JP2018074127A - Coil structure - Google Patents

Coil structure Download PDF

Info

Publication number
JP2018074127A
JP2018074127A JP2016216763A JP2016216763A JP2018074127A JP 2018074127 A JP2018074127 A JP 2018074127A JP 2016216763 A JP2016216763 A JP 2016216763A JP 2016216763 A JP2016216763 A JP 2016216763A JP 2018074127 A JP2018074127 A JP 2018074127A
Authority
JP
Japan
Prior art keywords
coil
magnetic core
conductor portion
inner conductor
bus bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016216763A
Other languages
Japanese (ja)
Inventor
裕典 岡川
Hironori Okagawa
裕典 岡川
暁光 鄭
Xiaoguang Zheng
暁光 鄭
幸伯 山田
Kohaku Yamada
幸伯 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2016216763A priority Critical patent/JP2018074127A/en
Publication of JP2018074127A publication Critical patent/JP2018074127A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a coil structure with a small magnetic core.SOLUTION: A coil structure comprises: an annular magnetic core; and a coil that is configured by a spiral conductor and that has an inner conductor part arranged inside the magnetic core and an outer conductor part arranged outside of the magnetic core. A total width of the inner conductor part is smaller than that of the outer conductor part.SELECTED DRAWING: Figure 1

Description

本発明は、コイル構造体に関する。   The present invention relates to a coil structure.

自動車には、電源(バッテリー)からヘッドランプやワイパーなどの負荷へ電力を分配する電気接続箱(パワーディストリビュータとも呼ばれる)が搭載されている。この電気接続箱の内部回路を構成する部材として、例えば、特許文献1に示す回路構成体がある。この回路構成体は、導体パターン(回路パターン)が形成された制御回路基板と、制御回路基板に接着された入力端子用バスバ、及び出力端子用バスバと、制御回路基板と両バスバとに実装される半導体スイッチング素子などの電子部品とを備える。   An automobile is equipped with an electrical junction box (also called a power distributor) that distributes power from a power source (battery) to a load such as a headlamp or a wiper. As a member constituting the internal circuit of the electrical junction box, for example, there is a circuit structure shown in Patent Document 1. The circuit structure is mounted on a control circuit board on which a conductor pattern (circuit pattern) is formed, an input terminal bus bar and an output terminal bus bar bonded to the control circuit board, and the control circuit board and both bus bars. Electronic components such as semiconductor switching elements.

このような回路構成体には、半導体スイッチング素子の他の電子部品として、別途用意されるコイル部品(コイル構造体)が、通常、回路基板のバスバに表面実装されるものがある。コイル部品は、例えば、巻線を螺旋状に巻回してなるコイルと、コイルの内外に配置される磁性コアとを備えるチョークコイルなどが挙げられる。このコイル部品は、一般的に、コイルの軸方向がバスバ(回路基板)の平面に直交するように配置される。   Among such circuit components, there is one in which a separately prepared coil component (coil structure) is usually surface-mounted on a bus bar of a circuit board as another electronic component of the semiconductor switching element. Examples of the coil component include a choke coil including a coil formed by winding a winding in a spiral shape and a magnetic core disposed inside and outside the coil. This coil component is generally arranged so that the axial direction of the coil is orthogonal to the plane of the bus bar (circuit board).

特開2003−164040号公報JP 2003-164040 A

コイル構造体は、コイルのターンがバスバの平面に直交する上方向に積み重なると共に、磁性コアのうちコイルの外側に配置される一部分がコイルの上端面側に配置されるため、一般的に回路構成体の中でサイズの大きい(高さの高い)部材である。そのため、回路構成体の高さが高くなり、回路構成体全体の体積が大きくなる。この回路構成体の高さを低くするために、コイル構成体のサイズの低減、特に、磁性コアのサイズの低減が望まれている。   The coil structure generally has a circuit configuration because the turns of the coil are stacked in an upward direction perpendicular to the plane of the bus bar, and a portion of the magnetic core disposed outside the coil is disposed on the upper end surface side of the coil. It is a large (high) member in the body. For this reason, the height of the circuit structure increases, and the volume of the entire circuit structure increases. In order to reduce the height of the circuit structure, it is desired to reduce the size of the coil structure, in particular, the size of the magnetic core.

そこで、磁性コアのサイズの小さいコイル構造体を提供することを目的の一つとする。   Accordingly, an object is to provide a coil structure having a small magnetic core size.

本開示に係るコイル構造体は、
環状の磁性コアと、
渦巻状の導体で構成され、前記磁性コアの内側に配置される内側導体部、及び前記磁性コアの外側に配置される外側導体部を有するコイルとを備え、
前記内側導体部の合計幅が、前記外側導体部の合計幅よりも小さい。
The coil structure according to the present disclosure is:
An annular magnetic core;
A coil having a spiral conductor, an inner conductor portion disposed inside the magnetic core, and an outer conductor portion disposed outside the magnetic core;
The total width of the inner conductor portion is smaller than the total width of the outer conductor portion.

上記コイル構造体は、磁性コアのサイズが小さい。   The coil structure has a small magnetic core size.

実施形態1に係るコイル構造体の概略を示す斜視図である。1 is a perspective view illustrating an outline of a coil structure according to Embodiment 1. FIG. 実施形態1に係るコイル構造体の概略を示す上面図である。FIG. 2 is a top view schematically showing a coil structure according to the first embodiment. 図1に示すコイル構造体の(III)−(III)切断線で切断した状態を示す断面図である。It is sectional drawing which shows the state cut | disconnected by the (III)-(III) cutting line of the coil structure shown in FIG. 変形例1−1に係るコイル構造体の概略を示す横断面図である。It is a cross-sectional view which shows the outline of the coil structure which concerns on the modification 1-1. 変形例1−2に係るコイル構造体の概略を示す斜視図である。It is a perspective view which shows the outline of the coil structure which concerns on modification 1-2. 図5に示すコイル構造体の(VI)−(VI)切断線で切断した状態を示す断面図である。It is sectional drawing which shows the state cut | disconnected by the (VI)-(VI) cutting line of the coil structure shown in FIG. 実施形態2に係るコイル構造体の概略を示す斜視図である。6 is a perspective view showing an outline of a coil structure according to Embodiment 2. FIG. 図7に示すコイル構造体の(VIII)−(VIII)切断線で切断した状態を示す断面図である。It is sectional drawing which shows the state cut | disconnected by the (VIII)-(VIII) cutting line of the coil structure shown in FIG.

《本発明の実施形態の説明》
最初に本発明の実施態様を列記して説明する。
<< Description of Embodiments of the Present Invention >>
First, embodiments of the present invention will be listed and described.

(1)本発明の一形態に係るコイル構造体は、
環状の磁性コアと、
渦巻状の導体で構成され、前記磁性コアの内側に配置される内側導体部、及び前記磁性コアの外側に配置される外側導体部を有するコイルとを備え、
前記内側導体部の合計幅が、前記外側導体部の合計幅よりも小さい。
(1) A coil structure according to an aspect of the present invention is
An annular magnetic core;
A coil having a spiral conductor, an inner conductor portion disposed inside the magnetic core, and an outer conductor portion disposed outside the magnetic core;
The total width of the inner conductor portion is smaller than the total width of the outer conductor portion.

上記の構成によれば、磁性コアのサイズを小さくし易い。コイルが渦巻状であり各ターンが同一平面上に位置するため、各ターンを軸方向に積み重ねる螺旋状のコイルに比べて磁性コアの高さを低くできるからである。加えて、内側導体部の合計幅が外側導体部の合計幅よりも小さいため、内側導体部の合計幅と外側導体部の合計幅とが同一なコイル(以下、合計幅同一コイル)とコイル全体の抵抗値を同一とするとき、上記合計幅同一コイルに比較して、内側導体部の合計幅が小さく、磁性コアの幅も小さくできるからである。この合計幅とは、内側導体部と外側導体部の本数を同数としたときの値をいう。従って、高さが低くて全体の体積の小さい回路構成体を構築できる。   According to said structure, it is easy to make the size of a magnetic core small. This is because the coil is spiral and each turn is positioned on the same plane, so that the height of the magnetic core can be made lower than that of a spiral coil in which the turns are stacked in the axial direction. In addition, since the total width of the inner conductor portion is smaller than the total width of the outer conductor portion, the coil having the same total width of the inner conductor portion and the total width of the outer conductor portion (hereinafter, the same total width coil) and the entire coil This is because the total width of the inner conductor portion is smaller and the width of the magnetic core can be smaller than that of the coil having the same total width. The total width means a value when the number of inner conductor portions and outer conductor portions is the same. Therefore, it is possible to construct a circuit structure having a low height and a small overall volume.

また、上記の構成によれば、放熱性を高め易い。コイル全体の抵抗値が上記合計幅同一コイルと同一とするとき、上記合計幅同一コイルに比較して、外側導体部の合計幅が大きいため、放熱面積を大きくとり易いからである。その上、コイルは「(内側導体部の合計幅)<(外側導体部の合計幅)」を満たすことで、内側導体部が外側導体部に比べて発熱し易いが、上記合計幅同一コイルに比べて、より発熱し易い内側導体部の熱が、より発熱し難くて放熱面積を大きくとれる外側導体部に拡散し易いからである。従って、上記合計幅同一コイルに比べて、コイルの最大温度を低くし易い。   Moreover, according to said structure, it is easy to improve heat dissipation. This is because when the resistance value of the entire coil is the same as that of the same coil having the same total width, the total width of the outer conductor portion is larger than that of the same coil having the same total width, so that the heat radiation area can be easily increased. In addition, since the coil satisfies “(total width of the inner conductor portion) <(total width of the outer conductor portion)”, the inner conductor portion generates heat more easily than the outer conductor portion. This is because the heat of the inner conductor portion that is more likely to generate heat is more likely to diffuse to the outer conductor portion that is less likely to generate heat and can take up a large heat radiation area. Therefore, the maximum temperature of the coil is easily lowered as compared with the coil having the same total width.

(2)上記コイル構造体の一形態として、最も大きい前記内側導体部の幅が、最も小さい前記外側導体部の幅よりも小さいことが挙げられる。   (2) As one form of the said coil structure, it is mentioned that the largest width | variety of the said inner side conductor part is smaller than the width | variety of the said smallest outer side conductor part.

上記の構成によれば、磁性コアのサイズをより一層小さくし易い。全ての内側導体部の幅が全ての外側導体部の幅よりも小さいため、内側導体部の合計幅をより一層小さくし易いからである。   According to said structure, it is easy to make the size of a magnetic core still smaller. This is because the widths of all the inner conductor portions are smaller than the widths of all the outer conductor portions, so that the total width of the inner conductor portions can be easily reduced.

また、上記の構成によれば、放熱性をより一層高め易い。上記合計幅同一コイルに比べて内側導体部の合計幅がより一層小さい、即ち、外側導体部の合計幅がより一層大きいため、放熱面積をより一層大きくとり易いからである。その上、内外の導体部の合計幅同士の差が大きくなることで、内側導体部の熱を外側導体部により拡散し易いからである。   Moreover, according to said structure, it is easy to improve heat dissipation further. This is because the total width of the inner conductor portion is much smaller than that of the coil having the same total width, that is, the total width of the outer conductor portion is much larger, so that the heat radiation area can be further increased. In addition, because the difference between the total widths of the inner and outer conductor portions is increased, the heat of the inner conductor portion is easily diffused by the outer conductor portion.

(3)上記コイル構造体の一形態として、前記コイルは、回路基板の下面に配置される板状のバスバの一部で構成されることが挙げられる。   (3) As one form of the said coil structure, it is mentioned that the said coil is comprised by a part of plate-shaped bus bar arrange | positioned at the lower surface of a circuit board.

上記の構成によれば、回路構成体の生産性を高められる。コイルがバスバの一部で構成されていることで、バスバの作製と同時にコイルを作製でき、バスバとコイルとを個々に準備する必要がない。バスバの製造は、代表的には、一枚の平板導体を所望の配線パターンに打抜加工することで行える。その際、平板導体の一部を所望の渦巻形状に打ち抜くことでコイルを製造できる。そして、バスバのコイルに磁性コアを組み付けるだけでコイル構造体の作製と同時に回路構成体を製造できる。即ち、コイル構造体を構成するコイルと磁性コアとをそれぞれ用意して組み合わせた後、バスバなどに実装する必要がない。   According to said structure, the productivity of a circuit structure body can be improved. Since the coil is formed of a part of the bus bar, the coil can be manufactured simultaneously with the bus bar, and it is not necessary to prepare the bus bar and the coil individually. Typically, the bus bar can be manufactured by punching a single flat conductor into a desired wiring pattern. In that case, a coil can be manufactured by punching a part of a flat conductor into a desired spiral shape. And a circuit structure can be manufactured simultaneously with preparation of a coil structure only by attaching a magnetic core to a coil of a bus bar. That is, it is not necessary to mount the coil structure and the coil on the bus bar after preparing and combining the coil and the magnetic core.

(4)上記コイル構造体の一形態として、前記コイルは、回路基板の上面に形成される箔状の回路パターンの一部で構成されることが挙げられる。   (4) As one form of the said coil structure, it is mentioned that the said coil is comprised by a part of foil-like circuit pattern formed in the upper surface of a circuit board.

上記の構成によれば、磁性コアのサイズをより一層小さくし易い。箔状の回路パターンは、板状のバスバに比べて幅及び厚みをより小さくし易いからである。   According to said structure, it is easy to make the size of a magnetic core still smaller. This is because the foil-like circuit pattern can be easily reduced in width and thickness as compared with the plate-like bus bar.

(5)上記コイル構造体の一形態として、前記コイルの一面側に配置されて前記コイルの熱を放熱する放熱部材を備え、前記放熱部材は、磁性コアの一部を収納する収納凹部を備えることが挙げられる。   (5) As one form of the said coil structure, it has the thermal radiation member arrange | positioned on the one surface side of the said coil, and radiates the heat of the said coil, The said thermal radiation member is equipped with the accommodation recessed part which accommodates a part of magnetic core. Can be mentioned.

上記の構成によれば、放熱部材を備えることでコイル及び磁性コアの熱を効果的に放熱できる。また、放熱部材が収納凹部を備えることで、磁性コアの高さが高くなることを抑制して高さの低い回路構成体を構築できる。   According to said structure, the heat of a coil and a magnetic core can be thermally radiated effectively by providing a heat radiating member. Further, since the heat radiating member includes the housing recess, it is possible to construct a circuit structure having a low height while suppressing an increase in the height of the magnetic core.

《本発明の実施形態の詳細》
本発明の実施形態の詳細を、以下に図面を参照しつつ説明する。図中の同一符号は同一名称物を示す。
<< Details of Embodiment of the Present Invention >>
Details of embodiments of the present invention will be described below with reference to the drawings. The same reference numerals in the figure indicate the same names.

《実施形態1》
〔コイル構造体〕
図1〜図3を参照して、実施形態1に係るコイル構造体1Aを説明する。コイル構造体1Aは、環状の磁性コア2と、磁性コア2の内外に配置されるコイル3とを備える。このコイル構造体1Aは、代表的には、回路構成体100に備わる。回路構成体100は、例えば、図1に示すように、信号回路を構成する箔状の回路パターン(図示略)が形成される上面を有する回路基板110と、回路基板110の下面に配置されて電力回路を構成する板状のバスバ130と、回路パターン及びバスバ130の少なくとも一方に実装される電子部品とを備える。この電子部品の一つに実施形態に係るコイル構造体1Aがある。コイル構造体1Aの特徴の一つは、コイル3がバスバ130の一部を渦巻状に形成してなり、コイル3のうち、磁性コア2の内側に配置される内側導体部31と磁性コア2の外側に配置される外側導体部32のサイズ(幅)が特定の大小関係を満たす点にある。ここでは、コイル3(バスバ130)の下面には、コイル3(バスバ130)の熱を放熱する放熱部材5(150)が配置されている。以下、詳細を説明する。説明の便宜上、図1〜図3では、回路構成体100において、実施形態1に係るコイル構造体1A付近を示し、その他の部分を省略して示している。また、図2,図3では、回路基板を省略して示しており、図2ではコイル3にハッチングを施している。以下の説明では、回路構成体100のコイル3(バスバ130)における放熱部材5側(図1,図3紙面下側、図2紙面奥側)を「下」、その反対側を「上」としている。
Embodiment 1
[Coil structure]
With reference to FIGS. 1-3, the coil structure 1A which concerns on Embodiment 1 is demonstrated. The coil structure 1 </ b> A includes an annular magnetic core 2 and coils 3 disposed inside and outside the magnetic core 2. This coil structure 1 </ b> A is typically provided in the circuit configuration body 100. For example, as shown in FIG. 1, the circuit structure 100 is arranged on a circuit board 110 having an upper surface on which a foil-like circuit pattern (not shown) constituting a signal circuit is formed, and on the lower surface of the circuit board 110. A plate-shaped bus bar 130 constituting the power circuit and an electronic component mounted on at least one of the circuit pattern and the bus bar 130 are provided. One electronic component is a coil structure 1A according to an embodiment. One of the features of the coil structure 1A is that the coil 3 is formed by forming a part of the bus bar 130 in a spiral shape, and the inner conductor 31 and the magnetic core 2 disposed inside the magnetic core 2 of the coil 3. This is that the size (width) of the outer conductor portion 32 arranged on the outer side of the capacitor satisfies a specific magnitude relationship. Here, a heat radiating member 5 (150) for radiating heat of the coil 3 (bus bar 130) is disposed on the lower surface of the coil 3 (bus bar 130). Details will be described below. For convenience of explanation, FIGS. 1 to 3 show the vicinity of the coil structure 1 </ b> A according to the first embodiment in the circuit configuration body 100 and omit other parts. 2 and 3, the circuit board is omitted, and in FIG. 2, the coil 3 is hatched. In the following description, the heat dissipating member 5 side (the lower side in FIG. 1 and FIG. 3 and the inner side in FIG. 2) of the coil 3 (bus bar 130) of the circuit structure 100 is defined as “lower” and the opposite side as “up” Yes.

[磁性コア]
磁性コア2は、分割された複数のコア部を環状に連結して構成され、コイル3の励磁により閉磁路を形成する(図1,図3)。磁性コア2の連結・分離形態は、U−I型、U−U型、L−L型などとすることができる。その連結・分離面は、上下方向に沿っていても良いし、上下方向に直交する方向に沿っていてもよい。連結・分離面の位置は、コイル3と同一平面上に並ばない位置、即ちコイル3の平面に対してずれた位置とすることが好ましい。そうすれば、連結・分離面からの漏れ磁束がコイル3へ侵入し難い。そのため、損失(ジュール損)の増加を抑制し易く、磁気特性の低下を抑制し易い。連結・分離面同士は、その間に両コア部よりも比透磁率の低い材料からなるギャップ材を介して連結されていてもよいし、その間にギャップ材を介することなく直接連結していてもよい。
[Magnetic core]
The magnetic core 2 is configured by connecting a plurality of divided core portions in an annular shape, and forms a closed magnetic circuit by exciting the coil 3 (FIGS. 1 and 3). The connection / separation form of the magnetic core 2 can be UI type, UU type, LL type, or the like. The connection / separation surface may be along the vertical direction, or may be along a direction orthogonal to the vertical direction. The position of the connection / separation surface is preferably a position that is not arranged on the same plane as the coil 3, that is, a position shifted from the plane of the coil 3. If it does so, the leakage magnetic flux from a connection and isolation | separation surface does not penetrate | invade into the coil 3 easily. Therefore, it is easy to suppress an increase in loss (Joule loss), and it is easy to suppress a decrease in magnetic characteristics. The connecting / separating surfaces may be connected to each other via a gap material made of a material having a lower relative magnetic permeability than both core portions, or may be directly connected to each other without using a gap material. .

ここでは、磁性コア2は、上下に二分割し、コイル3の上方を覆う横断面U字状の上側コア部21と、コイル3の下方に配置される横断面I字状の下側コア部22とを備えるU−I型としている(図1,図3)。上側・下側コア部21,22の連結・分離面の位置は、コイル3(内側導体部31)に対して上下方向に段差が生じる位置(ここではコイル3の下方に位置)としている。上側・下側コア部21,22の連結・分離面は、後述の放熱部材5の収納凹部51に収納されていて、放熱部材5の上面よりも下方に位置している。上側・下側コア部21,22の連結・分離面同士は、その間にギャップ材を介在せず、直接連結されている。   Here, the magnetic core 2 is divided into upper and lower parts, and an upper core part 21 having a U-shaped cross section covering the upper side of the coil 3 and a lower core part having an I-shaped cross section disposed below the coil 3. And U-I type (FIGS. 1 and 3). The positions of the connecting / separating surfaces of the upper and lower core portions 21 and 22 are positions where a step is generated in the vertical direction with respect to the coil 3 (inner conductor portion 31) (here, positioned below the coil 3). The connection / separation surfaces of the upper and lower core portions 21 and 22 are stored in a storage recess 51 of the heat radiating member 5 described later, and are positioned below the upper surface of the heat radiating member 5. The connection / separation surfaces of the upper and lower core portions 21 and 22 are directly connected without a gap material therebetween.

磁性コア2は、公知の構成材料で形成された種々の形態のものが利用できる。磁性コア2は、磁性粉末を用いた成形体や、絶縁被覆を有する磁性薄板(例えば、電磁鋼板)を複数積層した積層体を利用できる。上記成形体は、例えば、軟磁性材料(軟磁性金属又は軟磁性非金属)の粉末を用いた圧粉成形体、上記粉末をプレス成形後に焼結した焼結体、上記粉末と樹脂とを含む混合物を射出成形や注型成形などした複合材料成形体が挙げられる。軟磁性金属は、鉄族金属、Feを主成分とする鉄基合金、アモルファス金属などが挙げられる。鉄族金属は、Fe,Ni,Coである。鉄基合金は、代表的には、Fe−Si系合金、Fe−Ni系合金、Fe−Si−Al系合金などが挙げられる。軟磁性非金属は、金属酸化物、例えば、フェライトなどFeを含む酸化物などが挙げられる。   The magnetic core 2 can be used in various forms made of known constituent materials. As the magnetic core 2, a molded body using magnetic powder or a laminated body in which a plurality of magnetic thin plates (for example, electromagnetic steel sheets) having an insulating coating are laminated can be used. The compact includes, for example, a compact compact using a powder of a soft magnetic material (soft magnetic metal or soft magnetic nonmetal), a sintered compact obtained by sintering the powder after press molding, and the powder and a resin. A composite material molded body obtained by subjecting the mixture to injection molding or cast molding can be used. Examples of the soft magnetic metal include an iron group metal, an iron base alloy containing Fe as a main component, and an amorphous metal. The iron group metal is Fe, Ni, Co. Typical examples of iron-based alloys include Fe-Si alloys, Fe-Ni alloys, and Fe-Si-Al alloys. Examples of the soft magnetic nonmetal include metal oxides, for example, oxides containing Fe such as ferrite.

ギャップ材を備える場合、ギャップ材の構成材料は、例えば、アルミナなどのセラミックスや、樹脂(例えば、PPS樹脂)などの非磁性材料、軟磁性粉末と樹脂とを含む複合材、各種のゴムといった弾性材などが挙げられる。   When the gap material is provided, the gap material is made of, for example, ceramics such as alumina, nonmagnetic materials such as resin (for example, PPS resin), composite materials including soft magnetic powder and resin, and elastic materials such as various rubbers. Materials.

[コイル]
コイル3は、渦巻状の導体で構成される(図1、図2)。ここでは、コイル3は、回路構成体100において、回路基板110の下面に配置される板状のバスバ130の一部で構成されている。このコイル3は、各ターンがバスバ130の他部131(例えば、後述の出力(入力)端子など)と同一平面上に位置する平面コイルである。コイル3のターン数は、所望のインダクタンスに応じて適宜選択できる。図1〜図3では、説明の便宜上、3ターンのコイル3を例示している。各ターン間の間隔は、略等間隔としている。コイル3(渦巻)の外形は、矩形状としているが、円形状としてもよい。導体の材質は、バスバ130の材質と同じ銅や銅合金などが挙げられる。
[coil]
The coil 3 is composed of a spiral conductor (FIGS. 1 and 2). Here, the coil 3 is configured by a part of a plate-like bus bar 130 disposed on the lower surface of the circuit board 110 in the circuit structure 100. The coil 3 is a planar coil in which each turn is located on the same plane as the other part 131 (for example, an output (input) terminal described later) of the bus bar 130. The number of turns of the coil 3 can be appropriately selected according to a desired inductance. 1-3, the coil 3 of 3 turns is illustrated for convenience of explanation. The intervals between the turns are substantially equal. The outer shape of the coil 3 (spiral) is rectangular, but it may be circular. The conductor material may be the same copper or copper alloy as the bus bar 130 material.

コイル3は、磁性コア2の内側に配置される内側導体部31と、磁性コア2の外側に配置される外側導体部32とを有する(図1〜図3)。「磁性コアの内側に配置される内側導体部」とは、磁性コア2の内側に配置されている部分のみの場合の他、例えば、内側導体部31の中央部分が磁性コア2の内側に配置され、内側導体部31の端部付近が磁性コア2の外側に位置する場合も「磁性コアの内側に配置される内側導体部」に含まれる。即ち、内側導体部31の軸方向の長さは、磁性コア2の長さよりも長くてもよく、内側導体部31の端部及びその近傍が磁性コア2の端面から突出して露出されていてもよい。コイル3の両端部は、磁性コア2の外側で渦巻の最内周に配置される内周端部33と、磁性コア2の外側で渦巻の最外周に引き出される外周端部34とを有する。   The coil 3 includes an inner conductor portion 31 disposed inside the magnetic core 2 and an outer conductor portion 32 disposed outside the magnetic core 2 (FIGS. 1 to 3). The “inner conductor portion arranged inside the magnetic core” means not only the portion arranged inside the magnetic core 2 but also the central portion of the inner conductor portion 31 arranged inside the magnetic core 2, for example. In addition, the case where the vicinity of the end portion of the inner conductor portion 31 is located outside the magnetic core 2 is also included in the “inner conductor portion disposed inside the magnetic core”. That is, the axial length of the inner conductor portion 31 may be longer than the length of the magnetic core 2, and the end portion of the inner conductor portion 31 and its vicinity may protrude from the end face of the magnetic core 2 and be exposed. Good. Both end portions of the coil 3 have an inner peripheral end portion 33 arranged on the innermost periphery of the spiral outside the magnetic core 2 and an outer peripheral end portion 34 drawn out to the outermost periphery of the spiral outside the magnetic core 2.

内側導体部31は、磁性コア2(図2二点鎖線で示す)の内外に配置され、磁性コア2の軸方向(図2左右方向)に平行な直線状の細幅な部分で、磁性コア2の内側に配置される中央部分と、磁性コア2の外側に配置され、上記中央部分の両端部に連続する端部部分とを有する(図2)。外側導体部32は、磁性コア2の軸方向(上記中央部分)に平行な直線状の平行部分と、上記平行部分に直交する直線状の直交部分とを有する。直交部分のうち、コイル3の最外周の一方の直交部分(図2紙面右側)は、内側導体部31の上記端部部分とコイル3の外周端部34とに連結されている。その他の直交部分は、外側導体部32の上記平行部分と内側導体部31の上記端部部分とを連結する。コイル3の最内周の上記平行部分は、上記直交部分とコイル3の内周端部33とに連結されている。   The inner conductor portion 31 is a linear narrow portion that is disposed inside and outside the magnetic core 2 (indicated by a two-dot chain line in FIG. 2) and is parallel to the axial direction (left-right direction in FIG. 2) of the magnetic core 2. 2 and an end portion which is arranged outside the magnetic core 2 and is continuous with both end portions of the center portion (FIG. 2). The outer conductor part 32 has a linear parallel part parallel to the axial direction (the central part) of the magnetic core 2 and a linear orthogonal part orthogonal to the parallel part. Among the orthogonal portions, one orthogonal portion (the right side in FIG. 2) of the outermost periphery of the coil 3 is connected to the end portion of the inner conductor portion 31 and the outer peripheral end portion 34 of the coil 3. The other orthogonal portion connects the parallel portion of the outer conductor portion 32 and the end portion of the inner conductor portion 31. The parallel part on the innermost periphery of the coil 3 is connected to the orthogonal part and the inner peripheral end 33 of the coil 3.

両導体部31,32の横断面形状は、矩形状である(図3)。両導体部31,32の厚みは長手方向に均一である。厚みは、上下方向に沿った長さである。両導体部31,32の厚みは、回路基板110における箔状の回路パターンの厚み(例えば20μm以上150μm以下)よりも大きく、バスバ130の他部131の厚みと同一である。両導体部31,32の厚みは、例えば、0.3mm以上2.0mm以下が挙げられる。内側導体部31の幅Wiと外側導体部32の幅Woは、詳しくは後述するが相違している(図2)。各幅Wi,Woは、各導体部31,32における上記中央部分、上記平行部分(直交部分)の長手方向と上下方向の両方向に直交する方向に沿った長さである。コイル3の外形が円形状の場合、各導体部31,32の幅は、曲線部分の法線方向に沿った長さとする。   The cross-sectional shape of both the conductor parts 31 and 32 is a rectangular shape (FIG. 3). The thickness of both the conductor parts 31 and 32 is uniform in the longitudinal direction. The thickness is a length along the vertical direction. The thickness of both the conductor parts 31 and 32 is larger than the thickness of the foil-like circuit pattern in the circuit board 110 (for example, 20 micrometers or more and 150 micrometers or less), and is the same as the thickness of the other part 131 of the bus bar 130. As for the thickness of both the conductor parts 31 and 32, 0.3 mm or more and 2.0 mm or less are mentioned, for example. The width Wi of the inner conductor portion 31 and the width Wo of the outer conductor portion 32 are different from each other as will be described in detail (FIG. 2). Each width Wi, Wo is a length along a direction perpendicular to both the longitudinal direction and the vertical direction of the central portion and the parallel portion (orthogonal portion) of each conductor portion 31, 32. When the outer shape of the coil 3 is circular, the width of each of the conductor portions 31 and 32 is a length along the normal direction of the curved portion.

内側導体部31の合計幅は、外側導体部32の合計幅よりも小さい。それにより、磁性コア2のサイズを小さくし易い。コイル3が渦巻状であり各ターンが同一平面上に位置するため、各ターンを軸方向に積み重ねる螺旋状のコイルに比べて磁性コア2の高さを低くできるからである。加えて、内側導体部31の合計幅と外側導体部32の合計幅とが同一なコイルとコイル全体の抵抗値を同一とするとき、その合計幅が同一なコイルに比較して、内側導体部31の合計幅が小さく、磁性コア2の幅を小さくできるからである。この合計幅とは、内側導体部31と外側導体部32の本数を同数としたときの値をいう。また、放熱性を高め易い。コイル全体の抵抗値が上記合計幅同一コイルと同一とするとき、上記合計幅同一コイルに比較して、外側導体部32の合計幅が大きいため、放熱面積を大きくとり易いからである。その上、コイル3は「(内側導体部31の合計幅)<(外側導体部32の合計幅)」を満たすことで、内側導体部31が外側導体部32に比べて発熱し易いが、上記合計幅同一コイルに比べて、より発熱し易い内側導体部31の熱が、より発熱し難くて放熱面積を大きくとれる外側導体部32に拡散し易いからである。従って、上記合計幅同一コイルに比べて、コイル3の最大温度を低くし易い。   The total width of the inner conductor portion 31 is smaller than the total width of the outer conductor portion 32. Thereby, it is easy to reduce the size of the magnetic core 2. This is because the coil 3 is spiral and each turn is located on the same plane, so that the height of the magnetic core 2 can be made lower than that of a spiral coil in which the turns are stacked in the axial direction. In addition, when the resistance value of the coil having the same total width of the inner conductor portion 31 and the same width of the outer conductor portion 32 is the same as that of the coil having the same total width, the inner conductor portion This is because the total width of 31 is small and the width of the magnetic core 2 can be reduced. The total width means a value when the number of the inner conductor portions 31 and the outer conductor portions 32 is the same. Moreover, it is easy to improve heat dissipation. This is because when the resistance value of the entire coil is the same as that of the same coil having the same total width, the total width of the outer conductor portion 32 is larger than that of the same coil having the same total width, so that the heat radiation area can be easily increased. Moreover, the coil 3 is more likely to generate heat than the outer conductor portion 32 by satisfying “(total width of the inner conductor portion 31) <(total width of the outer conductor portion 32)”. This is because the heat of the inner conductor portion 31 that is more likely to generate heat than the coil having the same total width is likely to diffuse to the outer conductor portion 32 that is less likely to generate heat and has a larger heat dissipation area. Therefore, the maximum temperature of the coil 3 can be easily lowered as compared with the coil having the same total width.

全ての内側導体部31の幅Wiが、全ての外側導体部32の幅Woより小さくなくてもよいが、全ての内側導体部31の幅Wiが、全ての外側導体部32の幅Woより小さいことが好ましい。即ち、最も大きい内側導体部31の幅Wiは、最も小さい外側導体部32の幅Woよりも小さいことが好ましい。そうすれば、内側導体部31の合計幅をより一層小さくできるため、磁性コア2のサイズをより一層小さくし易い。その上、放熱性を一層高め易い。上記合計幅同一コイルに比べて内側導体部31の合計幅がより一層小さい、即ち、外側導体部32の合計幅がより一層大きいため、放熱面積をより一層大きくとり易いからである。その上、内外の導体部の合計幅同士の差が大きくなることで、内側導体部31の熱を外側導体部32により拡散し易いからである。   The width Wi of all the inner conductor portions 31 may not be smaller than the width Wo of all the outer conductor portions 32, but the width Wi of all the inner conductor portions 31 is smaller than the width Wo of all the outer conductor portions 32. It is preferable. That is, the width Wi of the largest inner conductor portion 31 is preferably smaller than the width Wo of the smallest outer conductor portion 32. Then, since the total width of the inner conductor portion 31 can be further reduced, it is easy to further reduce the size of the magnetic core 2. In addition, it is easier to improve heat dissipation. This is because the total width of the inner conductor portion 31 is smaller than that of the coil having the same total width, that is, the total width of the outer conductor portion 32 is much larger, so that the heat radiation area can be further increased. In addition, because the difference between the total widths of the inner and outer conductor portions is increased, the heat of the inner conductor portion 31 is easily diffused by the outer conductor portion 32.

各内側導体部31の幅Wiは、ここでは均一としているが、不均一とすることもできる。各外側導体部32の幅Woは、ここでは均一としているが、各内側導体部31の幅Wiが不均一な場合、不均一とすることができる。   The width Wi of each inner conductor portion 31 is uniform here, but may be non-uniform. The width Wo of each outer conductor portion 32 is uniform here, but may be nonuniform when the width Wi of each inner conductor portion 31 is nonuniform.

内周端部33は、ジャンパーチップ180などの導電部材でバスバ130の出力(入力)端子に電気的に接続されている。内周端部33の配置位置は、出力(入力)端子の位置に応じて適宜選択でき、出力(入力)端子に近い側に位置することが好ましい。そうすれば、ジャンパーチップ180の長さを短くし易い。外周端部34は、バスバ130の入力(出力)端子を構成する。外周端部34は、ここでは出力(入力)端子と同一方向に引き出されているが、勿論、異なる方向に引き出すこともできる。   The inner peripheral end 33 is electrically connected to an output (input) terminal of the bus bar 130 by a conductive member such as a jumper chip 180. The arrangement position of the inner peripheral end 33 can be appropriately selected according to the position of the output (input) terminal, and is preferably located on the side closer to the output (input) terminal. Then, it is easy to shorten the length of the jumper chip 180. The outer peripheral end 34 constitutes an input (output) terminal of the bus bar 130. The outer peripheral end 34 is drawn out in the same direction as the output (input) terminal here, but can of course be drawn out in a different direction.

コイル3の作製は、バスバ130の作製に合わせて行える。バスバ130の作製は、代表的には、一枚の平板導体を所望の配線パターンに打ち抜く打抜加工により行える。その際、平板導体の一部を所望の渦巻形状に打ち抜くことでコイル3を作製できる。   The coil 3 can be produced in accordance with the production of the bus bar 130. The bus bar 130 can be typically manufactured by a punching process in which a single flat conductor is punched into a desired wiring pattern. At that time, the coil 3 can be produced by punching a part of the flat conductor into a desired spiral shape.

[介在部材]
コイル構造体1Aは、磁性コア2とコイル3の内側導体部31との間に介在される介在部材4を備える形態とすることができる(図3)。介在部材4は、磁性コア2と内側導体部31との間の電気的絶縁性を高める。その上、内側導体部31の熱を磁性コア2に伝達する。介在部材4は、磁性コア2内において、内側導体部31を下面側から支持する機能をも有する。
[Intervening member]
The coil structure 1 </ b> A can be configured to include an interposition member 4 interposed between the magnetic core 2 and the inner conductor portion 31 of the coil 3 (FIG. 3). The interposition member 4 enhances electrical insulation between the magnetic core 2 and the inner conductor portion 31. In addition, the heat of the inner conductor portion 31 is transmitted to the magnetic core 2. The interposition member 4 also has a function of supporting the inner conductor portion 31 from the lower surface side in the magnetic core 2.

介在部材4は、例えば、上下に分割される上下の分割片41,42を組み合わせて構成される。下側分割片42は、下側コア部22と内側導体部31との間に介在され、上側分割片41は、上側コア部21と内側導体部31との間に介在される。両分割片41,42の一方は、内側導体部31同士の間に介在されるように他方側に突出する介在凸部43を有することが好ましい。そうすれば、介在凸部43が隣り合う内側導体部31同士の電気的絶縁性を高められる。加えて、両分割片41,42の一方は、両端の内側導体部31の外側に配置されるように他方側に突出する外側凸部44を有することが好ましい。そうすれば、両端の内側導体部31と磁性コア2との間の電気的絶縁性を高められる上に、隣り合う凸部同士の間の凹部45に各内側導体部31を収納して位置決めできる。図3では、説明の便宜上、凹部45と内側導体部31との間に隙間を誇張して示している。ここでは、下側分割片42が介在凸部43及び外側凸部44を有する。   The interposition member 4 is configured by combining upper and lower divided pieces 41 and 42 that are divided into upper and lower parts, for example. The lower divided piece 42 is interposed between the lower core portion 22 and the inner conductor portion 31, and the upper divided piece 41 is interposed between the upper core portion 21 and the inner conductor portion 31. One of the two split pieces 41 and 42 preferably has an intervening convex portion 43 that protrudes to the other side so as to be interposed between the inner conductor portions 31. If it does so, the electrical insulation of the inner side conductor parts 31 which the interposition convex part 43 adjoins can be improved. In addition, it is preferable that one of the split pieces 41 and 42 has an outer convex portion 44 that protrudes to the other side so as to be disposed outside the inner conductor portions 31 at both ends. If it does so, while being able to improve the electrical insulation between the inner conductor part 31 and magnetic core 2 of both ends, each inner conductor part 31 can be accommodated and positioned in the recessed part 45 between adjacent convex parts. . In FIG. 3, for convenience of explanation, the gap is exaggerated between the recess 45 and the inner conductor portion 31. Here, the lower divided piece 42 has an intervening convex portion 43 and an outer convex portion 44.

なお、両分割片41,42の一方が介在凸部43を有し、他方が外側凸部44を有していてもよいし、両分割片41,42が介在凸部43と外側凸部44とを備えていてもよい。ここでは、介在部材4は、上下の両分割片41,42を備えているが、上側分割片41を備えることなく下側分割片42のみを備えることもできる。   One of the two divided pieces 41, 42 may have an intervening convex portion 43, and the other may have an outer convex portion 44, or both of the divided pieces 41, 42 may have an intervening convex portion 43 and an outer convex portion 44. And may be provided. Here, the interposition member 4 includes both the upper and lower divided pieces 41 and 42, but may include only the lower divided piece 42 without the upper divided piece 41.

介在部材4の材質は、ポリフェニレンスルフィド(PPS)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、液晶ポリマー(LCP)、ポリアミド(PA)樹脂、ポリブチレンテレフタレート(PBT)樹脂などの熱可塑性樹脂が挙げられる。この樹脂には、無機フィラーが含有されていることが好ましい。具体的なフィラーは、アルミナフィラーが挙げられる。そうすれば、介在部材4を介して内側導体部31の熱を磁性コア2に伝達し易い。   Examples of the material of the interposition member 4 include thermoplastic resins such as polyphenylene sulfide (PPS) resin, polytetrafluoroethylene (PTFE) resin, liquid crystal polymer (LCP), polyamide (PA) resin, and polybutylene terephthalate (PBT) resin. . This resin preferably contains an inorganic filler. Specific examples of the filler include an alumina filler. If it does so, it will be easy to transmit the heat of the inner side conductor part 31 to the magnetic core 2 via the interposition member 4. FIG.

[放熱部材]
放熱部材5は、コイル3の熱を放熱する(図1〜図3)。放熱部材5は、コイル3の下方に配置される。この放熱部材5は、回路構成体100のバスバ130の下方に配置される放熱部材150の一部で構成されている。放熱部材5の大きさは、コイル3(バスバ130)の下面全面に接触可能な大きさとすることが挙げられる。放熱部材5は、平板状部材で構成されていてもよいし、平板状部材とその平板状部材の下面から下方に突出する複数の突起で構成されるフィンとが一体に形成されていてもよい。フィンを備える場合、放熱部材5の表面積を大きくして放熱性を高くし易い。放熱部材5の上面は、ここではフラットである。
[Heat dissipation member]
The heat radiating member 5 radiates the heat of the coil 3 (FIGS. 1 to 3). The heat radiating member 5 is disposed below the coil 3. The heat radiating member 5 is constituted by a part of the heat radiating member 150 arranged below the bus bar 130 of the circuit structure 100. The size of the heat radiating member 5 may be a size that allows contact with the entire lower surface of the coil 3 (bus bar 130). The heat dissipating member 5 may be formed of a flat plate member, or a flat plate member and a fin formed of a plurality of protrusions protruding downward from the lower surface of the flat plate member may be integrally formed. . When fins are provided, it is easy to increase heat dissipation by increasing the surface area of the heat dissipation member 5. The upper surface of the heat radiating member 5 is flat here.

放熱部材5は、磁性コア2の一部を収納する収納凹部51を有する。この収納凹部51は、放熱部材5の上面から下面側にかけて形成されている。収納凹部51の大きさは、磁性コア2よりも一回り大きい程度である。この収納凹部51の深さは、深いほど磁性コア2の高さを低くできる。そのため、磁性コア2の高さが高くなることなく磁性コア2の熱を効果的に放熱することができる。ここでは、収納凹部51の深さは、下側コア部22の高さよりも深くしていて、上側・下側コア部21,22の連結・分離面を収納可能な深さ、即ち、下側コア部22の全てと上側コア部21の一部とを収納可能な深さとしている。この収納凹部51の形成は、放熱部材5の上面を切削するなどして行える。その他、収納凹部は、上面側から下面側にパンチで打ち出すことで形成してもよい。その場合、収納凹部の下面を構成する箇所には、周辺領域よりも下方に突出する突出部が形成される。   The heat radiating member 5 has a housing recess 51 for housing a part of the magnetic core 2. The housing recess 51 is formed from the upper surface to the lower surface side of the heat dissipation member 5. The size of the storage recess 51 is slightly larger than the magnetic core 2. As the depth of the storage recess 51 increases, the height of the magnetic core 2 can be reduced. Therefore, the heat of the magnetic core 2 can be effectively radiated without increasing the height of the magnetic core 2. Here, the depth of the storage recess 51 is deeper than the height of the lower core portion 22, and the depth at which the connecting / separating surfaces of the upper and lower core portions 21, 22 can be stored, that is, the lower side The depth is such that all of the core part 22 and a part of the upper core part 21 can be accommodated. The storage recess 51 can be formed by cutting the upper surface of the heat dissipation member 5 or the like. In addition, the storage recess may be formed by punching from the upper surface side to the lower surface side. In that case, the protrusion which protrudes below rather than a peripheral region is formed in the location which comprises the lower surface of a storage recessed part.

放熱部材5の構成材料は、熱伝導性に優れる金属材料が挙げられる。その金属材料は、例えば、アルミニウムやアルミニウム合金などが挙げられる。   Examples of the constituent material of the heat dissipating member 5 include a metal material having excellent thermal conductivity. Examples of the metal material include aluminum and an aluminum alloy.

[絶縁層]
コイル3と放熱部材5との間には、その間の電気的絶縁性を高める絶縁層6が介在されている(図1〜図3)。この絶縁層6は、回路構成体100のバスバ130と放熱部材150との間に配置される絶縁層160の一部で構成されている。この絶縁層6は、コイル3(バスバ130)の熱を放熱部材5に伝達する。絶縁層6は、放熱部材5の収納凹部51の上方を覆わないように、この収納凹部51の周囲(三方)を囲むように切欠が形成されていて、コイル3と放熱部材5の上面との間を隙間なく満たしている(図2)。絶縁層6は、その構成材料を塗布して構成してもよいし、シートで構成してもよい。
[Insulation layer]
An insulating layer 6 is interposed between the coil 3 and the heat radiating member 5 to enhance electrical insulation therebetween (FIGS. 1 to 3). The insulating layer 6 is constituted by a part of the insulating layer 160 disposed between the bus bar 130 and the heat dissipation member 150 of the circuit structure 100. The insulating layer 6 transmits the heat of the coil 3 (bus bar 130) to the heat radiating member 5. The insulating layer 6 is formed with a notch so as to surround the periphery (three sides) of the storage recess 51 so as not to cover the upper portion of the storage recess 51 of the heat dissipation member 5. The gap is filled without any gaps (Fig. 2). The insulating layer 6 may be configured by applying its constituent material, or may be configured by a sheet.

絶縁層6の構成材料は、絶縁性樹脂が挙げられる。絶縁層6の構成材料は、特に、熱伝導性に優れる絶縁性樹脂であることが好ましい。具体的な樹脂は、エポキシ樹脂、シリコーン樹脂が挙げられる。この樹脂には、介在部材4と同様、無機フィラーが含有されていることが好ましい。そうすれば、絶縁層6を介してコイル3の熱を放熱部材5に伝達し易い。絶縁層6は、上記絶縁性樹脂の接着剤で構成されていてもよい。   The constituent material of the insulating layer 6 includes an insulating resin. In particular, the constituent material of the insulating layer 6 is preferably an insulating resin excellent in thermal conductivity. Specific examples of the resin include an epoxy resin and a silicone resin. This resin preferably contains an inorganic filler as in the case of the interposition member 4. Then, the heat of the coil 3 can be easily transmitted to the heat radiating member 5 through the insulating layer 6. The insulating layer 6 may be made of the insulating resin adhesive.

[コイル構造体の製造]
コイル構造体1Aの製造は、磁性コア2と渦巻状のコイル3とを準備する準備工程と、磁性コア2とコイル3とを組み合わせて、磁性コア2の内外にコイル3が配置されたコイル構造体1Aを作製する組立工程とを備えるコイル構造体の製造方法により行える。準備工程におけるコイル3の準備は、コイル3を備えるバスバ130を準備することで行う。具体的には、上述したように、一枚の平板導体を所望の配線パターンに打ち抜く打抜加工によりバスバ130を作製する際に、平板導体の一部を所望の渦巻形状に打ち抜くことでコイル3を作製する。組立工程は、コイル3の所定位置にその外周を囲むように上下のコア部を組み付ける。磁性コア2のコイル3への組み付けは、回路基板110とバスバ130と放熱部材150とを積層した積層体のコイル3、回路基板110とバスバ130とを積層した積層体のコイル3、或いはバスバ130と放熱部材150とを積層した積層体のコイル3に対して行ってもよいし、これら積層体を作製する前のバスバ130のコイル3に対して行ってもよい。
[Manufacture of coil structure]
The coil structure 1A is manufactured by combining a preparatory process for preparing the magnetic core 2 and the spiral coil 3 and the magnetic core 2 and the coil 3 so that the coil 3 is arranged inside and outside the magnetic core 2. It can be performed by a method for manufacturing a coil structure including an assembly process for manufacturing the body 1A. Preparation of the coil 3 in a preparation process is performed by preparing the bus bar 130 provided with the coil 3. Specifically, as described above, when the bus bar 130 is manufactured by punching a single flat conductor into a desired wiring pattern, a portion of the flat conductor is punched into a desired spiral shape to thereby produce the coil 3. Is made. In the assembly process, the upper and lower core portions are assembled at a predetermined position of the coil 3 so as to surround the outer periphery thereof. Assembling the magnetic core 2 to the coil 3 includes a laminated coil 3 in which the circuit board 110, the bus bar 130 and the heat dissipation member 150 are laminated, a laminated coil 3 in which the circuit board 110 and the bus bar 130 are laminated, or a bus bar 130. And the heat dissipation member 150 may be performed on the coil 3 of the laminated body, or may be performed on the coil 3 of the bus bar 130 before the laminated body is manufactured.

[用途]
コイル構造体1Aは、自動車用電気接続箱に備わる回路構成体の構成部材に好適に利用可能である。また、コイル構造体1Aは、直流電圧変換装置、AC/DC変換装置、DC/ACインバータなどの大電流パワー回路用基板の構成部材に好適に利用可能である。これらの構成部材は、例えば、チョークコイル、トランス、ノイズフィルタなどが挙げられる。
[Usage]
The coil structure 1A can be suitably used as a constituent member of a circuit structure provided in an electric junction box for automobiles. In addition, the coil structure 1A can be suitably used as a constituent member of a substrate for a high-current power circuit such as a DC voltage converter, an AC / DC converter, or a DC / AC inverter. Examples of these constituent members include a choke coil, a transformer, and a noise filter.

回路構成体100は、実施形態1の冒頭で説明したように、信号回路を構成する箔状の回路パターンが形成される上面を有する回路基板110と、回路基板110の下面に配置されて電力回路を構成するバスバ130と、回路パターン及びバスバ130の少なくとも一方に実装される電子部品とを備える(図1)。回路基板110は、その上面に回路パターン(図示略)が形成されている。この回路基板110には、磁性コア2、内周端部33、ジャンパーチップ180、及び出力端子の一部(バスバ130の他部131)を露出させる矩形状の開口部112(図1)が形成されている。回路基板110の厚みは、例えば1mm以上3mm以下が挙げられる。回路パターンは、銅箔で形成されている。回路基板110は、プリント基板を用いることができる。バスバ130は、上述のように銅や銅合金などの板状部材で構成され、その厚みは、上述したコイル3の厚みと同じ0.3mm以上2.0mm以下が挙げられる。このバスバ130は、上述のコイル3を備える。電子部品は、コイル構造体1Aの他に、例えば、リレーやFET(Field effect transistor)といったスイッチング素子などが挙げられる。回路基板110とバスバ130(コイル3)とは、両者の間に介在される粘着シート(図示略)により接着することができる。バスバ130の下面には、バスバ130の熱を放熱する放熱部材150が配置されている。バスバ130と放熱部材150との間には、両者の間の電気的絶縁性を高める絶縁層160が介在されている。   As described at the beginning of the first embodiment, the circuit structure 100 includes a circuit board 110 having an upper surface on which a foil-like circuit pattern constituting a signal circuit is formed, and a power circuit disposed on the lower surface of the circuit board 110. , And an electronic component mounted on at least one of the circuit pattern and the bus bar 130 (FIG. 1). The circuit board 110 has a circuit pattern (not shown) formed on the upper surface thereof. In the circuit board 110, the magnetic core 2, the inner peripheral end 33, the jumper chip 180, and a rectangular opening 112 (FIG. 1) for exposing a part of the output terminal (the other part 131 of the bus bar 130) are formed. Has been. As for the thickness of the circuit board 110, 1 mm or more and 3 mm or less are mentioned, for example. The circuit pattern is formed of copper foil. The circuit board 110 can be a printed circuit board. The bus bar 130 is configured by a plate-like member such as copper or a copper alloy as described above, and the thickness is 0.3 mm or more and 2.0 mm or less, which is the same as the thickness of the coil 3 described above. The bus bar 130 includes the coil 3 described above. The electronic component includes, for example, a switching element such as a relay or a field effect transistor (FET) in addition to the coil structure 1A. The circuit board 110 and the bus bar 130 (coil 3) can be bonded by an adhesive sheet (not shown) interposed therebetween. A heat radiating member 150 that dissipates heat from the bus bar 130 is disposed on the lower surface of the bus bar 130. An insulating layer 160 is interposed between the bus bar 130 and the heat radiating member 150 to enhance electrical insulation between them.

〔作用効果〕
実施形態1に係るコイル構造体1Aによれば、以下の効果を奏することができる。
[Function and effect]
According to the coil structure 1A according to the first embodiment, the following effects can be obtained.

(1)磁性コア2の高さサイズを小さくし易いため、高さが低くて全体の体積の小さい回路構成体100を構築できる。コイル3はその各ターンが同一平面上に位置する平面コイルであるため、磁性コア2の高さを低くできるからである。加えて、内側導体部31の合計幅が小さいため、磁性コアの幅を小さくできるからである。   (1) Since it is easy to reduce the height size of the magnetic core 2, it is possible to construct the circuit structure 100 having a low height and a small overall volume. This is because the coil 3 is a planar coil in which each turn is located on the same plane, so that the height of the magnetic core 2 can be reduced. In addition, since the total width of the inner conductor portion 31 is small, the width of the magnetic core can be reduced.

(2)放熱性を高め易い。放熱部材5上に配置される外側導体部32の合計幅が大きいため、放熱面積を大きくとり易いからである。加えて、内側導体部31の合計幅よりも外側導体部32の合計幅が大きいため、より発熱し易い内側導体部31の熱が、より発熱し難くて放熱面積を大きくとれる外側導体部32に拡散し易いからである。   (2) It is easy to improve heat dissipation. This is because the total width of the outer conductor portions 32 arranged on the heat radiating member 5 is large, so that the heat radiating area can be easily increased. In addition, since the total width of the outer conductor portion 32 is larger than the total width of the inner conductor portion 31, the heat of the inner conductor portion 31 that is more likely to generate heat is less likely to generate heat and the heat dissipation area can be increased. It is because it is easy to diffuse.

(3)回路構成体100の生産性を高められる。コイル3がバスバ130の一部で構成されていることで、一枚の平板導体を所望の配線パターンに打ち抜くバスバ130の作製と同時にコイル3を作製でき、コイル3とバスバ130とを個々に準備する必要がない。そして、バスバ130のコイル3に磁性コア2を組み付けるだけでコイル構造体1Aの作製と同時に回路構成体100を製造できる。即ち、コイル構造体1Aを構成する磁性コア2とコイル3とをそれぞれ用意して組み合わせた後、バスバ130などに実装する必要がない。   (3) The productivity of the circuit structure 100 can be increased. Since the coil 3 is constituted by a part of the bus bar 130, the coil 3 can be manufactured simultaneously with the production of the bus bar 130 by punching one flat conductor into a desired wiring pattern, and the coil 3 and the bus bar 130 are individually prepared. There is no need to do. And the circuit structure 100 can be manufactured simultaneously with manufacture of the coil structure 1A only by assembling the magnetic core 2 to the coil 3 of the bus bar 130. That is, it is not necessary to mount the magnetic core 2 and the coil 3 constituting the coil structure 1A on the bus bar 130 after preparing and combining them.

《変形例1−1》
図4を参照して、変形例1−1に係るコイル構造体を説明する。変形例1−1に係るコイル構造体は、磁性コア2とコイル3との間に介在される介在部材4が、内側導体部31に接触する導体片46を備える点が実施形態1に係るコイル構造体1Aと主として相違する。以下、相違点を中心に説明し、同様の構成及び同様の効果については説明を省略する。この点は、後述する変形例1−2と実施形態2でも同様である。図4は、図3に示す断面図と同様の位置でコイル構造体を切断した状態を示す横断面図であり、図3と同様、回路基板を省略して示している。
<< Modification 1-1 >>
With reference to FIG. 4, the coil structure which concerns on the modification 1-1 is demonstrated. The coil structure according to Modification 1-1 is that the interposition member 4 interposed between the magnetic core 2 and the coil 3 includes a conductor piece 46 that contacts the inner conductor portion 31. Mainly different from the structure 1A. Hereinafter, the description will focus on the differences, and the description of the same configuration and the same effect will be omitted. This is the same in the modified example 1-2 and the second embodiment described later. FIG. 4 is a cross-sectional view showing a state where the coil structure is cut at the same position as the cross-sectional view shown in FIG. 3, and the circuit board is omitted as in FIG.

[介在部材]
介在部材4は、実施形態1と同様の上側分割片41と下側分割片42とを備える。下側分割片42は、その凹部45に収納されて、内側導体部31に接触する導体片46を備える。それにより、磁性コア2のサイズを小さくしつつ、磁性コア2の内側に配置される導体の断面積を大きくすることができる。そのため、導体の幅が狭くても厚みが大きいため、通電に十分な断面積を確保でき、磁性コア2内に配置される内側導体部31と導体片46の発熱量をより少なくできる。この凹部45は、内側導体部31と導体片46とを収納できる深さ、即ち、凹部45を形成する介在凸部43及び外側凸部44の突出長さは、内側導体部31と導体片46の合計高さと同等程度の長さとする。導体片46の形成領域は、下側分割片42における磁性コア2の軸方向の全長に亘る領域とすることが好ましい。導体片46の材質は、内側導体部31と同材質とすることが挙げられる。導体片46は、下側分割片42の凹部45に接着剤などで固定するとよい。導体片46と内側導体部31とは、ハンダ付けなどで導電性を確保して接合することが好ましい。
[Intervening member]
The interposition member 4 includes an upper divided piece 41 and a lower divided piece 42 similar to those in the first embodiment. The lower divided piece 42 includes a conductor piece 46 that is housed in the recess 45 and contacts the inner conductor portion 31. Thereby, the cross-sectional area of the conductor arrange | positioned inside the magnetic core 2 can be enlarged, making the size of the magnetic core 2 small. Therefore, since the thickness is large even if the width of the conductor is small, a sufficient cross-sectional area for energization can be secured, and the amount of heat generated by the inner conductor portion 31 and the conductor piece 46 disposed in the magnetic core 2 can be further reduced. The depth of the recess 45 can accommodate the inner conductor portion 31 and the conductor piece 46, that is, the projecting length of the intervening convex portion 43 and the outer convex portion 44 that form the concave portion 45 is the inner conductor portion 31 and the conductor piece 46. The length is equivalent to the total height. The formation region of the conductor piece 46 is preferably a region extending over the entire length in the axial direction of the magnetic core 2 in the lower divided piece 42. The conductor piece 46 may be made of the same material as that of the inner conductor portion 31. The conductor piece 46 may be fixed to the recess 45 of the lower divided piece 42 with an adhesive or the like. The conductor piece 46 and the inner conductor portion 31 are preferably joined while ensuring conductivity by soldering or the like.

《変形例1−2》
図5、図6を参照して、変形例1−2に係るコイル構造体1Aを説明する。変形例1−2に係るコイル構造体1Aは、コイル3が段差形状に形成される段差部を有する点が実施形態1に係るコイル構造体1Aと主として相違する。図5,図6では、回路基板を省略して示している。
<< Modification 1-2 >>
A coil structure 1A according to Modification 1-2 will be described with reference to FIGS. The coil structure 1A according to the modified example 1-2 is mainly different from the coil structure 1A according to the first embodiment in that the coil 3 has a step portion formed in a step shape. 5 and 6, the circuit board is omitted.

[コイル]
コイル3は、内側導体部31(上記中央部分と上記両端部分)と外側導体部32の上記直交部分の一部とがその下面側に窪むように形成される導体凹部35を有する。即ち、コイル3(各ターン)は、バスバ130の他部131と同一平面上に位置する部分と、バスバ130の他部131に対して上下方向にずれて位置する導体凹部35とを備える。コイル3におけるバスバ130の他部131と同一平面上に位置する部分と導体凹部35との境は、コイル3の最内周の上記平行部分とコイル3の最内周の内側導体部31との間が挙げられる。ここでは、コイル3の最内周の上記平行部分と放熱部材5の収納凹部51との間に沿った位置としている。この導体凹部35の深さ(上下方向に沿った長さ)は、放熱部材5の厚みにもよるが、深いほど、回路構成体100における磁性コア2の高さを低くできる。そのため、高さが低くて全体の体積の小さい回路構成体100を構築できる。導体凹部35の形成は、上述の平板導体の打抜加工後にプレス加工などを施すことで行える。
[coil]
The coil 3 has a conductor recess 35 formed so that the inner conductor portion 31 (the central portion and the both end portions) and a part of the orthogonal portion of the outer conductor portion 32 are recessed on the lower surface side. That is, the coil 3 (each turn) includes a portion located on the same plane as the other portion 131 of the bus bar 130 and a conductor concave portion 35 located so as to be shifted in the vertical direction with respect to the other portion 131 of the bus bar 130. The boundary between the portion of the coil 3 on the same plane as the other portion 131 of the bus bar 130 and the conductor recess 35 is between the parallel portion of the innermost circumference of the coil 3 and the inner conductor portion 31 of the innermost circumference of the coil 3. There is an interval. Here, the position is located between the parallel portion of the innermost periphery of the coil 3 and the housing recess 51 of the heat radiating member 5. Although the depth (length along the vertical direction) of the conductor recess 35 depends on the thickness of the heat radiating member 5, the depth of the magnetic core 2 in the circuit structure 100 can be reduced as the depth increases. Therefore, the circuit structure 100 having a low height and a small overall volume can be constructed. The conductor recess 35 can be formed by performing a press process after the above-described flat plate conductor is punched.

[放熱部材]
放熱部材5は、収納凹部51に加えて、導体凹部35に沿った放熱凹部52を有する。収納凹部51の深さは、導体凹部35の深さの分だけ深くなっている。そのため、回路構成体100における磁性コア2の高さを低くできる。放熱部材5の厚さと磁性コア2の高さによっては、磁性コア2の上面をジャンパーチップ180の上面と同一、又はそれより低い位置とすることができる。放熱凹部52の深さは、本例では導体凹部35の深さと同等である。この放熱凹部52と導体凹部35との間には後述の絶縁層6の絶縁凹部61が介在されている。そのため、放熱凹部52と導体凹部35との間に空間が形成されず、絶縁層6を介してコイル3の熱を放熱部材5に伝達できるため放熱性が低下しない。
[Heat dissipation member]
The heat radiating member 5 has a heat radiating recess 52 along the conductor recess 35 in addition to the housing recess 51. The depth of the storage recess 51 is increased by the depth of the conductor recess 35. Therefore, the height of the magnetic core 2 in the circuit structure 100 can be reduced. Depending on the thickness of the heat dissipating member 5 and the height of the magnetic core 2, the upper surface of the magnetic core 2 can be at the same position as or lower than the upper surface of the jumper chip 180. The depth of the heat radiating recess 52 is equal to the depth of the conductor recess 35 in this example. Between the heat radiation recess 52 and the conductor recess 35, an insulating recess 61 of the insulating layer 6 described later is interposed. Therefore, no space is formed between the heat radiation recess 52 and the conductor recess 35, and the heat of the coil 3 can be transmitted to the heat radiation member 5 through the insulating layer 6, so that the heat radiation performance does not deteriorate.

[絶縁層]
絶縁層6は、コイル3の導体凹部35と、放熱部材5の放熱凹部52との間に介在される絶縁凹部61を有する。絶縁凹部61の深さは、導体凹部35の深さと同等である。絶縁凹部61は、導体凹部35と放熱凹部52との間を隙間なく埋めている。
[Insulation layer]
The insulating layer 6 has an insulating recess 61 interposed between the conductor recess 35 of the coil 3 and the heat dissipation recess 52 of the heat dissipation member 5. The depth of the insulating recess 61 is equal to the depth of the conductor recess 35. The insulating recess 61 fills the gap between the conductor recess 35 and the heat dissipation recess 52 without any gap.

《実施形態2》
〔コイル構造体〕
図7,図8を参照して、実施形態2に係るコイル構造体1Bを説明する。実施形態2に係るコイル構造体1Bは、コイル3が回路構成体100における回路基板110に備わる回路パターン111の一部で構成される点が、実施形態1に係るコイル構造体1Aと主として相違する。このコイル3(回路基板110)は、バスバを介することなく放熱部材5上に配置される。なお、コイル3(回路基板110)は、バスバを介して放熱部材5上に配置されていてもよい。
<< Embodiment 2 >>
[Coil structure]
A coil structure 1B according to Embodiment 2 will be described with reference to FIGS. The coil structure 1B according to the second embodiment is mainly different from the coil structure 1A according to the first embodiment in that the coil 3 is configured by a part of the circuit pattern 111 provided on the circuit board 110 in the circuit structure 100. . The coil 3 (circuit board 110) is disposed on the heat dissipation member 5 without a bus bar. In addition, the coil 3 (circuit board 110) may be arrange | positioned on the thermal radiation member 5 via the bus bar.

このコイル3は、回路基板110の上面に形成される渦巻状の回路パターン111で構成されている。回路パターン111は、銅箔で構成される。このコイル3は、各ターンが回路基板110の回路パターン111の他部111aと同一平面上に位置する平面コイルである。コイル3の厚みは、実施形態1の回路パターンの厚みと同様、例えば20μm以上150μm以下が挙げられる。   The coil 3 includes a spiral circuit pattern 111 formed on the upper surface of the circuit board 110. The circuit pattern 111 is made of copper foil. The coil 3 is a planar coil in which each turn is located on the same plane as the other part 111 a of the circuit pattern 111 of the circuit board 110. The thickness of the coil 3 is 20 μm or more and 150 μm or less, for example, similar to the thickness of the circuit pattern of the first embodiment.

回路基板110には、磁性コア2の一部を挿通させる貫通孔113が形成されている(図8)。ここでは、貫通孔113の数は一つとし、横断面U字状の上側コア部21における一方の脚部が挿通されている。回路基板110のうち内側導体部31が設けられる部分は、内側導体部31と共に磁性コア2の内側に配置される。なお、貫通孔113の数は、磁性コア2の脚部の数に合わせた数(2つ)とし、磁性コア2の両脚部を挿通させてもよい。   The circuit board 110 is formed with a through hole 113 through which a part of the magnetic core 2 is inserted (FIG. 8). Here, the number of the through holes 113 is one, and one leg portion of the upper core portion 21 having a U-shaped cross section is inserted. A portion of the circuit board 110 where the inner conductor portion 31 is provided is disposed inside the magnetic core 2 together with the inner conductor portion 31. Note that the number of through holes 113 may be a number (two) that matches the number of legs of the magnetic core 2, and both legs of the magnetic core 2 may be inserted.

コイル構造体1Bは、ここでは、磁性コア2とコイル3との間に介在される介在部材を備えていない。回路基板110は剛性がある程度高いため、介在部材を設けなくても内側導体部31を磁性コア2の内側にその内周面と接触することなく配置できるため、磁性コア2と回路パターン111との間の絶縁を確保し易いからである。勿論、介在部材を備えていてもよい。その場合、介在部材は、回路パターン111の露出側の上側分割片のみ備えていてもよいし、上下の両分割片を備えていてもよい。   Here, the coil structure 1 </ b> B does not include an interposition member interposed between the magnetic core 2 and the coil 3. Since the circuit board 110 has a certain degree of rigidity, the inner conductor portion 31 can be arranged on the inner side of the magnetic core 2 without contacting the inner peripheral surface without providing an intervening member. This is because it is easy to ensure insulation between them. Of course, you may provide the interposed member. In that case, the interposed member may include only the upper divided piece on the exposed side of the circuit pattern 111 or may include both upper and lower divided pieces.

〔作用効果〕
実施形態2に係るコイル構造体1Bによれば、箔状の回路パターン111は板状のバスバ130に比べて幅及び厚みをより小さくし易いため、上側コア部21と下側コア部22で構成される内部空間を薄くできる。そのため、磁性コア2のサイズをより一層小さくし易くて、高さが低くて全体の体積の小さい回路構成体100を構築できる。
[Function and effect]
According to the coil structure 1 </ b> B according to the second embodiment, the foil-like circuit pattern 111 is configured by the upper core portion 21 and the lower core portion 22 because the foil-like circuit pattern 111 can be easily reduced in width and thickness as compared with the plate-like bus bar 130. Can reduce the internal space. Therefore, it is easy to further reduce the size of the magnetic core 2, and it is possible to construct the circuit structure 100 having a low height and a small overall volume.

本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。例えば、介在部材は絶縁層の一部で構成することもできる。その場合、絶縁層に切欠ではなく貫通孔を形成して、磁性コア内に配置される部分を形成することが挙げられる。このとき、下側コア部の高さは、その上面と絶縁層とが接触する高さとすることが挙げられる。   The present invention is not limited to these exemplifications, but is defined by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims. For example, the interposition member can be configured by a part of the insulating layer. In that case, a through hole is formed instead of a notch in the insulating layer to form a portion arranged in the magnetic core. At this time, the height of the lower core portion may be a height at which the upper surface and the insulating layer are in contact with each other.

1A,1B コイル構造体
2 磁性コア
21 上側コア部
22 下側コア部
3 コイル
31 内側導体部
32 外側導体部
33 内周端部
34 外周端部
35 導体凹部
4 介在部材
41 上側分割片
42 下側分割片
43 介在凸部
44 外側凸部
45 凹部
46 導体片
5 放熱部材
51 収納凹部
52 放熱凹部
6 絶縁層
61 絶縁凹部
100 回路構成体
110 回路基板
111 回路パターン
111a 他部
112 開口部
113 貫通孔
130 バスバ
131 他部
150 放熱部材
160 絶縁層
180 ジャンパーチップ
DESCRIPTION OF SYMBOLS 1A, 1B Coil structure 2 Magnetic core 21 Upper core part 22 Lower core part 3 Coil 31 Inner conductor part 32 Outer conductor part 33 Inner peripheral edge part 34 Outer peripheral edge part 35 Conductive recessed part 4 Interposition member 41 Upper divided piece 42 Lower side Dividing piece 43 Intervening convex part 44 Outer convex part 45 Concave part 46 Conductor piece 5 Heat radiation member 51 Storage concave part 52 Thermal radiation concave part 6 Insulating layer 61 Insulating concave part 100 Circuit component 110 Circuit board 111 Circuit pattern 111a Other part 112 Opening part 113 Through hole 130 Bus bar 131 Other parts 150 Heat radiation member 160 Insulating layer 180 Jumper chip

Claims (5)

環状の磁性コアと、
渦巻状の導体で構成され、前記磁性コアの内側に配置される内側導体部、及び前記磁性コアの外側に配置される外側導体部を有するコイルとを備え、
前記内側導体部の合計幅が、前記外側導体部の合計幅よりも小さいコイル構造体。
An annular magnetic core;
A coil having a spiral conductor, an inner conductor portion disposed inside the magnetic core, and an outer conductor portion disposed outside the magnetic core;
A coil structure in which a total width of the inner conductor portion is smaller than a total width of the outer conductor portion.
最も大きい前記内側導体部の幅が、最も小さい前記外側導体部の幅よりも小さい請求項1に記載のコイル構造体。   The coil structure according to claim 1, wherein a width of the largest inner conductor portion is smaller than a width of the smallest outer conductor portion. 前記コイルは、回路基板の下面に配置される板状のバスバの一部で構成される請求項1又は請求項2に記載のコイル構造体。   The said coil is a coil structure of Claim 1 or Claim 2 comprised by a part of plate-shaped bus bar arrange | positioned at the lower surface of a circuit board. 前記コイルは、回路基板の上面に形成される箔状の回路パターンの一部で構成される請求項1又は請求項2に記載のコイル構造体。   The coil structure according to claim 1 or 2, wherein the coil includes a part of a foil-like circuit pattern formed on an upper surface of a circuit board. 前記コイルの一面側に配置されて前記コイルの熱を放熱する放熱部材を備え、
前記放熱部材は、磁性コアの一部を収納する収納凹部を備える請求項1から請求項4のいずれか1項に記載のコイル構造体。
A heat dissipating member disposed on one side of the coil to dissipate heat of the coil;
The coil structure according to any one of claims 1 to 4, wherein the heat radiating member includes a housing recess that houses a part of the magnetic core.
JP2016216763A 2016-11-04 2016-11-04 Coil structure Pending JP2018074127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016216763A JP2018074127A (en) 2016-11-04 2016-11-04 Coil structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016216763A JP2018074127A (en) 2016-11-04 2016-11-04 Coil structure

Publications (1)

Publication Number Publication Date
JP2018074127A true JP2018074127A (en) 2018-05-10

Family

ID=62115866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016216763A Pending JP2018074127A (en) 2016-11-04 2016-11-04 Coil structure

Country Status (1)

Country Link
JP (1) JP2018074127A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194025A1 (en) 2018-04-06 2019-10-10 株式会社Ihi Variable compression device and engine system
CN110556239A (en) * 2018-06-01 2019-12-10 株式会社田村制作所 Electronic component
JP2020088116A (en) * 2018-11-22 2020-06-04 トヨタ自動車株式会社 Reactor unit
JP2020205364A (en) * 2019-06-18 2020-12-24 株式会社デンソー Electrical apparatus
CN113113210A (en) * 2020-01-13 2021-07-13 瞻博网络公司 Apparatus, system, and method for increased current distribution on high density circuit boards

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063838A (en) * 2012-09-20 2014-04-10 Toyota Industries Corp Intermediate body of planar coil and process of manufacturing planar coil
JP2014179402A (en) * 2013-03-14 2014-09-25 Omron Automotive Electronics Co Ltd Magnetic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063838A (en) * 2012-09-20 2014-04-10 Toyota Industries Corp Intermediate body of planar coil and process of manufacturing planar coil
JP2014179402A (en) * 2013-03-14 2014-09-25 Omron Automotive Electronics Co Ltd Magnetic device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194025A1 (en) 2018-04-06 2019-10-10 株式会社Ihi Variable compression device and engine system
CN110556239A (en) * 2018-06-01 2019-12-10 株式会社田村制作所 Electronic component
CN110556239B (en) * 2018-06-01 2023-11-07 株式会社田村制作所 Electronic component
JP2020088116A (en) * 2018-11-22 2020-06-04 トヨタ自動車株式会社 Reactor unit
JP2020205364A (en) * 2019-06-18 2020-12-24 株式会社デンソー Electrical apparatus
JP7263935B2 (en) 2019-06-18 2023-04-25 株式会社デンソー electrical equipment
CN113113210A (en) * 2020-01-13 2021-07-13 瞻博网络公司 Apparatus, system, and method for increased current distribution on high density circuit boards
CN113113210B (en) * 2020-01-13 2023-07-04 瞻博网络公司 Apparatus, system and method for increased current distribution on high density circuit boards

Similar Documents

Publication Publication Date Title
JP4802615B2 (en) LC composite parts
JP5860807B2 (en) High current magnetic element and manufacturing method
JP2018074127A (en) Coil structure
JP4222490B2 (en) Planar transformer and switching power supply
JPWO2006070544A1 (en) Magnetic element
US20090102593A1 (en) Coil form
WO2011089941A1 (en) Reactor
JP6525360B1 (en) Power converter
CN108463862A (en) The manufacturing method of reactor and reactor
JP2007201203A (en) Reactor
JP6150844B2 (en) Electromagnetic induction equipment
JP5298864B2 (en) Thin coil and power supply using it
WO2019097574A1 (en) Electric power converter
JP2011142193A (en) Reactor
JP2018074128A (en) Coil structure
KR20170022670A (en) Transformer
JP6265031B2 (en) Core piece and reactor
US20230014778A1 (en) Magnetic component structure with thermal conductive filler
JP2018198253A (en) Coil structure, and circuit construct
US8970335B2 (en) Coil form for forming an inductive element
JP6651592B1 (en) Reactor cooling structure and power converter
WO2016002783A1 (en) Core piece and reactor
US20210043368A1 (en) Reactor
JP2013183066A (en) Coil device
JP6914384B1 (en) How to manufacture transformers, transformer units and transformers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200520