JP3620065B2 - Manufacturing method of multilayer printed wiring board - Google Patents

Manufacturing method of multilayer printed wiring board Download PDF

Info

Publication number
JP3620065B2
JP3620065B2 JP12622994A JP12622994A JP3620065B2 JP 3620065 B2 JP3620065 B2 JP 3620065B2 JP 12622994 A JP12622994 A JP 12622994A JP 12622994 A JP12622994 A JP 12622994A JP 3620065 B2 JP3620065 B2 JP 3620065B2
Authority
JP
Japan
Prior art keywords
holding body
substrate
metal layer
plating
circuit pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12622994A
Other languages
Japanese (ja)
Other versions
JPH07336050A (en
Inventor
富士男 小島
晴夫 荻野
宜行 南
一次 山岸
義広 田村
健一 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP12622994A priority Critical patent/JP3620065B2/en
Publication of JPH07336050A publication Critical patent/JPH07336050A/en
Application granted granted Critical
Publication of JP3620065B2 publication Critical patent/JP3620065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、微細パターンを容易に得ることができる多層プリント配線板の製造法に関する。
【0002】
【従来の技術】
プリント配線板の線幅、線間隔はLSIの高集積化や部品実装の高密度化に伴いますます細線化が進んできている。しかし、従来のプリント配線板の製造方法──例えば、銅張り積層板をエッチングして回路パターンを形成するサブトラクト法では、表面銅箔のへこみ、きず等が原因による断線やショートが発生し易く、また表面の凹凸やうねりによる線幅精度が低下するため、線幅100μm以下が加工限界である。
このことから、必要な部分にめっきして回路を形成するアディティブ法や厚み5〜9μmの銅箔を用いた銅張り積層板の必要な部分にめっきを行いクイックエッチングにより回路を形成するセミアディティブ法が微細パターンの形成に適している。しかし、アディティブ法では基板表面の粗度やめっきの銅フリ現象等から、またセミアディティブ法では銅張り積層板自体の欠陥や特性により、80μm以下の微細パターンの形成は困難となっている。
【0003】
そこで、微細パターン形成に適した配線板の製造方法として、特公昭63−37515号公報や特公平1−58878号公報に見られるように、導電性を有する保持体にめっきレジストを形成し、該保持体の除去方法と異なる金属層と他の金属層とからなる金属層をめっきで形成し、前記めっきレジストを除去した後に前記金属層の面に絶縁基材を接着積層し、前記金属層が露出するまで前記保持体を除去するという導体回路を埋め込む配線板の製造法が多用されている。この製造方法であれば、線幅、線間隔40μm程度の回路パターンを断線、ショートの発生が少なく安定的に形成でき、且つ回路パターンのサイドエッチもなく基板表面が平滑になるという利点も得られる。
【0004】
一方、部品実装の高密度化に伴って線幅、線間隔の細線化ばかりでなく、導通穴の数も増加している1つの配線層と他の配線層の電気的接続に使用される導通穴は、従来配線層を多層積層した後に、全体を貫通する穴をあけ、その穴内壁をめっきすることによって行われている。しかし、この方法では全体を貫通する穴をあけるため、接続と無関係な配線層ではその貫通穴を避けて配線を行わなければならず、設計の自由度や配線の高密度化の障害になっている。
【0005】
そこで、配線板全体に貫通する穴だけを使用するのではなく、隣接する配線層のみの配線を行う、いわゆるバイアホールを形成する方法が開発されている。この方法は、現在、基本的に以下の2通りの方法が知られている。
【0006】
第一の方法は、隣接する配線層を先に形成し、接続穴を形成しておいて、多層化する方法である。この方法の一例としては、両面銅張り積層板に穴をあけ、穴内壁に無電解めっきあるいは必要な場合電解めっきを行って接続用導体を形成し、片面の銅箔の不要な箇所のみをエッチング除去し、もう一方の面に銅箔を残しておき、他の基板と積層一体化した後、全体を貫通する穴をあけて、穴内壁を金属化する方法や、絶縁基板の表面に配線層を形成し、その配線層の表面に感光性絶縁材料によって層を形成し、導通穴となる箇所のみを除去するように光を照射し現像して、この絶縁材料の表面を粗化し、必要な回路導体を穴内壁とに無電解めっきを行って導体を形成する方法等がある。これらの技術は、いずれも、さらに必要な配線層を同じ技術で形成して多層化するものである。
【0007】
第二の方法は、先に配線層を形成した基板を積層しておいて、表面層とその表面層と接続を行う層の接続を行う方法であって、導通穴を接続を行う層までにしかあけないことが特徴となっている。この方法の具体例としては、複数の配線層とそれらを支える絶縁層を交互に積層しておき、表面には銅箔を残しておき、表面の回路と接続する箇所に接続する層に達する深さまで、ドリルで穴をあけ、穴内壁を金属化する方法や、穴をあけるのにレーザ光を用い、レーザ光が接続を必要としない層までに照射されないように、接続する層の箇所に銅箔を残しておく方法等がある。
【0008】
【発明が解決しようとする課題】
ところで、これらバイアホールを形成する従来方法においては、以下のような課題があった。
前記第一の方法において両面銅張り積層板を使用する場合、片面に回路を形成するので基板の寸法変化が起こり易く、複数の基板を重ねて積層する時に、各配線層間の位置精度に十分の注意を払わなければならず、また導通穴内壁の接続のために行うめっきによって他方の導体厚さが厚くなり、多層化した時に全体の厚さを小さくすることが困難になる。また、感光性材料を各配線層間の絶縁層として用いる場合、めっきの密着力を高める粗化処理と、貫通穴を設けるための感光性を同時に満足できる材料が少なく、現存する材料ではめっき皮膜の密着力は十分ではない。
【0009】
前記第二の方法においてドリルを用いる場合、基板厚さのばらつきがあり、接続する箇所でドリルの進行を止める位置精度を高くできない。また、レーザを用いる場合、装置が高価である。この方法では、穴をあける箇所において表面層と接続層の間には、他の層には配線ができない。
【0010】
本発明は、層間接続が容易で、配線の密度に優れた多層プリント配線板の製造法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の多層プリント配線板の製造法は、以下の工程を含むことを特徴とするものである。すなわち、
(a)導電性を有する保持体の表面に所望の形状にめっきレジストを形成し、該保持体の除去条件と異なる金属層Aとこの金属層Aの除去条件と異なる金属層Bをめっきして所望の回路パターンを形成し、前記めっきレジストを除去する工程
(b)前記保持体の表面に回路パターンを形成した面に接着剤層を設け、この接着剤層Bステージの状態にして基板とする工程
(c)前記基板に穴をあける工程
(d)前記穴をあけた基板の接着剤層側に、他の基板が接触するように重ね合わせ、加圧加熱して積層一体化する工程
(e)前記積層一体化した基板の必要な箇所に導体回路を形成するとともに、前記めっきにより形成した回路パターンが露出するまで前記保持体を除去する工程
(f)導電性を有する他の保持体の表面に所望の形状にめっきレジストを形成し、この他の保持体の除去条件と異なる金属層Cとこの金属層Cの除去条件と異なる金属層Dをめっきして所望の回路パターンを形成し、前記めっきレジストを除去する工程
(g)前記他の保持体の表面に回路パターンを形成した面に接着剤層を設け、この接着剤層をBステージの状態にして基板とする工程
(h)行程(g)で得られた基板に穴をあける工程
(i)行程(h)で得られた穴をあけた基板の接着剤層側に、前記工程(e)で製作した基板が接触するように重ね合わせ、加圧加熱して積層一体化する工程
(j)必要に応じて、前記工程(f)〜(i)を繰り返し、多層化する工程
【0012】
また、保持体に形成した回路パターンがより微細化になり、安定した回路形成を実現するためには、以下の工程を用いることもできる。
(a)保持体の表面に回路パターンを形成する工程において、保持体の表面に所望の形状にめっきレジストを形成し、該保持体とともに除去できる第1の金属層Eをめっきにより形成し、該保持体の除去条件と異なる金属層Fとこの金属層Fの除去条件と異なる金属層Gとからなる第2の金属層をめっきにより形成し、前記めっきレジストを除去する工程
(b)前記保持体の表面に回路パターンを形成した面に接着剤層を設け、この接着剤層Bステージの状態にして基板とする工程
(c)前記基板に穴をあける工程
(d)前記穴をあけた基板の接着剤層側に、他の基板が接触するように重ね合わせ、加圧加熱して積層一体化する工程
(e)前記積層一体化した基板の必要な箇所に導体回路を形成するとともに、前記めっきにより形成した回路パターンが露出するまで前記保持体を除去する工程
【0013】
(f)導電性を有する他の保持体の表面に所望の形状にめっきレジストを形成し、この他の保持体の除去条件と異なる金属層Cとこの金属層Cの除去条件と異なる金属層Dをめっきして所望の回路パターンを形成し、前記めっきレジストを除去する工程
(g)前記他の保持体の表面に回路パターンを形成した面に接着剤層を設け、この接着剤層をBステージにして基板とする工程
(h)行程(g)で得られた基板に穴をあける工程
(i)行程(h)で得られた穴をあけた基板の接着剤層側に、前記工程(e)で製作した基板が接触するように重ね合わせ、加圧加熱して積層一体化する工程
(j)必要に応じて、前記工程(f)〜(i)を繰り返し、多層化する工程
【0014】
あるいは、
(f)保持体の表面に回路パターンを形成する工程において、保持体の表面に所望の形状にめっきレジストを形成し、該保持体とともに除去できる第1の金属層Hをめっきにより形成し、該保持体の除去条件と異なる金属層Iとこの金属層Iの除去条件と異なる金属層Jとからなる第2の金属層をめっきにより形成し、前記めっきレジストを除去する工程
(g)前記他の保持体の表面に回路パターンを形成した面に接着剤層を設け、この接着剤層をBステージの状態にして基板とする工程
(h)工程(g)で得られた基板に穴をあける工程
(i)工程(h)で得られた穴をあけた基板の接着剤層側に、前記工程
(e)で製作した基板が接触するように重ね合わせ、加圧加熱して積層一体化する工程
(j)必要に応じて、前記工程(f)〜(i)を繰り返し、多層化する工程
【0015】
本発明に用いる保持体はステンレス板等に剥離可能なようにめっきした銅箔でも良く、また、すでに引き裂かれた銅箔、あるいは圧延された銅箔を用いることもできる。また、該保持体の除去条件と異なる金属層とこの金属層の除去条件と異なる他の金属層としては、金、ニッケル、はんだ、あるいは金と銅、ニッケルと銅等で、単独の場合はそれ自身、2種類以上の場合は該保持体に面している金属の除去条件が、該保持体と異なる必要がある。
該保持体とともに除去できる金属層は、保持体と同質の金属が好ましく、厚さとしては、保持体のわずかなきずやへこみや埋めることができれば良く、約3μm位である。
【0016】
接着剤としては、エポキシ樹脂系接着剤、アクリル変性樹脂系、あるいはポリイミド樹脂系接着剤等が使用でき、これらをロールコーティング、ディップコーティングあるいはカーテンコーティング法等によって塗布することができる。また、さらにこれらの接着剤をフィルム化したものも使用でき、G604(日立化成工業株式会社製、商品名)等のエポキシ接着フィルム、パイララックス(デュポン社製、商品名)等のアクリル変性樹脂フィルム、あるいはAS−2210(日立化成工業株式会社製、商品名)等のポリイミド接着フィルム等が使用できる。これらの接着フィルムを、めっきで回路パターンを形成した導電性を有する保持体の回路形成面に貼り合わせるのであるが、貼り合わせた後には、Bステージの状態となっている必要がある。
本発明でいうBステージとは、保持体の回路パターンを形成した面に貼り合わせた状態で、40℃以下では粘着性を持たず、その後の多層化接着によって、接着強度が0.8kgf/cm以上を与えることができる半硬化状態をいう。このようなBステージ状態にする方法は、通常の樹脂のように、完全には硬化しない温度と時間、加熱して行う。この程度は、実験的に求めるのが通常である。
また、加圧加熱して積層一体化する工程において、このBステージの接着剤層の流動量は、基板の表面方向に対して200μm未満であることが好ましい。この流動量が大きいと、加圧加熱した時に、他の配線板の配線導体上に拡がり、めっきによって接続される面積が小さくなり、接続信頼性を低下させる。
【0017】
【作用】
本発明による方法では、接着剤をBステージの状態で用いるので穴あけ加工が容易であり、また、続く加圧加熱によって他の配線板との接着が可能となる。さらに、表面パターンとなる導体回路を絶縁材料中に埋め込む製造法によって微細配線パターンを形成することができるため、2次元的な高密度化も達成でき配線収容量も大幅に向上させることができる。
【0018】
【実施例】
実施例1
図1(a)に示すように、ステンレス表面を研磨後、全面に20μm厚の硫酸銅めっきを行った(図1(b)に示す。)。
次に銅表面をサンドペーパーで研磨後、フォトレジストをロールラミネータによりラミネートし、ポジマスクを当て紫外線を照射し、現像液で現像して、図1(c)に示すように、めっき銅表面にレジストパターンを形成した。続いて、銅めっきを3μmの厚さで行い、研磨でついたきずを埋め、金めっきを1μmの厚さで行い、さらに硫酸銅めっきを30μm行い、レジスト剥離液でレジストを剥離して回路パターンを形成した(図1(d)に示す。)。
次に、前記ステンレス板を黒色酸化処理を行い、回路パターン形成面に接着剤フィルムであるG604(日立化成工業株式会社製、商品名)を貼り、圧力10kgf/cm 、150℃で7分間加熱してBステージにした(図1(e)に示す。)後、回路パターンの形成された銅箔をステンレス板より剥がし取った(図1(f)に示す。)。
続いて、図1(g)に示すように、数値制御されたドリルマシンにより、回路パターンに合わせて接続箇所に穴をあける。この時に、最も小さい穴径は、0.25mmであった。
続いて、前記穴をあけた基板の接着剤層側に、図1(h)に示すような他の内層板が接触するように重ね合わせ、圧力40kgf/cm 、170℃で45分間加圧加熱して積層一体化した(図1(i)示す。)。
続いて、この積層した板全体を貫通する穴をあけ(図1(j)に示す。)、全面に銅めっきを行った(図1(k)に示す。)。
続いて、必要な箇所にエッチングレジストを形成し、内蔵された金めっきが露出するまで表面の銅をエッチング除去して、図1(l)に示すような所望の配線パターンが基板に埋め込まれた多層プリント配線板を製作した。
【0019】
実施例2
図2(a)に示すように、ステンレス表面を研磨後、全面に20μm厚の硫酸銅めっきを行った(図2(b)に示す。)。
次に銅表面をサンドペーパーで研磨後、フォトレジストをロールラミネータによりラミネートし、ポジマスクを当て紫外線を照射し、現像液で現像して、図2(c)に示すように、めっき銅表面にレジストパターンを形成した。続いて、金めっきを1μmの厚さで行い、さらに硫酸銅めっきを30μm行い、レジスト剥離液でレジストを剥離し回路パターンを形成した(図2(d)に示す。)。
次に、前記ステンレス板を黒色酸化処理を行い、回路パターン形成面に接着剤フィルムであるG604(日立化成工業株式会社製、商品名)層を設け、圧力10kgf/cm、150℃で7分間加熱してBステージにした(図2(e)に示す。)後、回路パターンの形成された銅箔をステンレス板より剥がし取った(図2(f)に示す。)。
続いて、図2(g)に示すように、数値制御されたドリルマシンにより、回路パターンに合わせて接続箇所に穴をあける。この時に、最も小さい穴径は、0.25mmであった。
続いて、前記穴をあけた基板の接着剤層側に、図2(h)に示すような他の内層板が接触するように重ね合わせ、加圧加熱して積層一体化した(図2(i)に示す。)。この時の積層条件は、圧力40kgf/cm、170℃で45分間行った。
続いて、この積層した板の表面に厚さ15μmの銅めっきを行った(図2(j)に示す。)。
次に、必要な箇所にエッチングレジストを形成し、内蔵された金めっきが露出するまで表面の銅をエッチング除去して、回路導体を形成した(図2(k)に示す。)。このようにして作製した配線板を、別に図2(a)〜(g)と同じ工程で作製した基板の接着剤層側に接触するように重ね合わせ、加圧加熱して積層一体化した(図2(l)に示す。)。この時の積層条件は、圧力40kgf/cm 、170℃で45分間であった。
このような多層化を繰り返し、最終の積層化の後に、エッチングレジストを形成し、内蔵された金めっき回路パターンが露出するまで表面の銅をエッチング除去して、図2(m)に示すような所望の配線パターンが基板に埋め込まれた多層プリント配線板を製作した。
【0020】
【発明の効果】
以上に説明したように、本発明によって配線密度に優れ且つ簡便な多層プリント配線板の製造法を提供することができ、次のような利点が達成される。
(1)予め微細回路パターンを形成した後に積層するので、積層前に検査でき歩留りが向上するとともに、積層前に回路パターンに合わせてバイアホール穴あけをするので、表面層回路パターンと穴間の位置精度が向上する。
(2)多層化接着する前にバイアホール穴あけをするので、穴あけした穴から内層基板の回路パターンを確認でき、層間位置精度が向上する。
(3)薄物対応の多層プリント配線板を製造した場合、表面回路パターンは基板に埋め込まれエッチング液に耐食性のある金属層に保護されているので、基板の凹凸やうねりに関係なく、線幅精度が高い。
【図面の簡単な説明】
【図1】(a)〜(l)は、本発明の一実施例を説明するための各工程における断面図である。
【図2】(a)〜(m)は、本発明の他の実施例を説明するための各工程における断面図である。
【符号の説明】
1.ステンレス板 2.硫酸銅めっき
3.レジストパターン 4.めっき回路パターン
5.接着剤 6.非貫通穴となる穴
7.内層板 8.非貫通穴
9.貫通穴 10.めっき銅
11.エッチングレジストにより形成した回路導体
12.内蔵された回路パターン
[0001]
[Industrial application fields]
The present invention relates to a method for producing a multilayer printed wiring board that can easily obtain a fine pattern.
[0002]
[Prior art]
The line width and line spacing of printed wiring boards are becoming increasingly finer as LSIs are highly integrated and components are mounted more densely. However, conventional printed wiring board manufacturing methods--for example, the subtract method of forming a circuit pattern by etching a copper-clad laminate tends to cause disconnection or short-circuit due to dents or scratches on the surface copper foil. Further, since the line width accuracy due to surface irregularities and undulations is lowered, a line width of 100 μm or less is the processing limit.
Therefore, an additive method for forming a circuit by plating on a necessary part or a semi-additive method for forming a circuit by quick etching after plating on a necessary part of a copper-clad laminate using a copper foil having a thickness of 5 to 9 μm. Is suitable for forming fine patterns. However, in the additive method, it is difficult to form a fine pattern of 80 μm or less due to the roughness of the substrate surface, the copper-free phenomenon of plating, and the semi-additive method due to defects and characteristics of the copper-clad laminate itself.
[0003]
Therefore, as a method of manufacturing a wiring board suitable for forming a fine pattern, as seen in Japanese Patent Publication No. 63-37515 and Japanese Patent Publication No. 1-58878, a plating resist is formed on a conductive holding body, A metal layer composed of a metal layer different from the method for removing the holding body and another metal layer is formed by plating, and after removing the plating resist, an insulating base material is adhered and laminated on the surface of the metal layer, and the metal layer is A method of manufacturing a wiring board that embeds a conductor circuit in which the holding body is removed until it is exposed is often used. With this manufacturing method, a circuit pattern having a line width and a line interval of about 40 μm can be stably formed with less occurrence of short circuit and short circuit, and there is also an advantage that the substrate surface becomes smooth without side etching of the circuit pattern. .
[0004]
On the other hand, not only is the line width and line spacing thinner as the density of component mounting is increased, but also the electrical connection used for electrical connection between one wiring layer and another wiring layer in which the number of conductive holes is increasing. The hole is conventionally formed by laminating a plurality of wiring layers, then making a hole penetrating the whole and plating the inner wall of the hole. However, in this method, holes are made to penetrate through the whole, and therefore wiring must be performed avoiding the through holes in the wiring layer unrelated to the connection, which becomes an obstacle to freedom of design and high density of wiring. Yes.
[0005]
In view of this, a method of forming a so-called via hole, in which only the adjacent wiring layer is wired instead of using only the hole penetrating the entire wiring board, has been developed. Currently, the following two methods are basically known.
[0006]
The first method is a method in which adjacent wiring layers are formed first, and connection holes are formed so as to be multilayered. As an example of this method, a hole is made in a double-sided copper-clad laminate, electroless plating is applied to the inner wall of the hole, or electroplating is performed if necessary to form a connecting conductor, and only one unnecessary portion of copper foil on one side is etched. Remove and leave copper foil on the other side, stack and integrate with other substrates, then drill holes through the whole and metallize the inner wall of the hole, or wiring layer on the surface of the insulating substrate Forming a layer with a photosensitive insulating material on the surface of the wiring layer, irradiating and developing light so as to remove only the portion that becomes the conduction hole, roughening the surface of this insulating material, There is a method of forming a conductor by electroless plating a circuit conductor on the inner wall of a hole. In any of these techniques, further necessary wiring layers are formed by the same technique to be multilayered.
[0007]
The second method is a method of laminating a substrate on which a wiring layer has been formed in advance, and connecting a surface layer and a layer that connects to the surface layer. The feature is that it can only be opened. As a specific example of this method, a plurality of wiring layers and insulating layers that support them are alternately stacked, copper foil is left on the surface, and the depth reaching the layer connected to the portion connected to the surface circuit is reached. Now, drill holes and metallize the inner wall of the hole, or use laser light to make holes, and prevent the laser light from being irradiated to the layers that do not require connection. There is a method of leaving the foil.
[0008]
[Problems to be solved by the invention]
However, the conventional methods for forming these via holes have the following problems.
When a double-sided copper-clad laminate is used in the first method, since the circuit is formed on one side, the dimensional change of the substrate is likely to occur, and when stacking a plurality of substrates, the positional accuracy between the wiring layers is sufficient. Care must be taken and the thickness of the other conductor is increased by the plating performed for connection of the inner wall of the conduction hole, and it is difficult to reduce the overall thickness when multilayered. In addition, when using a photosensitive material as an insulating layer between each wiring layer, there are few materials that can simultaneously satisfy the roughening treatment for increasing the adhesion of plating and the photosensitivity for providing a through hole. Adhesion is not sufficient.
[0009]
When the drill is used in the second method, there is a variation in the substrate thickness, and the position accuracy for stopping the progress of the drill at the connecting position cannot be increased. Moreover, when using a laser, an apparatus is expensive. In this method, wiring cannot be made on other layers between the surface layer and the connection layer at the location where the hole is made.
[0010]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a multilayer printed wiring board that is easy in interlayer connection and excellent in wiring density.
[0011]
[Means for Solving the Problems]
The manufacturing method of the multilayer printed wiring board of this invention is characterized by including the following processes. That is,
(A) A plating resist is formed in a desired shape on the surface of the holding body having conductivity, and a metal layer A different from the removal conditions of the holding body and a metal layer B different from the removal conditions of the metal layer A are plated forming a desired circuit pattern, wherein an adhesive layer provided on a surface on the basis of the circuit pattern on the surface of the removal of the plating resist step (b) the holder, and the substrate and the adhesive layer in a state of B-stage Step (c) Step of making a hole in the substrate (d) Step of overlaying the substrate with the hole on the adhesive layer side so that another substrate is in contact with the substrate, and pressurizing and heating to integrate the layers ( e) A step of forming a conductor circuit at a necessary portion of the laminated and integrated substrate and removing the holding body until the circuit pattern formed by the plating is exposed.
(F) A plating resist is formed in a desired shape on the surface of another holding body having conductivity, and the metal layer C is different from the removal conditions for the other holding body, and the metal layer D is different from the removal conditions for the metal layer C. Forming a desired circuit pattern by plating and removing the plating resist
(G) A step of providing an adhesive layer on the surface of the other holding body on which a circuit pattern is formed, and setting the adhesive layer in a B-stage to form a substrate
(H) A step of making a hole in the substrate obtained in the step (g).
(I) A step of stacking and integrating so that the substrate manufactured in the step (e) is in contact with the adhesive layer side of the substrate having the holes obtained in the step (h) and pressurizing and heating.
(J) Step of repeating the steps (f) to (i) as necessary to form a multilayer.
In addition, the following steps can also be used in order to make the circuit pattern formed on the holding body finer and realize stable circuit formation.
(A) In the step of forming a circuit pattern on the surface of the holding body, a plating resist is formed in a desired shape on the surface of the holding body, and a first metal layer E that can be removed together with the holding body is formed by plating, A step of forming a second metal layer comprising a metal layer F different from the removal condition of the holder and a metal layer G different from the removal condition of the metal layer F by plating, and removing the plating resist (b) the holder A step of providing an adhesive layer on the surface on which the circuit pattern is formed and setting the adhesive layer in a B-stage state as a substrate (c) a step of making a hole in the substrate (d) a substrate having the hole (E) forming a conductor circuit at a necessary portion of the laminated and integrated substrate, and stacking and integrating so that another substrate is in contact with the other adhesive layer side and pressurizing and heating; Time formed by plating Removing the retaining member until the pattern is exposed [0013]
(F) A plating resist is formed in a desired shape on the surface of another holding body having conductivity, and the metal layer C is different from the removal conditions for the other holding body, and the metal layer D is different from the removal conditions for the metal layer C. Step (g) of removing the plating resist by plating the surface of the other holding body, providing an adhesive layer on the surface on which the circuit pattern is formed, and applying the adhesive layer to the B stage to the adhesive layer side of the step (h) stroke (g) in the obtained substrate to drilling step (i) stroke (h) groups spaced resulting hole in plate to the substrate, the step ( (e) A step of superimposing the substrates produced in step e) so as to come into contact with each other, pressurizing and heating and stacking and integrating (j) a step of multilayering by repeating the steps (f) to (i) as necessary. ]
Or
(F) In the step of forming a circuit pattern on the surface of the holding body, a plating resist is formed in a desired shape on the surface of the holding body, and a first metal layer H that can be removed together with the holding body is formed by plating, A step (g) of removing the plating resist by forming a second metal layer composed of a metal layer I different from the removal condition of the holder and a metal layer J different from the removal condition of the metal layer I by plating. A process of providing an adhesive layer on the surface of the holding body on which the circuit pattern is formed, and forming a hole in the substrate obtained in the step (h) and the step (g) using the adhesive layer as a substrate in the B stage state (i) step the adhesive layer side of the base plate spaced resulting hole in (h), superposed as the substrate fabricated in the step (e) is in contact, integrally laminating pressurized and heated Step (j) If necessary, the steps (f) to (i) The repetition, the process of multi-layered [0015]
The holding body used in the present invention may be a copper foil plated so as to be peelable on a stainless steel plate or the like, and a copper foil that has already been torn or rolled may be used. In addition, the metal layer different from the removal condition of the holder and the other metal layer different from the removal condition of the metal layer may be gold, nickel, solder, gold and copper, nickel and copper, etc. In the case of two or more types, the removal condition of the metal facing the holding body needs to be different from that of the holding body.
The metal layer that can be removed together with the holding body is preferably a metal of the same quality as the holding body. The thickness of the metal layer is about 3 μm as long as the holding body can be slightly scratched, dented, or buried.
[0016]
As the adhesive, an epoxy resin-based adhesive, an acrylic-modified resin-based, or a polyimide resin-based adhesive can be used, and these can be applied by roll coating, dip coating, curtain coating, or the like. In addition, films made of these adhesives can also be used. Epoxy adhesive films such as G604 (manufactured by Hitachi Chemical Co., Ltd., trade name), acrylic modified resin films such as Piralux (trade name, manufactured by DuPont) Alternatively, a polyimide adhesive film such as AS-2210 (trade name, manufactured by Hitachi Chemical Co., Ltd.) can be used. These adhesive films are bonded to the circuit forming surface of the conductive holding body on which a circuit pattern is formed by plating. After bonding, it is necessary to be in a B stage state.
The B stage referred to in the present invention is a state of being bonded to the surface on which the circuit pattern of the holding body is formed, and does not have tackiness at 40 ° C. or less, and the adhesive strength is 0.8 kgf / cm by subsequent multilayer bonding. A semi-cured state that can give two or more. Such a B-stage state method is performed by heating at a temperature and time that do not completely cure, as in a normal resin. This degree is usually obtained experimentally.
Further, in the step of stacking and integrating by pressurization and heating, the flow amount of the adhesive layer of the B stage is preferably less than 200 μm with respect to the surface direction of the substrate. If this flow amount is large, when pressurized and heated, it spreads on the wiring conductors of other wiring boards, and the area connected by plating is reduced, thereby reducing connection reliability.
[0017]
[Action]
In the method according to the present invention, since the adhesive is used in the state of the B stage, drilling is easy, and it is possible to bond to other wiring boards by subsequent pressure heating. Furthermore, since a fine wiring pattern can be formed by a manufacturing method in which a conductor circuit to be a surface pattern is embedded in an insulating material, two-dimensional high density can be achieved and the wiring capacity can be greatly improved.
[0018]
【Example】
Example 1
As shown in FIG. 1A, after polishing the stainless steel surface, copper sulfate plating with a thickness of 20 μm was performed on the entire surface (shown in FIG. 1B).
Next, after polishing the copper surface with sandpaper, the photoresist is laminated with a roll laminator, applied with a positive mask, irradiated with ultraviolet light, developed with a developer, and as shown in FIG. A pattern was formed. Subsequently, copper plating is performed at a thickness of 3 μm, flaws attached by polishing are filled, gold plating is performed at a thickness of 1 μm, copper sulfate plating is further performed at 30 μm, and the resist is stripped with a resist stripping solution to form a circuit pattern. (Shown in FIG. 1 (d)).
Next, the stainless steel plate is subjected to black oxidation treatment, G604 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is an adhesive film, is pasted on the circuit pattern forming surface, and the pressure is 10 kgf / cm 2. After heating to 150 ° C. for 7 minutes to form a B stage (shown in FIG. 1E), the copper foil on which the circuit pattern was formed was peeled off from the stainless steel plate (shown in FIG. 1F). .
Subsequently, as shown in FIG. 1 (g), holes are drilled in connection portions in accordance with the circuit pattern by a numerically controlled drill machine. At this time, the smallest hole diameter was 0.25 mm.
Subsequently, the other inner layer plate as shown in FIG. 1 (h) is brought into contact with the adhesive layer side of the substrate having the hole formed therein, and the pressure is 40 kgf / cm 2. The laminate was integrated by pressurizing and heating at 170 ° C. for 45 minutes (shown in FIG. 1 (i)).
Subsequently, a hole penetrating the entire laminated plate was formed (shown in FIG. 1 (j)), and copper plating was performed on the entire surface (shown in FIG. 1 (k)).
Subsequently, an etching resist is formed at a necessary portion, and copper on the surface is removed by etching until the built-in gold plating is exposed, so that a desired wiring pattern as shown in FIG. A multilayer printed wiring board was manufactured.
[0019]
Example 2
As shown in FIG. 2A, after polishing the stainless steel surface, copper sulfate plating with a thickness of 20 μm was performed on the entire surface (shown in FIG. 2B).
Next, after polishing the copper surface with sandpaper, the photoresist is laminated with a roll laminator, applied with a positive mask and irradiated with ultraviolet light, and developed with a developer. As shown in FIG. A pattern was formed. Subsequently, gold plating was performed at a thickness of 1 μm, copper sulfate plating was further performed at 30 μm, and the resist was stripped with a resist stripping solution to form a circuit pattern (shown in FIG. 2D).
Next, the stainless steel plate is subjected to black oxidation treatment, and a G604 (made by Hitachi Chemical Co., Ltd., trade name) layer as an adhesive film is provided on the circuit pattern forming surface, and the pressure is 10 kgf / cm 2 and 150 ° C. for 7 minutes. After heating to B stage (shown in FIG. 2 (e)), the copper foil on which the circuit pattern was formed was peeled off from the stainless steel plate (shown in FIG. 2 (f)).
Subsequently, as shown in FIG. 2 (g), holes are drilled in connection portions in accordance with the circuit pattern by a numerically controlled drill machine. At this time, the smallest hole diameter was 0.25 mm.
Subsequently, the substrate having the holes formed thereon is laminated so that another inner layer plate as shown in FIG. 2 (h) is in contact with the adhesive layer side of the substrate, and heated and pressurized to be integrated (FIG. 2 ( Shown in i)). The lamination conditions at this time were 45 minutes at a pressure of 40 kgf / cm 2 and 170 ° C.
Subsequently, copper plating having a thickness of 15 μm was performed on the surface of the laminated plate (shown in FIG. 2 (j)).
Next, an etching resist was formed at a necessary location, and the copper on the surface was removed by etching until the built-in gold plating was exposed to form a circuit conductor (shown in FIG. 2 (k)). The wiring boards prepared in this way were stacked so as to be in contact with the adhesive layer side of the substrate separately manufactured in the same steps as FIGS. (It is shown in FIG. 2 (l)). The lamination conditions at this time were as follows: pressure 40 kgf / cm 2 , At 170 ° C. for 45 minutes.
Such multilayering is repeated, and after the final lamination, an etching resist is formed, and copper on the surface is removed by etching until the built-in gold plating circuit pattern is exposed, as shown in FIG. A multilayer printed wiring board in which a desired wiring pattern was embedded in a substrate was manufactured.
[0020]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a simple method for producing a multilayer printed wiring board with excellent wiring density, and the following advantages are achieved.
(1) Since it is laminated after forming a fine circuit pattern in advance, it can be inspected before lamination and the yield is improved, and via holes are drilled according to the circuit pattern before lamination, so the position between the surface layer circuit pattern and the hole Accuracy is improved.
(2) Since the via hole is drilled before the multilayer bonding, the circuit pattern of the inner layer substrate can be confirmed from the drilled hole, and the interlayer position accuracy is improved.
(3) When a multilayer printed wiring board for thin objects is manufactured, the surface circuit pattern is embedded in the substrate and protected by a metal layer that is corrosion resistant to the etching solution. Is expensive.
[Brief description of the drawings]
FIG. 1A to FIG. 1L are cross-sectional views in respective steps for explaining an embodiment of the present invention.
FIGS. 2A to 2M are cross-sectional views in each step for explaining another embodiment of the present invention. FIGS.
[Explanation of symbols]
1. Stainless steel plate 2. Copper sulfate plating Resist pattern 4. 4. plating circuit pattern Adhesive 6. 6. Holes that are non-through holes Inner layer board 8. Non-through hole 9. Through hole 10. Plated copper 11. Circuit conductor formed by etching resist 12. Built-in circuit pattern

Claims (3)

以下の工程を含むことを特徴とする多層プリント配線板の製造法。
(a)導電性を有する保持体の表面に所望の形状にめっきレジストを形成し、該保持体の除去条件と異なる金属層Aとこの金属層Aの除去条件と異なる金属層Bをめっきして所望の回路パターンを形成し、前記めっきレジストを除去する工程
(b)前記保持体の表面に回路パターンを形成した面に接着剤層を設け、この接着剤層Bステージの状態にして基板とする工程
(c)前記基板に穴をあける工程
(d)前記穴をあけた基板の接着剤層側に、他の基板が接触するように重ね合わせ、加圧加熱して積層一体化する工程
(e)前記積層一体化した基板の必要な箇所に導体回路を形成するとともに、前記めっきにより形成した回路パターンが露出するまで前記保持体を除去する工程
(f)導電性を有する他の保持体の表面に所望の形状にめっきレジストを形成し、この他の保持体の除去条件と異なる金属層Cとこの金属層Cの除去条件と異なる金属層Dをめっきして所望の回路パターンを形成し、前記めっきレジストを除去する工程
(g)前記他の保持体の表面に回路パターンを形成した面に接着剤層を設け、この接着剤層をBステージの状態にして基板とする工程
(h)行程(g)で得られた基板に穴をあける工程
(i)行程(h)で得られた穴をあけた基板の接着剤層側に、前記工程(e)で製作した基板が接触するように重ね合わせ、加圧加熱して積層一体化する工程
(j)必要に応じて、前記工程(f)〜(i)を繰り返し、多層化する工程
The manufacturing method of the multilayer printed wiring board characterized by including the following processes.
(A) A plating resist is formed in a desired shape on the surface of the holding body having conductivity, and a metal layer A different from the removal conditions of the holding body and a metal layer B different from the removal conditions of the metal layer A are plated forming a desired circuit pattern, wherein an adhesive layer provided on a surface on the basis of the circuit pattern on the surface of the removal of the plating resist step (b) the holder, and the substrate and the adhesive layer in a state of B-stage Step (c) Step of making a hole in the substrate (d) Step of overlaying the substrate with the hole on the adhesive layer side so that another substrate is in contact with the substrate, and pressurizing and heating to integrate the layers ( e) a step of forming a conductor circuit at a necessary portion of the laminated and integrated substrate and removing the holding body until the circuit pattern formed by the plating is exposed. (f) of another holding body having conductivity. Put the desired shape on the surface A step of forming a resist, plating a metal layer C different from the removal conditions of the other holding body, and a metal layer D different from the removal conditions of the metal layer C to form a desired circuit pattern, and removing the plating resist (G) An adhesive layer is provided on the surface of the other holding body on which a circuit pattern is formed, and the adhesive layer is obtained in the step (h) step (g) in which the adhesive layer is placed in a B-stage state . the adhesive layer side of the base plate with holes obtained in the board on the drilling step (i) stroke (h), superposed as the substrate fabricated in the step (e) is in contact, pressure heating Step (j) of stacking and integrating (Step) Repeating steps (f) to (i) as necessary to make a multilayer
保持体の表面に回路パターンを形成する工程において、保持体の表面に所望の形状にめっきレジストを形成し、該保持体とともに除去できる第1の金属層Eをめっきにより形成し、該保持体の除去条件と異なる金属層Fとこの金属層Fの除去条件と異なる金属層Gとからなる第2の金属層をめっきにより形成し、前記めっきレジストを除去することを特徴とする請求項1に記載の多層プリント配線板の製造法In the step of forming a circuit pattern on the surface of the holding body, a plating resist is formed in a desired shape on the surface of the holding body, and a first metal layer E that can be removed together with the holding body is formed by plating. a second metal layer made of the removal condition and the different metal layers F and the different metal layers G removal conditions of the metal layer F is formed by plating, according to claim 1, characterized in that the removal of the plating resist Manufacturing method for multilayer printed wiring boards 加圧加熱して積層一体化する工程において、Bステージの接着剤層の流動量が基板の表面方向に対して200μm未満である接着剤を用いることを特徴とする請求項1または2に記載の多層プリント配線板の製造法。In the step of laminating and integrating pressurized and heated, the flow amount of the adhesive layer of the B stage according to claim 1 or 2, characterized in that an adhesive is less than 200μm to the surface direction of the substrate A method for manufacturing multilayer printed wiring boards.
JP12622994A 1994-06-08 1994-06-08 Manufacturing method of multilayer printed wiring board Expired - Fee Related JP3620065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12622994A JP3620065B2 (en) 1994-06-08 1994-06-08 Manufacturing method of multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12622994A JP3620065B2 (en) 1994-06-08 1994-06-08 Manufacturing method of multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JPH07336050A JPH07336050A (en) 1995-12-22
JP3620065B2 true JP3620065B2 (en) 2005-02-16

Family

ID=14929973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12622994A Expired - Fee Related JP3620065B2 (en) 1994-06-08 1994-06-08 Manufacturing method of multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP3620065B2 (en)

Also Published As

Publication number Publication date
JPH07336050A (en) 1995-12-22

Similar Documents

Publication Publication Date Title
US5426850A (en) Fabrication process of wiring board
KR100548607B1 (en) Member for connection between wiring films, method for manufacturing same and method for manufacturing multilayer wiring board
JP4533449B2 (en) Wiring board manufacturing method
CN101175378B (en) Method of manufacturing circuit board
KR100701353B1 (en) Multi-layer printed circuit board and manufacturing method thereof
JP2008277737A (en) Carrier member for transferring circuit, coreless printed board using the same, and methods of manufacturing the both
KR20140057861A (en) Method of manufacturing printed circuit board
KR101164598B1 (en) Manufacturing method of multi-layer circuit board
JP4460013B2 (en) Wiring board manufacturing method
JPH1075069A (en) Manufacture of build-up multi-layer printed circuit board using yag laser
WO2001089276A1 (en) Method for manufacturing printed wiring board
JPH1187931A (en) Manufacture of printed circuit board
JP4480548B2 (en) Double-sided circuit board and manufacturing method thereof
JP2009176897A (en) Multilayer printed wiring board and manufacturing method therefor
TWI391063B (en) Multilayer circuit board and manufacturing method thereof
JP3620065B2 (en) Manufacturing method of multilayer printed wiring board
JPH0834340B2 (en) Wiring board and manufacturing method thereof
JP2004087697A (en) Method for manufacturing wiring board
JPH06268371A (en) Manufacture of multilayer printed wiring board
JPH06196862A (en) Manufacture of multilayer printed-wiring board
JP4503698B2 (en) Wiring board manufacturing method
JP3680321B2 (en) Manufacturing method of multilayer printed wiring board
JP3543348B2 (en) Manufacturing method of multilayer wiring board
CN117293038A (en) Manufacturing method of IC package carrier plate
KR20060003847A (en) A multi-layer board provide with interconnect bump hole of the inner layer rcc and therefor method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040316

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041026

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20041108

Free format text: JAPANESE INTERMEDIATE CODE: A61

LAPS Cancellation because of no payment of annual fees