JP3620998B2 - 導電性物体の端部検出装置 - Google Patents

導電性物体の端部検出装置 Download PDF

Info

Publication number
JP3620998B2
JP3620998B2 JP16476199A JP16476199A JP3620998B2 JP 3620998 B2 JP3620998 B2 JP 3620998B2 JP 16476199 A JP16476199 A JP 16476199A JP 16476199 A JP16476199 A JP 16476199A JP 3620998 B2 JP3620998 B2 JP 3620998B2
Authority
JP
Japan
Prior art keywords
conductive object
electrode
current
frequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16476199A
Other languages
English (en)
Other versions
JP2001056201A (ja
Inventor
宏和 吉田
明 霜鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nireco Corp
Original Assignee
Nireco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nireco Corp filed Critical Nireco Corp
Priority to JP16476199A priority Critical patent/JP3620998B2/ja
Priority to US09/580,969 priority patent/US6448792B1/en
Priority to DE10028486A priority patent/DE10028486C2/de
Publication of JP2001056201A publication Critical patent/JP2001056201A/ja
Application granted granted Critical
Publication of JP3620998B2 publication Critical patent/JP3620998B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/2403Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by moving plates, not forming part of the capacitor itself, e.g. shields

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に帯状をなした導電性物体、例えば金属の端部が検出装置を構成する電極部に入り込む量を検出する装置に関する。
【0002】
【従来の技術】
従来、導電性帯状体の端部の位置を検出する目的のために、様々な手法が考案され、用いられてきた。例えば、光電的に検出するもの、画像情報を用いるもの、電磁的に検出するもの等がある。これらはそれぞれ得失があるため用途に応じて使い分けられてきた。
【0003】
またこれらの方法とともに実用化されている方法に静電容量もしくはこれを媒介として得られる情報の変化を評価する手法がある。原理的に、静電容量を用いた手法は更に2種類に分類される。第1の方法は静電容量の変化そのものを評価する方法であり、その例を図1に示す。交流電源101を導電性帯状体100と電極102との間に印加し電極102間に挿入された導電性帯状体100の挿入量Xによって変化する静電容量を同調コイル104とともに形成される共振周波数の変化として捕らえ共振電流の変化を増幅器103で増幅し挿入量Xを検出する。
【0004】
第2の方法は静電容量を介して伝達される信号、例えば高周波電圧が静電容量に挿入された導電性物体によって変調される度合いを評価する方法である。図2は第2の方法の一例を示す。交流電源101を送信電極102aに印加し送信電極102aと受信電極102b間に挿入された導電性帯状体100の挿入量Xによって変化する電流を増幅器103で増幅し挿入量Xを検出する。
【0005】
第2の方法は入力端子および出力端子を持ち、両者の間に定義される関数の出力を導電性物体の挿入位置によって変化させるものである。第2の方法を簡単化した式で示す。
Y=K・X …(1)
ここにY:出力値,例えば電圧、K:係数、X:導電性物体の電極への挿入量
【0006】
以下に記載する本発明は第2の方法の範疇に属するもので、以降第2の方法を「静電式3端子型」と呼ぶことにする。静電式3端子型の系で用いる励振電源は高周波の交流を用いることが多く、本発明でもこれを用いるが、これは単に実用的性能の実現のし易さから選択されるものであり、0を越えるいかなる周波数を用いても本発明は実現可能である。
【0007】
【発明が解決しようとする課題】
上述した(1)式に示すように、関数は導電性物体の電極への挿入量のみに感受性をもつことが望ましい。しかし、実際には各種の要因が介在し、係数に漂動が起る。次に示す(2)式は(1)式を実体に近い式にしたものである。
Y=(1+α)・K・X …(2)
ここにα:係数の漂動
αは、例えば、空間の誘電率が温度や湿度、気圧などで複雑に変化したり、入出力電極間の物理的距離が変動したりすること、あるいは周囲の電気的反射や漏洩などで変化する。しかし、従来は、αの変動が無いかあるいは微小であるとして(2)式を用いていた。いうまでもなくこのことは実用上の大きな制限事項となり、応用範囲や利便性を損ねていた。
【0008】
本発明は、上述の問題点に鑑みてなされたもので、周囲の状況に影響されないで導電性物体の電極への挿入量を検出する装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明における根本的概念は、(2)式のα、即ち各種の不都合が検出装置の物理的専有空間内では等分に起るであろうとの予測の上に成り立っている。解決手段を説明するにあたり、先ず静電式3端子型の共通基本原理を説明する。図3はこの原理を説明する図である。対向して設けられた送信電極2と受信電極3の間には導電性物体1がxだけ挿入される。交流電源4より交流電圧が送信電極2に印加され両電極2,3の間には電気力線が形成される。ここでは一次近似についてのみ言及し静電容量の縁辺効果や電気力線の湾曲などについては説明の簡単化のため無視する。
【0010】
この条件によって、電界傾度が同じとき電気力線は電極全体について等密度で分布する。図3に示すように、電気力線は収束して電流となって負荷抵抗5に流れる。もし静電容量を形成する部分のインピーダンスが負荷抵抗値に比し十分大きいなら、負荷抵抗5に生成される電圧は、受信電極3に集約される電気力線の総数に比例する。図3では電気力線は2つのグループに別れ、それぞれ抵抗負荷5と測定対象である導電性物体1に集約される様子を示す。電気力線の密度は、電界傾度に依存するため、受信電極3に流れるaグループと導電性物体1に流れるbグループでは密度が異なるが、このシステムで評価の対象となるのは、aグループの電気力線であるため、このことが測定に不都合を与えることはない。結局、負荷抵抗5に流れる電流は導電性物体1の挿入量xに依存し、その関係は第一次近似として直線的で、次の式で表される。
【0011】
=k・(1−x)
ここで、I:負荷抵抗5を流れる電流、k:比例定数、数字の1:両電極の長さ(導電性物体1の挿入方向の長さ)を1として表す。
なお、aグループの電気力線の密度に影響を与えるあらゆる外乱要素は測定誤差の要因になるので、これを解決するのが本発明の目的である。
【0012】
今まで、印加電圧、換言すれば電圧により生成される電気力線に関し、ただ1つの周波数だけが存在する場合を述べたが、ここで複数の周波数成分をもつ電気力線が混在している場合を考察する。特に周波数成分の数が2つ、f,fから成る場合で、それらの周波数の電気力線の本数が一次元的に次のような分布をなしているとする。
EMf1X=x …(3)
EMf2X=(1−x)…(4)
ここで、EMf1X:x点における周波数fの電気力線の本数、EMf2X:x点における周波数fの電気力線の本数、x:導電性物体の電極への挿入量、数字の1:両電極の長さ(導電性物体1の挿入方向の長さ)を1として表す。
【0013】
図4は電気力線の本数分布を矢印の長さに置き換えて表した図で、実線は(3)式で示す周波数fの電気力線の本数を示し、破線は周波数fの電気力線の本数を示す。負荷抵抗5を流れる電流は図3に示すように導電性物体1で遮断されないで受信電極に到達する電気力線の積分に比例する。xの範囲を(0<x<1)とし、積分範囲をxから1までとすると、電流は次の式で表される。
Figure 0003620998
ここでI1X は周波数fの電気力線により負荷抵抗5を流れる電流であり、I2X は周波数fの電気力線により負荷抵抗5を流れる電流である。
【0014】
ここで、I2X とI1X との比を求めると次式で表される。
2X /I1X =(1−x)/(1+x)…(5)
この比は1から極限値としての0までの連続した値をとる。
【0015】
図5はこの電流の比と挿入量xとの関係を示す。縦軸が電流比I2X /I1X を示し、横軸が正規化された挿入量xを示す。図5は理論計算結果であり、x=1となる極限値では0/0の不定形となるが、xがとり得る最大値を制限する(例えば0 .8)ことにより、実用上の問題はない。この電流の比が決まれば、xの値は一意に決まるので、xに対する測定系が成立し、電導性物体の電極への挿入量xを検出できる。ここで特筆すべきは、両周波数成分の電流の比を求めることにより、kの項目が消去されたことである。すなわち、kに影響を与える諸要素、例えば、励振電源電圧、空間誘電率、送信電極と受信電極間距離、電気力線総数に影響を与える電極寸法などは、一次近似としては測定値に影響を与えない。なお、図5の非直線性が問題になるような応用では、直線化手段、例えば非線形増幅器やルックアップテーブル等を適用することにより修正可能である。
【0016】
さらに、別の処理として次の演算を行う。
1X とI2X との和ILAを求める。
LA=1/2・k(1−x)(( 1+x)+(1−x))=k(1−x)
また、I1X とI2X との差ILDを求める。
Figure 0003620998
【0017】
ここで、受信系に対し可変増幅率の増幅器を導入すれば、vを増幅器の増幅率としたとき
LA=vk(1−x)
となる。
vを適宜調整することによりILAを常に任意に定めた固定値Cに保つようにすると、
k(1−x)=C より電流の差ILDは、
LD=C・x
x=ILD/C…(6)
【0018】
このように出力電流の差ILDと導電性物体の電極への挿入量xは直接比例関係を保つことができ、しかもkに依存しない系が構成される。この場合もxが1となる極限状態ではILAをCに保つためのvは発散するので、xの最大値は具体的な設計上の許し得る範囲、例えば0 .8以下に制限することが望ましい。
【0019】
以上に説明したように、本発明では、送信電極と受信電極間に生成する電気力線の本数分布を図4に示すように電極端部から単調増加するものと、この逆の分布をするものとを発生させ、電極端部から導電性物体をx挿入したときに受信電極に発生する電流を演算処理することにより、環境定数に依存せず、常に安定した測定値xを得ることができる。
【0020】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して説明する。
図6は本発明の第1実施形態の送信電極を示す図である。送信電極2は導体で構成され、互いに逆向きに配置された三角形の第1電極2aと第2電極2bからなる。長さ方向同一位置における第1電極2aの幅b1と第2電極2bの幅b2の和Bはいずれの位置においても一定である。導電性物体1の挿入量をxとし、両電極2a,2bの長さは1とする。
【0021】
図7は第1実施形態の構成を示す図である。
導電性物体1の挿入方向に平行に送信電極2と受信電極3が対向して設けられている。送信電極2は第1電極2aと第2電極2bからなり、並行して配置されている。受信電極3は導体で構成され、どの部分の電位も実質的に一様であり、受信電極3に集約される電気力線による電流は電気力線の積分に比例する。受信電極3には負荷抵抗5が接続され、この負荷抵抗5より出力電圧を取り出す。なお、受信電極3の構成は以降の実施形態でも同じである。周波数f1の交流信号S1を発生する第1電源4aは第1電極2aに接続され、周波数f2の交流信号S2を発生する第2電源4bは第2電極2bに接続されている。また、交流信号S1とS2の電圧E1とE2は互いに等しくEtに設定される。
【0022】
第1電極2aと第2電極2bとの電位は同一であり、両電極2a,2bと受信電極3の距離は一定なので、両電極2a,2bと受信電極3の電気力線の密度はどこでも均一である。しかし電気力線の本数は電極2a,2bの面積に比例するため、第1電極2aでは、導電性物体1を挿入する側から挿入する側の反対端まで直線状に増加し、第2電極2bでは第1電極2aと反対の形状で直線的に減少する。これにより周波数f1と周波数f2の電圧による電気力線の本数の分布は、図4に示した電気力線の本数分布と同じように直線的に変化する。受信電極3に生成する電流は受信電極3に生じる電気力線の総数に比例する。これにより、本実施形態において、(5)式が成立し、受信電極3に生ずる電流より導電性物体1の電極2,3への挿入量xを算出することができる。
【0023】
なお、第1電極2a及び/または第2電極2bの面積分布を非直線状に変更することにより、電気力線の本数分布に非直線性を持たせることができる。そこで両電極2a,2bの面積分布を図5の出力特性((5)式に示す電流比)を補整するように設定することによって、爾後の信号処理における既述の非線形補整は不必要となり便利である。
【0024】
図8は出力特性を直線化する処理を行なうための要件を概念的に説明する図である。軸1の縦目盛りは導電性物体1の電極への挿入量xの基準化された位置を示し、その他の軸の目盛りはこの位置と対応して示される。軸2は送信電極2の基準化した幅分布を示し、直線的に変化するから、目盛りは軸1と同じである。軸3は、無処理時の基準化出力((5)式に示す電流比)を示す。なお、軸1は図5の横軸を示し、軸3は縦軸を示す。導電性物体1の電極への挿入量xと基準化出力pとは、(5)式と同じ関係が成り立つ。
p=(1−x)/(1+x)
この式から任意のpに対するxの位置は次の式で表される。
x=(1−p)/(1+p)
【0025】
そこで、最終的に軸4に示すような直線的な出力特性を得るためには、軸2のような直線的面積分布に代えて軸5に示す面積分布にすればよいことがわかる。本件の実施は実際の設計において、送信電極に非線形面積分布を持たせることと、非線形補整手段を装着することとの経済性を比較して決定すればよい。
【0026】
図9は受信電極3で得られた電流を処理する構成を示す。受信電極3に集約された電流は増幅器11により実用的な電圧に変換される。次に周波数f1に同調したバンドパスフィルタ12a、周波数f2に同調したバンドパスフィルタ12bを通して、f1成分とf2成分に分離され、整流器13a、整流器13bによって直流信号に変換され、アナログ割算器14に導かれ、(5)式で示した方法で導電性物体1の電極2,3への挿入量xが検出される。その後必要に応じて図5で示した非線形を非線形補正器15で線形に補正して最終出力とする。
【0027】
図10は受信電極3で得られた電流をデジタル素子で処理する装置を示す。整流器13a,13bまでは図9と同じで、その後A/D変換器16a,16bでデジタルデータに変換し、デジタル割算器17に導かれ、導電性物体1の電極2,3への挿入量xが算出される。その後必要に応じて出力をルックアップテーブル18を用いて直線に補正して最終出力とする。
【0028】
次に第2実施形態について説明する。第1実施形態の図9〜図10に示す装置では導電性物体1の電極への挿入量xを(5)式に基づいて電流比から求めたが、第2実施形態では、電流の和と差を求め(6)式に基づき挿入量xを求める。図11は第2実施形態の構成を示す図である。受信電極3に発生した電流は可変増幅率増幅器21で増幅され、バンドパスフィルタ22a,22bにより周波数f1とf2の成分に分離され、それぞれ整流器23a,23bで整流された後、減算器24と加算器25で減算および加算される。制御信号発生器26は加算器25の出力と固定値設定器27で設定された固定値Cが一致するように可変増幅率増幅器21の増幅率を決定する。減算器24の出力が導電性物体1の電極への挿入量xとなるべき最終出力である。
【0029】
加算器25の出力は固定値Cと比較され、両者の差に基づいた制御信号で可変増幅率増幅器21の増幅率が制御される結果、加算器25の出力は常に一定値に保たれる。このとき、減算器24の出力は(6)式に示すように導電性物体1の電極への挿入量xに直接比例する。制御信号発生器26の出力は加算器25の出力と固定値Cとの差に基づき作成されるが、その手法は任意であり、例えば、P動作、PI動作、PID動作などが用いられる。本実施形態はフィードバック制御を用いているが、他の制御方法も可能である。すなわち周波数f1とf2の検出信号の和の値が評価可能でさえあれば、これによって差の値を後段で再評価し導電性物体1の電極への挿入量xを知るフィードフォワード処理も可能である。
【0030】
次に第3実施形態を図12を参照して説明する。第1実施形態では励振源として2つの周波数f1とf2を同時に、つまり1つの時間帯で用いたが、第3実施形態では1つの周波数を2つの時間帯で用いる。
【0031】
図12において、周波数f1の交流信号S1を発生する第1電源4aに転換スイッチ7を接続し、この転換スイッチ7を送信電極2に接続する。転換スイッチ7の入力端の一方に第1電源4aが接続され、他方は接地されており、出力端の一方は第1電極2aに接続され、他方は第2電極2bに接続されている。これにより第1電極2aを第1電源4aに接続し、第2電極2bを接地する接続と、この逆の接続を転換スイッチ7により行なうことができる。受信電極3には増幅器11、A/D変換器16、メモリ30、デジタル割算器17が接続されている。
【0032】
かかる構成により、第1電源4aを投入すると、送信電極2と受信電極3間には図4の実線(または破線)で示す電気力線の本数分布と同じ電気力線の本数分布が得られる。この時収集されたデータはA/D変換された後、一旦メモリ30に蓄えられる。その後転換スイッチ7を転換すると、電気力線の本数分布は図4の破線(または実線)で示すようになる。このときのデータをA/D変換しメモリ30に蓄えられたデータとともにデジタル割算器17で処理することにより、導電性物体1の電極2,3への挿入量xを算出することができる。本実施形態は、電源、バンドパスフィルタ、A/D変換器はそれぞれ1個でよいので、経済的に優れており、また現在一般的となったコンピュータでの信号処理にも向いている。
【0033】
【発明の効果】
以上の説明より明らかなように、本発明によれば、静電式3端子型導電性物体端部検出装置が持つ、本質的な不安定性、即ち、電圧、電極間距離、誘電率等の変化に代表される外部要因による測定値の変動を解消した装置を構成することが可能になる。なお、信号源として実施形態では2つの周波数による構成例を示したが、実用上、2を越える周波数を用いてもよい。
【図面の簡単な説明】
【図1】導電性物体の挿入量を静電容量の変化により検出する装置の基本回路図である。
【図2】導電性物体の挿入量を電気力線の変化により検出する装置の基本回路図である。
【図3】静電式3端子型検出器の基本動作を示す概念図である。
【図4】本発明の基本要件となる電気力線の本数分布を示す図である。
【図5】本発明の導電性物体の端部位置と出力信号との関係を示す理論的曲線を示す図である。
【図6】第1実施形態の送信電極の構成を示す図である。
【図7】第1実施形態の構成を示す図である。
【図8】出力(電流比)の非直線性を矯正するための送信電極に対する要件を説明する図である。
【図9】受信電極で得られた信号を処理するブロック図である。
【図10】受信電極で得られた信号をデジタル信号に変換して処理するブロック図である。
【図11】受信電極で得られる電流の和と差から挿入量xを検出するブロック図である。
【図12】第3実施形態の構成を示す図である。
【符号の説明】
1 導電性物体
2 送信電極
2a 第1電極
2b 第2電極
3 受信電極
4a 第1電源
4b 第2電源
5 負荷抵抗
7 転換スイッチ
11 増幅器
12a,12b,22a,22b バンドパスフィルタ
13a,13b,23a,23b 整流器
14 アナログ割算器
15 非線形補正器
16a,16b A/D変換器
17 デジタル割算器
18 ルックアップテーブル
21 可変増幅率増幅器
24 減算器
25 加算器
26 制御信号発生器
27 固定値設定器
30 メモリ

Claims (4)

  1. 導電性物体の端部の移動方向に対し平行に配置され導体よりなる1対の送信電極と、
    前記導電性物体を挟んで前記送信電極に対向して配置された受信電極と、
    前記1対の送信電極の内、一方に周波数f1の交流信号S1を印加し、他方に前記周波数f1とは異なる周波数f2の交流信号S2を印加する電源と、
    前記受信電極に発生する周波数f1の電流I1と周波数f2の電流I2とを演算処理することにより、前記導電性物体の端部の前記送信電極と前記受信電極の間への挿入量を検出する検出手段と、
    を備え、
    前記1対の送信電極は互いに逆向きに配置されたほぼ三角形の平面形状であることを特徴とする導電性物体の端部検出装置。
  2. 前記検出手段は前記電流I1と前記電流I2との比から前記導電性物体の端部の挿入量を検出することを特徴とする請求項1記載の導電性物体の端部検出装置。
  3. 前記検出手段は前記電流I1と前記電流I2との和が常に一定値となるように両電流I1,I2を共通の増幅率で増幅し得られた電流I1vと電流I2vの差から前記導電性物体の端部の挿入量を検出することを特徴とする請求項1記載の導電性物体の端部検出装置。
  4. 前記送信電極は前記交流信号S1とS2とを送信する時間を異なった時間とし、前記検出手段は、最初に送信した信号に基づく電流I1を後から送信した信号に基づく電流I2が得られるまで保持し、両電流I1,I2より前記導電性物体の端部の挿入量を検出することを特徴とする請求項1乃至3のいずれかに記載の導電性物体の端部検出装置。
JP16476199A 1999-06-08 1999-06-11 導電性物体の端部検出装置 Expired - Fee Related JP3620998B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP16476199A JP3620998B2 (ja) 1999-06-08 1999-06-11 導電性物体の端部検出装置
US09/580,969 US6448792B1 (en) 1999-06-08 2000-05-30 Sensor for edge position of electro-conductive material
DE10028486A DE10028486C2 (de) 1999-06-08 2000-06-08 Sensor für die Kantenposition eines elektrisch leitenden Materials

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16163199 1999-06-08
JP11-161631 1999-06-08
JP16476199A JP3620998B2 (ja) 1999-06-08 1999-06-11 導電性物体の端部検出装置

Publications (2)

Publication Number Publication Date
JP2001056201A JP2001056201A (ja) 2001-02-27
JP3620998B2 true JP3620998B2 (ja) 2005-02-16

Family

ID=26487694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16476199A Expired - Fee Related JP3620998B2 (ja) 1999-06-08 1999-06-11 導電性物体の端部検出装置

Country Status (3)

Country Link
US (1) US6448792B1 (ja)
JP (1) JP3620998B2 (ja)
DE (1) DE10028486C2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3982948B2 (ja) * 1999-06-03 2007-09-26 株式会社ニレコ 導電性物体の端部検出装置
WO2005003688A1 (en) * 2003-07-01 2005-01-13 Tiax Llc Capacitive position sensor and sensing methodology
KR100667039B1 (ko) * 2004-10-22 2007-01-12 한국생명공학연구원 다이옥신 노출 여부 진단용 마커 및 이를 이용하여 다이옥신 노출을 확인하는 방법
US8089289B1 (en) 2007-07-03 2012-01-03 Cypress Semiconductor Corporation Capacitive field sensor with sigma-delta modulator
US8570053B1 (en) 2007-07-03 2013-10-29 Cypress Semiconductor Corporation Capacitive field sensor with sigma-delta modulator
US8093914B2 (en) * 2007-12-14 2012-01-10 Cypress Semiconductor Corporation Compensation circuit for a TX-RX capacitive sensor
US8723827B2 (en) 2009-07-28 2014-05-13 Cypress Semiconductor Corporation Predictive touch surface scanning
US9829347B2 (en) * 2015-06-03 2017-11-28 Hiwin Mikrosystem Corp. Capacitance sensation unit of plane position measurement device
JP2018091810A (ja) * 2016-12-07 2018-06-14 アイシン精機株式会社 静電センサ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3341774A (en) * 1962-07-17 1967-09-12 Comm Res Inc Capacitance detector having a transmitter connected to one plate and a receiver connected to another plate
US3312892A (en) * 1964-05-04 1967-04-04 Technology Instr Corp Of Calif Contactless electrical transducer having moving parts
CH539837A (de) * 1972-03-22 1973-07-31 Ulrich Meyer Hans Kapazitive Längenmesseinrichtung
US3812424A (en) * 1972-09-27 1974-05-21 Ade Corp Capacitive wire gauge
US3860918A (en) * 1973-06-25 1975-01-14 Becton Dickinson Co Capacitive position transducer
DE2426235C3 (de) * 1974-05-29 1978-07-06 Hartmann & Braun Ag, 6000 Frankfurt Kapazitiver Stellungsgeber
US4322678A (en) * 1978-10-30 1982-03-30 Capots Larry H Identification of materials using their complex dielectric response
US4719409A (en) * 1985-10-02 1988-01-12 Mechanical Technology Incorporated Digital signal output capacitance sensor displacement gauging system
GB8718606D0 (en) * 1987-08-06 1987-09-09 Hiltcroft Packaging Systems Lt Monitoring apparatus
NZ226435A (en) * 1987-10-02 1991-04-26 Detection Systems Pty Ltd Capacitance sensor as object detector
EP0336022A1 (en) * 1988-04-08 1989-10-11 SCHUT'S IM- & EXPORTHANDEL B.V. Capacitive displacement meter
US4893071A (en) * 1988-05-24 1990-01-09 American Telephone And Telegraph Company, At&T Bell Laboratories Capacitive incremental position measurement and motion control
DE4009697A1 (de) * 1990-03-27 1991-10-02 Fife Gmbh Vorrichtung zum beruehrungslosen erfassen der lage eines sich bewegenden materialbandes
IL112218A0 (en) * 1995-01-02 1995-03-30 Netzer Yishay A method and apparatus for measuring linear displacements

Also Published As

Publication number Publication date
JP2001056201A (ja) 2001-02-27
US6448792B1 (en) 2002-09-10
DE10028486A1 (de) 2001-03-01
DE10028486C2 (de) 2003-12-11

Similar Documents

Publication Publication Date Title
US3993945A (en) Measuring cells for measuring electrical conductivity of liquids
US5231359A (en) Ceramic resonance type electrostatic sensor apparatus
EP0071962B1 (en) Pressure transmitter employing non-linear temperature compensation
EP0974043B1 (en) Capacitive pressure sensing method and apparatus
US4646014A (en) Hall effect field sensor circuit with temperature compensation using OP amplifier
EP3627699B1 (en) Amplifier with common mode detection
JP3620998B2 (ja) 導電性物体の端部検出装置
JP3982948B2 (ja) 導電性物体の端部検出装置
US4793187A (en) Circuit arrangement for the compensation of temperature-dependent and temperature-independent drift and for the compensation of the sensitivity of a capacitive sensor
US3339412A (en) Capacitance measuring apparatus
EP0151575B1 (en) Reactance measurement circuit with enhanced linearity
JP3570836B2 (ja) 温度検出制御回路
JP2001183106A (ja) 温度補償付きギャップ検出装置
CN111059993A (zh) 位移传感器
JP3460932B2 (ja) 絶対値回路
JP2003035730A (ja) 電流検出器
JP3277597B2 (ja) 光電式エンコーダ
US20230370035A1 (en) Differential amplifier circuit
JPS5832646B2 (ja) 圧力伝送器
CN113568335B (zh) 一种罗氏线圈电流互感器用模拟积分及自校准系统和方法
US20160268970A1 (en) Sensitivity variable loop gain oscillator sensor system
JPH11257908A (ja) 電磁誘導型変位センサ
JP4368713B2 (ja) 検波回路、電子装置および自動利得制御装置
JPH0720155A (ja) ホール素子の温度係数測定方法および電流検出器の温度補償方法
US6515543B2 (en) Circuit configuration for controlling nonlinear paths

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees