発振周波数の制御が困難であり、
2mm2を超えると、周波数調整部材10,12の断面
の幅が大きくなり、平行平板導体1と接触し易くなるう
え、帯状導体5よりはみ出した部分は周波数制御に殆ど
影響しない。より好ましくは、0.13〜0.8mm2
である。Further, not only the distance d between the frequency adjusting members 10 and 12 and the strip-shaped conductor 5 but also the frequency adjusting members 10 and 1
The oscillation frequency can also be controlled by adjusting the area of the end face facing the second strip-shaped conductor 5. When the area of the end face is small, fine control can be performed and the frequency modulatable width becomes small. When the area is large, the control becomes relatively coarse, and the frequency modulatable width becomes large.
Preferably, the area of the end face is 0.1 to 2 mm 2 ,
If it is less than 0.1 mm 2, it is difficult to control the oscillation frequency,
If it exceeds 2 mm 2 , the width of the cross section of the frequency adjusting members 10 and 12 becomes large, making it easy to come into contact with the parallel plate conductor 1, and the portion protruding from the strip-shaped conductor 5 hardly affects the frequency control. More preferably, 0.13 to 0.8 mm 2
It is.
【0097】本発明の他の実施形態を図8,図9に示
す。これらの図において、20は補助基板14に設置さ
れた周波数変調用ダイオードとしてのバラクタダイオー
ドであり、そのバイアス電圧印加方向は帯状導体5に生
じ空間に放射形成される電磁界の電界に平行な方向とさ
れ、即ち電界方向と合致した状態とされ、帯状導体5に
近接配置されて電磁結合している。21は、補助基板1
4に形成されたバラクタダイオード20接続用の電極
(接続導体)、22は、配線基板23の主面に形成され
た第2のチョーク型バイアス供給線路である。23は、
バラクタダイオード20を設けた変調回路基板であり、
第2のチョーク型バイアス供給線路22が主面に形成さ
れかつその主面が平行平板導体1に対し垂直に設置され
る配線基板13と、第2のチョーク型バイアス供給線路
22の中途に立設され、かつ第2のチョーク型バイアス
供給線路22に連続する接続導体をその主面に有する補
助基板14とから成る。FIGS. 8 and 9 show another embodiment of the present invention. In these figures, reference numeral 20 denotes a varactor diode as a frequency modulation diode provided on the auxiliary substrate 14, and its bias voltage is applied in a direction parallel to the electric field of the electromagnetic field generated in the strip-shaped conductor 5 and radiated into the space. In other words, it is in a state that matches the direction of the electric field, and is disposed close to the strip-shaped conductor 5 and electromagnetically coupled. 21 is the auxiliary substrate 1
The electrode (connection conductor) 22 for connecting the varactor diode 20 formed in 4 is a second choke-type bias supply line formed on the main surface of the wiring board 23. 23 is
A modulation circuit board provided with a varactor diode 20;
A second choke type bias supply line 22 is formed on the main surface, and the main surface is installed perpendicular to the parallel plate conductor 1, and the second choke type bias supply line 22 is provided upright in the middle of the second choke type bias supply line 22. And an auxiliary substrate 14 having, on its main surface, a connecting conductor continuous with the second choke type bias supply line 22.
【0098】本実施形態において、好ましくは、周波数
変調用ダイオードのバラクタダイオード20と帯状導体
5との間隔をλ以下とする。λよりも大きいと、バラク
タダイオード20の容量変化による周波数の変調が困難
となり、周波数変調幅が小さくなる。より好ましくは、
周波数変調用ダイオードと帯状導体5との間隔は0.1
mm〜λであり、0.1mm未満では電極21と帯状導
体5とが接触し易くなる。In the present embodiment, preferably, the distance between the varactor diode 20 of the frequency modulation diode and the strip conductor 5 is set to λ or less. If it is larger than λ, it becomes difficult to modulate the frequency due to a change in the capacitance of the varactor diode 20, and the frequency modulation width becomes smaller. More preferably,
The distance between the frequency modulation diode and the strip conductor 5 is 0.1
If it is less than 0.1 mm, the electrode 21 and the strip-shaped conductor 5 are likely to come into contact with each other.
【0099】また、バラクタダイオード20の帯状導体
5に対する位置は、帯状導体5の中心部から、チョーク
型バイアス供給線路4a側、またはガンダイオード3側
へ帯状導体5の長さの1/4程度までの範囲が良い。バ
ラクタダイオード20が、帯状導体5の中心部よりもガ
ンダイオード3側へ帯状導体5の長さの1/4を超えて
近くなると発振出力が低下し、チョーク型バイアス供給
線路4a側へ帯状導体5の長さの1/4を超えて配置さ
れると、周波数変調幅が小さくなる。The position of the varactor diode 20 with respect to the band-shaped conductor 5 is from the center of the band-shaped conductor 5 to the choke-type bias supply line 4a or the Gunn diode 3 side to about 1/4 of the length of the band-shaped conductor 5. Good range. When the varactor diode 20 is closer to the Gunn diode 3 side than the center of the band-shaped conductor 5 by more than 1/4 of the length of the band-shaped conductor 5, the oscillation output is reduced, and the band-shaped conductor 5 is moved to the choke-type bias supply line 4a side. If the length is more than 1/4 of the length, the frequency modulation width becomes smaller.
【0100】上記実施形態では、バラクタダイオード2
0のバイアス電圧印加方向が、帯状導体5で生じる電界
の方向、即ち平行平板導体1に平行な方向かつ帯状導体
5表面に垂直な方向に合致するようにしたが、帯状導体
5より生じる電界は帯状導体5から離れるに従い広が
り、平行平板導体1に垂直な方向の成分が発生する。従
って、平行平板導体1に垂直な方向の電界にバラクタダ
イオード20のバイアス電圧印加方向を合致させるよう
に設けることもできる。In the above embodiment, the varactor diode 2
The direction of applying the bias voltage of 0 is set to match the direction of the electric field generated in the strip conductor 5, that is, the direction parallel to the parallel plate conductor 1 and the direction perpendicular to the surface of the strip conductor 5. The component spreads away from the strip conductor 5 and a component in a direction perpendicular to the parallel plate conductor 1 is generated. Therefore, the varactor diode 20 may be provided so that the bias voltage application direction of the varactor diode 20 matches the electric field in the direction perpendicular to the parallel plate conductor 1.
【0101】さらに、本発明の他の実施形態について、
図10〜図12に示す。図11(a),(b)、図12
(a),(b)は、2種類の周波数調整部材周辺の部分
平面図および側断面図をそれぞれ示すものである。これ
らの図に示すように、一方の平行平板導体1には、帯状
導体5近傍に位置し厚さ方向に貫通する貫通孔28と、
貫通孔28に挿置されかつ平行平板導体1間側の表面よ
り突出して帯状導体5に近接し電磁結合する柱状の周波
数調整部材29とが設けられている。この場合、平行平
板導体1の外側より周波数調整部材29を挿入して、位
置調整をすることができる。Further, regarding another embodiment of the present invention,
This is shown in FIGS. 11 (a), (b), FIG.
(A) and (b) show a partial plan view and a side sectional view around two types of frequency adjustment members, respectively. As shown in these figures, one parallel plate conductor 1 has a through hole 28 located in the vicinity of the strip-shaped conductor 5 and penetrating in the thickness direction.
A columnar frequency adjusting member 29 which is inserted in the through hole 28 and protrudes from the surface between the parallel plate conductors 1 and is close to the band-shaped conductor 5 and electromagnetically coupled is provided. In this case, the position can be adjusted by inserting the frequency adjusting member 29 from the outside of the parallel plate conductor 1.
【0102】また図12の実施形態は、貫通孔30にネ
ジ切りを施し、これにネジ状の周波数調整部材31を螺
合させ挿入することで、ネジの回転により周波数調整部
材31の突出長を微調整でき、さらに微妙な発振周波数
の制御が可能になる。In the embodiment shown in FIG. 12, the through-hole 30 is threaded, and a screw-shaped frequency adjusting member 31 is screwed into the through-hole 30 and inserted. Fine adjustment is possible, and finer control of the oscillation frequency becomes possible.
【0103】これらの実施形態において、周波数調整部
材29,31の高周波ダイオード発振器内部への突出部
の形状を先細り状,テーパー状とすることにより、さら
に微妙な制御ができる。また、突出部の形状を種々に変
化させたものを複数用意し、それらを所望の特性に応じ
て使用することもできる。例えば、発振周波数の変化
幅、発振周波数の変化率、Q特性等について、種々の制
御が可能なように、複数種の周波数調整部材29,31
を使用してもよい。これらの周波数調整部材29,31
は、帯状導体5に近接する位置に複数設けても良く、例
えば断面積の大きなものと断面積の小さなものとを設
け、断面積の大きなものにより周波数を粗調整し、断面
積の小さなものにより周波数を微調整することもでき
る。In these embodiments, more delicate control can be performed by making the shape of the projecting portions of the frequency adjusting members 29 and 31 into the high-frequency diode oscillator tapered or tapered. In addition, a plurality of protrusions having variously changed shapes can be prepared and used according to desired characteristics. For example, a plurality of types of frequency adjusting members 29 and 31 are provided so that various control can be performed on the change width of the oscillation frequency, the change rate of the oscillation frequency, the Q characteristic, and the like.
May be used. These frequency adjusting members 29, 31
May be provided at a position close to the band-shaped conductor 5, for example, one having a large cross-sectional area and one having a small cross-sectional area are provided, and the frequency is roughly adjusted by using a large cross-sectional area. The frequency can be fine-tuned.
【0104】さらには、一対の平行平板導体1,1の両
方に対向する貫通孔を設け、それらの貫通孔に一本の周
波数調整部材29,31を挿入する、または平行平板導
体1,1の両方に対向しない貫通孔を設け、それらの貫
通孔に周波数調整部材29,31を一本ずつ挿入するこ
ともできる。上記実施形態においては、円柱状の周波数
調整部材29について説明したが、円柱状に限らず、三
角柱状,四角柱状等の角柱状、円錐状,角錐状、突出端
部が半球状のもの等種々の形状とし得る。また、周波数
調整部材29の断面形状を凸型,逆T型等として、一端
に突出長さを制限する止め部を設けてもよい。あるい
は、周波数調整部材29,31の内部を空洞として軽量
化、低コスト化を行ってもよく、また周波数調整部材2
9,31を複数種の材質から構成してもよい。Further, through holes are provided in both the pair of parallel plate conductors 1 and 1 facing each other, and a single frequency adjusting member 29 or 31 is inserted into those through holes, or It is also possible to provide through holes that do not face each other, and insert the frequency adjusting members 29 and 31 one by one into those through holes. In the above embodiment, the column-shaped frequency adjustment member 29 has been described. The shape may be Further, the cross-sectional shape of the frequency adjusting member 29 may be a convex shape, an inverted T type, or the like, and a stopper for limiting the protruding length may be provided at one end. Alternatively, the interior of the frequency adjusting members 29 and 31 may be hollowed to reduce the weight and cost, and the frequency adjusting member 2 may be used.
9, 31 may be composed of a plurality of types of materials.
【0105】周波数調整部材29,31の材料として
は、コーディエライト(2MgO・2Al2O3・5Si
O2)セラミックス,アルミナ(Al2O3)セラミック
ス等の誘電体、またはCu,Al,Fe,SUS(ステ
ンレス)等の金属が良く、上記誘電体は高周波信号に対
する誘電体損失が小さく、上記金属は加工性に優れる。The material of the frequency adjusting members 29 and 31 is cordierite (2MgO.2Al 2 O 3 .5Si).
A dielectric such as O 2 ) ceramics or alumina (Al 2 O 3 ) ceramics or a metal such as Cu, Al, Fe, SUS (stainless steel) is preferable. Has excellent workability.
【0106】このように、周波数調整部材29,31を
帯状導体5に近接させ、周波数調整部材29,31の突
出長さ、即ち電磁結合長を調整することで、帯状導体5
と周波数調整部材29,31との間の結合容量を変化さ
せ、その結果チョーク型バイアス供給線路4aと帯状導
体5とから成る共振器の実質的な共振器長を微妙に調整
できる。例えば、帯状導体5の電気的な共振器長を略
{(3/4)+n}λよりも僅かに大きくし、発振周波
数を低くすることが可能となる。As described above, by bringing the frequency adjusting members 29 and 31 close to the band-shaped conductor 5 and adjusting the protrusion length of the frequency adjusting members 29 and 31, that is, the electromagnetic coupling length, the band-shaped conductor 5 is adjusted.
The coupling capacitance between the frequency adjusting members 29 and 31 is changed, and as a result, the substantial resonator length of the resonator including the choke-type bias supply line 4a and the band-shaped conductor 5 can be finely adjusted. For example, it is possible to reduce the oscillation frequency by making the electrical resonator length of the band-shaped conductor 5 slightly larger than approximately {(3/4) + n} λ.
【0107】そして、周波数調整部材29,31と帯状
導体5との距離はλ/2以下が好ましく、λ/4以下が
より好ましい。例えば、発振周波数が約77GHzでは
0.05〜2mmとするのが良い。0.05mm未満で
は周波数調整部材29,31と帯状導体5とが接触し易
くなり、2mmを超えると周波数調整部材29,31と
帯状導体5とが電磁結合し難くなり、発振周波数の制御
が困難になる。The distance between the frequency adjusting members 29 and 31 and the strip conductor 5 is preferably λ / 2 or less, more preferably λ / 4 or less. For example, when the oscillation frequency is about 77 GHz, the thickness is preferably 0.05 to 2 mm. If it is less than 0.05 mm, the frequency adjusting members 29 and 31 and the strip-shaped conductor 5 are easily in contact with each other. If it exceeds 2 mm, the frequency adjusting members 29 and 31 and the strip-shaped conductor 5 are hardly electromagnetically coupled, and it is difficult to control the oscillation frequency. become.
【0108】さらに、周波数調整部材29,31と帯状
導体5との距離だけでなく、周波数調整部材29,31
の帯状導体5に対向する面の面積を調整することによっ
ても、発振周波数の制御が可能であり、対向する面の面
積が小さい場合は細かな制御ができるとともに周波数変
調可能幅が小さくなり、対向する面の面積が大きい場合
は相対的に粗い制御となり周波数変調可能幅も大きくな
る。好ましくは、対向する面の面積は0.5〜3mm2
が良く、0.5mm2未満では発振周波数の制御が困難
であり、3mm2を超えると、周波数調整部材9,11
と誘電体線路6とが電磁結合しそれが無視できない程度
に大きくなる。Further, not only the distance between the frequency adjusting members 29, 31 and the strip-shaped conductor 5, but also the frequency adjusting members 29, 31
The oscillation frequency can also be controlled by adjusting the area of the surface facing the band-shaped conductor 5. When the area of the facing surface is small, fine control can be performed and the frequency modulation width can be reduced. When the area of the surface to be controlled is large, the control is relatively coarse, and the frequency modulatable width becomes large. Preferably, the area of the facing surface is 0.5 to 3 mm 2
If it is less than 0.5 mm 2, it is difficult to control the oscillation frequency, and if it exceeds 3 mm 2 , the frequency adjusting members 9 and 11
And the dielectric line 6 are electromagnetically coupled to each other and become large to a degree that cannot be ignored.
【0109】かくして、本発明のミリ波送受信器は、チ
ョーク型バイアス供給線路と帯状導体とが高周波ダイオ
ードの発振周波数を決定する共振器として機能し、金属
ストリップ共振器等の別個の共振器が不要となり、従っ
て高周波ダイオードマウント用の金属部材と誘電体線路
との位置決めが容易になり、製造の作業性が大幅に向上
する。また、金属ストリップ共振器等の別個の共振器に
よる損失が解消され、高周波信号の伝搬特性が向上し、
その結果、ミリ波レーダ等に適用した場合に、探知レン
ジ、探知距離、ターゲットの位置探知、ターゲットの速
度探知等の性能が向上するとともに安定したものとな
る。さらに、本発明は、ミリ波信号の伝送特性に優れ、
ミリ波レーダーの探知距離を増大し得るものとなり(図
13のもの)、また送信用のミリ波信号がサーキュレー
タを介してミキサーへ混入することがなく、その結果受
信信号のノイズが低減し探知距離がさらに増大する(図
14のもの)。Thus, in the millimeter wave transceiver according to the present invention, the choke-type bias supply line and the strip conductor function as a resonator that determines the oscillation frequency of the high-frequency diode, and a separate resonator such as a metal strip resonator is not required. Therefore, the positioning between the metal member for the high-frequency diode mount and the dielectric line is facilitated, and the workability in manufacturing is greatly improved. In addition, loss due to a separate resonator such as a metal strip resonator is eliminated, and the propagation characteristics of a high-frequency signal are improved.
As a result, when applied to a millimeter wave radar or the like, the performance of the detection range, the detection distance, the target position detection, the target speed detection, and the like is improved and the performance is stable. Furthermore, the present invention has excellent transmission characteristics of millimeter wave signals,
The detection distance of the millimeter wave radar can be increased (FIG. 13), and the transmission millimeter wave signal does not enter the mixer via the circulator, and as a result, the noise of the reception signal is reduced and the detection distance is reduced. Is further increased (as shown in FIG. 14).
【0110】なお、本発明は上記実施形態に限定される
ものではなく、本発明の要旨を逸脱しない範囲内におい
て種々の変更を行うことは何等差し支えない。The present invention is not limited to the above embodiment, and various changes may be made without departing from the spirit of the present invention.
【0111】[0111]
【発明の効果】本発明は、送信アンテナと受信アンテナ
とが一体化したミリ波送受信器、または送信アンテナと
受信アンテナとが独立したミリ波送受信器において、高
周波ダイオードは金属部材に設置されており、金属部材
は、幅の広い線路と幅の狭い線路が交互に形成され高周
波ダイオードにバイアス電圧を供給するチョーク型バイ
アス供給線路と、チョーク型バイアス供給線路および高
周波ダイオードを直線状に接続する帯状導体とが設けら
れるとともに、チョーク型バイアス供給線路の幅の広い
線路および幅の狭い線路の長さがそれぞれ略λ/4、帯
状導体の長さが略{(3/4)+n}λ(nは0以上の
整数)であることにより、チョーク型バイアス供給線路
と帯状導体とが高周波ダイオードの発振周波数を決定す
る共振器として機能し、金属ストリップ共振器等の別個
の共振器が不要となり、従って高周波ダイオードマウン
ト用の金属部材と誘電体線路との位置決めが容易にな
り、製造の作業性が大幅に向上する。また、金属ストリ
ップ共振器等の別個の共振器による損失が解消され、高
周波信号の伝搬特性が向上し、その結果、ミリ波レーダ
等に適用した場合に、探知レンジ、探知距離、ターゲッ
トの位置探知、ターゲットの速度探知等の性能が向上す
るとともに安定したものとなる。According to the present invention, there is provided a millimeter-wave transceiver in which a transmitting antenna and a receiving antenna are integrated, or a millimeter-wave transceiver in which the transmitting antenna and the receiving antenna are independent, wherein the high-frequency diode is provided on a metal member. The metal member includes a choke-type bias supply line in which a wide line and a narrow line are alternately formed to supply a bias voltage to a high-frequency diode, and a band-shaped conductor that linearly connects the choke-type bias supply line and the high-frequency diode. And the lengths of the wide and narrow choke-type bias supply lines are approximately λ / 4, and the length of the strip conductor is approximately {(3/4) + n} λ (n is (An integer of 0 or more), the choke-type bias supply line and the strip conductor function as a resonator that determines the oscillation frequency of the high-frequency diode. However, a separate resonator such as a metal strip resonator is not required, so that the positioning of the metal member for the high-frequency diode mount and the dielectric line is facilitated, and the workability in manufacturing is greatly improved. In addition, loss due to a separate resonator such as a metal strip resonator is eliminated, and the propagation characteristics of a high-frequency signal are improved. As a result, when applied to a millimeter wave radar or the like, a detection range, a detection distance, and a target position detection are obtained. Thus, the performance of detecting the speed of the target can be improved and the target can be stabilized.
【0112】また本発明は、好ましくは、帯状導体の主
面と対向する主面を有する誘電体チップを、帯状導体に
近接配置し電磁結合させたことにより、高周波ダイオー
ド発振器の発振周波数の調整が容易になり、発振周波数
が安定するため製造歩留まりが向上し量産性も向上す
る。Further, according to the present invention, preferably, the oscillation frequency of the high-frequency diode oscillator is adjusted by arranging a dielectric chip having a main surface facing the main surface of the strip conductor close to the strip conductor and electromagnetically coupling the dielectric chip. As a result, the oscillation frequency becomes stable, so that the production yield is improved and the mass productivity is improved.
【0113】また好ましくは、バイアス電圧印加方向が
帯状導体に生じる電界に平行な方向とされた周波数変調
用ダイオードを帯状導体に近接配置して電磁結合させた
ことにより、帯状導体に周波数変調用ダイオードを設け
た変調回路基板を近接配置して電磁結合させるととも
に、周波数変調用ダイオードに印加するバイアス電圧を
変化させることで、発振周波数を制御できる。また、誘
電体線路中に周波数変調用ダイオードを配置する必要が
ないため、損失が小さく高出力が得られるとともに、全
体が小型化する。さらに、周波数変調用ダイオードの位
置を調整することにより、共振器としても機能する帯状
導体と周波数変調用ダイオードとの電磁結合の強さを変
えることができ、それにより周波数変調幅を調整し得
る。Preferably, a frequency modulation diode whose bias voltage is applied in a direction parallel to an electric field generated in the band-shaped conductor is disposed close to the band-shaped conductor and electromagnetically coupled, so that the frequency-modulation diode is applied to the band-shaped conductor. The oscillation frequency can be controlled by arranging the modulation circuit board provided with in close proximity for electromagnetic coupling and changing the bias voltage applied to the frequency modulation diode. Further, since it is not necessary to dispose a frequency modulation diode in the dielectric line, loss is small, high output is obtained, and the whole is downsized. Further, by adjusting the position of the frequency modulation diode, the strength of the electromagnetic coupling between the band-shaped conductor, which also functions as a resonator, and the frequency modulation diode can be changed, thereby adjusting the frequency modulation width.
【0114】また好ましくは、周波数変調用ダイオード
は、第2のチョーク型バイアス供給線路が主面に形成さ
れかつその主面が平行平板導体に対し垂直に設置される
配線基板と、第2のチョーク型バイアス供給線路の中途
に立設されかつ第2のチョーク型バイアス供給線路に連
続する接続導体をその主面上に有する補助基板とから成
る変調回路基板上に設置されて、補助基板の前記接続導
体の中途に接続されていることにより、変調回路基板の
上面視における形状が凸型となり、位置ずれや捩じれ等
が小さくなり設置の安定性がきわめて高くなる。また、
周波数変調用ダイオードのバイアス電圧印加方向を高周
波信号の電界方向に合致させた状態で、周波数変調用ダ
イオードを帯状導体に近接配置し、位置調整できるた
め、容易に周波数変調幅を調整可能となる。Preferably, the frequency modulation diode comprises a wiring board having a second choke-type bias supply line formed on the main surface and having the main surface installed perpendicular to the parallel plate conductor. An auxiliary substrate having a connection conductor on the main surface thereof, which is provided in the middle of the type bias supply line and is continuous with the second choke type bias supply line, and is connected to the auxiliary substrate. By being connected in the middle of the conductor, the shape of the modulation circuit board in a top view becomes convex, the displacement and torsion are reduced, and the installation stability becomes extremely high. Also,
In a state where the bias voltage application direction of the frequency modulation diode matches the direction of the electric field of the high-frequency signal, the frequency modulation diode can be arranged close to the strip conductor and the position can be adjusted, so that the frequency modulation width can be easily adjusted.
【0115】また好ましくは、周波数変調用ダイオード
と帯状導体との間隔をλ以下としたことで、高周波信号
の出力を大きくして周波数変調幅を広げることができ
る。Preferably, by setting the distance between the frequency modulation diode and the strip conductor to λ or less, the output of the high-frequency signal can be increased and the frequency modulation width can be widened.
【0116】また好ましくは、少なくとも一方の平行平
板導体の帯状導体近傍に貫通孔を形成し、かつその貫通
孔に平行平板導体間側の表面に突出して帯状導体と電磁
結合する柱状の周波数調整部材を設けたことにより、帯
状導体に周波数調整部材を近接配置して電磁結合させる
際に、周波数調整部材の位置を容易かつ再現性良く微調
整可能な構成とすることで、共振器の実質的な共振器長
を微妙に調整でき、その結果発振周波数を再現性良く微
調整できる。また、周波数調整部材を小型化して位置の
微調整を可能とすることで全体が小型化される。Preferably, a through-hole is formed in the vicinity of the band-shaped conductor of at least one of the parallel plate conductors, and the column-shaped frequency adjusting member protrudes from the through-hole to the surface between the parallel plate conductors and electromagnetically couples with the band-shaped conductor. Is provided, when the frequency adjusting member is arranged close to the band-shaped conductor and electromagnetically coupled, the position of the frequency adjusting member can be finely adjusted easily and with good reproducibility. The resonator length can be finely adjusted, and as a result, the oscillation frequency can be finely adjusted with good reproducibility. In addition, the overall size is reduced by miniaturizing the frequency adjusting member and enabling fine adjustment of the position.
【0117】また好ましくは、周波数調整部材と帯状導
体との距離がλ/2以下であることにより、周波数調整
部材と帯状導体とが良好に電磁結合し、その状態で電磁
結合の度合いを微調整することにより、共振器の実質的
な共振器長を微調整できる。Preferably, when the distance between the frequency adjusting member and the band-shaped conductor is λ / 2 or less, the frequency adjusting member and the band-shaped conductor are satisfactorily electromagnetically coupled to each other, and in this state, the degree of electromagnetic coupling is finely adjusted. By doing so, the substantial resonator length of the resonator can be finely adjusted.
【図1】本発明のミリ波送受信器用の高周波ダイオード
発振器の一実施形態の斜視図である。FIG. 1 is a perspective view of an embodiment of a high-frequency diode oscillator for a millimeter wave transceiver according to the present invention.
【図2】図1の高周波ダイオード発振器のチョーク型バ
イアス供給線路と帯状導体を示す平面図である。FIG. 2 is a plan view showing a choke-type bias supply line and a strip conductor of the high-frequency diode oscillator of FIG.
【図3】本発明の高周波ダイオード発振器の他の実施形
態の斜視図である。FIG. 3 is a perspective view of another embodiment of the high-frequency diode oscillator of the present invention.
【図4】図3において、誘電体チップと帯状導体および
ガンダイオード周辺の部分断面図である。FIG. 4 is a partial cross-sectional view of FIG. 3 around a dielectric chip, a strip conductor, and a Gunn diode.
【図5】本発明の高周波ダイオード発振器の他の実施形
態の斜視図である。FIG. 5 is a perspective view of another embodiment of the high-frequency diode oscillator of the present invention.
【図6】図5において、周波数調整部材周辺の部分断面
図である。FIG. 6 is a partial cross-sectional view around a frequency adjustment member in FIG.
【図7】図5において、他の周波数調整部材周辺の部分
断面図である。FIG. 7 is a partial sectional view around another frequency adjusting member in FIG. 5;
【図8】本発明の高周波ダイオード発振器の他の実施形
態の斜視図である。FIG. 8 is a perspective view of another embodiment of the high-frequency diode oscillator of the present invention.
【図9】図8において、周波数変調用ダイオードを設け
た変調回路基板の斜視図である。FIG. 9 is a perspective view of a modulation circuit board provided with a frequency modulation diode in FIG.
【図10】本発明の高周波ダイオード発振器の他の実施
形態の斜視図である。FIG. 10 is a perspective view of another embodiment of the high-frequency diode oscillator of the present invention.
【図11】図10において、(a)はチョーク型バイア
ス供給線路,帯状導体および円柱状の周波数調整部材の
平面図、(b)は(a)の側断面図である。11A is a plan view of a choke-type bias supply line, a band-shaped conductor and a columnar frequency adjusting member, and FIG. 10B is a side sectional view of FIG.
【図12】図10において、(a)はチョーク型バイア
ス供給線路,帯状導体およびネジ状の周波数調整部材の
平面図、(b)は(a)の側断面図である。12A is a plan view of a choke-type bias supply line, a band-shaped conductor and a screw-shaped frequency adjusting member, and FIG. 12B is a side sectional view of FIG.
【図13】本発明の送受信アンテナを備えたNRDガイ
ド型のミリ波送受信器の内部の平面図である。FIG. 13 is a plan view of the inside of an NRD guide type millimeter wave transceiver equipped with the transmission / reception antenna of the present invention.
【図14】本発明の送信アンテナと受信アンテナを備え
たNRDガイド型のミリ波送受信器の内部の平面図であ
る。FIG. 14 is a plan view of the inside of an NRD guide type millimeter wave transceiver including a transmission antenna and a reception antenna according to the present invention.
【図15】従来の高周波ダイオード発振器の斜視図であ
る。FIG. 15 is a perspective view of a conventional high-frequency diode oscillator.
【図16】図15の高周波ダイオード発振器のチョーク
型バイアス供給線路と帯状導体を示す平面図である。16 is a plan view showing a choke-type bias supply line and a strip conductor of the high-frequency diode oscillator of FIG.
【図17】従来の発振周波数を変調可能な高周波ダイオ
ード発振器の斜視図である。FIG. 17 is a perspective view of a conventional high-frequency diode oscillator capable of modulating an oscillation frequency.
【図18】図17の周波数変調用のバラクタダイオード
を設けた配線基板の斜視図である。18 is a perspective view of a wiring board provided with the varactor diode for frequency modulation of FIG. 17;
1:平行平板導体 2:金属部材 3:ガンダイオード 4:配線基板 5:帯状導体 7:誘電体線路 43:第1の誘電体線路 44:サーキュレータ 46:送受信アンテナ 45:第3の誘電体線路 47:第4の誘電体線路 48:第2の誘電体線路 49:ミキサー 1: parallel plate conductor 2: metal member 3: gun diode 4: wiring board 5: strip conductor 7: dielectric line 43: first dielectric line 44: circulator 46: transmitting / receiving antenna 45: third dielectric line 47 : Fourth dielectric line 48: Second dielectric line 49: Mixer
Claims (14)
で配置した平行平板導体間に、 高周波ダイオードが一端部に付設され、前記高周波ダイ
オードから出力されたミリ波信号を伝搬させる第1の誘
電体線路と、 バイアス電圧印加方向が前記ミリ波信号の電界方向に合
致するように配置され、前記バイアス電圧を周期的に制
御することによって前記ミリ波信号を周波数変調した送
信用のミリ波信号として出力する周波数変調用ダイオー
ドと、 前記第1の誘電体線路に一端側が電磁結合するように近
接配置されるかまたは前記第1の誘電体線路に一端が接
合されて、前記ミリ波信号の一部をミキサー側へ伝搬さ
せる第2の誘電体線路と、 前記平行平板導体に平行に配設されたフェライト板の周
縁部に所定間隔で配置されかつそれぞれ前記ミリ波信号
の入出力端とされた第1の接続部,第2の接続部および
第3の接続部を有し、一つの前記接続部から入力された
前記ミリ波信号をフェライト板の面内で時計回りまたは
反時計回りに隣接する他の接続部より出力させるサーキ
ュレータであって、前記第1の誘電体線路の前記ミリ波
信号の出力端に前記第1の接続部が接合されるサーキュ
レータと、 該サーキュレータの第2の接続部に接合され、前記ミリ
波信号を伝搬させるとともに先端部に送受信アンテナを
有する第3の誘電体線路と、 前記送受信アンテナで受信され第3の誘電体線路を伝搬
して前記サーキュレータの第3の接続部より出力した受
信波をミキサー側へ伝搬させる第4の誘電体線路と、 前記第2の誘電体線路の中途と前記第4の誘電体線路の
中途とを近接させて電磁結合させるかまたは接合させる
ことにより、ミリ波信号の一部と受信波とを混合させて
中間周波信号を発生させるミキサー部と、を設けたミリ
波送受信器において、 前記高周波ダイオードは金属部材に設置されており、該
金属部材は、幅の広い線路と幅の狭い線路が交互に形成
され前記高周波ダイオードにバイアス電圧を供給するチ
ョーク型バイアス供給線路と、該チョーク型バイアス供
給線路および前記高周波ダイオードを直線状に接続する
帯状導体とが設けられるとともに、前記チョーク型バイ
アス供給線路の幅の広い線路および幅の狭い線路の長さ
がそれぞれ略λ/4、前記帯状導体の長さが略{(3/
4)+n}λ(nは0以上の整数)であることを特徴と
するミリ波送受信器。1. A high-frequency diode is provided at one end between parallel plate conductors arranged at an interval of one half or less of a wavelength λ of a millimeter-wave signal, and the millimeter-wave signal output from the high-frequency diode is propagated. A first dielectric line, which is arranged so that a bias voltage application direction coincides with an electric field direction of the millimeter wave signal, and controls the bias voltage periodically to transmit the millimeter wave signal by frequency modulation. A frequency modulation diode that outputs as a millimeter wave signal, and one end is disposed close to the first dielectric line so as to be electromagnetically coupled, or one end is joined to the first dielectric line, and the millimeter wave A second dielectric line for transmitting a part of the signal to the mixer side; and a second dielectric line disposed at a predetermined interval on a peripheral portion of a ferrite plate disposed in parallel with the parallel plate conductor and each of the millimeter lines A first connection portion, a second connection portion, and a third connection portion serving as signal input / output terminals, wherein the millimeter wave signal input from one of the connection portions is clocked in a plane of a ferrite plate; A circulator for outputting an output from another connection portion adjacent in a clockwise or counterclockwise direction, wherein the first connection portion is joined to an output end of the millimeter wave signal of the first dielectric line; A third dielectric line that is joined to the second connection of the circulator and propagates the millimeter wave signal and has a transmitting and receiving antenna at the tip end; and a third dielectric line that is received by the transmitting and receiving antenna and propagates through the third dielectric line. A fourth dielectric line for transmitting a reception wave output from a third connection portion of the circulator to the mixer side, and a middle of the second dielectric line and a middle of the fourth dielectric line are brought close to each other. Electromagnetic coupling Or a mixer unit that mixes a part of the millimeter wave signal and the received wave to generate an intermediate frequency signal by causing or joining the millimeter wave signal, wherein the high frequency diode is installed on a metal member. The metal member includes a choke-type bias supply line in which a wide line and a narrow line are alternately formed to supply a bias voltage to the high-frequency diode, and a straight line connecting the choke-type bias supply line and the high-frequency diode. And the length of the wide and narrow lines of the choke-type bias supply line is approximately λ / 4, and the length of the band-like conductor is approximately {(3 /
4) A millimeter wave transceiver, wherein + n} λ (n is an integer of 0 or more).
る誘電体チップを、前記帯状導体に近接配置し電磁結合
させたことを特徴とする請求項1記載のミリ波送受信
機。2. The millimeter-wave transceiver according to claim 1, wherein a dielectric chip having a main surface facing the main surface of the strip conductor is disposed close to the strip conductor and electromagnetically coupled.
じる電界に平行な方向とされた前記周波数変調用ダイオ
ードを前記帯状導体に近接配置して電磁結合させたこと
を特徴とする請求項1記載のミリ波送受信器。3. The frequency modulation diode in which a bias voltage is applied in a direction parallel to an electric field generated in the band-shaped conductor is disposed close to the band-shaped conductor and electromagnetically coupled. Millimeter wave transceiver.
ョーク型バイアス供給線路が主面に形成されかつ該主面
が前記平行平板導体に対し垂直に設置される配線基板
と、前記第2のチョーク型バイアス供給線路の中途に立
設されかつ前記第2のチョーク型バイアス供給線路に連
続する接続導体をその主面上に有する補助基板とから成
る変調回路基板上に設置されて、前記補助基板の前記接
続導体の中途に接続されていることを特徴とする請求項
3記載のミリ波送受信器。4. A frequency-modulating diode, comprising: a wiring board having a second choke-type bias supply line formed on a main surface thereof and having the main surface installed perpendicular to the parallel plate conductor; An auxiliary substrate provided on a principal surface of the choke-type bias supply line, the auxiliary circuit having a connection conductor connected to the second choke-type bias supply line on its main surface; 4. The millimeter wave transceiver according to claim 3, wherein the transceiver is connected in the middle of the connection conductor.
体との間隔をλ以下としたことを特徴とする請求項3ま
たは請求項4記載のミリ波送受信器。5. The millimeter wave transceiver according to claim 3, wherein an interval between the frequency modulation diode and the strip conductor is set to λ or less.
帯状導体近傍に貫通孔を形成し、かつ該貫通孔に前記平
行平板導体間側の表面に突出して前記帯状導体と電磁結
合する柱状の周波数調整部材を設けたことを特徴とする
請求項1記載のミリ波送受信器。6. A columnar frequency in which at least one of the parallel plate conductors has a through-hole formed in the vicinity of the band-shaped conductor and protrudes from the through-hole on the surface between the parallel plate conductors and is electromagnetically coupled to the band-shaped conductor. The millimeter wave transceiver according to claim 1, further comprising an adjusting member.
離がλ/2以下であることを特徴とする請求項6記載の
ミリ波送受信器。7. The millimeter wave transceiver according to claim 6, wherein a distance between said frequency adjusting member and said strip conductor is λ / 2 or less.
で配置した平行平板導体間に、 高周波ダイオードが一端部に付設され、前記高周波ダイ
オードから出力されたミリ波信号を伝搬させる第1の誘
電体線路と、 バイアス電圧印加方向が前記ミリ波信号の電界方向に合
致するように配置され、前記バイアス電圧を周期的に制
御することによって前記ミリ波信号を周波数変調した送
信用のミリ波信号として出力する周波数変調用ダイオー
ドと、 前記第1の誘電体線路に一端側が電磁結合するように近
接配置されるかまたは前記第1の誘電体線路に一端が接
合されて、前記ミリ波信号の一部をミキサー側へ伝搬さ
せる第2の誘電体線路と、 前記平行平板導体に平行に配設されたフェライト板の周
縁部に所定間隔で配置されかつそれぞれ前記ミリ波信号
の入出力端とされた第1の接続部,第2の接続部および
第3の接続部を有し、一つの前記接続部から入力された
前記ミリ波信号をフェライト板の面内で時計回りまたは
反時計回りに隣接する他の接続部より出力させるサーキ
ュレータであって、前記第1の誘電体線路の前記ミリ波
信号の出力端に前記第1の接続部が接合されるサーキュ
レータと、 該サーキュレータの第2の接続部に接続され、前記ミリ
波信号を伝搬させるとともに先端部に送信アンテナを有
する第3の誘電体線路と、 先端部に受信アンテナ、他端部にミキサーが各々設けら
れた第4の誘電体線路と、 前記サーキュレータの第3の接続部に接続され、前記送
信アンテナで受信混入したミリ波信号を伝搬させるとと
もに先端部に設けられた無反射終端部で前記ミリ波信号
を減衰させる第5の誘電体線路と、 前記第2の誘電体線路の中途と前記第4の誘電体線路の
中途とを近接させて電磁結合させるかまたは接合させる
ことにより、ミリ波信号の一部と受信波とを混合させて
中間周波信号を発生させるミキサー部と、を設けたミリ
波送受信器において、 前記高周波ダイオードは金属部材に設置されており、該
金属部材は、幅の広い線路と幅の狭い線路が交互に形成
され前記高周波ダイオードにバイアス電圧を供給するチ
ョーク型バイアス供給線路と、該チョーク型バイアス供
給線路および前記高周波ダイオードを直線状に接続する
帯状導体とが設けられるとともに、前記チョーク型バイ
アス供給線路の幅の広い線路および幅の狭い線路の長さ
がそれぞれ略λ/4、前記帯状導体の長さが略{(3/
4)+n}λ(nは0以上の整数)であることを特徴と
するミリ波送受信器。8. A high-frequency diode is provided at one end between parallel plate conductors arranged at an interval equal to or less than half the wavelength λ of the millimeter-wave signal, and the millimeter-wave signal output from the high-frequency diode is propagated. A first dielectric line, which is arranged so that a bias voltage application direction coincides with an electric field direction of the millimeter wave signal, and controls the bias voltage periodically to transmit the millimeter wave signal by frequency modulation. A frequency modulation diode that outputs as a millimeter wave signal, and one end is disposed close to the first dielectric line so as to be electromagnetically coupled, or one end is joined to the first dielectric line, and the millimeter wave A second dielectric line for transmitting a part of the signal to the mixer side; and a second dielectric line disposed at a predetermined interval on a peripheral portion of a ferrite plate disposed in parallel with the parallel plate conductor and each of the millimeter lines A first connection portion, a second connection portion, and a third connection portion serving as signal input / output terminals, wherein the millimeter wave signal input from one of the connection portions is clocked in a plane of a ferrite plate; A circulator for outputting an output from another connection portion adjacent in a clockwise or counterclockwise direction, wherein the first connection portion is joined to an output end of the millimeter wave signal of the first dielectric line; A third dielectric line connected to a second connection portion of the circulator for transmitting the millimeter wave signal and having a transmission antenna at a distal end; a reception antenna at a distal end; and a mixer at the other end. A fourth dielectric line, which is connected to a third connection portion of the circulator, propagates the millimeter-wave signal received and mixed by the transmission antenna, and transmits the millimeter-wave signal at a non-reflection terminal portion provided at a tip end; A part of the millimeter wave signal is obtained by electromagnetically coupling or joining a fifth dielectric line to be attenuated and a middle part of the second dielectric line and a middle part of the fourth dielectric line so as to be close to each other. And a mixer unit for generating an intermediate frequency signal by mixing the received wave and the received wave, wherein the high-frequency diode is installed on a metal member, and the metal member has a wide line and a wide line. A choke-type bias supply line in which narrow lines are alternately formed to supply a bias voltage to the high-frequency diode; The length of the wide and narrow lines of the bias supply line is approximately λ / 4, and the length of the strip conductor is approximately {(3 /
4) A millimeter wave transceiver, wherein + n} λ (n is an integer of 0 or more).
る誘電体チップを、前記帯状導体に近接配置し電磁結合
させたことを特徴とする請求項8記載のミリ波送受信
機。9. The millimeter wave transceiver according to claim 8, wherein a dielectric chip having a main surface opposed to the main surface of said strip conductor is disposed close to said strip conductor and electromagnetically coupled.
生じる電界に平行な方向とされた前記周波数変調用ダイ
オードを前記帯状導体に近接配置して電磁結合させたこ
とを特徴とする請求項8記載のミリ波送受信器。10. The frequency modulation diode in which a bias voltage is applied in a direction parallel to an electric field generated in the band-shaped conductor, and the frequency modulation diode is disposed close to the band-shaped conductor and electromagnetically coupled. Millimeter wave transceiver.
チョーク型バイアス供給線路が主面に形成されかつ該主
面が前記平行平板導体に対し垂直に設置される配線基板
と、前記第2のチョーク型バイアス供給線路の中途に立
設されかつ前記第2のチョーク型バイアス供給線路に連
続する接続導体をその主面上に有する補助基板とから成
る変調回路基板上に設置されて、前記補助基板の前記接
続導体の中途に接続されていることを特徴とする請求項
10記載のミリ波送受信器。11. The frequency modulation diode includes: a wiring board having a second choke-type bias supply line formed on a main surface and having the main surface installed perpendicular to the parallel plate conductor; An auxiliary substrate provided on a principal surface of the choke-type bias supply line, the auxiliary circuit having a connection conductor connected to the second choke-type bias supply line on its main surface; 11. The millimeter-wave transceiver according to claim 10, wherein the millimeter-wave transceiver is connected in the middle of the connection conductor.
導体との間隔をλ以下としたことを特徴とする請求項1
0または請求項11記載のミリ波送受信器。12. The apparatus according to claim 1, wherein a distance between the frequency modulation diode and the strip conductor is set to λ or less.
The millimeter wave transceiver according to claim 11 or claim 12.
記帯状導体近傍に貫通孔を形成し、かつ該貫通孔に前記
平行平板導体間側の表面に突出して前記帯状導体と電磁
結合する柱状の周波数調整部材を設けたことを特徴とす
る請求項8記載のミリ波送受信器。13. A columnar frequency which forms a through hole near at least one of the parallel plate conductors in the vicinity of the band-shaped conductor, and protrudes from the through hole on the surface between the parallel plate conductors to electromagnetically couple with the band-shaped conductor. The millimeter wave transceiver according to claim 8, further comprising an adjusting member.
距離がλ/2以下であることを特徴とする請求項13記
載のミリ波送受信器。14. The millimeter wave transceiver according to claim 13, wherein a distance between said frequency adjusting member and said strip conductor is λ / 2 or less.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000193382A JP3631666B2 (en) | 2000-06-27 | 2000-06-27 | Millimeter wave transceiver |
DE10040957A DE10040957B4 (en) | 1999-08-24 | 2000-08-22 | High frequency diode oscillator and device for transmitting / receiving millimeter waves |
US09/645,100 US6630870B1 (en) | 1999-08-24 | 2000-08-23 | High-frequency diode oscillator and millimeter-wave transmitting/receiving apparatus |
US10/630,484 US6744402B2 (en) | 1999-08-24 | 2003-07-29 | High-frequency diode oscillator and millimeter-wave transmitting/receiving apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000193382A JP3631666B2 (en) | 2000-06-27 | 2000-06-27 | Millimeter wave transceiver |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002014155A true JP2002014155A (en) | 2002-01-18 |
JP3631666B2 JP3631666B2 (en) | 2005-03-23 |
Family
ID=18692382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000193382A Expired - Fee Related JP3631666B2 (en) | 1999-08-24 | 2000-06-27 | Millimeter wave transceiver |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3631666B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005073177A (en) * | 2003-08-27 | 2005-03-17 | Kyocera Corp | Substrate for diode mounting, and millimeter wave module |
-
2000
- 2000-06-27 JP JP2000193382A patent/JP3631666B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005073177A (en) * | 2003-08-27 | 2005-03-17 | Kyocera Corp | Substrate for diode mounting, and millimeter wave module |
Also Published As
Publication number | Publication date |
---|---|
JP3631666B2 (en) | 2005-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6630870B1 (en) | High-frequency diode oscillator and millimeter-wave transmitting/receiving apparatus | |
US6882253B2 (en) | Non-radiative dielectric waveguide and millimeter wave transmitting/receiving apparatus | |
JP2002232212A (en) | Pulse modulator for nonradiative dielectric line and millimeter-wave transmitter/receiver using the same | |
JP3631666B2 (en) | Millimeter wave transceiver | |
JP3600799B2 (en) | Non-radiative dielectric line and millimeter wave transceiver | |
JP2002016405A (en) | Non-radiative dielectric line and millimeter wave transmitter/receiver | |
JP3631645B2 (en) | Millimeter wave radar module | |
JP3574793B2 (en) | Non-radiative dielectric line and millimeter wave transceiver | |
JP2001345609A (en) | Milliwave transmitter-receiver | |
JP3559530B2 (en) | Non-radiative dielectric line and millimeter wave transceiver | |
JP3777099B2 (en) | High frequency diode oscillator and millimeter wave transceiver using the same | |
JP3405229B2 (en) | Dielectric line device and transmission device | |
JP2001237618A (en) | Structure for connecting non-radiative dielectric line and metal waveguide, millimeter wave transmitting/ receiving part and millimeter wave transmitter/receiver | |
JP2002135056A (en) | High-frequency diode oscillator and millimeter wave transmitter/receiver using the same | |
JP2003032009A (en) | Nonradioactive dielectric line and millimeter wave transmitter-receiver | |
JP2002043656A (en) | High-frequency diode oscillator and millimeter wave transmitter-receiver using the same | |
JP2001339247A (en) | High-frequency diode oscillator and milliwave transmitter-receiver using the same | |
JP3677475B2 (en) | Non-radiative dielectric lines and millimeter-wave transceivers | |
JP3571000B2 (en) | Pulse modulator for non-radiative dielectric line and millimeter wave transceiver using the same | |
JP2002076776A (en) | Radio frequency diode oscillator and millimeter wave transceiver using the same | |
JP2002135010A (en) | Non-radiative dielectric line and millimeter wave transmitter-receiver | |
JP3623146B2 (en) | Mode suppressor for non-radiative dielectric lines and millimeter wave transceiver using the same | |
JP2002232213A (en) | Nonradiative dielectric line and millimeter-wave transmitter/receiver | |
JP2002164716A (en) | Nonradioactive dielectric line and millimeter wave transmitter/receiver | |
JP2002359506A (en) | Mode suppressor for non-radiative dielectic line, and millimeter-wave transmitter/receiver using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040614 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040622 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040819 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041217 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081224 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091224 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101224 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101224 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111224 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111224 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121224 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |