JP3619457B2 - Smoothing coil for large current smoothing - Google Patents

Smoothing coil for large current smoothing Download PDF

Info

Publication number
JP3619457B2
JP3619457B2 JP2001004220A JP2001004220A JP3619457B2 JP 3619457 B2 JP3619457 B2 JP 3619457B2 JP 2001004220 A JP2001004220 A JP 2001004220A JP 2001004220 A JP2001004220 A JP 2001004220A JP 3619457 B2 JP3619457 B2 JP 3619457B2
Authority
JP
Japan
Prior art keywords
coil
smoothing
core
large current
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001004220A
Other languages
Japanese (ja)
Other versions
JP2002208521A (en
Inventor
宏治 川崎
博 松前
利彦 杉浦
茂雄 平島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2001004220A priority Critical patent/JP3619457B2/en
Publication of JP2002208521A publication Critical patent/JP2002208521A/en
Application granted granted Critical
Publication of JP3619457B2 publication Critical patent/JP3619457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、大電流平滑用の平滑コイルに関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
車両用のDC−DCコンバータや整流回路は、収容スペースの制約が大きく、これら回路を構成するスイッチング素子とこれらスイッチング素子の断続電流を平滑化する平滑コイル(チョークコイル)とを高度に近接配置して、装置を小型化することが要請されている。
【0003】
ところが、車両用のDC−DCコンバータではしばしば大電流を処理する必要があり、その結果、平滑コイルの発熱が近接配置されたスイッチング素子に熱的悪影響を及ぼすのを防止するために、回路信頼性を損なうという不具合が生じた。
【0004】
また、平滑コイルに用いられる磁性コア(以下、コアと称する)は、その磁気飽和を防止するためにギャップを設けるのが通常であり、外部に電磁ノイズを放射するため、スイッチング素子や半導体素子を遠ざけてその誤動作を防止する必要があった。
【0005】
しかしながら、車両用DC−DCコンバータなどに用いられる大電流平滑用の平滑コイルでは、主要スペース上の制約から電子回路装置の小型化が要請されるため、上記した平滑コイルと近傍の半導体素子との間に十分な距離を確保することが容易ではなかった。
【0006】
更に、周期的なコイル電流変化に伴うコアの磁気振動やコイルに作用する漏洩磁界の影響により、コアに嵌装したコイルが振動してコイルびびり騒音が生じる場合があった。モールド樹脂などでコイルをコアと一体化すればこのびびり騒音を防止することができるが、
コイル放熱性能の大幅な劣化によりコイルの過熱や樹脂劣化が問題となった。
【0007】
本発明は上記問題点に鑑みなされたものであり、簡素な構成で電磁ノイズや熱による悪影響の増大を抑止しつつ高密度集積可能な大電流平滑用の平滑コイルを提供することを、その目的としている。
【0008】
【課題を解決するための手段】
請求項1記載の大電流平滑用の平滑コイルは、高透磁率磁性材により形成された複数の部分コアの突き合わせにより構成された閉磁路を有するコアと、扁平な平角導体線を前記コアに巻装してなる平角導体線コイルと、前記平角導体線コイルの平坦な主表面に密着する平坦な伝熱吸熱面を有する金属製の放熱板と、前記コアを前記平角導体線コイルを介して前記放熱板の前記伝熱吸熱面に向けて押し付けることにより前記平角導体線コイルを前記放熱板の前記伝熱吸熱面に押し付ける固定部材とを備えることを特徴としている。
【0009】
すなわち、本発明では、平角導体線コイルをコアと金属放熱板で挟圧されるので、大電流が流れるコイルの抵抗損失による発熱は、たとえ予め成形したコイルをコアに嵌装する場合でも、平角導体線コイルの平坦表面に熱伝達良好に密着する金属放熱板及びコアの両方により良好に伝熱冷却され、これら金属放熱板及びコアを通じて外部に良好に放熱される。
【0010】
このため、コイルが高温となることがなく、その抵抗値も低減できる上、伝熱や対流、放射によりコイル近傍の半導体素子が熱的に悪影響を受けるのを抑止することができる。なお、放熱効果は、コアに比較して自己発熱がなくかつ熱伝導率が格段に良好な金属放熱板の方がコアよりも格段に高い。
【0011】
また、コアに磁気飽和防止用に有ギャップコアを用いる場合でも、ギャップ近傍に延在する金属放熱板が電磁遮蔽効果を奏し、電磁ノイズを良好に低減することができる。これらの結果、大電流平滑用の平滑コイルを用いた場合でも、高密度実装が可能となり、装置収容スペースを縮小することができる。
【0012】
更に、本発明では、コイルをコアと金属放熱板とで強く挟圧するので、成形コイルをコアに嵌装する場合でも、コイルをコアに樹脂固定することなくそのびびり騒音をほぼ完全に防止することができる。
【0013】
請求項2記載の構成によれば請求項1記載の大電流平滑用の平滑コイルにおいて更に、前記平角導体線コイルが、予め成形されて前記コアに嵌装された成形コイルからなることを特徴としている。
【0014】
本構成によれば、あらかじめ成形した成形コイルを簡単にコアの平板部に嵌着することができるので、実装作業を簡素化することができる。また、上記挟圧
により成形コイルに生じやすい放熱低下やビビリ騒音を良好に低減することができる。
【0015】
請求項3記載の構成によれば請求項2記載の大電流平滑用の平滑コイルにおいて更に、前記成形コイルが、予め螺旋状に成形されて、すべてのターン部が前記放熱板の前記伝熱吸熱面に密着する単層巻きコイルからなることを特徴としている。
【0016】
本構成によれば、成形コイルの冷却及びビビリ騒音の低減が一層良好になる。
【0017】
請求項4記載の構成によれば請求項1乃至3のいずれか記載の大電流平滑用の平滑コイルにおいて更に、前記固定部材が、両端部が前記放熱板に固定され、中央部が前記コアを前記放熱板へ向けて付勢する略コ字形状の板バネ部材からなることを特徴としている。
【0018】
本構成によれば、簡素な構成で上記挟圧を実現することができる。
【0019】
請求項5記載の構成によれば請求項1乃至3のいずれか記載の大電流平滑用の平滑コイルにおいて更に、前記固定部材が、両端部が前記放熱板に締結され、中央部が前記コアを前記放熱板へ向けて付勢する第二の放熱板からなることを特徴としている。
【0020】
本構成によれば、コア及びコイルの両側に一対の金属放熱板を配置するので、第二の放熱板が固定部材を兼ねることができ、部品点数の増加を抑止しつつ冷却性能を向上することができる。また、電磁シールド効果も一層向上することができる。
【0021】
【発明の実施の形態】
本発明の大電流平滑用の平滑コイルの好適な態様を以下の実施例により詳細に説明する。
【0022】
(実施例1)
実施例1の大電流平滑用の平滑コイルを図1を参照して以下に説明する。図1はこの平滑コイルの側面図である。
【0023】
この平滑コイルは、フェライト製のコア1と、コイル2と、放熱板3と、板ばね部材4と、熱伝導シート5とを有している。
【0024】
コア1は、コ字形状のコ字形コア11とI字形状のI字コア12とからなる。コ字形コア11は、平板状の中央板部と、中央板部の両端部から同一方向へ中央板部と直角に突出する一対の脚部とをもつ。I字コア12は、コ字形コア11の中央板部と平行に延在して両端部がコ字形コア11の両脚部に密接する平板形状を有している。図示省略しているが、コ字形コア11の両脚部の一方の先端面は一部切り欠かれて段差部をなし、残部がI字コア12に密接している。この段差部とI字コア12の表面との間のギャップが、コア1の磁気飽和防止用空隙をなしている。したがって、低電流ではコア1は飽和せず大インダクタンスをもち、電流が増加すると、上記段差部に隣接するコ字形コア11の脚部の先端部分が磁気飽和して磁束がこの空隙を流れ、インダクタンスは低下するもののコアの磁気飽和が抑止される。
【0025】
コイル2は、樹脂被覆扁平銅板からなる平角導体線を螺旋状に予め成形した単層巻きコイルであって、I字コア12に嵌装されている。コイル2の各ターン部は、熱伝導シート(シリコン樹脂シート)5を介してI字コア12の平坦表面及び放熱板3の平坦表面に密着している。熱伝導シート5の代わりに熱伝導グリスを採用してもよい。
【0026】
放熱板3は、扁平なアルミ平板からなり、図示しない回路基板に締結あるいははんだ付けされている。その他、回路基板を収容する金属ケースが放熱板3を兼ねることもできる。
【0027】
板ばね部材4は、板ばねを屈曲加工して形成され、両端が放熱板3に締結され、中央湾曲部がコ字形コア部11、I字コア12を通じてコイル2を放熱板3の表面に押し付けている。
【0028】
上記説明したこの実施例の大電流平滑用の平滑コイルは、既に説明したコイル2の放熱、びびり防止及び電磁ノイズ放射の低減をなす。
【0029】
(実施例2)
他の実施例を図2を参照して以下に説明する。
【0030】
この平滑コイルは、実施例1において、コ字形コア11とI字コア12の組み合わせの代わりに、同一形状の一対のL字コア13を組み合わせたロ字形状のコア1を採用したものである。これにより部品点数を減らすことができる。また、予め成形したコイル2を両方のL字コア13に嵌装することができ、コア1を小型化することができる。
【0031】
また、図1に用いた板ばね部材4の代わりに、第二の放熱板6を用いている。この第二の放熱板6は、アルミダイキャストにより略コ字形に形成され、両端部が金属ケースの底板部をなす放熱板3に締結されて、放熱板3とともにコア1及びコイル2を挟圧している。
61は第二の放熱板6の上面に突設された冷却フィンである。
【0032】
このようにすれば、上側のL字コア13に嵌装されたコイル2の各ターンは第二の放熱板6に密着し、下側のL字コア13に嵌装されたコイル2の各ターンは放熱板3に密着するので、良好なコイル放熱効果と電磁シールド効果とコイルびびり騒音低減効果を奏することができる。その他の詳細は実施例1と同じである。
熱伝導シート5は図示省略している。
【0033】
(実施例3)
他の実施例を図3、図4を参照して以下に説明する。
【0034】
この平滑コイルは、実施例1のコ字形コア11の一対の脚部を延長し、これら脚部に予め成形したコイル2を嵌装したものである。
【0035】
これにより部品点数を減らすことができる。また、コア1及びコイル2を挟んで放熱板3と第二の放熱板6とを配置し、放熱板3と第二の放熱板6とを金属製のスペーサ7を挟んで締結することにより、コイル2を放熱板3及び第二の放熱板6に押し付けている。これにより、コア1を小型化することができ、コイル放熱効果と電磁シールド効果とコイルびびり騒音低減効果を向上することができる。その他の詳細は実施例1と同じである。また、図1に用いた板ばね部材4を省略することができる。図2と同様に、スペーサ7を放熱板3又は第二の放熱板6と一体化してもよい。
【0036】
(実施例4)
他の実施例を図5を参照して以下に説明する。
【0037】
この平滑コイルは、図1に示す実施例1において図3、図4に示す第二の放熱板6及びスペーサ7を採用したものである。これにより、コイル放熱効果と電磁シールド効果とを向上することができる。
【0038】
(実施例5)
他の実施例を図6を参照して以下に説明する。
【0039】
この平滑コイルは、図3に示す実施例3において、コ字形コア11の代わりに、E字状のE字コア14を採用したものである。E字コア14は中央板部140から同一方向へ直角に突設された3本の脚部141,142、143を有している。
【0040】
コイル2は、コア1により形成される閉磁気回路中の並列磁路をなす両側の脚部141,143に嵌装されている。もちろん、中央の脚部142に嵌装してもよい。この実施例では、各脚部141〜143の磁路断面積は等しく図示されているが、実際には、中央の脚部142の磁路断面積は他の脚部の磁路断面積と略等しく形成されている。
【0041】
以上説明した各実施例で説明した大電流平滑用の平滑コイルでは、従来よりコイル温度を低下できるので、その電気抵抗の増加を抑止して効率を向上することができる。
【図面の簡単な説明】
【図1】実施例1の平滑コイルの側断面図である。
【図2】実施例2の平滑コイルの側断面図である。
【図3】実施例3の平滑コイルのコア及びコイルの平面図である。
【図4】実施例3の平滑コイルの側断面図である。
【図5】実施例4の平滑コイルの側断面図である。
【図6】実施例5の平滑コイルの側断面図である。
【符号の説明】
1 コア
2 コイル
3 放熱板
4 板ばね部材(固定部材)
5 熱伝導シート
6 第二の放熱板(放熱板、固定部材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a smoothing coil for smoothing a large current.
[0002]
[Prior art and problems to be solved by the invention]
Vehicle DC-DC converters and rectifier circuits have a large space limitation, and switching elements constituting these circuits and smoothing coils (choke coils) that smooth the intermittent current of these switching elements are arranged in close proximity. Therefore, there is a demand for downsizing the apparatus.
[0003]
However, in a DC-DC converter for a vehicle, it is often necessary to process a large current, and as a result, in order to prevent the heat generated by the smoothing coil from adversely affecting the switching elements arranged in proximity, circuit reliability is improved. There was a problem that damages.
[0004]
In addition, a magnetic core (hereinafter referred to as a core) used in a smooth coil is usually provided with a gap in order to prevent its magnetic saturation. In order to radiate electromagnetic noise to the outside, a switching element or a semiconductor element is used. It was necessary to keep it away and prevent its malfunction.
[0005]
However, in a smoothing coil for smoothing a large current used for a DC-DC converter for a vehicle or the like, downsizing of an electronic circuit device is required due to restrictions on main space. It was not easy to secure a sufficient distance between them.
[0006]
Furthermore, due to the influence of the magnetic vibration of the core accompanying the periodic coil current change and the leakage magnetic field acting on the coil, the coil fitted to the core may vibrate and coil chatter noise may occur. This chatter noise can be prevented if the coil is integrated with the core with mold resin, etc.
Coil overheating and resin degradation became a problem due to the significant deterioration of coil heat dissipation performance.
[0007]
The present invention has been made in view of the above problems, and its object is to provide a smoothing coil for smoothing large currents that can be integrated at high density while suppressing an increase in adverse effects due to electromagnetic noise and heat with a simple configuration. It is said.
[0008]
[Means for Solving the Problems]
The smoothing coil for smoothing a large current according to claim 1 is formed by winding a core having a closed magnetic path formed by butting a plurality of partial cores formed of a high permeability magnetic material and a flat rectangular conductor wire around the core. A flat rectangular conductor wire coil, a metal heat radiating plate having a flat heat transfer heat absorbing surface that is in close contact with the flat main surface of the rectangular conductor wire coil, and the core via the rectangular conductor wire coil. And a fixing member that presses the rectangular conductor wire coil against the heat transfer heat absorption surface of the heat radiating plate by pressing it toward the heat transfer heat absorption surface of the heat radiation plate .
[0009]
That is, in the present invention, since the flat conductor wire coil is sandwiched between the core and the metal heat sink, the heat generated by the resistance loss of the coil through which a large current flows can be obtained even when the pre-formed coil is fitted to the core. Heat transfer and cooling are performed satisfactorily by both the metal heat sink and the core which are in close contact with the flat surface of the conductor wire coil, and the heat is dissipated well through the metal heat sink and the core.
[0010]
For this reason, the coil does not become high temperature, the resistance value can be reduced, and it is possible to prevent the semiconductor elements in the vicinity of the coil from being adversely affected by heat transfer, convection, and radiation. In addition, the heat radiation effect is much higher in the metal heat radiating plate that has no self-heating than the core and has a much better thermal conductivity than the core.
[0011]
Even when a gap core is used for preventing magnetic saturation in the core, the metal heat radiating plate extending in the vicinity of the gap exhibits an electromagnetic shielding effect, and electromagnetic noise can be reduced well. As a result, even when a smoothing coil for smoothing a large current is used, high-density mounting is possible, and the device accommodation space can be reduced.
[0012]
Furthermore, in the present invention, since the coil is strongly clamped between the core and the metal heat sink, even when the molded coil is fitted to the core, chatter noise is almost completely prevented without fixing the coil to the core with resin. Can do.
[0013]
According to the second aspect of the present invention, in the smoothing coil for smoothing a large current according to the first aspect, the flat conductor wire coil is formed of a molded coil that is previously molded and fitted into the core. Yes.
[0014]
According to this configuration, since the pre-formed molded coil can be easily fitted to the flat plate portion of the core, the mounting operation can be simplified. In addition, it is possible to satisfactorily reduce heat dissipation reduction and chatter noise that are likely to occur in the formed coil by the clamping pressure.
[0015]
According to the configuration of claim 3, in the smoothing coil for smoothing a large current according to claim 2, the molded coil is formed in a spiral shape in advance, and all the turn portions are the heat transfer heat absorption of the heat radiating plate. It is characterized by comprising a single-layer wound coil in close contact with the surface.
[0016]
According to this configuration, cooling of the formed coil and reduction of chatter noise are further improved.
[0017]
According to the configuration of claim 4, in the smoothing coil for smoothing a large current according to any one of claims 1 to 3, the fixing member is fixed to the heat radiating plate at both ends and the core is connected to the core. It consists of a substantially U-shaped leaf spring member that urges toward the heat radiating plate.
[0018]
According to this configuration, the above clamping pressure can be realized with a simple configuration.
[0019]
According to the configuration of claim 5, in the smoothing coil for smoothing a large current according to any one of claims 1 to 3, the fixing member is fastened to the heat radiating plate at both ends, and the core is the core at the center. It consists of the 2nd heat sink urged | biased toward the said heat sink.
[0020]
According to this structure, since a pair of metal heat sink is arrange | positioned on both sides of a core and a coil, a 2nd heat sink can serve as a fixing member, and it improves cooling performance, suppressing the increase in a number of parts. Can do. In addition, the electromagnetic shielding effect can be further improved.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The preferred embodiments of the smoothing coil for smoothing a large current according to the present invention will be described in detail with reference to the following examples.
[0022]
(Example 1)
A smoothing coil for smoothing a large current according to the first embodiment will be described below with reference to FIG. FIG. 1 is a side view of the smoothing coil.
[0023]
This smooth coil has a ferrite core 1, a coil 2, a heat radiating plate 3, a leaf spring member 4, and a heat conductive sheet 5.
[0024]
The core 1 includes a U-shaped U-shaped core 11 and an I-shaped I-shaped core 12. The U-shaped core 11 has a flat central plate portion and a pair of leg portions that project from both ends of the central plate portion in the same direction at right angles to the central plate portion. The I-shaped core 12 has a flat plate shape that extends in parallel with the central plate portion of the U-shaped core 11 and has both end portions in close contact with both leg portions of the U-shaped core 11. Although not shown, one end surface of one leg of the U-shaped core 11 is partially cut away to form a stepped portion, and the remaining portion is in close contact with the I-shaped core 12. A gap between the stepped portion and the surface of the I-shaped core 12 forms a magnetic saturation prevention gap of the core 1. Therefore, at a low current, the core 1 does not saturate and has a large inductance, and when the current increases, the tip of the leg portion of the U-shaped core 11 adjacent to the stepped portion is magnetically saturated, and the magnetic flux flows through this gap. However, the magnetic saturation of the core is suppressed.
[0025]
The coil 2 is a single-layer wound coil in which a flat conductor wire made of a resin-coated flat copper plate is spirally formed in advance, and is fitted to the I-shaped core 12. Each turn part of the coil 2 is in close contact with the flat surface of the I-shaped core 12 and the flat surface of the heat sink 3 via a heat conductive sheet (silicon resin sheet) 5. Instead of the heat conductive sheet 5, heat conductive grease may be employed.
[0026]
The heat sink 3 is made of a flat aluminum flat plate, and is fastened or soldered to a circuit board (not shown). In addition, the metal case that accommodates the circuit board can also serve as the heat sink 3.
[0027]
The leaf spring member 4 is formed by bending a leaf spring, both ends thereof are fastened to the heat radiating plate 3, and the central curved portion presses the coil 2 against the surface of the heat radiating plate 3 through the U-shaped core portion 11 and the I-shaped core 12. ing.
[0028]
The smoothing coil for smoothing a large current according to this embodiment described above performs heat dissipation, chattering prevention, and electromagnetic noise radiation reduction of the coil 2 already described.
[0029]
(Example 2)
Another embodiment will be described below with reference to FIG.
[0030]
This smooth coil employs a square-shaped core 1 in which a pair of L-shaped cores 13 having the same shape is combined instead of the combination of the U-shaped core 11 and the I-shaped core 12 in the first embodiment. Thereby, the number of parts can be reduced. Moreover, the coil 2 shape | molded previously can be fitted to both the L-shaped cores 13, and the core 1 can be reduced in size.
[0031]
Moreover, the 2nd heat sink 6 is used instead of the leaf | plate spring member 4 used for FIG. The second heat radiating plate 6 is formed in a substantially U shape by aluminum die casting, and both ends are fastened to the heat radiating plate 3 that forms the bottom plate portion of the metal case, and sandwiches the core 1 and the coil 2 together with the heat radiating plate 3. ing.
61 is a cooling fin protruding from the upper surface of the second heat radiating plate 6.
[0032]
If it does in this way, each turn of the coil 2 fitted by the upper L-shaped core 13 will closely_contact | adhere to the 2nd heat sink 6, and each turn of the coil 2 fitted by the lower L-shaped core 13 Since it adheres closely to the heat radiating plate 3, a good coil heat radiation effect, electromagnetic shielding effect, and coil chatter noise reduction effect can be achieved. Other details are the same as those in the first embodiment.
The heat conductive sheet 5 is not shown.
[0033]
(Example 3)
Another embodiment will be described below with reference to FIGS.
[0034]
This smooth coil is obtained by extending a pair of leg portions of the U-shaped core 11 of the first embodiment and fitting a pre-formed coil 2 on these leg portions.
[0035]
Thereby, the number of parts can be reduced. Also, by disposing the radiator plate 3 and the second radiator plate 6 with the core 1 and the coil 2 interposed therebetween, and fastening the radiator plate 3 and the second radiator plate 6 with the metal spacer 7 interposed therebetween, The coil 2 is pressed against the heat radiating plate 3 and the second heat radiating plate 6. Thereby, the core 1 can be reduced in size and the coil heat radiation effect, the electromagnetic shielding effect, and the coil chatter noise reduction effect can be improved. Other details are the same as those in the first embodiment. Further, the leaf spring member 4 used in FIG. 1 can be omitted. As in FIG. 2, the spacer 7 may be integrated with the heat sink 3 or the second heat sink 6.
[0036]
(Example 4)
Another embodiment will be described below with reference to FIG.
[0037]
This smoothing coil employs the second heat radiation plate 6 and the spacer 7 shown in FIGS. 3 and 4 in the first embodiment shown in FIG. Thereby, the coil heat dissipation effect and the electromagnetic shielding effect can be improved.
[0038]
(Example 5)
Another embodiment will be described below with reference to FIG.
[0039]
This smoothing coil employs an E-shaped E-shaped core 14 instead of the U-shaped core 11 in the third embodiment shown in FIG. The E-shaped core 14 has three leg portions 141, 142, and 143 that project from the central plate portion 140 at a right angle in the same direction.
[0040]
The coil 2 is fitted to the leg portions 141 and 143 on both sides forming a parallel magnetic path in a closed magnetic circuit formed by the core 1. Of course, it may be fitted to the center leg 142. In this embodiment, the magnetic path cross-sectional areas of the respective leg portions 141 to 143 are equally shown, but actually, the magnetic path cross-sectional area of the central leg portion 142 is substantially the same as the magnetic path cross-sectional area of the other leg portions. Are equally formed.
[0041]
In the smoothing coil for smoothing a large current described in each of the embodiments described above, the coil temperature can be lowered as compared with the prior art, so that an increase in the electrical resistance can be suppressed and the efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a side sectional view of a smoothing coil according to a first embodiment.
FIG. 2 is a side sectional view of a smoothing coil according to a second embodiment.
FIG. 3 is a plan view of a core and a coil of a smoothing coil according to a third embodiment.
FIG. 4 is a side sectional view of a smoothing coil according to a third embodiment.
FIG. 5 is a side sectional view of a smoothing coil according to a fourth embodiment.
6 is a sectional side view of a smoothing coil according to Embodiment 5. FIG.
[Explanation of symbols]
1 Core 2 Coil 3 Heat sink 4 Leaf spring member (fixing member)
5 Thermal conductive sheet 6 Second heat sink (heat sink, fixing member)

Claims (5)

高透磁率磁性材により形成された複数の部分コアの突き合わせにより構成された閉磁路を有するコアと、
扁平な平角導体線を前記コアに巻装してなる平角導体線コイルと、
前記平角導体線コイルの平坦な主表面に密着する平坦な伝熱吸熱面を有する金属製の放熱板と、
前記コアを前記平角導体線コイルを介して前記放熱板の前記伝熱吸熱面に向けて押し付けることにより前記平角導体線コイルを前記放熱板の前記伝熱吸熱面に押し付ける固定部材と、
を備えることを特徴とする大電流平滑用の平滑コイル。
A core having a closed magnetic path constituted by butting a plurality of partial cores formed of a high permeability magnetic material;
A flat conductor wire coil formed by winding a flat rectangular conductor wire around the core;
A metal heat dissipating plate having a flat heat transfer heat absorbing surface that is in close contact with the flat main surface of the flat conductor wire coil;
A fixing member that presses the rectangular conductor wire coil against the heat transfer heat absorption surface of the heat dissipation plate by pressing the core toward the heat transfer heat absorption surface of the heat dissipation plate via the rectangular conductor wire coil ;
A smoothing coil for smoothing a large current.
請求項1記載の大電流平滑用の平滑コイルにおいて、
前記平角導体線コイルは、予め成形されて前記コアに嵌装された成形コイルからなることを特徴とする大電流平滑用の平滑コイル。
The smoothing coil for smoothing a large current according to claim 1,
The flat rectangular conductor wire coil is a smooth coil for smoothing a large current, which is formed of a molded coil that is molded in advance and fitted into the core.
請求項2記載の大電流平滑用の平滑コイルにおいて、
前記成形コイルは、予め螺旋状に成形されて、すべてのターン部が前記放熱板の前記伝熱吸熱面に密着するた単層巻きコイルからなることを特徴とする大電流平滑用の平滑コイル。
The smoothing coil for smoothing a large current according to claim 2,
The smoothing coil for smoothing a large current, wherein the forming coil is formed of a single-layer winding coil that is preliminarily formed in a spiral shape and all turn portions are in close contact with the heat transfer heat absorption surface of the heat radiating plate.
請求項1乃至4のいずれか記載の大電流平滑用の平滑コイルにおいて、
前記固定部材は、両端部が前記放熱板に固定され、中央部が前記コアを前記放熱板へ向けて付勢する略コ字形状の板バネ部材からなることを特徴とする大電流平滑用の平滑コイル。
The smoothing coil for smoothing a large current according to any one of claims 1 to 4,
The fixing member has a substantially U-shaped leaf spring member whose both ends are fixed to the heat radiating plate and whose central portion urges the core toward the heat radiating plate. Smooth coil.
請求項1乃至4のいずれか記載の大電流平滑用の平滑コイルにおいて、
前記固定部材は、両端部が前記放熱板に締結され、中央部が前記コアを前記放熱板へ向けて付勢する第二の放熱板からなることを特徴とする大電流平滑用の平滑コイル。
The smoothing coil for smoothing a large current according to any one of claims 1 to 4,
A smoothing coil for smoothing a large current, characterized in that the fixing member comprises a second heat radiating plate having both ends fastened to the heat radiating plate and a central portion urging the core toward the heat radiating plate.
JP2001004220A 2001-01-11 2001-01-11 Smoothing coil for large current smoothing Expired - Fee Related JP3619457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001004220A JP3619457B2 (en) 2001-01-11 2001-01-11 Smoothing coil for large current smoothing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001004220A JP3619457B2 (en) 2001-01-11 2001-01-11 Smoothing coil for large current smoothing

Publications (2)

Publication Number Publication Date
JP2002208521A JP2002208521A (en) 2002-07-26
JP3619457B2 true JP3619457B2 (en) 2005-02-09

Family

ID=18872440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001004220A Expired - Fee Related JP3619457B2 (en) 2001-01-11 2001-01-11 Smoothing coil for large current smoothing

Country Status (1)

Country Link
JP (1) JP3619457B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3771518B2 (en) * 2002-05-31 2006-04-26 三菱電機株式会社 Power converter
JP4572571B2 (en) * 2004-05-07 2010-11-04 トヨタ自動車株式会社 Electrical equipment housing
JP4784170B2 (en) * 2005-06-24 2011-10-05 Tdk株式会社 Power supply
JP4645417B2 (en) * 2005-11-07 2011-03-09 トヨタ自動車株式会社 Reactor cooling structure and electrical equipment unit
JP5167843B2 (en) * 2008-02-04 2013-03-21 住友電気工業株式会社 Reactor mounting structure
JP4717904B2 (en) * 2008-05-22 2011-07-06 株式会社タムラ製作所 Reactor
JP2010027733A (en) * 2008-07-16 2010-02-04 Daikin Ind Ltd Cooling structure of reactor
JP4772879B2 (en) * 2009-01-29 2011-09-14 株式会社タムラ製作所 Inductor
JP2010205979A (en) * 2009-03-04 2010-09-16 Tamura Seisakusho Co Ltd Reactor
JP5173951B2 (en) * 2009-07-01 2013-04-03 本田技研工業株式会社 Magnetic component cooling system
JP5552661B2 (en) * 2011-10-18 2014-07-16 株式会社豊田自動織機 Induction equipment
JP6035952B2 (en) * 2012-07-27 2016-11-30 Tdk株式会社 Power supply
JP5558543B2 (en) * 2012-10-29 2014-07-23 三菱電機株式会社 Switching power supply
JP5771725B2 (en) * 2014-05-23 2015-09-02 株式会社デンソー DC-DC converter
JP6397692B2 (en) 2014-08-20 2018-09-26 日立オートモティブシステムズ株式会社 Reactor and DC-DC converter using the same
JP6603887B2 (en) 2015-01-19 2019-11-13 パナソニックIpマネジメント株式会社 Magnetic component unit
JP2019046983A (en) * 2017-09-04 2019-03-22 Ntn株式会社 Inductor with radiator
CN112166482A (en) * 2018-06-05 2021-01-01 三菱电机株式会社 Power conversion device
JP2020167194A (en) * 2019-03-28 2020-10-08 株式会社豊田自動織機 Electrical machine
JP7437193B2 (en) * 2020-03-06 2024-02-22 株式会社トーキン reactor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661035U (en) * 1979-10-16 1981-05-23
JPH0349381Y2 (en) * 1988-08-05 1991-10-22
JP2589697Y2 (en) * 1991-06-04 1999-02-03 富士通株式会社 Transformer mounting structure
JP3200384B2 (en) * 1997-02-06 2001-08-20 株式会社モステック Coil parts
JPH10289825A (en) * 1997-04-14 1998-10-27 Fuji Electric Co Ltd Static induction electric equipment
JPH11162749A (en) * 1997-11-26 1999-06-18 Shin Kobe Electric Mach Co Ltd Transformer
JP3463260B2 (en) * 1998-11-17 2003-11-05 Tdk株式会社 Coil parts and their mounting structure

Also Published As

Publication number Publication date
JP2002208521A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
JP3619457B2 (en) Smoothing coil for large current smoothing
JP4802615B2 (en) LC composite parts
JP4222490B2 (en) Planar transformer and switching power supply
JP4784170B2 (en) Power supply
CN109313977B (en) Inductor and mounting structure thereof
JP6084079B2 (en) Magnetic device
US20140368059A1 (en) Transformer, electronic apparatus, and method for controlling transformer
JP6150844B2 (en) Electromagnetic induction equipment
JP2018133500A (en) Reactor and manufacturing method thereof
JP6672724B2 (en) Power supply
JP2018074127A (en) Coil structure
CN113544958A (en) Coil device and power conversion device
JPH10189351A (en) Insulated transformer
JP2011009418A (en) Insulating transformer for switching power supply device
JP6213979B2 (en) Magnetic device
JP2003272825A (en) Power supply device for microwave oven
JP6344797B2 (en) Circuit board module
JP6261071B2 (en) Coil integrated printed circuit board, magnetic device
JP2015060849A (en) Inductance component
WO2015170566A1 (en) Electronic apparatus
US20230014778A1 (en) Magnetic component structure with thermal conductive filler
JP2004349400A (en) Thermally conductive circuit board and power module using the same
JP5173951B2 (en) Magnetic component cooling system
JP2000100633A (en) Winding component
JP2015060850A (en) Inductance unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3619457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees