JP3610121B2 - Laminated body and container made of laminated body - Google Patents

Laminated body and container made of laminated body Download PDF

Info

Publication number
JP3610121B2
JP3610121B2 JP15824795A JP15824795A JP3610121B2 JP 3610121 B2 JP3610121 B2 JP 3610121B2 JP 15824795 A JP15824795 A JP 15824795A JP 15824795 A JP15824795 A JP 15824795A JP 3610121 B2 JP3610121 B2 JP 3610121B2
Authority
JP
Japan
Prior art keywords
ethylene
group
density
olefin copolymer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15824795A
Other languages
Japanese (ja)
Other versions
JPH08309939A (en
Inventor
高明 服部
Original Assignee
日本ポリオレフィン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ポリオレフィン株式会社 filed Critical 日本ポリオレフィン株式会社
Priority to JP15824795A priority Critical patent/JP3610121B2/en
Publication of JPH08309939A publication Critical patent/JPH08309939A/en
Application granted granted Critical
Publication of JP3610121B2 publication Critical patent/JP3610121B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Wrappers (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【産業上の利用分野】
本発明は積層体および積層体からなる容器に関し、特に透明性、柔軟性、耐熱性、口開き性(抗ブロッキング性)、耐衝撃性に優れ、しかも構成樹脂成分からの高分岐度あるいは低分子量成分の表面へのにじみ出しが少なく、たとえば食用油、調味料などの食品包装材、食品容器や医療用輸液容器などに適した積層体とこれら積層体からなる容器に関するものである。
【0002】
【従来の技術】
昨今、食品包装材、食品包装容器、食品包装袋等に使用される積層体においては、内容物の確認、異物の混入の有無の確認等のために透明であること、殺菌、調理等の水蒸気、煮沸処理等のための耐熱性あるいは耐衝撃性、製袋時の高いヒートシール強度や低温ヒートシール性等のヒートシール特性が要求されている。
また、医療用輸液容器においても、異物の混入の有無の確認や薬剤配合変化を確認するための透明性、水蒸気殺菌処理等のための耐熱性、空気中の微生物の混入の懸念をなくすため、輸液投与時に通気針による外気の導入なしに内容液を完全に排出可能である柔軟性が要求されている。
【0003】
従来、このような性能を満たす医療用輸液容器にはエチレン・酢酸ビニル共重合体を架橋した樹脂、塩化ビニル樹脂、中低密度線状ポリエチレン、高圧法低密度ポリエチレンなどが用いられている。しかしエチレン・酢酸ビニル共重合体は耐熱性が悪く架橋して用いる必要があることや、薬剤がその極性基分子に吸着されるなどの欠点がある。また塩化ビニル樹脂は添加されている可塑剤が薬液へ溶出するなどの問題を有する。ポリプロピレンは柔軟性に乏しく、高圧法低密度ポリエチレンは強度が弱いなどの欠点がある。このようなことから低密度線状ポリエチレンの使用が最も望ましいものであるが、透明性や柔軟性を満たすためには密度を低くする必要がある。しかし、密度を低くすると高圧煮沸滅菌処理工程における耐熱性が不足したり、樹脂の低分子量成分あるいは高分岐度成分が表面にブリードアウトしたりするなどの問題がある。
【0004】
上記欠点を補うために、中低密度線状ポリエチレン、高密度ポリエチレン、高圧法低密度ポリエチレンあるいはこれらの混合物を2層あるいは3層に積層して用いる方法が提案されている(例えば特開平4−266759号、特開平6−171039号、特開平6−246886号)が、なお透明性が不十分であったり、内層を構成している樹脂の低分子量、高分岐度成分が表面にブリードして内層同士がブロッキングしたり、とりわけ高温処理後に内溶液中に混入するなど衛生上の心配かある。また、これらの積層体をヒートシールにより製袋する場合、特に高速でヒートシールする際、そのシール部の強度も充分満足できるまでには至っていないため、落下等によるシール部からの破袋が発生しやすいなどの問題があった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、透明性、柔軟性、耐熱性、耐衝撃性に優れると共に、ヒートシール特性や抗ブロッキング性にも優れ、さらに樹脂成分の内容物への溶出が少ない積層体を提供することおよび前記の特性を有した食品包装材、食品包装容器、食品包装袋あるいは医療用輸液容器などの容器を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、上記課題を達成するために鋭意検討した結果、メタロセン系触媒で重合された市販されているエチレン・α−オレフィン共重合体とは異なり、狭い分子量分布と適度に広い組成分布を有する特定の結晶性エチレン・α−オレフィン共重合体またはこれらにエチレン・α−オレフイン共重合体を混合した組成物を容器の内層および中間層に用いることにより上記の欠点を解決し、透明性、柔軟性、耐熱性および落下強度に優れ、かつ樹脂の溶出成分が少なく食品包装材、食品包装容器、食品包装袋、各種薬剤保存容器等に使用するのに好適な積層体が得られることを見出し本発明に至った。
【0007】
すなわち本発明は、第一に、
(I)下記(ア)〜(エ)の性状を満足する密度(d1)が0.90〜0.94g/cm 3 、メルトフローレート0.1〜100g/10分のエチレン・α−オレフィン共重合体(A1)100〜20重量%と、他のエチレン系重合体(B)80〜0重量%とからなりエチレン系重合体以外の重合体を含有しない表面層
(II)下記(ア)〜(エ)の性状を満足する密度(d2)0.88〜0.92g/cm 3 、メルトフローレート0.05〜20g/10分のエチレン・α−オレフィン共重合体(A2)100〜20重量%と、他のエチレン系重合体(B)80〜0重量%とを含む樹脂からなりエチレン系重合体以外の重合体を含有しない中間層(ただし、エチレン・α−オレフィン共重合体(A1)と(A2)の密度は常に(d1)>(d2)である)、および
(III)示差走査熱量計で測定した融解ピークが120℃以上を示す樹脂からなる耐熱性樹脂層を含む積層体。

Figure 0003610121
【0008】
また本発明は、第二に前記表面層と中間層がエチレン・α−オレフィン共重合体(A1)または(A2)と他のエチレン系重合体(B)を80重量%までを含む樹脂組成物からなる積層体である。
【0009】
また本発明は、第三に上記の積層体からなる容器である。
【0010】
また本発明は、第四に上記の積層体からなる医療用輸液容器である。
【0011】
以下に本発明を詳細に説明する。
本発明の積層体の表面層(I)構成するエチレン・α−オレフィン共重合体(A1)はエチレと炭素数3〜20のα−オレフィンより選ばれた一種以上との共重合体である。この炭素数3〜20のα−オレフィンとしては、好ましくは炭素数3〜12のものであり、具体的にはプロピレン、ブテン−1、4−メチルペンテン−1、ヘキセン−1、オクテン−1、デセン−1、ドデセン−1、などが挙げられる。また、これらのα−オレフィンの含有量は、合計で通常30モル%以下、好ましくは20モル%以下の範囲で選択されることが望ましい。
【0012】
前記エチレン・α−オレフィン共重合体(A1)は密度が、0.90〜0.94g/cm、好ましくは0.91〜0.935g/cmの範囲である。0.90g/cm未満であると耐熱性が低下し、フィルムのブロッキング性が悪化し、低結晶性成分の包装内容物への溶出が多くなる。他方0.94g/cmを超えるものは透明性が悪くまた柔軟性が無くなる。
【0013】
エチレン・α−オレフィン共重合体(A1)のMFRは0.01〜200g/10min、好ましくは0.1〜100g/10min、さらに好ましくは0.2〜50g/10minの範囲にあることが望ましい。MFRが0.01未満では成形加工性が劣り、200以上では強度が低下する。
【0014】
分子量分布(Mw/Mn)(ア)の算出方法は、ゲルパーミエイションクロマトグラフィー(GPC)により重量平均分子量(Mw)と数平均分子量(Mn)を求め、この比Mw/Mnを求めるものである。本発明のエチレン・α−オレフィン共重合体(A1)のMw/Mn(ア)は1.8〜3.5であり、好ましくは2.0〜3.0、さらに好ましくは2.2〜2.8の範囲にあることが望ましい。Mw/Mnが1.8未満では成形加工性が劣り、3.5を超えるものは耐衝撃性が劣る。
【0015】
エチレン・α−オレフィン共重合体の組成分布パラメーターCb(イ)の測定法は下記の通りである。
すなわち酸化防止剤を加えたオルソジクロルベンゼン(ODCB)に試料濃度が0.2重量%となるように135℃で加熱溶解する。この溶液を、けい藻土(セライト545)を充填したカラムに移送し、0.1℃/minの速度で25℃まで冷却し、試料をセライト表面に沈着する。次に、このカラムにODCBを一定流量で流しながら、カラム温度を5℃きざみに120℃まで段階的に昇温し、試料を溶出させ分別する。溶出液にメタノールを混合し、試料を再沈後、ろ過、乾燥し、各溶出温度におけるフラクション試料を得る。各温度における溶出試料の重量分率およびその分岐度(炭素質1000個あたりの分岐数)を13C−NMRにより測定する。
【0016】
30℃から90℃のフラクションについては次のような、分岐度の補正を行う。すなわち、溶出温度に対して測定した分岐度をプロットし、相関関係を最小自乗法で直線に近似し、検量線を作成する。この近似の相関係数は十分大きい。この検量線により求めた値を各フラクションの分岐度とする。なお、溶出温度95℃以上の成分については溶出温度と分岐度に必ずしも直線関係が成立しないのでこの補正は行わず実測値を用いる。
【0017】
次にそれぞれのフラクションの重量分率wiを、溶出温度5℃当たりの分岐度bの変化量(b−bi−1)で割って相対濃度cを求め、分岐度に対して相対濃度をプロットし、組成分布曲線を得る。この組成分布曲線を一定の幅で分割し、次式より組成分布パラメーターCbを算出する。
【0018】
【式1】
Figure 0003610121
【0019】
ここで、cとbはそれぞれj番目の区分の相対濃度と分岐度である。組成分布パラメーターCbは試料の組成が均一である場合に1.0となり、組成分布が広がるに従って値が大きくなる。
【0020】
エチレン・α−オレフィン共重合体の組成分布を記述する方法は多くの提案がなされている。例えば特開昭60−88016号では、試料を溶剤分別して得た各分別試料の分岐数に対して、累積重量分率が特定の分布(対数正規分布)をすると仮定して数値処理を行い、重量平均分岐度(Cw)と数平均分岐度(Cn)の比を求めている。この近似計算は、試料の分岐数と累積重量分率が対数正規分布からずれると精度が下がり、市販のLLDPEについて測定を行うと相関係数Rはかなり低く、値の精度は充分でない。また、このCw/Cnの測定法および数値処理法は、本発明のCbのそれとは異なるが、あえて数値の比較を行えば、Cw/Cnの値は、Cbよりかなり大きな値となる。
【0021】
本発明のエチレン・α−オレフィン共重合体(A1)の組成分布パラメーターCb(イ)は1.10〜2.00であり、好ましくは1.12〜1.70、さらに好ましくは1.15〜1.50の範囲にあることが望ましい。
2.00より大きいとブロッキングしやすく、ヒートシール特性も不良となり、また低分子量成分あるいは高分岐度成分の樹脂表面へのにじみだしが多く衛生上の問題が生じる。
【0022】
本発明のエチレン・α−オレフィン共重合体(A1)の25℃におけるODCB可溶分(ウ)は、下記の方法により測定する。
試料0.5gを20mlのODCBにて135℃で2時間加熱し、試料を完全に溶解した後、25℃まで冷却する。この溶液を25℃で一晩放置後、テフロン製フィルターでろ過してろ液を採取する。このろ液のメチレンの非対称伸縮振動の波数2925cm−1付近の吸収ピーク面積を求め、あらかじめ作成した検量線により試料濃度を算出する。この値より、25℃におけるODCB可溶分を求める。
【0023】
25℃におけるODCB可溶分の量(ウ)X重量%と密度dおよびMFRの関係は、dおよびMFRの値がd−0.008logMFR≧0.93の場合は、Xは2重量%未満、好ましくは1重量%未満、d−0.008logMFR<0.93の場合は、X<9.8×10×(0.9300−d+0.008logMFR)+2.0、好ましくは、X<7.4×10×(0.9300−d+0.008logMFR)+1.0、さらに好ましくは、X<5.6×10×(0.9300−d+0.008logMFR)+0.5の関係を満足していることか必要である。
【0024】
25℃におけるODCB可溶分は、エチレン・α−オレフィン共重合体に含まれる高分岐度成分および低分子量成分であり、衛生性の問題や成形品内面のブロッキングの原因となるためこの含有量は少ないことが望ましい。ODCB可溶分の量は、コモノマーの含有量および分子量に影響される。従ってこれらの指標である密度およひMFRとODCB可溶分の量が上記の関係を満たすことは、共重合体全体に含まれるα−オレフィンの遍在が少ないことを示す。
【0025】
本発明のエチレン・α−オレフィン共重合体(A1)の連続昇温溶出分別法(TREF)により求めた溶出温度−溶出量曲線において、ピークが複数個存在(エ)することが必要である。また、さらに85℃から100℃の間にピークが存在することが特に好ましい。このピークが存在することにより、成形体の耐熱性が向上する。図1に本発明の共重合体の溶出温度−溶出量曲線を示す。図2は市販されているメタロセン触媒による共重合体の溶出温度−溶出量曲線であり、両者は明瞭に相違する。
【0026】
本発明におけるTREFの測定方法は下記の通りである。試料を酸化防止剤を加えたODCBに試料濃度0.05重量%となるように135℃で加熱溶解する。この試料溶液5mlを、ガラスビーズを充填したカラムに注入し、0.1℃/minの冷却速度で25℃まで冷却し、試料をガラスビーズ表面に沈着する。次に、このカラムにODCBを一定流量で流しながら、カラム温度を50℃/hrの一定速度で昇温しながら、試料を順次溶出させる。この際、溶剤中に溶出する試料の濃度は、メチレンの非対称伸縮振動の波数2925cm−1に対する吸収を赤外検出機で連続的に検出される。この値から、溶液中のエチレン・α−オレフィン共重合体の濃度を定量分析し、溶出温度と溶出速度の関係を求める。TREF分析は極少量の試料で、温度変化に対する溶出速度の変化を連続的に分析できるため、分別法では検出できない比較的細かいピークの検出が可能である。
【0027】
本発明の特定の(A1)エチレン・α−オレフィン共重合体は、上記(ア)〜(エ)の性状を満足すればよく、その製造法は特に限定されないが、以下のC1〜C5からなる触媒を満足すればよく、その製造法は特に限定されないが、以下のC1〜C5からなる触媒を用いて重合することが望ましい。
すなわち、C1:一般式Me11 p(OR2 )qX1 4−p−qで表される化合物(式中Me1 はジルコニウム、チタン、ハフニウムを示し、R1 およびR2 は各々炭素数1〜24の炭化水素基、X1 はハロゲン原子を示し、pおよびqは各々0≦p<4,0≦p+q≦4の範囲を満たす整数である)、C2:一般式Me23 m(OR4 )nX2 z−m−nで表される化合物(式中Me2 は周期律表第I〜III族元素、R3 およびR4 は各々炭素数1〜24の炭化水素基、X2はハロゲン原子または水素原子(ただし、X2 が水素原子の場合はMe2 は周期律表第III族元素の場合に限る)を示し、zはMe2 の価数を示し、mおよびnは各々0≦m≦z、0≦n≦zの範囲を満たす整数であり、かつ0≦m+n≦zである)、C3:共役二重結合を持つ有機環状化合物、およびC4:有機アルミニウム化合物と水との反応によって得られるAl−O−Al結合を含む変性有機アルミニウム化合物、C5:無機担体および/または粒子状ポリマー担体を相互に接触させて得られる触媒である。
【0028】
上記触媒成分(C1)の一般式Mep(OR)qX4−p−qで表される化合物の式中Meはジルコニウム、チタン、ハフニウムを示す。これらの遷移金属の種類は限定されるものではなく、複数用いることもできるが、共重合体の耐候性の優れるジルコニウムが含まれることが特に好ましい。RおよびRは各々炭素数1〜24の炭化水素基で、好ましくは炭素数1〜12、さらに好ましくは1〜8であり、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基などのアルキル基;ビニル基、アリル基などのアルケニル基;フェニル基、トリル基、キシリル基、メシチル基、インデニル基、ナフチル基などのアリール基;ベンジル基、トリチル基、フェネチル基、スチリル基、ベンズヒドリル基、フェニルブチル基、ネオフイル基などのアラルキル基などが挙げられる。これらは分岐があってもよい。Xはフッ素、ヨウ素、塩素および臭素などのハロゲン原子を示し、pおよひqはそれぞれ0≦P<4,0≦q<4,0≦p+q≦4の範囲を満たし、好ましくは0≦p+q≦4の範囲である。
【0029】
上記触媒成分(C1)一般式で示される化合物の例としては、テトラメチルジルコニウム、テトラエチルジルコニウム、テトラベンジルジルコニウム、テトラプロポキシジルコニウム、トリプロポキシモノクロロジルコニウム、テトラブトキシジルコニウム、テトラブトキシチタン、テトラブトキシハフニウムなどが挙げられ、特にテトラプロポキシジルコニウム、テトラブトキシジルコニウムなどのZr(OR)化合物であり、これらを2種以上混合して用いても差し支えない。
【0030】
上記触媒成分(C2)の一般式Mem(OR)nXz−m−nで表される化合物の式中Meは周期律表第I〜III族元素を示し、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、亜鉛、ホウ素、アルミニウムなどである。RおよびRは各々炭素数1〜24の炭化水素基、好ましくは炭素数1〜12、さらに好ましくは1〜8であり、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基などのアルキル基;ビニル基、アリル基などのアルケニル基;フェニル基、トリル基、キシリル基、メシチル基、インデニル基、ナフチル基などのアリール基;ベンジル基、トリチル基、フェネチル基、スチリル基、ベンズヒドリル基、フェニルブチル基、ネオフイル基などのアラルキル基などが挙げられる。これらは分岐があってもよい。Xはフッ素、ヨウ素、塩素および臭素などのハロゲン原子または水素原子を示すものである。ただし、Xが水素原子の場合はMeはホウ素、アルミニウムなどに例示される周期律表第III族元素の場合に限るものである。また、zはMeの価数を示し、mおよびnは各々0≦m≦z、0≦n≦zの範囲を満たす整数であり、かつ0≦m+n≦zである。
【0031】
上記触媒成分(C2)の一般式で示される化合物の例としては、メチルリチウム、エチルリチウムなどの有機リチウム化合物;ジメチルマグネシウム、ジエチルマグネシウム、メチルマグネシウムクロライド、エチルマグネシウムクロライドなどの有機マグネシウム化合物;ジメチル亜鉛、ジエチル亜鉛などの有機亜鉛化合物;トリメチルボロン、トリエチルボロンなどの有機ボロン化合物;トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム、トリデシルアルミニウム、ジエチルアルミニウムクロライド、エチルアルミニウムジクロライド、エチルアルミニウムセスキクロライド、ジエチルアルミニウムエトキサイド、ジエチルアルミニウムハイドライドなどの有機アルミニウム化合物等の誘導体が挙げられる。
【0032】
上記触媒成分(C3)の共役二重結合を持つ有機環状化合物とは、環状で共役二重結合を2個以上、好ましくは2〜4個、さらに好ましくは2〜3個有する環を1個または2個以上もち、全炭素数が4〜24、好ましくは4〜12である環状炭化水素化合物;前記環状炭化水素化合物が部分的に1〜6個の炭化水素残基(典型的には、炭素数1〜12のアルキル基またはアラルキル基)で置換された環状炭化水素化合物;共役二重結合を2個以上、好ましくは2〜4個、さらに好ましくは2〜3個有する環を1個または2個以上もち、全炭素数が4〜24、好ましくは4〜12である環状炭化水素基を有する有機ケイ素化合物;前記環状炭化水素基か部分的に1〜6個の炭化水素残基またはアルカリ金属塩(ナトリウムまたはリチウム塩)で置換された有機ケイ素化合物が含まれる。特に好ましくは分子中のいずれかにシクロペンタジエン構造をもつものが望ましい。
【0033】
上記の好適な化合物としては、シクロペンタジエン、インデン、アズレンまたはこれらのアルキル、アリール、アラルキル、アルコキシまたはアリールオキシ誘導体などが挙げられる。また、これらの化合物がアルキレン基(その炭素数は通常2〜8、好ましくは2〜3)を介して結合(架橋)した化合物も好適に用いられる。
【0034】
環状炭化水素基を有する有機ケイ素化合物は、下記一般式で表示することができる。
ALSiR−L
ここで、Aはシクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基、置換インデニル基で例示される前記環状水素基を示し、Rはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基などのアルキル基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシ基;フェニル基などのアリール基;フェノキシ基などのアリールオキシ基;ベンジル基などのアラルキル基で示され、炭素数1〜24、好ましくは1〜12の炭化水素残基または水素を示し、Lは1≦L≦4、好ましくは1≦L≦3である。
【0035】
上記成分(C3)の有機環状炭化水素化合物の具体例は、シクロペンタジエン、メチルシクロペンタジエン、エチルシクロペンタジエン、1,3−ジメチルシクロペンタジエン、インデン、4−メチル−1−インデン、4,7−ジメチルインデン、シクロヘプタトリエン、メチルシクロヘプタトリエン、シクロオクタテトラエン、アズレン、フルオレン、メチルフルオレンのような炭素数7〜24のシクロポリエンまたは置換シクロポリエン、モノシクロペンタジエニルシラン、ビスシクロペンタジエニルシラン、トリスシクロペンタジエニルシラン、モノインデニルシラン、ビスインデニルシラン、トリスインデニルシラン等が挙げられる。
【0036】
触媒成分(C4)有機アルミニウム化合物と水との反応によって得られるAl−O−Al結合を含む変性有機アルミニウム化合物とは、アルキルアルミニウム化合物と水とを反応させることにより、通常アルミノキサンと称される変性有機アルミニウムが得られ、分子中に通常1〜100個、好ましくは1〜50個のAl−O−Al結合を含有する。また、変性有機アルミニウム化合物は線状でも環状でもいずれでもよい。
【0037】
有機アルミニウムと水との反応は通常不活性炭化水素中で行われる。該不活性炭化水素としてはペンタン、ヘキサン、ヘプタン、シクロヘキサン、ベンゼン、トルエン、キシレン等の脂肪族、脂環族、芳香族炭化水素が好ましい。
水と有機アルミニウム化合物との反応比(水/Alモル比)は通常0.25/1〜1.2/1、好ましくは0.5/1〜1/1であることが望ましい。
【0038】
触媒成分(C5)無機物担体および/または粒子状ポリマー担体とは、炭素質物、金属、金属酸化物、金属塩化物、金属炭酸塩またはこれらの混合物あるいは熱可塑性樹脂、熱硬化性樹脂等が挙げられる。該無機物担体に用いることができる好適な金属としては、鉄、アルミニウム、ニッケルなどが挙げられる。
具体的にはSiO、Al、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThO等またはこれらの混合物が挙げられ、SiO−Al、SiO−V、SiO−TiO、SiO−V、SiO−MgO、SiO−Cr等が挙げられる。これらの中でもSiOおよびAlからなる群から選択された少なくとも1種の成分を主成分とするものが好ましい。
また、有機化合物としては、熱可塑性樹脂、熱硬化性樹脂のいずれも使用でき、具体的には、粒子状のポリオレフィン、ポリエステル、ポリアミド、ポリ塩化ビニル、ポリ(メタ)アクリル酸メチル、ポリスチレン、ポリノルボルネン、各種天然高分子およびこれらの混合物等が挙げられる。
【0039】
上記無機物担体および/または粒子状ポリマー担体は、このままで使用することもできるが、好ましくは予備処理としてこれらの担体を有機アルミニウム化合物やAl−O−Al結合を含む変性有機アルミニウム化合物などに接触処理させた後に成分(C5)として用いることもできる。
【0040】
本発明の(A1)エチレン・α−オレフィン共重合体は、気相法、スラリー法、溶液法等で製造され、一段重合法、多段重合法など特に限定されるものではない。
【0041】
該積層体の表面層(I)は上記のエチレン・α−オレフィン共重合体(A1)と所望により、以下に示す他のエチレン系重合体(B)を配合して用いられる。
【0042】
本発明の他のエチレン系重合体(B)は、従来のイオン重合法によるチーグラー型触媒またはフィリップス触媒によるイオン重合法で得られるエチレン・α−オレフィン共重合体および高圧ラジカル重合による低密度ポリエチレン(HPLDPE)を含むものである。該エチレン・α−オレフィン共重合体は密度0.920〜0.965g/cm、MFRが0.05〜20g/10min.のものであって、具体的には高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、線状低密度ポリエチレン(LLDPE)等が挙げられる。
【0043】
上記他のエチレン・α−オレフィン共重合体のα−オレフィンとしては、炭素数3〜12、好ましくは3〜10の範囲であって、具体的にはプロピレン、ブテン−1、4−メチルペンテン−1、ヘキセン−1、オクテン−1、デセン−1、ドデセン−1等を挙げることができる。
【0044】
他のエチレン系重合体(B)の1つである高圧ラジカル重合による低密度ポリエチレン(HPLDPE)は、MFRは0.1〜20g/10分、好ましくは0.5〜15g/10分、さらに好ましくは1.0〜10g/10分である。この範囲内であれば組成物の溶融張力が適切な範囲となりフィルム成形がし易い。また密度は0.91〜0.94g/cm、好ましくは0.912〜0.935g/cm、さらに好ましくは0.912〜0.930g/cmであり、溶融張力は1.5〜25gは、好ましくは3〜20g、さらに好ましくは3〜15gである。溶融張力は樹脂の弾性項目であり、上記の範囲であればフィルム成形がし易い。
また、Mw/Mnは3.0〜10、好ましくは4.0〜8.0である。
【0045】
上記他のエチレン系重合体(B)はエチレン・α−オレフィン共重合体(A1)に80重量%以下配合されて表面層(I)として用いられる。透明性、耐衝撃性、ヒートシール特性を重視する場合には、エチレン・α−オレフィン共重合体(A1)を主成分とすることが好ましいが、透明性、耐衝撃性、ヒートシール特性をある程度保持し、かつ耐熱性をより向上させるような場合は、密度0.945〜0.965g/cmのエチレン系共重合体(B)を5〜35重量%配合することが望ましい。また、成形性を改良するために流動性や溶融張力を高くしたい場合はHPLDPEを5〜35重量%配合することが望ましい。
【0046】
前記表面層(I)はブロッキングしにくく、樹脂成分の溶出が少なくヒートシール特性の優れた層であり、積層体を容器として用いる場合、ヒートシールし内容物と接触する最内層として用いると上記の特徴を生かすことができる。
【0047】
エチレン・α−オレフィン共重合体(A2)は積層体の中間層(II)を構成するものであり前記したようにエチレン・α−オレフィン共重合体(A1)と同様の製造法によって製造され、同様の特性を有するものであるが、その密度(d2)がエチレン・α−オレフィン共重合体(A1)の密度(d1)より低い値を有する(d1>d2)ものが使用される。
該中間層(II)は積層体の内でも最も厚さの比率が大きく積層体の性状を左右するもので、積層体に優れた透明性と柔軟性を付与するものである。
【0048】
エチレン・α−オレフィン共重合体(A2)の密度(d2)は0.88〜0.92g/cmであり、好ましくは0.89〜0.915g/cmである。0.88g/cmより低い場合は積層体が柔らかくなりすぎ、0.92g/cmを超えると柔軟性、透明性が不良となる。また、エチレン・α−オレフィン共重合体の密度(d1)よりも低いものである必要がある。表面層(I)に使用されるエチレン・α−オレフィン共重合体(A1)はブロッキング性や樹脂成分の内容物への移行性が悪化することなどの理由から余り密度を下げることができない。しかし中間層(II)を構成するエチレン・α−オレフィン共重合体は柔軟性や透明性を向上させるため密度を低くする必要がある。このような用途には透明性に優れたエチレン・α−オレフィン共重合体(A2)が用いられる。該共重合体は分子量分布が狭い上に、組成分布も比較的狭く短鎖分岐度が極端に多い分子や少ない分子が必要以上に存在しないところから透明性が優れたものであると考えられる。
【0049】
上記エチレン・α−オレフィン共重合体(A2)のメルトフローレート(MFR)は0.05〜20g/10minが好ましく、さらに好ましくは0.1〜10g/10minの範囲である。MFRが0.05g/10min未満であると成形性が不良となり、20g/10minを超えると強度が不足する。
【0050】
また上記エチレン・α−オレフィン共重合体(A2)の分子量分布の広さMw/Mn(ア)は1.8〜3.5、好ましくは2.0〜3.0の範囲であり、1.8未満のものは成形性が悪く、3.5を超えるものは強度が弱くなる。
【0051】
さらにまた上記エチレン・α−オレフィン共重合体(A2)の組成分布の幅を表す指標である組成分布パラメーターCb(イ)は1.10〜2.00であり、2.00を超えるものは積層体の透明性が低下する。
【0052】
上記エチレン・α−オレフィン共重合体(A2)の、25℃におけるODCB可溶分の量(ウ)X重量%と密度dおよびMFRの関係は、dおよびMFRの値が
d−0.008logMFR≧0.93の場合は、
Xは2重量%未満、好ましくは1重量%未満
d−0.008logMFR<0.93の場合は、
X<9.8×10×(0.9300−d+0.008logMFR)+2.0、
好ましくは、X<7.4×10×(0.9300−d+0.008logMFR)+1.0、
さらに好ましくは、X<5.6×10×(0.9300−d+0.008logMFR)+0.5、
の関係を満足している必要がある。
【0053】
上記エチレン・α−オレフィン共重合体(A2)の連続昇温溶出分別法(TREF)により求めた溶出温度−溶出量曲線において、ピークが複数個存在(エ)することが必要である。また、さらに85℃から100℃の間にピークが存在することが特に好ましい。このピークが存在することにより、成形体の耐熱性が向上する。
【0054】
表面層(1)部分においてエチレン・α−オレフィン共重合体(A1)にエチレン系重合体(B)が配合されるのと同様に、中間層(II)ではエチレン・α−オレフィン共重合体(A2)にエチレン系重合体(B)が80重量%以下配合される。なお、本発明層に用いられるエチレン系重合体(B)は、表面層(I)でエチレン・α−オレフィン共重合体(A1)と混合されて用いられているエチレン系重合体(B)と同じMFRあるいは密度のものである場合もあるが、必ずしも同一である必要はない。
【0055】
本発明の耐熱性を有する(III)層には示差走査熱量計(DSC)で測定した融点のピークが120℃以上を有する樹脂が用いられる。該層は主として積層体の耐熱性を向上させる役割を担うものであり、例えば医療用輸液容器では水蒸気殺菌を行う際の、また食品用途では調理時あるいは殺菌時の煮沸の際、容器が変形しないようにするものである。示差走査熱量計(DSC)での測定条件は後述するが、融解ピークが複数個存在する場合には、最も高温のピークをもって上記の融点のピークとする。これらに該当する樹脂としては、具体的には高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、直鎖状低密度ポリエチレン(L−LDPE)、ポリプロピレン(PP)、エチレン・ビニルアルコール共重合体(EVOH)、6−ナイロン、6,6−ナイロンなどのポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル等を挙げることができる。これらの中でも高密度ポリエチレン、中密度ポリエチレン、直鎖状低密度ポリエチレンあるいはこれらにポリプロピレンを混合したものは中間層(II)のエチレン・α−オレフィン共重合体との接着性が良好なため特に好ましいものである。混合されるポリプロピレンはプロピレン単独重合体(HPP)、プロピレン・エチレンブロック共重合体(BPP)、プロピレン・エチレンランダム共重合体(RPP)であり、その比率は0〜70重量%が好ましい。
【0056】
また、上記示差走査熱量計(DSC)で測定した融点のピークが120℃以上を有する樹脂は、例えば二軸延伸などにより高配向することによって融点が向上したフィルムであっても差し支えない。
【0057】
該(III)層と他層との貼り合わせは、ポリウレタン系接着剤、酢酸ビニル接着剤、ホットメルト接着剤などで接着したり、また例えば無水マレイン酸変性ポリオレフィンやアイオノマー樹脂等の接着性樹脂とともに共押し出しにより積層することができる。
【0058】
本発明における積層体は少なくとも前記の3層構造を含む積層体であって、その厚みは約10μm程度から約1000μm程度、最も好ましいものとしては50〜500μmである。またその中間層(II)の厚みの比率が全積層体の40〜90%を占め、表面層(I)および耐熱層(III)がそれぞれ5%〜30%を占めるものである。
また、前記接着剤や共押し出しの際の接着層を必要とする場合はこれらの層が追加されるので4層以上の構造となり、また例えば耐熱層(III)に湿気に弱いエチレン・ビニルアルコール共重合体を用いる場合、さらにその外層にポリオレフィン層で保護するような場合もあり、このような場合にも4層以上の構造となる。これらの層構成は具体例としてはMLL(A1)/MLL(A2)/HTm、MLL(A1)/MLL(A2)/MahLL/HTm、MLL(A1)/MLL(A2)/接着剤/HTm、MLL(A1)/MLL(A2)/MahLL/HTm/LLなどが例示される。(ただしMLL(A1):(A1)成分樹脂層、MLL(A2):(A2)成分樹脂層、HTm:高融点樹脂層、MahLL:無水マレイン酸変性樹脂層)などが挙げられる。
【0059】
該積層体は、樹脂成分の低溶出性および抗ブロッキング性、ヒートシール強度、透明性、耐衝撃強度、柔軟性、耐熱性に優れている。多層インフレーション法、または多層Tダイ法、あるいは単層インフレーション法または単層Tダイ法で成形後にラミネーション法で積層し、厚さ約20〜500μm程度のものを製造することが可能であるが、透明性の観点から、多層Tダイ法または水冷インフレーション法、あるいは単層Tダイ法または水冷インフレーション法で成形後にラミネーション法で積層したものが最も好ましい。また、耐熱層(III)として延伸フィルムを用い中間層(II)および表面層(I)をラミネートして積層体とすることも効果的である。多層中空成形法は厚さが約100〜1000μm程度のものを成形するのに適している。
【0060】
該積層体はフィルムまたはシートにおいてはヒートシールにより袋状に加工して、中空成形によるものは、そのまま食用油、調味料などの食品容器、各種薬剤保存容器等として用いられる。
【0061】
本発明においては、該積層体の特性である透明性、耐熱性、柔軟性を活かし、該積層体をヒートシールや熱成形等により容器とし、例えば食品包装容器、衣料用容器、その他各種雑貨品等の各種容器とされる。
【0062】
また、医療用輸液容器としても顕著に優れている。この容器は、例えば生理食塩液、糖類、動物用ワクチン等の各種輸液用容器であり、多層中空成形法によるものは栓等を取り付け、また積層フィルムまたはシートの場合は端部をヒートシールして袋状の容器とすると柔軟性があり、輸液滴下時に通気針による外気の導入なしに内容液を完全に排出可能となる。
【0063】
医療用輸液容器の場合には成形時にはその用途上の特性から基本的には添加剤を加えないが、必要に応じて帯電防止剤、酸化防止剤、滑剤、抗ブロッキング剤あるいは防曇剤、有機あるいは無機系顔料、紫外線防止剤、分散剤などの公知の添加剤を配合して用いられる場合もある。
【0064】
【実施例】
次に実施例により本発明を更に詳しく説明するが、本発明はこれらによって限定されるものではない。
【0065】
なお行った試験法を以下に示す。
Figure 0003610121
【0066】
Figure 0003610121
【0067】
Figure 0003610121
【0068】
使用した樹脂の内(PE−1〜PE−4)については以下の方法で重合した。
(固体触媒の調製)
窒素下で電磁誘導攪拌機付き触媒調製器(No.1)に精製トルエンを加え、ついでジプロポキシジクロロジルコニウム(Zr(OPr)Cl)28gおよびメチルシクロペンタジエン48gを加え、0℃に系を保持しながらトリデシルアルミニウムを45gを滴下し、滴下終了後、反応系を50℃に保持して16時間攪拌した。この溶液をA液とする。次に窒素下で別の撹拌機付き触媒調製器(No.2)に精製トルエンを加え、前記A溶液と、ついでメチルアルミノキサン6.4molのトルエン溶液を添加し反応させた。これをB液とする。
次に窒素下で別の攪拌機付き調製器(No.1)に精製トルエンを加え、ついであらかじめ400℃で所定時間焼成処理したシリカ(富士デビソン社製、グレード#952、表面積300m/g)1400gを加えた後、前記B溶液の全量を添加し、室温で攪拌した。ついで窒素ブローにて溶媒を除去して流動性の良い固体触媒粉末を得た。これを触媒Cとする。
【0069】
(試料PE−1〜PE−4の重合)
連続式の流動床気相法重合装置を用い、重合温度70℃、全圧20kgf/cmGでエチレンと1−ブテンの共重合を行った。前記触媒Cを連続的に供給して重合を行い、系内のガス組成を一定に保つため、各ガスを連続的に供給しながら重合を行った。なお、生成した共重合体の物性は表1に示した。
【0070】
他のエチレン系重合体
(1)高密度ポリエチレン(スラリー法チグラー触媒品)
HD−1:ホモポリエチレン(MFR 5.3g/10min、密度0.963g/cm、日本石油化学(株)製)
HD−2:ブテン−1共重合体(MFR 1.6g/10min、密度0.956g/cm、融点 129℃、日本石油化学(株)製)
(2)中密度ポリエチレン(スラリー法チグラー触媒品)
MDPE:ブテン−1共重合体(MFR 2.0g/10min、密度0.937g/cm、融点 126℃、日本石油化学(株)製)
(3)低密度線状ポリエチレン重合体(気相法チグラー触媒品)
LL:ブテン−1共重合体(MFR 2.0g/10min、密度0.925g/cm、融点 123℃、日本石油化学(株)製)
コモノマー ブテン−1、日本石油化学(株)製
(4)超低密度線状ポリエチレン重合体(気相法チグラー触媒品)
VL:ブテン−1共重合体(MFR 3.0g/10min、密度0.905g/cm、日本石油化学(株)製)
(5)プロピレン・エチレンランダム共重合体
RPP:MFR 7.0g/10min、エチレン含有量 4重量%、融点147℃、日本石油化学(株)製)
(6)高圧法低密度ポリエチレン
HPLD:MFR 2.0g/10min、 密度0.924g/cm、融点 123℃、日本石油化学(株)製)
【0071】
実施例1
表1に示した樹脂成分で最内層20μm、中間層160μm、外層20μmの厚みの3層Tダイ成形を行い各種フィルム試験を行った。さらに得られたフィルムをヒートシールして内容量500mlの容器を制作しその評価を行った。結果を表1に示した。透明性、柔らかさの目安である引張弾性率、引張衝撃強度、抗ブロッキング性、低温ヒートシール性のいずれも良好であり、容器としての耐熱性、柔軟性、落下試験のいずれも優れている。
【0072】
実施例2〜7
表1に示した樹脂成分で実施例1と全く同様の操作を行った。結果を表1に示した。透明性、柔らかさの目安である引張弾性率、引張衝撃強度、抗ブロッキング性、低温ヒートシール性のいずれも良好であり、容器としての耐熱性、柔軟性、落下試験のいずれも優れている。
【0073】
比較例1
最内層にチグラー触媒によるLLDPE、中間層にVLDPEを用いて、実施例1と同様の操作を行った。結果を表2に示した。透明性、引張衝撃強度、抗ブロッキング性、低温ヒートシール性が不良で、落下強度がやや不良である。
【0074】
比較例2
最内層にチグラー触媒によるLLDPEを用いて、実施例1と同様の操作を行った。結果を表2に示した。抗ブロッキング性、低温ヒートシール性が不良で、落下強度がやや不良である。
【0075】
比較例3
中間層にチグラー触媒によるVLDPEを用いて、実施例1と同様の操作を行った。結果を表2に示した。透明性、引張衝撃強度が不良である。
【0076】
比較例4
外層に融点の低いHPLDPEを用いて、実施例1と同様の操作を行った。結果を表2に示した。耐熱性が不良である。
【0077】
比較例5
最内層に密度の低い(PE3)を用いて、実施例1と同様の操作を行った。結果を表2に示した。耐熱性、抗ブロッキング性が不良である。
【0078】
比較例6
中間層に密度の高い(PE4)を用いて、実施例1と同様の操作を行った。結果を表2に示した。透明性、柔軟性、引張衝撃強度が不良である。
【0079】
【表1】
Figure 0003610121
【0080】
【表2】
Figure 0003610121
【0081】
【発明の効果】
本発明の積層体は透明性、柔軟性、耐熱性、口開き性(抗ブロッキング性)、耐衝撃性に優れ、しかも高分岐度あるいは低分子量成分の表面へのにじみ出しが少なく、ヒートシール特性の優れたものであり、該積層体を用いた食用油、調味料などの食品包装材、食品容器、衣料容器などの容器あるいは医療用輸液容器は従来にない優れた特性をもっている。
【図面の簡単な説明】
【図1】本発明の容器を構成するエチレン・α−オレフィン共重合体のTREFにより求めた溶出温度−溶出量曲線を示す線図。
【図2】市販のメタロセン触媒によるエチレン・α−オレフィン共重合体のTREFにより求めた溶出温度−溶出量曲線を示す線図。[0001]
[Industrial application fields]
The present invention relates to a laminate and a container comprising the laminate, and in particular, has excellent transparency, flexibility, heat resistance, openability (anti-blocking property), impact resistance, and high branching or low molecular weight from constituent resin components. The present invention relates to laminates suitable for food packaging materials such as edible oils and seasonings, food containers and medical infusion containers, and containers made of these laminates.
[0002]
[Prior art]
Recently, in laminates used for food packaging materials, food packaging containers, food packaging bags, etc., it is transparent for confirmation of contents, confirmation of the presence or absence of foreign matter, steam for sterilization, cooking, etc. Heat sealing characteristics such as heat resistance or impact resistance for boiling treatment, high heat seal strength at the time of bag making, and low temperature heat sealability are required.
In addition, in the medical infusion container, transparency for confirming the presence or absence of contamination of foreign substances and confirmation of drug compounding change, heat resistance for steam sterilization treatment, etc. There is a demand for flexibility that allows the content liquid to be completely discharged without introducing outside air through an aeration needle during infusion administration.
[0003]
Conventionally, infusion containers for medical use that satisfy such performances include resins cross-linked with ethylene / vinyl acetate copolymers, vinyl chloride resins, medium-low density linear polyethylene, high-pressure low-density polyethylene, and the like. However, ethylene / vinyl acetate copolymers have disadvantages such as poor heat resistance and need to be used after crosslinking, and that the drug is adsorbed by the polar group molecules. Further, the vinyl chloride resin has a problem that the added plasticizer is eluted into the chemical solution. Polypropylene has poor flexibility, and high-pressure low-density polyethylene has drawbacks such as low strength. For this reason, the use of low density linear polyethylene is most desirable, but the density needs to be lowered in order to satisfy transparency and flexibility. However, when the density is lowered, there are problems such as insufficient heat resistance in the high-pressure boiling sterilization process, and low molecular weight components or high branching degree components of the resin bleed out to the surface.
[0004]
In order to make up for the above-mentioned drawbacks, a method has been proposed in which medium-low density linear polyethylene, high-density polyethylene, high-pressure method low-density polyethylene or a mixture thereof is laminated in two or three layers (for example, JP-A-4- 266759, JP-A-6-171039, JP-A-6-246886), however, the transparency is still insufficient, or the low molecular weight and high branching component of the resin constituting the inner layer bleeds to the surface. There are hygiene concerns, such as the inner layers blocking each other, especially being mixed into the inner solution after high temperature treatment. In addition, when these laminated bodies are made by heat sealing, especially when heat-sealing at high speed, the strength of the sealing portion has not yet been sufficiently satisfied, so bag breakage from the sealing portion due to dropping etc. occurs There were problems such as easy to do.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to provide a laminate having excellent transparency, flexibility, heat resistance, impact resistance, heat sealing properties and anti-blocking properties, and further less elution of resin components into the contents. Another object of the present invention is to provide a container such as a food packaging material, food packaging container, food packaging bag or medical infusion container having the above characteristics.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned problems, the present invention has a narrow molecular weight distribution and a moderately wide composition distribution, unlike commercially available ethylene / α-olefin copolymers polymerized with a metallocene catalyst. By using a specific crystalline ethylene / α-olefin copolymer or a composition in which an ethylene / α-olefin copolymer is mixed in the inner layer and intermediate layer of the container, the above-mentioned drawbacks are solved, and transparency and flexibility are improved. It has been found that a laminate suitable for use in food packaging materials, food packaging containers, food packaging bags, various medicine storage containers, etc. can be obtained, which is excellent in heat resistance, heat resistance and drop strength and has few resin elution components Invented.
[0007]
That is, the present invention firstly
(I)The density (d1) satisfying the properties of (a) to (d) is 0.90 to 0.94 g / cm. Three , 100 to 20% by weight of ethylene / α-olefin copolymer (A1) having a melt flow rate of 0.1 to 100 g / 10 min, and 80 to 0% by weight of another ethylene polymer (B)Surface layer containing no polymer other than ethylene polymer
(II)Density satisfying the following properties (a) to (d) (d2) 0.88 to 0.92 g / cm Three A resin containing 100 to 20% by weight of an ethylene / α-olefin copolymer (A2) having a melt flow rate of 0.05 to 20 g / 10 min and 80 to 0% by weight of another ethylene polymer (B). BecomeAn intermediate layer containing no polymer other than the ethylene-based polymer (however, the density of the ethylene / α-olefin copolymers (A1) and (A2) is always (d1)> (d2)), and
(III) A laminate comprising a heat-resistant resin layer made of a resin having a melting peak measured by a differential scanning calorimeter of 120 ° C. or higher.
Figure 0003610121
[0008]
In the present invention, secondly, the surface layer and the intermediate layer contain up to 80% by weight of the ethylene / α-olefin copolymer (A1) or (A2) and another ethylene polymer (B). It is the laminated body which consists of.
[0009]
Moreover, this invention is a container which consists of said laminated body 3rdly.
[0010]
A fourth aspect of the present invention is a medical infusion container comprising the above laminate.
[0011]
The present invention is described in detail below.
The ethylene / α-olefin copolymer (A1) constituting the surface layer (I) of the laminate of the present invention is a copolymer of ethylene and one or more selected from α-olefins having 3 to 20 carbon atoms. The α-olefin having 3 to 20 carbon atoms is preferably one having 3 to 12 carbon atoms, specifically, propylene, butene-1, 4-methylpentene-1, hexene-1, octene-1, Decene-1, dodecene-1, and the like. The total content of these α-olefins is usually 30 mol% or less, preferably 20 mol% or less.
[0012]
The ethylene / α-olefin copolymer (A1) has a density of 0.90 to 0.94 g / cm.3, Preferably 0.91 to 0.935 g / cm3Range. 0.90 g / cm3If it is less than 1, the heat resistance is lowered, the blocking property of the film is deteriorated, and the elution of the low crystalline component into the package contents increases. The other 0.94 g / cm3If it exceeds 1, the transparency is poor and the flexibility is lost.
[0013]
The MFR of the ethylene / α-olefin copolymer (A1) is 0.01 to 200 g / 10 min, preferably 0.1 to 100 g / 10 min, more preferably 0.2 to 50 g / 10 min. When the MFR is less than 0.01, the moldability is inferior, and when the MFR is 200 or more, the strength decreases.
[0014]
The molecular weight distribution (Mw / Mn) (A) is calculated by calculating the weight average molecular weight (Mw) and the number average molecular weight (Mn) by gel permeation chromatography (GPC), and obtaining this ratio Mw / Mn. is there. Mw / Mn (A) of the ethylene / α-olefin copolymer (A1) of the present invention is 1.8 to 3.5, preferably 2.0 to 3.0, more preferably 2.2 to 2. It is desirable to be in the range of .8. When Mw / Mn is less than 1.8, molding processability is inferior, and when it exceeds 3.5, impact resistance is inferior.
[0015]
The method for measuring the composition distribution parameter Cb (A) of the ethylene / α-olefin copolymer is as follows.
That is, it is heated and dissolved at 135 ° C. in orthodichlorobenzene (ODCB) to which an antioxidant is added so that the sample concentration becomes 0.2% by weight. This solution is transferred to a column packed with diatomaceous earth (Celite 545), cooled to 25 ° C. at a rate of 0.1 ° C./min, and the sample is deposited on the celite surface. Next, while flowing ODCB through this column at a constant flow rate, the column temperature is raised stepwise to 120 ° C. in steps of 5 ° C., and the sample is eluted and fractionated. Methanol is mixed with the eluate, and after reprecipitation, the sample is filtered and dried to obtain a fraction sample at each elution temperature. The weight fraction of the eluted sample at each temperature and the degree of branching (number of branches per 1000 carbonaceous materials) are measured by 13C-NMR.
[0016]
For the fraction from 30 ° C. to 90 ° C., the branching degree is corrected as follows. That is, the degree of branching measured against the elution temperature is plotted, the correlation is approximated to a straight line by the least square method, and a calibration curve is created. This approximate correlation coefficient is sufficiently large. The value obtained from this calibration curve is taken as the degree of branching of each fraction. For components having an elution temperature of 95 ° C. or higher, a linear relationship is not necessarily established between the elution temperature and the degree of branching, and thus this correction is not performed and measured values are used.
[0017]
Next, the weight fraction wi of each fraction is determined as the degree of branching b per elution temperature of 5 ° C.iChange amount (bi-Bi-1) Divided by relative concentration ciAnd plot the relative concentration against the degree of branching to obtain a composition distribution curve. This composition distribution curve is divided by a certain width, and the composition distribution parameter Cb is calculated from the following equation.
[0018]
[Formula 1]
Figure 0003610121
[0019]
Where cjAnd bjAre the relative concentration and the degree of branching of the jth segment, respectively. The composition distribution parameter Cb is 1.0 when the composition of the sample is uniform, and increases as the composition distribution increases.
[0020]
Many methods have been proposed for describing the composition distribution of an ethylene / α-olefin copolymer. For example, in JP-A-60-88016, numerical processing is performed on the assumption that the cumulative weight fraction has a specific distribution (logarithmic normal distribution) with respect to the number of branches of each fractionated sample obtained by solvent fractionation of the sample, The ratio of the weight average branching degree (Cw) and the number average branching degree (Cn) is obtained. This approximate calculation is less accurate when the number of branches and the cumulative weight fraction of the sample deviate from the lognormal distribution, and the correlation coefficient R is measured when measurement is performed on commercially available LLDPE.2Is quite low and the accuracy of the value is not sufficient. The Cw / Cn measurement method and numerical processing method are different from those of Cb of the present invention. However, if numerical comparison is made, the value of Cw / Cn is considerably larger than Cb.
[0021]
The composition distribution parameter Cb (A) of the ethylene / α-olefin copolymer (A1) of the present invention is 1.10 to 2.00, preferably 1.12 to 1.70, more preferably 1.15. It is desirable to be in the range of 1.50.
If it is larger than 2.00, blocking tends to occur, the heat sealing property is poor, and there is a lot of bleeding of the low molecular weight component or the high branching component to the resin surface, resulting in hygiene problems.
[0022]
The ODCB soluble content (c) at 25 ° C. of the ethylene / α-olefin copolymer (A1) of the present invention is measured by the following method.
A sample of 0.5 g is heated with 20 ml of ODCB at 135 ° C. for 2 hours to completely dissolve the sample, and then cooled to 25 ° C. The solution is allowed to stand at 25 ° C. overnight and then filtered through a Teflon filter to collect the filtrate. Wave number 2925cm of asymmetric stretching vibration of methylene in this filtrate-1The absorption peak area in the vicinity is obtained, and the sample concentration is calculated using a calibration curve prepared in advance. From this value, the ODCB soluble content at 25 ° C. is determined.
[0023]
The relationship between the amount of ODCB solubles at 25 ° C. (c) X wt% and the density d and MFR is such that when d and MFR values are d−0.008 log MFR ≧ 0.93, X is less than 2 wt%, Preferably, less than 1% by weight, and in the case of d-0.008log MFR <0.93, X <9.8 × 103× (0.9300-d + 0.008logMFR)2+2.0, preferably X <7.4 × 103× (0.9300-d + 0.008logMFR)2+1.0, more preferably X <5.6 × 103× (0.9300-d + 0.008logMFR)2It is necessary to satisfy the relationship of +0.5.
[0024]
The ODCB soluble content at 25 ° C. is a high branching component and a low molecular weight component contained in the ethylene / α-olefin copolymer, which causes sanitary problems and blocking of the inner surface of the molded product. Less is desirable. The amount of ODCB solubles is affected by comonomer content and molecular weight. Therefore, the fact that the density and the amount of soluble matter of MFR and ODCB satisfying the above relations indicate that the α-olefin contained in the entire copolymer is less ubiquitous.
[0025]
In the elution temperature-elution amount curve obtained by the continuous temperature rising elution fractionation method (TREF) of the ethylene / α-olefin copolymer (A1) of the present invention, it is necessary that a plurality of peaks exist (d). Further, it is particularly preferable that a peak exists between 85 ° C. and 100 ° C. The presence of this peak improves the heat resistance of the molded body. FIG. 1 shows an elution temperature-elution amount curve of the copolymer of the present invention. FIG. 2 is an elution temperature-elution amount curve of a copolymer with a commercially available metallocene catalyst, and both are clearly different.
[0026]
The method for measuring TREF in the present invention is as follows. The sample is heated and dissolved at 135 ° C. in ODCB to which an antioxidant is added so that the sample concentration becomes 0.05% by weight. 5 ml of this sample solution is injected into a column filled with glass beads, cooled to 25 ° C. at a cooling rate of 0.1 ° C./min, and the sample is deposited on the surface of the glass beads. Next, the sample is sequentially eluted while increasing the column temperature at a constant rate of 50 ° C./hr while flowing ODCB through the column at a constant flow rate. At this time, the concentration of the sample eluted in the solvent was set to the wave number 2925 cm of the asymmetric stretching vibration of methylene.-1Is continuously detected by an infrared detector. From this value, the concentration of the ethylene / α-olefin copolymer in the solution is quantitatively analyzed to determine the relationship between the elution temperature and the elution rate. TREF analysis is a very small amount of sample, and since it is possible to continuously analyze changes in the elution rate with respect to temperature changes, relatively fine peaks that cannot be detected by the fractionation method can be detected.
[0027]
Specific of the present invention(A1)The ethylene / α-olefin copolymer isAs long as the properties (a) to (d) are satisfied, the production method is not particularly limited. However, the production method is not particularly limited as long as the catalyst composed of the following C1 to C5 is satisfied. It is desirable to perform polymerization using a catalyst composed of C1 to C5.
That is, C1: general formula Me1 R1 p (OR2 QX1 A compound represented by 4-pq (wherein Me1 Represents zirconium, titanium, hafnium, R1 And R2 Are each a hydrocarbon group having 1 to 24 carbon atoms, X1 Represents a halogen atom, and p and q are each an integer satisfying the range of 0 ≦ p <4, 0 ≦ p + q ≦ 4), C2: General formula Me2 RThree m (ORFour ) NX2 a compound represented by zm-n (wherein Me2 Is the Group I-III element of the periodic table, RThree And RFour Are each a hydrocarbon group having 1 to 24 carbon atoms, X2Is a halogen atom or a hydrogen atom (however, X2 Me is a hydrogen atom2 Is only for Group III elements of the Periodic Table), z is Me2 M and n are integers satisfying the ranges of 0 ≦ m ≦ z and 0 ≦ n ≦ z, respectively, and 0 ≦ m + n ≦ z), C3: an organic ring having a conjugated double bond C4: a modified organoaluminum compound containing an Al—O—Al bond obtained by reaction of an organoaluminum compound with water, C5: a catalyst obtained by bringing an inorganic carrier and / or a particulate polymer carrier into contact with each other is there.
[0028]
General formula Me of the catalyst component (C1)1R1p (OR2QX1Me in the compound represented by 4-pq1Represents zirconium, titanium and hafnium. The type of these transition metals is not limited, and a plurality of these transition metals can be used, but it is particularly preferable that zirconium containing the copolymer having excellent weather resistance is included. R1And R2Are each a hydrocarbon group having 1 to 24 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group. Alkyl group; alkenyl group such as vinyl group, allyl group; aryl group such as phenyl group, tolyl group, xylyl group, mesityl group, indenyl group, naphthyl group; benzyl group, trityl group, phenethyl group, styryl group, benzhydryl group, Examples thereof include aralkyl groups such as phenylbutyl group and neofoyl group. These may be branched. X1Represents a halogen atom such as fluorine, iodine, chlorine and bromine, and p and q each satisfy the range of 0 ≦ P <4, 0 ≦ q <4, 0 ≦ p + q ≦ 4, preferably 0 ≦ p + q ≦ 4 range.
[0029]
Examples of the compound represented by the general formula of the catalyst component (C1) include tetramethylzirconium, tetraethylzirconium, tetrabenzylzirconium, tetrapropoxyzirconium, tripropoxymonochlorozirconium, tetrabutoxyzirconium, tetrabutoxytitanium, tetrabutoxyhafnium and the like. In particular, Zr (OR) such as tetrapropoxyzirconium and tetrabutoxyzirconium4These are compounds, and two or more of these may be used in combination.
[0030]
General formula Me of the catalyst component (C2)2R3m (OR4) NX2Me in the compound represented by zmn2Represents a group I-III element of the periodic table, such as lithium, sodium, potassium, magnesium, calcium, zinc, boron, aluminum and the like. R3And R4Are each a hydrocarbon group having 1 to 24 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 8, specifically alkyl such as methyl group, ethyl group, propyl group, isopropyl group and butyl group. Group: alkenyl group such as vinyl group and allyl group; aryl group such as phenyl group, tolyl group, xylyl group, mesityl group, indenyl group, naphthyl group; benzyl group, trityl group, phenethyl group, styryl group, benzhydryl group, phenyl Examples thereof include aralkyl groups such as a butyl group and a neofoyl group. These may be branched. X2Represents a halogen atom such as fluorine, iodine, chlorine and bromine or a hydrogen atom. However, X2Me is a hydrogen atom2Is limited to Group III elements of the periodic table exemplified by boron, aluminum and the like. Z is Me2M and n are integers satisfying the ranges of 0 ≦ m ≦ z and 0 ≦ n ≦ z, respectively, and 0 ≦ m + n ≦ z.
[0031]
Examples of the compound represented by the general formula of the catalyst component (C2) include organic lithium compounds such as methyl lithium and ethyl lithium; organic magnesium compounds such as dimethyl magnesium, diethyl magnesium, methyl magnesium chloride, and ethyl magnesium chloride; dimethyl zinc Organic zinc compounds such as diethylzinc; Organic boron compounds such as trimethylboron and triethylboron; Trimethylaluminum, triethylaluminum, triisobutylaluminum, trihexylaluminum, tridecylaluminum, diethylaluminum chloride, ethylaluminum dichloride, ethylaluminum sesquichloride , Organoaluminum such as diethylaluminum ethoxide, diethylaluminum hydride Derivatives such compounds can be mentioned.
[0032]
The organic cyclic compound having a conjugated double bond of the catalyst component (C3) is a cyclic ring having 2 or more, preferably 2 to 4, more preferably 2 to 3 conjugated double bonds, or A cyclic hydrocarbon compound having 2 or more and a total carbon number of 4 to 24, preferably 4 to 12; the cyclic hydrocarbon compound is partly 1 to 6 hydrocarbon residues (typically carbon A cyclic hydrocarbon compound substituted with an alkyl group or an aralkyl group of 1 to 12); one or two rings having 2 or more, preferably 2 to 4, more preferably 2 to 3 conjugated double bonds An organosilicon compound having a cyclic hydrocarbon group having at least 1 and a total carbon number of 4 to 24, preferably 4 to 12; the cyclic hydrocarbon group or partially 1 to 6 hydrocarbon residues or alkali metal In salt (sodium or lithium salt) It includes organic silicon compounds conversion. Particularly preferred is one having a cyclopentadiene structure in any of the molecules.
[0033]
Suitable examples of the compound include cyclopentadiene, indene, azulene, or alkyl, aryl, aralkyl, alkoxy or aryloxy derivatives thereof. Moreover, the compound which these compounds couple | bonded (bridge | crosslinked) via the alkylene group (The carbon number is 2-8 normally, Preferably 2-3) is also used suitably.
[0034]
The organosilicon compound having a cyclic hydrocarbon group can be represented by the following general formula.
ALSiR4-L
Here, A represents the cyclic hydrogen group exemplified by cyclopentadienyl group, substituted cyclopentadienyl group, indenyl group, and substituted indenyl group, and R represents methyl group, ethyl group, propyl group, isopropyl group, butyl group An alkyl group such as a group; an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, or a butoxy group; an aryl group such as a phenyl group; an aryloxy group such as a phenoxy group; an aralkyl group such as a benzyl group; To 24, preferably 1 to 12 hydrocarbon residues or hydrogen, L is 1 ≦ L ≦ 4, preferably 1 ≦ L ≦ 3.
[0035]
Specific examples of the organic cyclic hydrocarbon compound of the component (C3) are cyclopentadiene, methylcyclopentadiene, ethylcyclopentadiene, 1,3-dimethylcyclopentadiene, indene, 4-methyl-1-indene, 4,7-dimethyl. Cyclopolyene having 7 to 24 carbon atoms such as indene, cycloheptatriene, methylcycloheptatriene, cyclooctatetraene, azulene, fluorene, methylfluorene or substituted cyclopolyene, monocyclopentadienylsilane, biscyclopentadienyl Examples include silane, triscyclopentadienylsilane, monoindenylsilane, bisindenylsilane, and trisindenylsilane.
[0036]
Catalyst component (C4) A modified organoaluminum compound containing an Al—O—Al bond obtained by reacting an organoaluminum compound with water is a modification usually referred to as an aluminoxane by reacting an alkylaluminum compound with water. An organoaluminum is obtained and usually contains 1 to 100, preferably 1 to 50 Al—O—Al bonds in the molecule. The modified organoaluminum compound may be linear or cyclic.
[0037]
The reaction between organoaluminum and water is usually carried out in an inert hydrocarbon. As the inert hydrocarbon, aliphatic, alicyclic, and aromatic hydrocarbons such as pentane, hexane, heptane, cyclohexane, benzene, toluene, and xylene are preferable.
The reaction ratio (water / Al molar ratio) between water and the organoaluminum compound is usually 0.25 / 1 to 1.2 / 1, preferably 0.5 / 1 to 1/1.
[0038]
Examples of the catalyst component (C5) inorganic carrier and / or particulate polymer carrier include carbonaceous materials, metals, metal oxides, metal chlorides, metal carbonates or mixtures thereof, thermoplastic resins, thermosetting resins, and the like. . Suitable metals that can be used for the inorganic carrier include iron, aluminum, nickel and the like.
Specifically, SiO2, Al2O3, MgO, ZrO2TiO2, B2O3, CaO, ZnO, BaO, ThO2Etc. or a mixture thereof, SiO 22-Al2O3, SiO2-V2O5, SiO2-TiO2, SiO2-V2O5, SiO2-MgO, SiO2-Cr2O3Etc. Among these, SiO2And Al2O3The main component is at least one component selected from the group consisting of:
As the organic compound, any of a thermoplastic resin and a thermosetting resin can be used. Specifically, particulate polyolefin, polyester, polyamide, polyvinyl chloride, poly (meth) acrylate, polystyrene, Examples include norbornene, various natural polymers, and mixtures thereof.
[0039]
The inorganic carrier and / or the particulate polymer carrier can be used as they are, but preferably, as a pretreatment, these carriers are contacted with an organoaluminum compound or a modified organoaluminum compound containing an Al—O—Al bond. It can also be used as the component (C5) after the treatment.
[0040]
The (A1) ethylene / α-olefin copolymer of the present invention is produced by a gas phase method, a slurry method, a solution method or the like, and is not particularly limited, such as a one-stage polymerization method or a multi-stage polymerization method.
[0041]
The surface layer (I) of the laminate is used by blending the above ethylene / α-olefin copolymer (A1) and, if desired, the other ethylene polymer (B) shown below.
[0042]
Other ethylene-based polymers (B) of the present invention include an ethylene / α-olefin copolymer obtained by a conventional Ziegler-type catalyst by a ionic polymerization method or an ionic polymerization method by a Philips catalyst, and a low-density polyethylene by high-pressure radical polymerization ( HPLDPE). The ethylene / α-olefin copolymer has a density of 0.920 to 0.965 g / cm.3, MFR is 0.05 to 20 g / 10 min. Specifically, high density polyethylene (HDPE), medium density polyethylene (MDPE), linear low density polyethylene (LLDPE) and the like can be mentioned.
[0043]
The α-olefin of the other ethylene / α-olefin copolymer has 3 to 12 carbon atoms, preferably 3 to 10 carbon atoms. Specifically, propylene, butene-1, 4-methylpentene- 1, hexene-1, octene-1, decene-1, dodecene-1, and the like.
[0044]
Low density polyethylene (HPLDPE) by high-pressure radical polymerization, which is one of the other ethylene polymers (B), has an MFR of 0.1 to 20 g / 10 minutes, preferably 0.5 to 15 g / 10 minutes, more preferably Is 1.0 to 10 g / 10 min. If it exists in this range, the melt tension of a composition will become an appropriate range, and film forming will be easy. The density is 0.91 to 0.94 g / cm.3, Preferably 0.912 to 0.935 g / cm3More preferably, 0.912-0.930 g / cm3The melt tension is 1.5 to 25 g, preferably 3 to 20 g, more preferably 3 to 15 g. The melt tension is an elastic item of the resin, and film forming is easy within the above range.
Moreover, Mw / Mn is 3.0-10, Preferably it is 4.0-8.0.
[0045]
The other ethylene polymer (B) is blended with the ethylene / α-olefin copolymer (A1) in an amount of 80% by weight or less and used as the surface layer (I). When importance is attached to transparency, impact resistance, and heat seal characteristics, it is preferable to use ethylene / α-olefin copolymer (A1) as a main component, but transparency, impact resistance, and heat seal characteristics are to some extent. When maintaining and further improving heat resistance, the density is 0.945 to 0.965 g / cm.3It is desirable to blend 5 to 35% by weight of the ethylene copolymer (B). Further, when it is desired to increase fluidity and melt tension in order to improve moldability, it is desirable to blend 5 to 35% by weight of HPLDPE.
[0046]
The surface layer (I) is a layer that is difficult to block, has little elution of the resin component, and has excellent heat seal characteristics. When the laminate is used as a container, the surface layer (I) is used as the innermost layer that is heat sealed and contacts the contents. You can take advantage of its features.
[0047]
The ethylene / α-olefin copolymer (A2) constitutes the intermediate layer (II) of the laminate and is produced by the same production method as the ethylene / α-olefin copolymer (A1) as described above. A material having the same characteristics but having a density (d2) lower than the density (d1) of the ethylene / α-olefin copolymer (A1) (d1> d2) is used.
The intermediate layer (II) has the largest thickness ratio among the laminates and influences the properties of the laminate, and imparts excellent transparency and flexibility to the laminate.
[0048]
The density (d2) of the ethylene / α-olefin copolymer (A2) is 0.88 to 0.92 g / cm.3Preferably 0.89-0.915 g / cm3It is. 0.88 g / cm3If it is lower, the laminate becomes too soft, 0.92 g / cm3If it exceeds 1, flexibility and transparency will be poor. Moreover, it needs to be lower than the density (d1) of the ethylene / α-olefin copolymer. The ethylene / α-olefin copolymer (A1) used for the surface layer (I) cannot be reduced in density excessively for reasons such as deterioration of blocking properties and transferability of resin components to the contents. However, the ethylene / α-olefin copolymer constituting the intermediate layer (II) needs to have a low density in order to improve flexibility and transparency. For such applications, an ethylene / α-olefin copolymer (A2) having excellent transparency is used. The copolymer is considered to be excellent in transparency because it has a narrow molecular weight distribution, a relatively narrow composition distribution, and an excessively high number of short chain branching and a small number of molecules.
[0049]
The melt flow rate (MFR) of the ethylene / α-olefin copolymer (A2) is preferably 0.05 to 20 g / 10 min, more preferably 0.1 to 10 g / 10 min. If the MFR is less than 0.05 g / 10 min, the moldability becomes poor, and if it exceeds 20 g / 10 min, the strength is insufficient.
[0050]
The molecular weight distribution Mw / Mn (A) of the ethylene / α-olefin copolymer (A2) is 1.8 to 3.5, preferably 2.0 to 3.0. Those less than 8 have poor moldability, and those exceeding 3.5 have low strength.
[0051]
Furthermore, the composition distribution parameter Cb (A), which is an index representing the width of the composition distribution of the ethylene / α-olefin copolymer (A2), is 1.10 to 2.00, and those exceeding 2.00 are laminated. The transparency of the body is reduced.
[0052]
Of the ethylene / α-olefin copolymer (A2), the relationship between the amount of ODCB soluble matter (25) X wt% at 25 ° C. and the density d and MFR is such that the values of d and MFR are
If d−0.008log MFR ≧ 0.93,
X is less than 2% by weight, preferably less than 1% by weight
If d-0.008log MFR <0.93,
X <9.8 × 103× (0.9300-d + 0.008logMFR)2+2.0,
Preferably, X <7.4 × 103× (0.9300-d + 0.008logMFR)2+1.0,
More preferably, X <5.6 × 103× (0.9300-d + 0.008logMFR)2+0.5,
Must be satisfied with the relationship.
[0053]
In the elution temperature-elution amount curve obtained by the continuous temperature rising elution fractionation method (TREF) of the ethylene / α-olefin copolymer (A2), it is necessary that a plurality of peaks exist (e). Further, it is particularly preferable that a peak exists between 85 ° C. and 100 ° C. The presence of this peak improves the heat resistance of the molded body.
[0054]
In the same manner as the ethylene-based polymer (B) is blended with the ethylene / α-olefin copolymer (A1) in the surface layer (1), the intermediate layer (II) has an ethylene / α-olefin copolymer ( 80% by weight or less of the ethylene polymer (B) is blended with A2). The ethylene polymer (B) used for the layer of the present invention is an ethylene polymer (B) used by being mixed with the ethylene / α-olefin copolymer (A1) in the surface layer (I). Although they may be of the same MFR or density, they are not necessarily the same.
[0055]
For the heat-resistant (III) layer of the present invention, a resin having a melting point peak measured by a differential scanning calorimeter (DSC) of 120 ° C. or higher is used. The layer mainly plays a role of improving the heat resistance of the laminate. For example, in a medical infusion container, the container is not deformed when steam sterilization is performed, and in food use, when cooking or sterilization is boiled. It is what you want to do. The measurement conditions with a differential scanning calorimeter (DSC) will be described later. When there are a plurality of melting peaks, the highest temperature peak is defined as the above melting point peak. Specific examples of such resins include high density polyethylene (HDPE), medium density polyethylene (MDPE), linear low density polyethylene (L-LDPE), polypropylene (PP), and ethylene / vinyl alcohol copolymer. (EVOH), polyamides such as 6-nylon and 6,6-nylon, and polyesters such as polyethylene terephthalate and polybutylene terephthalate. Among these, high-density polyethylene, medium-density polyethylene, linear low-density polyethylene, or a mixture of these with polypropylene is particularly preferable because of good adhesion to the ethylene / α-olefin copolymer of the intermediate layer (II). Is. The polypropylene to be mixed is a propylene homopolymer (HPP), a propylene / ethylene block copolymer (BPP), or a propylene / ethylene random copolymer (RPP), and the ratio is preferably 0 to 70% by weight.
[0056]
Further, the resin having a melting point peak of 120 ° C. or higher measured by the differential scanning calorimeter (DSC) may be a film whose melting point is improved by high orientation by biaxial stretching, for example.
[0057]
The (III) layer and the other layer are bonded together with a polyurethane-based adhesive, a vinyl acetate adhesive, a hot melt adhesive, or an adhesive resin such as a maleic anhydride-modified polyolefin or an ionomer resin. It can be laminated by coextrusion.
[0058]
The laminate in the present invention is a laminate comprising at least the above three-layer structure, and the thickness thereof is about 10 μm to about 1000 μm, and most preferably 50 to 500 μm. Further, the thickness ratio of the intermediate layer (II) occupies 40 to 90% of the entire laminate, and the surface layer (I) and the heat-resistant layer (III) occupy 5% to 30%, respectively.
In addition, when these adhesives or adhesive layers for coextrusion are required, these layers are added, so that the structure has four or more layers. For example, the heat-resistant layer (III) is made of ethylene / vinyl alcohol which is sensitive to moisture. In the case of using a polymer, the outer layer may be further protected by a polyolefin layer, and in such a case, a structure of four or more layers is formed. Specific examples of these layer structures include MLL (A1) / MLL (A2) / HTm, MLL (A1) / MLL (A2) / MahLL / HTm, MLL (A1) / MLL (A2) / adhesive / HTm, Examples include MLL (A1) / MLL (A2) / MahLL / HTm / LL. (However, MLL (A1): (A1) component resin layer, MLL (A2): (A2) component resin layer, HTm: refractory resin layer, MahLL: maleic anhydride modified resin layer) and the like.
[0059]
The laminate is excellent in low elution and anti-blocking properties of resin components, heat seal strength, transparency, impact resistance strength, flexibility, and heat resistance. It is possible to produce a laminate with a thickness of about 20 to 500 μm by laminating by lamination method after forming by multilayer inflation method, multilayer T-die method, single-layer inflation method or single-layer T-die method, but transparent From the viewpoint of properties, a laminate formed by a lamination method after being molded by a multilayer T-die method or a water-cooled inflation method, or a single-layer T-die method or a water-cooled inflation method is most preferable. It is also effective to laminate the intermediate layer (II) and the surface layer (I) using a stretched film as the heat-resistant layer (III). The multilayer hollow molding method is suitable for molding one having a thickness of about 100 to 1000 μm.
[0060]
The laminate is processed into a bag shape by heat sealing in the case of a film or sheet, and the one formed by hollow molding is used as it is as a food container such as edible oil or seasoning, or as a storage container for various drugs.
[0061]
In the present invention, taking advantage of the transparency, heat resistance and flexibility which are the characteristics of the laminate, the laminate is used as a container by heat sealing or thermoforming, for example, food packaging containers, clothing containers, and other various miscellaneous goods. And various other containers.
[0062]
Moreover, it is remarkably excellent as a medical infusion container. This container is, for example, a container for various infusions such as physiological saline, saccharides, animal vaccines, etc., with a multi-layer hollow molding method attached with a stopper, etc. A bag-like container is flexible, and the liquid contents can be completely discharged without introducing outside air through the aeration needle when the liquid drops are being dropped.
[0063]
In the case of medical infusion containers, additives are basically not added during molding due to the characteristics of the application, but antistatic agents, antioxidants, lubricants, anti-blocking agents or anti-fogging agents, organic, as necessary. Alternatively, there may be cases where a known additive such as an inorganic pigment, an ultraviolet ray inhibitor, or a dispersant is blended.
[0064]
【Example】
EXAMPLES Next, although an Example demonstrates this invention in more detail, this invention is not limited by these.
[0065]
The test methods performed are shown below.
Figure 0003610121
[0066]
Figure 0003610121
[0067]
Figure 0003610121
[0068]
Among the resins used (PE-1 to PE-4), polymerization was performed by the following method.
(Preparation of solid catalyst)
Purified toluene was added to a catalyst preparation device (No. 1) equipped with an electromagnetic induction stirrer under nitrogen, followed by dipropoxydichlorozirconium (Zr (OPr)2Cl2) 28 g and 48 g of methylcyclopentadiene were added, 45 g of tridecylaluminum was added dropwise while maintaining the system at 0 ° C. After completion of the dropwise addition, the reaction system was maintained at 50 ° C. and stirred for 16 hours. Let this solution be A liquid. Next, purified toluene was added to another catalyst preparation device with a stirrer (No. 2) under nitrogen, and the solution A and then a toluene solution of methylaluminoxane 6.4 mol were added and reacted. This is B liquid.
Next, purified toluene was added to another preparation device with a stirrer (No. 1) under nitrogen, and then pre-baked at 400 ° C. for a predetermined time in advance (Fuji Devison, grade # 952, surface area 300 m).2/ G) After adding 1400 g, the whole amount of the solution B was added and stirred at room temperature. Subsequently, the solvent was removed by nitrogen blowing to obtain a solid catalyst powder having good fluidity. This is referred to as catalyst C.
[0069]
(Polymerization of samples PE-1 to PE-4)
Using a continuous fluidized bed gas phase polymerization apparatus, polymerization temperature 70 ° C., total pressure 20 kgf / cm2With G, ethylene and 1-butene were copolymerized. In order to keep the gas composition in the system constant by continuously supplying the catalyst C, the polymerization was performed while continuously supplying each gas. The physical properties of the produced copolymer are shown in Table 1.
[0070]
Other ethylene polymers
(1) High density polyethylene (Slurry method Ziegler catalyst product)
HD-1: Homopolyethylene (MFR 5.3 g / 10 min, density 0.963 g / cm3, Manufactured by Nippon Petrochemical Co., Ltd.)
HD-2: Butene-1 copolymer (MFR 1.6 g / 10 min, density 0.956 g / cm3Melting point: 129 ° C, manufactured by Nippon Petrochemical Co., Ltd.)
(2) Medium density polyethylene (Slurry method Ziegler catalyst product)
MDPE: Butene-1 copolymer (MFR 2.0 g / 10 min, density 0.937 g / cm3Melting point: 126 ° C, manufactured by Nippon Petrochemical Co., Ltd.)
(3) Low density linear polyethylene polymer (gas phase method Ziegler catalyst product)
LL: Butene-1 copolymer (MFR 2.0 g / 10 min, density 0.925 g / cm3Melting point: 123 ° C, manufactured by Nippon Petrochemical Co., Ltd.)
Comonomer Butene-1, manufactured by Nippon Petrochemical Co., Ltd.
(4) Ultra-low density linear polyethylene polymer (gas phase method Ziegler catalyst product)
VL: Butene-1 copolymer (MFR 3.0 g / 10 min, density 0.905 g / cm3, Manufactured by Nippon Petrochemical Co., Ltd.)
(5) Propylene / ethylene random copolymer
RPP: MFR 7.0 g / 10 min, ethylene content 4% by weight, melting point 147 ° C., manufactured by Nippon Petrochemical Co., Ltd.)
(6) High-pressure low-density polyethylene
HPLD: MFR 2.0 g / 10 min, density 0.924 g / cm3Melting point: 123 ° C, manufactured by Nippon Petrochemical Co., Ltd.)
[0071]
Example 1
Various film tests were carried out by forming a three-layer T-die having a thickness of 20 μm for the innermost layer, 160 μm for the intermediate layer and 20 μm for the outer layer with the resin components shown in Table 1. Furthermore, the obtained film was heat-sealed to produce a container having an internal volume of 500 ml and evaluated. The results are shown in Table 1. The tensile elasticity modulus, tensile impact strength, anti-blocking property, and low-temperature heat-sealing property, which are standards for transparency and softness, are all good, and the heat resistance, flexibility, and drop test as a container are all excellent.
[0072]
Examples 2-7
The same operation as in Example 1 was performed with the resin components shown in Table 1. The results are shown in Table 1. The tensile elasticity modulus, tensile impact strength, anti-blocking property, and low-temperature heat-sealing property, which are standards for transparency and softness, are all good, and the heat resistance, flexibility, and drop test as a container are all excellent.
[0073]
Comparative Example 1
The same operation as in Example 1 was performed using LLDPE with a Ziegler catalyst for the innermost layer and VLDPE for the intermediate layer. The results are shown in Table 2. Transparency, tensile impact strength, anti-blocking property, low temperature heat sealability are poor, and drop strength is slightly poor.
[0074]
Comparative Example 2
The same operation as in Example 1 was performed using LLDPE with a Ziegler catalyst as the innermost layer. The results are shown in Table 2. The anti-blocking property and low-temperature heat sealability are poor, and the drop strength is slightly poor.
[0075]
Comparative Example 3
The same operation as in Example 1 was performed using VLDPE with a Ziegler catalyst for the intermediate layer. The results are shown in Table 2. Transparency and tensile impact strength are poor.
[0076]
Comparative Example 4
The same operation as in Example 1 was performed using HPLDPE having a low melting point for the outer layer. The results are shown in Table 2. Heat resistance is poor.
[0077]
Comparative Example 5
The same operation as in Example 1 was performed using (PE3) having a low density for the innermost layer. The results are shown in Table 2. Heat resistance and anti-blocking properties are poor.
[0078]
Comparative Example 6
The same operation as in Example 1 was performed using (PE4) having a high density for the intermediate layer. The results are shown in Table 2. Transparency, flexibility and tensile impact strength are poor.
[0079]
[Table 1]
Figure 0003610121
[0080]
[Table 2]
Figure 0003610121
[0081]
【The invention's effect】
The laminate of the present invention is excellent in transparency, flexibility, heat resistance, openability (anti-blocking property) and impact resistance, and has little bleeding to the surface of a high degree of branching or low molecular weight component, and heat seal characteristics Food packaging materials such as edible oils and seasonings, food containers, clothing containers, and medical infusion containers using the laminate have superior characteristics that have not been obtained in the past.
[Brief description of the drawings]
FIG. 1 is a diagram showing an elution temperature-elution amount curve obtained by TREF of an ethylene / α-olefin copolymer constituting a container of the present invention.
FIG. 2 is a diagram showing an elution temperature-elution amount curve obtained by TREF of an ethylene / α-olefin copolymer using a commercially available metallocene catalyst.

Claims (7)

(I)下記(ア)〜(エ)の性状を満足する密度(d1)が0.90〜0.94g/cm 3 、メルトフローレート0.1〜100g/10分のエチレン・α−オレフィン共重合体(A1)100〜20重量%と、他のエチレン系重合体(B)80〜0重量%とからなりエチレン系重合体以外の重合体を含有しない表面層
(II)下記(ア)〜(エ)の性状を満足する密度(d2)0.88〜0.92g/cm 3 、メルトフローレート0.05〜20g/10分のエチレン・α−オレフィン共重合体(A2)100〜20重量%と、他のエチレン系重合体(B)80〜0重量%とを含む樹脂からなりエチレン系重合体以外の重合体を含有しない中間層(ただし、エチレン・α−オレフィン共重合体(A1)と(A2)の密度は常に(d1)>(d2)である)、および
(III)示差走査熱量計で測定した融解ピークが120℃以上を示す樹脂からなる耐熱性樹脂層を含む積層体。
Figure 0003610121
(I) An ethylene / α-olefin copolymer having a density (d1) satisfying the following properties (a) to (d) of 0.90 to 0.94 g / cm 3 and a melt flow rate of 0.1 to 100 g / 10 min. polymer (A1) and 100 to 20 wt%, other ethylene polymer (B) 80 to 0% by weight of the surface layer containing no polymer other than the ethylene polymer consists (II) below (a) to Density (d2) satisfying the properties of (d) 0.88 to 0.92 g / cm 3 , ethylene / α-olefin copolymer (A2) 100 to 20 weight with a melt flow rate of 0.05 to 20 g / 10 min And an intermediate layer containing no other polymer than ethylene polymer (however, ethylene / α-olefin copolymer (A1)) And the density of (A2) is always (d1)> (d2 In a), and (III) a laminate melting peak as measured by differential scanning calorimeter comprising a heat-resistant resin layer made of a resin showing a higher 120 ° C..
Figure 0003610121
前記エチレン・α−オレフィン共重合体(A1)および(A2)の(エ)連続昇温溶出分別法(TREF)による溶出温度−溶出量曲線のピークが複数個存在する中の高温側のピークが85℃〜100℃の間にピークが存在することを特徴とする請求項1に記載の積層体。 Among the ethylene / α-olefin copolymers (A1) and (A2), (e) a peak on the high temperature side is present in the presence of a plurality of elution temperature-elution amount curve peaks by the continuous temperature elution fractionation method (TREF). The laminate according to claim 1, wherein a peak is present between 85 ° C. and 100 ° C. 表面層(A)が、エチレン・α−オレフィン共重合体(I)95〜65重量%、および密度0.940〜0.965g/cmThe surface layer (A) has an ethylene / α-olefin copolymer (I) of 95 to 65% by weight and a density of 0.940 to 0.965 g / cm. 3 、メルトフローレート0.05〜20g/10分の高密度ポリエチレンまたは密度0.91〜0.94g/cm, High density polyethylene with a melt flow rate of 0.05 to 20 g / 10 min or a density of 0.91 to 0.94 g / cm 3 、メルトフローレート0.1〜20g/10分の高圧ラジカル法低密度ポリエチレン(, High pressure radical process low density polyethylene (0.1-20 g / 10 min melt flow rate) IIIIII )5〜35重量%からなることを特徴とする請求項1または2に記載の積層体。The laminate according to claim 1 or 2, comprising 5 to 35% by weight. 前記エチレン・α−オレフィン共重合体(A1)および(A2)が下記C1〜C5の触媒形成化合物からなる触媒の存在下でエチレンと炭素数3〜20のα−オレフィンを共重合してなることを特徴とする請求項1〜3のいずれか1項に記載の積層体。The ethylene / α-olefin copolymers (A1) and (A2) are obtained by copolymerizing ethylene and an α-olefin having 3 to 20 carbon atoms in the presence of a catalyst composed of the following C1 to C5 catalyst forming compounds. The laminate according to any one of claims 1 to 3, wherein:
C1:一般式MeC1: General formula Me 1 R 1 p (OR(OR 2 ) q X 1 4−p−q4-pq で表される化合物Compound represented by
(式中Me(Where Me 1 はジルコニウム、チタン、ハフニウムを示し、RRepresents zirconium, titanium, hafnium, R 1 およびRAnd R 2 は各々炭素数1〜24の炭化水素基、XAre each a hydrocarbon group having 1 to 24 carbon atoms, X 1 はハロゲン原子を示し、pおよびqは各々0≦p<4,0≦p+q≦4の範囲を満たす整数である)、Represents a halogen atom, and p and q are integers satisfying a range of 0 ≦ p <4, 0 ≦ p + q ≦ 4),
C2:一般式MeC2: General formula Me 2 R 3 m (OR(OR 4 ) n X 2 z−m−nz-mn で表される化合物Compound represented by
(式中Me(Where Me 2 は周期律表第I〜Is periodic table I ~ IIIIII 族元素、RGroup element, R 3 およびRAnd R 4 は各々炭素数1〜24の炭化水素基、XAre each a hydrocarbon group having 1 to 24 carbon atoms, X 2 はハロゲン原子または水素原子(ただし、XIs a halogen atom or a hydrogen atom (however, X 2 が水素原子の場合はMeMe is a hydrogen atom 2 は周期律表第Is the periodic table IIIIII 族元素の場合に限る)を示し、zはMeZ is Me) 2 の価数を示し、mおよびnは各々0≦m≦z、0≦n≦zの範囲を満たす整数であり、かつ0≦m+n≦zである)、M and n are integers satisfying the ranges of 0 ≦ m ≦ z and 0 ≦ n ≦ z, and 0 ≦ m + n ≦ z),
C3:共役二重結合を持つ有機環状化合物、およびC3: an organic cyclic compound having a conjugated double bond, and
C4:有機アルミニウム化合物と水との反応によって得られるAl−O−Al結合を含C4: Including Al—O—Al bond obtained by reaction of organoaluminum compound with water む変性有機アルミニウム化合物、Modified organoaluminum compounds,
C5:無機担体および/または粒子状ポリマー担体を相互に接触させて得られる触媒である。C5: a catalyst obtained by bringing an inorganic carrier and / or a particulate polymer carrier into contact with each other.
前記積層体の厚みが10〜1000μmであり、かつ厚み比率が表面層と耐熱層が5〜30%、中間層が40〜90%であることを特徴とする請求項1〜4のいずれか1項に記載の積層体。The thickness of the laminate is 10 to 1000 µm, and the thickness ratio is 5 to 30% for the surface layer and the heat-resistant layer, and the intermediate layer is 40 to 90%. The laminate according to item. 請求項1〜5のいずれか1項に記載の積層体からなる容器。The container which consists of a laminated body of any one of Claims 1-5. 請求項1〜5のいずれか1項に記載の積層体からなる医療用輸液容器。The medical infusion container which consists of a laminated body of any one of Claims 1-5.
JP15824795A 1995-05-15 1995-05-15 Laminated body and container made of laminated body Expired - Fee Related JP3610121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15824795A JP3610121B2 (en) 1995-05-15 1995-05-15 Laminated body and container made of laminated body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15824795A JP3610121B2 (en) 1995-05-15 1995-05-15 Laminated body and container made of laminated body

Publications (2)

Publication Number Publication Date
JPH08309939A JPH08309939A (en) 1996-11-26
JP3610121B2 true JP3610121B2 (en) 2005-01-12

Family

ID=15667473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15824795A Expired - Fee Related JP3610121B2 (en) 1995-05-15 1995-05-15 Laminated body and container made of laminated body

Country Status (1)

Country Link
JP (1) JP3610121B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4233126B2 (en) * 1996-11-27 2009-03-04 出光興産株式会社 Multilayer film for packaging bags
CH692846A5 (en) * 1997-02-24 2002-11-29 Baxter Biotech Tech Sarl Multilayered co-extruded films for sterilizable containers fluids.
US6682793B1 (en) 1998-09-09 2004-01-27 Eastman Chemical Company Multi-layered polymeric structures including a layer of ethylene copolymer
US6479116B1 (en) * 1998-09-09 2002-11-12 Eastman Chemical Company Multi-layered polymeric structures including a layer of ethylene copolymer
JPWO2004011252A1 (en) * 2002-07-25 2005-11-24 凸版印刷株式会社 Laminated packaging materials and packaging bags
EP2402156B1 (en) * 2009-02-26 2018-02-14 Otsuka Pharmaceutical Factory, Inc. Multilayer film and bag formed of the film
JP6311562B2 (en) 2013-10-10 2018-04-18 東ソー株式会社 Polyethylene resin composition, laminate comprising the same, and medical container using the laminate
JP7310445B2 (en) 2018-09-12 2023-07-19 東ソー株式会社 Polyethylene resin composition, laminate and medical container
JP2022158659A (en) * 2021-04-02 2022-10-17 三井化学株式会社 Multilayer film and liquid agent container

Also Published As

Publication number Publication date
JPH08309939A (en) 1996-11-26

Similar Documents

Publication Publication Date Title
TW505678B (en) Sealant resin composition for use in retort film and sealant film
JP4271277B2 (en) Resin composition for sealant of retort film and sealant film
JP4722264B2 (en) Pouch
KR100526929B1 (en) Laminated film
JP6565646B2 (en) Easy tear film and packaging material having heat resistance and puncture resistance
JP4163112B2 (en) POLYOLEFIN RESIN MATERIAL, LAMINATE USING SAME, METHOD FOR PRODUCING THE SAME, AND MOLDED ARTICLES
JP3610121B2 (en) Laminated body and container made of laminated body
CA2305362A1 (en) Novel narrow molecular weight distribution copolymers containing long chain branches and process to form same
JP2001342306A (en) Clean moldings and its manufacturing method
JP3634022B2 (en) Film and sealant
JP2000072824A (en) ETHYLENE.alpha-OLEFIN COPOLYMER, COMPOSITION OF THE SAME AND FILM USING THEM
JP3773581B2 (en) Inner bag for bag-in-box
JP3650444B2 (en) Laminated body, bag made of the laminated body, chuck bag, and compressed storage bag
JP4902042B2 (en) Manufacturing method of laminate
JP4005977B2 (en) Film and sealant
JP2003064191A (en) Tearable sealant film
JP3686725B2 (en) Polyethylene composition and container
JP3539801B2 (en) Ethylene / α-olefin copolymer
JP2001191452A (en) Laminate, method for manufacturing the same and container using laminate
JP4808323B2 (en) Method for producing a clean extruded laminate
JPH0931265A (en) Polyethylene-based resin sheet
JP4031840B2 (en) Laminates and containers
JP3710562B2 (en) Wrap film
JP2003175576A (en) Packaging material and its manufacturing method
JP3715357B2 (en) Stretch film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees