JP3609447B2 - 光ファイバ高速システムにおいて分散補償を行うためのシステム - Google Patents

光ファイバ高速システムにおいて分散補償を行うためのシステム Download PDF

Info

Publication number
JP3609447B2
JP3609447B2 JP09404994A JP9404994A JP3609447B2 JP 3609447 B2 JP3609447 B2 JP 3609447B2 JP 09404994 A JP09404994 A JP 09404994A JP 9404994 A JP9404994 A JP 9404994A JP 3609447 B2 JP3609447 B2 JP 3609447B2
Authority
JP
Japan
Prior art keywords
signal
optical
dispersion
information
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09404994A
Other languages
English (en)
Other versions
JPH0779197A (ja
Inventor
グスタフ ドュプスヨーバッカ アンデルス
エグネル ラルス
Original Assignee
テレフオンアクチーボラゲツト エル エム エリクソン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テレフオンアクチーボラゲツト エル エム エリクソン filed Critical テレフオンアクチーボラゲツト エル エム エリクソン
Publication of JPH0779197A publication Critical patent/JPH0779197A/ja
Application granted granted Critical
Publication of JP3609447B2 publication Critical patent/JP3609447B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【0001】
【産業上の利用分野】
本発明はそれぞれ開示項の第1項と第25項に記載されているような、光ファイバ高速システム中で分散を補償するためのシステムと方法とに関する。光ファイバ高速システムは、例えば長距離にわたる電気通信等の各種の通信応用に使用されている。電気通信回路網はいくつかの異なるレベルに区分することができる。それらは例えば、加入者回路網、地域回路網、および地域間回路網や国家レベルの回路網である。このような国家レベルの回路網は、例えば、2.5Gbit/sのような高速の伝送速度を必要とする異なる都市間を結ぶものとして存在する。しかし、分散のために送信機と受信機との間の伝送速度には上限が存在する。分散は、特に、2.5Gbit/sおよびそれ以上において問題となり、10Gbit/sにおいては、情報帯域幅においてさえ制限を生ずるために、分散は基本的な制限を形成する。結局、分散は高速および長距離において問題を引き起こす。このように、分散の重要性は、1.55μm付近の波長に対する通常の単一モードファイバにおいて、2.4Gbit/s以上のビットレートにおいて増大してくる。約60キロメートルの中継器間隔においても、この効果は約10Gbit/sから認められるようになる。アナログシステムとデジタルシステムとに対する要求は部分的に相異なる。その根拠となるものは、なかでも、アナログシステムでは直線性が本質的に重要であるのに対し、デジタルシステムでは二次的な重要度しか持たないということである。
【0002】
【従来の技術】
光ファイバ高速システム内の分散補償のために、数多くの異なるシステムがこれまで提案されてきている。しばしば用いられるシステムは、いわゆるプレチャープジェネレーションに基づくものであり、それは通常は、各パルス中でレーザの周波数/波長を変調させるものである。同様なシステムについて、例えば、Jof Lightware Technologyの1985年、第LT−3巻第4号の頁800−805に記載された、T.L.KochおよびR.C.Alfernessによる論文”能動的前補償信号合成による分散補償(Dispersion Compensation by Acitive Predistorted Signal Synthesis)”に述べられている。1.05μmの波長で、通常の単一モードファイバの場合、信号は青方偏移すべきことが要求される。直接変調によって、レーザは通常パルス中で赤方偏移する。一般にレーザは、チャープをえるためにFM変調され、その後外部変調器を用いてAM変調される。例えば、Proc:0FC’91(1991年)に発表された論文番号Tu02の、N.Henmi、T.Saito、M.Yagamushi、S.Fujitaによる論文”修正型プレチャープ法を採用した10Gb/sにおける100kmの通常ファイバ伝送実験(10−Gb/s 100km normal fiber transmission experimentemploying a modified prechirp technique)”には、どのように選ばれたDFBレーザを用いるかが述べられている。例えば、J.of Lightware Technologyの1988年、第LT−6巻、第1号の頁87−93に記載された、F.KoyomaおよびKIgaによる論文”外部変調器における周波数チャープ変調(Frequency Chirping in External Modulators)”に述べられた、送信機におけるいわゆる青方偏移変調では、外部変調器中でFM/AM変調された信号が得られ、レーザは影響を受けず機能する。必要とされる変調は通常、特殊な設計の外部変調器を通して得られる。送信機におけるいわゆるプレチャープジェネレーションも青色の偏移変調も真の意味での分散変調ではなく、むしろ分散を用いてパルス圧縮を引き起こしている。これらの両システムはともに、主としてデジタルシステムで使用されるが、そこでは既に述べたようにデジタルシステムではそれほど重要でない直線性を犠牲にしてその効果はビットギャップの中央に集中している。このように、信号のエネルギーはビットギャップの中心へ集中する。しかし、変調された信号中の側波帯は歪む。更にこの種の方法またはシステムではパルス振幅が媒質の非線形領域に入るほどには大きくならないと考えられている。
【0003】
これらの方法は通常、距離が一般に約75キロメートルを越えず、またビットレートが約10Gbit/sを超えないようなデジタルシステムに適している。結局、ファイバの中でパルスが収斂するように周波数スペクトルが歪みを受けると言える。このシステムまたは方法はアナログシステムには適していない。アナログシステムでは、重要な因子である直線性を犠牲にしなければより長距離の伝送距離が得られない。
【0004】
別の既知のシステムに従えば、逆符号の分散を有する付加的な長さのファイバを導入することによって分散のない伝送が行われる。このことについては、例えば、Proc:EPOC’92(1992年)に発表された、論文番号第TuA5.1のH.Izadpanah等による論文”1310nm最適化単一モードファイバ上での2.5Gb/sにおける1660nm伝送のための多重波長分散補償(Multiwavelength Dispersion Compensation for 1660nm Transmission at 25Gb/s Over 1310nm Optimized Single−Mode Fiber)”に述べられている。これによって、上に述べた方法とは対照的に、真の分散補償が得られる。このシステムは、受信された信号の周波数スペクトルの位相補償に基づいており、この位相補償が、配置されているファイバ中の異なる部分周波数によって得られる位相差を打ち消す。この分散補償は光学的ドメイン中で行われ、通常は、異なる長さの異なる分散符号のファイバを組み合わせることによって達成され、それによって伝送媒体は分散のないものとなり光学信号は通常の方法で検出できる。
【0005】
既に配置されているファイバが用いられているシステムは、受信機の前に配置されるべき分散補償のためのファイバを含んでいる。この補償ファイバの長さは伝送距離の約3分の1である。この結果、複数の欠点が生ずる。それは、付加的なファイバまたはファイバ長がコスト高の原因となり、特別な設計が必要となり、それが減衰が付加されるためである。上記の文献中で、損失は伝送ファイバと分散補償ファイバとの間にファイバ増幅器を挿入することで制限することができるが、それがまたシステムを複雑化し、そのコストを高める。
【0006】
別の既知のシステム、例えば、IEE Colloquim on Microwave Optoelectronicsの1990年、第139号の頁13/1−13/6に記載されたJ.J.O’ReillyとM.S.Chauldryによる論文”光学的に増幅されたコーヒーレントなシステムにおけるファイバ色分散のマイクロストリップ補償(Microstrip Compensation of fibre Chromatic Dispersion in Optically Amplified Coherent Systems)”に述べられたシステムでは、信号は同様に受信機側で分散補償されている。この場合でも、真の分散補償が行われて、システムは受信された信号の周波数スペクトルの位相補償に基づいており、それによって配置されているファイバの中の異なる部分周波数による位相差が打ち消される。このシステムは受信機にコーヒーレントな技術を要求し、これもまた比較的複雑で高価である。上述の文献で、位相歪みは中間周波数において考慮される。ミクサが、信号を供給される光学的方向性結合器、局部発振器、検出ダイオード、および差周波数のみを通過させる帯域フィルタによって構成されて配置されている。位相修正要素は、通常の分散を有するマイクロストリップ導体を含み、このマイクロストリップ導体は例えば、10−20cmの長さでよく、数百キロメートルのファイバ中の分散を補償する。位相歪みが補償されれば、電気的信号の検出は従来の方法によって行われる。
【0007】
【発明の概要】
本発明の目的は光ファイバ高速システムにおける分散の影響を可能な限り排除するための方法とシステムとを提供することである。更に、可能な限り安価で、簡単で、安全な前記のシステムを提供することが1つの目的である。更に、非常に長距離の伝送と非常に高速の伝送が可能なシステムと方法とを得ることも本発明の1つの目的である。付加的な目的は、ファイバを延長する必要なく分散補償を達成することであり、更に付加的な減衰を補償する目的で非常に多数の光学的増幅器を設ける、あるいは付加する必要のないことである。
【0008】
これらおよびその他の目的が達成できるシステムは、分散補償が送信機中で行われ、情報を運ぶ電気信号を変調するための変調装置、変調装置中で変調された信号を等化するための等化装置、等化装置中で等化された信号を本質的な情報の損失がなく、本質的に位相および振幅特性を保存しつつ光学信号へ変換するための電気−光変換装置を含む、光ファイバ高速システム中の分散補償のためのシステムによって提供される。本発明の目的が達成される方法は、分散補償が送信機中で行われ、情報を運ぶ電気信号が変調され、それに続いて変調された信号が等化装置中で等化され、等化された信号が更に電気−光変換装置中で光学的信号へ本質的に位相およひ振幅特性を保存したまま変換されるようになった分散補償のための方法によって提供される。好ましくは、変調装置は情報を運ぶ入力信号を、システムの一部を構成する装置に関して適した中間周波数へ変換する変調器を含む。従って、この変調器は電気的な変調器でよい。
【0009】
本発明の1つの実施例に従えば、発生した分散が信号に対応する情報帯域幅において、ファイバ内の分散とは逆の符号を有するように等化装置を設計でき、特別な場合には、等化装置は伝送線路を含むこともできる。別の1つの実施例に従えば、等化装置は全通過フィルタを含む。電気−光変換装置は特に、等化装置から出てきた電気的な帯域通過信号を位相および振幅特性を保ちながら、光学的信号へ変換する。電気−光変換装置は特にレーザを含むことができ、それはまた外部変調器を含むこともできる。特別な複数の実施例に従えば、変調装置は振幅および/または角度変調器を含むことができる。あるいは、変調装置はミキサーを含むことができる。この場合、電気−光変換装置は電気的な中間周波数から光学的な周波数へ直接的に変換するための電気−光変調器を含むことができる。この場合、電気−光変換装置はレーザダイオードを含むことができ、特に、この光学的信号は好ましくは狭い帯域幅の光学フィルタへ送信される。このフィルタはファイバの分散とは逆の分散符号を有する側波帯のみを通過させる。1つの実施例に従えば、この光学フィルタは、情報信号と、ファイバを通る情報運搬信号と同じ偏波状態を有し、それから光学的搬送波が生成される搬送波成分とを直接通過させることができる。別の1つの実施例に従えば、電気−光変換装置は2個のミキサと2個の電気−光変換器を含み、それによって、等化装置からの出力信号が分割されてそれぞれ2個のミキサを通過し、それによって2個の信号はそれぞれ中間周波数のための余弦波および正弦波と混合され、その後それらは各ミキサに続く低域フイルタを通って、2個の電気−光変調器中のレーザダイオードからの光を変調するベースバンド上の各々の直角成分が得られる。付加的な複数の実施例に従えば、変調装置は周波数変調器または位相変調器を含む。この場合特に電気−光変換装置は周波数弁別器を含み、それによって後者に含まれる位相情報はベースバンド中の振幅情報へ変換される。特に、周波数弁別器は位相または周波数復調のための遅延線復調器を含む。これに関して、特に、ベースバンド中の振幅信号へ変換される信号は、位相情報を保存された光学的信号を得るための線形な振幅対周波数特性を備える小信号変調されたものでよい。あるいはこの電気−光変換装置は位相復調器および電気−光位相復調器を含むことができそれによって位相情報が電気的なベースバンドの振幅信号へ直接変換され後者はもう一度電気−光位相変調器中で光学的搬送波の、特性を保存された位相信号へ変換されるであろう。
【0010】
本方法によって、信号は好ましくは変調装置中で、システムの一部を構成する装置に適した中間周波数へ変調される。
【0011】
本発明を、以下に、限定を意図すことなく、実施例について、添付の図面を参照しながら詳細に説明する。
【0012】
【実施例】
ファイバ光学システムにおいて、分散は通常、2次の位相歪みとして考慮に入れられる。3次の位相歪みは、超高速システム、すなわち40Gbit/s以上のシステム、従ってファイバの分散のない波長に極めて近い場合においてのみ重要である。そうでなければ、ファイバ中の分散を支配するパラメーターは第2次の位相歪みである。
【0013】
図1には本発明の一般的な実施例が示され、そこにおいて、例えば、10Gbit、7GHzの、情報を運ぶ人力信号が分散補償システム10に受信されている。このシステム10は3つの基本的なブロックで構成され、その第1のブロックは電気的変調器1であって、これは情報を運ぶ信号を次につながる等化装置2のための、適した中間周波数fを有する帯域通過信号へ変換しており、これによって位相応答の修正が行われる。中間周波数fiはこのシステムを構成する変調装置1、等化装置2、および変換装置3等の部品に都合のよいものに選ばれるすなわち、中間周波数fは装置1、2、3の特性と電子回路に対して調節および適合させることように選ばれる。1つの例に従えば、中間周波数は、約10GHzの入力信号の場合、データ変換レートの約1.5−2倍でよいが、あるいはデータ変換レートの3倍すなわち30GHzや、1.5倍よりも低い値も可能である。これらは一例であって、更に10Gbitの入力信号の場合の例でしかない。ここで、これ以外の数多くの値が可能であることは言うまでもない。倍率の1.5−2(3)に関する情報は決して限定的なものではなく、中間周波数は特別な条件、要求、および含まれる部品および装置に依存するものである。等化装置2はこの例では、その分散が信号の情報帯域に関してファイバとは逆の符号を有するように設計された伝送線路または全通過フィルタによって構成されているこのシステム10の第3ブロックは、等化装置からの電気的な帯域通過信号をファイバ15へ転送される光学的信号(f)へ、一般的に情報の破壊なしに、かつ位相および振幅特性を保存したままで変換するように作用する電気−光変換装置または変換器3で構成されている。システム全体は送信機中に配置されている電気−光変換装置3はレーザ、外部変調器、その他で構成されている。
【0014】
図2には電気的中間周波数から光学的周波数への直接変換に基づく実施例が開示されている。この例で、変調器1aは振幅および/または角度変調器またはミキサによって構成されている(図3参照)。ここで、情報を運ぶ入力信号が中間周波数fへ電気的に変調される。次にこの信号は、どの程度の分散が必要とされるかに依存して十分長く、実質的に等化装置2aを構成する伝送線路(マイクロストリップあるいは同等のもの、あるいは適当な特性を有する何らかの他の種類の全通過フィルタ)を通って送信され、それによって信号は適当な量(必要とされる量)の分散を得て、中間周波数において電気的に前補償された信号が得られる。この中間周波数信号は次に、光学的搬送波を直接変調する。図2の例では変換装置3aは、例えば40GHzの帯域幅を有する電気−光変調器4を含み、そこにおいて直接的に変換が行われる。この変換装置3aは更に、レーザダイオード6と光学的帯域フィルタ5とを含み、そこを通過することによって信号の位相応答特性を保ったままで、側波帯の一方が、多分搬送波も一緒に、除去される。従って、帯域フィルタ5は狭帯域幅のものである。
【0015】
図3に従えば、光学的な搬送波の変調は典型的には、例えばスウェーデン国特許出願第8305572−3号に述べられているような種類の光学的帯域通過(BP)変調器によって行われる。図3にはこの変調の原理が示されている。図3に示された実施例の変形に従えば、光学的フィルタ5はまた、その特殊な実施例に従って搬送波成分を通過させ、それによりファイバを通る情報搬送信号と同じ偏波状態を得る光学的搬送波を発生させる。これは、従来のヘテロダイン受信機に使用されている既知の方法に従って中間周波数レベルにおいて一層の等化の可能性がある、受信機中における自己ヘテロダイン検出を可能にする。
【0016】
図3に示された実施例に従って、ミクサ1a’を変調器として使用することができる。光学的帯域フィルタ4’において2つの側波帯が得られ、そのうちの1つが光学的帯域フィルタ5’中で除去される。理論計算によれば、光学的帯域通過変調器4’からの上側および下側のそれぞれの側波帯で位相寄与の符号が異なることが示される。従って、ファイバの分散に対して逆符号の位相寄与を有する側波帯を選ばなければならない。ファイバは異常分散を有し、等化装置または前補償装置2aであるマイクロストリップ導体は正常分散を有するので分散補償を行うためには上側の側波帯を選ばなければならない。しかし、分散パラメーターの符号が分散補償に関して通信搬送媒体と同じである場合には、下側側波帯を選ばなければならない。フィルタリングは光学的に行われ、フィルタの帯域幅は少なくとも変調中間周波数信号に対する信号帯と同じ程度でなければならない適当な光学的フィルタは市販されている。例えば、いわゆるFP(ファブリ・ペロ)フィルタが使用できる。図3に示された例については、この例ではミキサーである変調器1a’へ到達する前の信号に対する信号スペクトル(パワースペクトル)が図4aに示され、また等化装置または前補償装置2a’を通過した後の信号については図4bに示され、ここで、ω(=2πf)は中間周波数であり更に、光学的帯域フィルタ5’の前後の信号については図4cに示されここにおいてこの帯域フィルタを通過した後の様子は破線で示され、ωは光学的周波数に関連している。ΔφおよびΔφはそれぞれ、下側および上側周波数に対して発生する位相シフトを表している。
【0017】
一般的に言えることは、本発明は送信される信号を送信機中で中間周波数へ変調し、そこにおいてその信号を位相に関して予め補償するという原理に基づいているということである。この後、この中間周波数信号は帯域通過変調器によって光学的搬送波上で直接変調される。従って、既に述べたように、光学的信号は2つの変調帯を有し、そのいずれにもその信号を検出するために必要な完全な情報が含まれている。変調帯のうちの一方のみは、受信機へ到達した時に分散変調され、他方の変調帯は既に述べたように、フィルタで除去されなければならない。ここに取り上げた実施例では、フィルタリングは送信機中で行われるが原理的にはそれは受信機側で行ってもよい。ここに説明した方法またはシステムはいわゆるIM、ASK、FSK、およびPSK信号化のために利用できる。ここでIMは強度変調の略で、ASKは振幅シフトキーイング、FSKは周波数シフトキーイング、そしてPSKは位相シフトキーイングのそれぞれ略であるASKおよびIMは変調に関しては同一の2つのシステムを表している。
【0018】
図5には別の実施例が示され、それはベースバンドを経由する直角変換に基づいている。この例では、この前の例と同様に、振幅、周波数および位相の変調が使用できる。前の例のように、振幅および/または角度変調器1bへ到達する情報運搬信号は中間周波数(ω)へ変調され、その後その信号は等化装置2bを通過する。その後、等化装置から出た信号は電気−光変換装置3b中で2つの部分に分割され、それぞれがそれ自身のミキサ7a、7bへ送られ、そこにおいてそれぞれの部分が中間周波数に対する余弦波および正弦波と混合される。その後、各信号はそれぞれの部分に対応して、低域フィルタ8a、8bによって低域フィルタリングされ、ベースバンドに対するそれぞれの直角成分を得る。これらの直角成分は次に、図示の機能が達成されるようにつながれた電気−光変調器9中のレーザダイオード(LD)からの光線を変調するために使用される。この後、光学的信号は、例えば方向性結合器である加算器中で加え合わされ、加算された光学的信号がファイバ15へ送信される。この電気−光システムは帰還回路を用いて適合的に配置することができる。
【0019】
図6に示された実施例は位相または周波数変調に基づいており、そこにおいて変調装置1cは周波数または位相変調器によって構成されている。これから、等化装置2cから出る信号の必要な情報はすべて、信号位相中に見い出すことができることが分かる。等化装置2cは振幅に影響しないように位相を回転させる全通過フィルタで構成することができる。この例で、電気−光変換装置3cは例えば遅延線復調器の形の周波数弁別器中の位相情報がベースバンド中の振幅信号へ変換されるように設計することができる。この信号は次に、例えば、線形の振幅対周波数特性を有するレーザを小信号変調して、位相情報を保存した光学的信号を得るために使用される。
【0020】
これとは別の方式として、電気−光変換装置3cは位相または周波数復調器12および電気−光位相または周波数復調器13を含むこともできる。この場合、例えば位相情報は、例えばロック・ループを備えて設計された位相復調器12中で、電気的なベースバンド振幅信号へ直接的に変換できる。この後、電気的ベースバンド振幅信号は電気−光位相変調器13中の振幅信号をもう一度、特性保持された位相信号へ変換するが、今度はファイバ15へ送信するための光学的搬送波においてである。本発明はアナログシステムと同様にデジタルシステムにも適用できる。
【0021】
本発明はここに述べてきたシステムまたは方法に限定されるものではもちろんなく、請求の範囲内で自由に変形することができる。
【図面の簡単な説明】
【図1】送信機中に配置された本発明のシステムの一般的な実施例を、その基本的な構成部品とともに示す図。
【図2】電気的中間周波数から光学的周波数への直接変換を行う本発明のシステムの第1の実施例を示す図。
【図3】図2と同じ原理に基づく実施例を示す図。
【図4】a、b、cは図3に従う実施例に対応する信号スペクトルを示す図。
【図5】ベースバンドを経由する直角変換に基づく実施例を示す図。
【図6】位相または周波数変調を行う別の実施例を示す図。
【符号の説明】
1、1a、1a’、1b、1c 変調装置
2、2a、2b、2c 等化装置
2a’ 等化装置または前補償装置
3、3a、3b、3c 変換装置
4 電気−光変調器
4’ 光学的帯域変調器
5、5’ 光学的帯域フィルタ
6 レーザダイオード
7a、7b ミクサ
8a、8b 低域フィルタ
9 電気−光変調器
10 分散補償システム
12 位相または周波数変調器
13 電気−光位相または周波数変調器
15 ファイバ

Claims (6)

  1. 光ファイバ高速システムにおいて分散補償を行うためのシステムにおいて、前記分散補償は送信機中で行われ、かつ、前記システムは、情報担送電気信号を変調するための変調装置(1;1a;1a’;1b;1c)、前記変調装置(1;1a;1a’;1b;1c)中で変調された信号を等化するための等化装置(2;2a;2a’;2b;2c)、および前記等化装置(2;2a;2a’;2b;2c)中で等化された信号を、本質的な情報の損失なしに、かつ位相および振幅特性を本質的に保持したまま光信号(f0、ω0)に変換するための電気−光変換装置(3;3a;3b;3c)を包含することを特徴とする光ファイバ高速システムにおいて分散補償を行うためのシステムであって、
    前記変調装置(1)は、情報担送入力信号を変調して、前記システムの構成素子である装置(1;1a;1a’;1b;1c;2;2a;2a’;2b;2c;3;3a;3b;3c)に対して適切な中間周波数(fi、ωi)を持たせるための電気的変調器(1b)を含み、
    前記等化装置(2)は全域通過フィルタを含むことを特徴とする前記システム。
  2. 請求項1記載のシステムにおいて、前記等化装置は、発生する分散に関して、前記信号に対応する情報帯域幅に対して前記光ファイバが有する分散の符号と逆の符号を有するようにされていることを特徴とするシステム。
  3. 請求項1または請求項2記載のシステムにおいて、前記等化装置(2)は伝送線を含むことを特徴とするシステム。
  4. 光ファイバ高速システムにおいて分散補償を行うためのシステムにおいて、前記分散補償は送信機中で行われ、かつ、前記システムは、情報担送電気信号を変調するための変調装置(1;1a;1a’;1b;1c)、前記変調装置(1;1a;1a’;1b;1c)中で変調された信号を等化するための等化装置(2;2a;2a’;2b;2c)、および前記等化装置(2;2a;2a’;2b;2c)中で等化された信号を、本質的な情報の損失なしに、かつ位相および振幅特性を本質的に保持したまま光信号(f0、ω0)に変換するための電気−光変換装置(3;3a;3b;3c)を包含することを特徴とする光ファイバ高速システムにおいて分散補償を行うためのシステムであって、
    前記変調装置(1)は、情報担送入力信号を変調して、前記システムの構成素子である装置(1;1a;1a’;1b;1c;2;2a;2a’;2b;2c;3;3a;3b;3c)に対して適切な中間周波数(fi、ωi)を持たせるための変調器を含み、
    前記等化装置(2)は、全域通過フィルタを含み、発生する分散に関して、前記信号に対応する情報帯域幅に対して前記光ファイバが有する分散の符号と逆の符号を有するようにされていることを特徴とする前記システム。
  5. 請求項4記載のシステムにおいて、前記変調器は、電気的変調器(1b)であることを特徴とするシステム。
  6. 請求項4または請求項5記載のシステムにおいて、前記等化装置(2)は伝送線を含むことを特徴とするシステム。
JP09404994A 1993-03-26 1994-03-25 光ファイバ高速システムにおいて分散補償を行うためのシステム Expired - Lifetime JP3609447B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9301023A SE501070C2 (sv) 1993-03-26 1993-03-26 System och förfarande för dispersionskompensering i fiberoptiska höghastighetssystem
SE9301023-9 1993-03-26

Publications (2)

Publication Number Publication Date
JPH0779197A JPH0779197A (ja) 1995-03-20
JP3609447B2 true JP3609447B2 (ja) 2005-01-12

Family

ID=20389384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09404994A Expired - Lifetime JP3609447B2 (ja) 1993-03-26 1994-03-25 光ファイバ高速システムにおいて分散補償を行うためのシステム

Country Status (6)

Country Link
US (1) US5446574A (ja)
JP (1) JP3609447B2 (ja)
DE (1) DE4410490A1 (ja)
FR (1) FR2703201B1 (ja)
GB (1) GB2276788B (ja)
SE (1) SE501070C2 (ja)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3299101B2 (ja) * 1995-12-15 2002-07-08 日本電気株式会社 波長多重光通信装置
US5847853A (en) 1995-12-29 1998-12-08 Micron Technology, Inc. Modulation and demodulation of light to facilitate transmission of information
ES2120889B1 (es) * 1996-06-21 1999-06-16 Univ Catalunya Politecnica Sistema de transmision de informacion por fibra optica mediante señales analogas en banda base inmune a interferencias.
US5850375A (en) * 1996-07-30 1998-12-15 Seagate Technology, Inc. System and method using optical fibers in a data storage and retrieval system
US5940549A (en) * 1996-07-30 1999-08-17 Seagate Technology, Incorporated Optical system and method using optical fibers for storage and retrieval of information
US6850475B1 (en) 1996-07-30 2005-02-01 Seagate Technology, Llc Single frequency laser source for optical data storage system
US6034938A (en) * 1996-07-30 2000-03-07 Seagate Technology, Inc. Data storage system having an optical processing flying head
JPH10163962A (ja) * 1996-11-25 1998-06-19 Nec Corp 自動分散補償式光伝送システム
US5870512A (en) 1997-05-30 1999-02-09 Sdl, Inc. Optimized interferometrically modulated array source
US6574015B1 (en) 1998-05-19 2003-06-03 Seagate Technology Llc Optical depolarizer
US6118566A (en) * 1998-11-04 2000-09-12 Corvis Corporation Optical upconverter apparatuses, methods, and systems
US6292598B1 (en) * 1998-11-04 2001-09-18 Corvis Corporation Optical transmission apparatuses, methods, and systems
US6529305B1 (en) 1998-11-04 2003-03-04 Corvis Corporation Optical transmission apparatuses, methods, and systems
US6509993B1 (en) * 1999-09-20 2003-01-21 At&T Corp. Optical transmission using dispersion-enhanced signals
AU2002213589A1 (en) * 2000-03-22 2001-12-17 University Of Maryland Baltimore County System and method for reducing differential mode dispersion effects in multimode optical fiber transmissions
ATE338391T1 (de) * 2000-10-27 2006-09-15 Cit Alcatel System und vorrichtung zum senden von optischen daten
US20020131112A1 (en) * 2001-03-16 2002-09-19 Hait John N. Frequency-shifted, hyper-dense signal method
US7142788B2 (en) 2002-04-16 2006-11-28 Corvis Corporation Optical communications systems, devices, and methods
US7382984B2 (en) 2002-10-03 2008-06-03 Nortel Networks Limited Electrical domain compensation of optical dispersion in an optical communications system
US7756421B2 (en) * 2002-10-03 2010-07-13 Ciena Corporation Electrical domain compensation of non-linear effects in an optical communications system
US7023601B2 (en) * 2002-12-02 2006-04-04 Nortel Networks Limited Optical E-field modulation using a Mach-Zehnder interferometer
US7200339B1 (en) 2003-04-11 2007-04-03 Nortel Networks Limited Method and apparatus for laser line-width compensation
US7680420B1 (en) 2003-10-03 2010-03-16 Nortel Networks Limited Optical E-field modulation using a directly driven laser
US7266306B1 (en) 2003-10-03 2007-09-04 Nortel Networks Limited Method for optical carrier suppression and quadrature control
US7321734B2 (en) 2004-07-29 2008-01-22 Nortel Networks Limited Digital synthesis of readily compensated optical signals
US7676161B2 (en) * 2004-12-10 2010-03-09 Nortel Networks Limited Modulation E-field based control of a non-linear transmitter
US7787778B2 (en) 2004-12-10 2010-08-31 Ciena Corporation Control system for a polar optical transmitter
CN101351118B (zh) 2005-11-02 2015-05-27 特拉科斯有限公司 凋亡细胞在离体产生调节t细胞中的应用
US7350409B2 (en) * 2005-11-02 2008-04-01 Darrell Clarry Klatt Magnetic separation in fluids
US7835650B2 (en) * 2006-07-11 2010-11-16 Drexel University Optical domain frequency down-conversion of microwave signals
JP4833157B2 (ja) * 2007-06-16 2011-12-07 日本電信電話株式会社 光通信装置および光通信システム
JP4916387B2 (ja) * 2007-06-16 2012-04-11 日本電信電話株式会社 センタ側光通信装置および光通信システム
EP2813010B1 (en) * 2012-02-07 2016-01-13 Telefonaktiebolaget L M Ericsson (publ) Photonic rf generator
JP6036210B2 (ja) * 2012-11-19 2016-11-30 富士通株式会社 エンファシス信号生成回路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE463739B (sv) * 1983-10-10 1991-01-14 Ericsson Telefon Ab L M Foerfarande och anordning att oeka bandbredden i en hoeghastighetsmodulator
US4953947A (en) * 1986-08-08 1990-09-04 Corning Incorporated Dispersion transformer having multichannel fiber
JPH02235449A (ja) * 1989-03-09 1990-09-18 Canon Inc 光通信方式
US5115332A (en) * 1989-07-20 1992-05-19 Fujitsu Limited Receiver for coherent optical communication
US5126871A (en) * 1989-11-15 1992-06-30 General Instrument Corporation Method and apparatus for redundant communication of optical signals with distortion cancellation
US5055795A (en) * 1990-05-29 1991-10-08 At&T Bell Laboratories Traveling wave type transversal equalizer
US5305350A (en) * 1990-06-08 1994-04-19 Chipcom Corporation Multimedia high speed network
US5042906A (en) * 1990-07-05 1991-08-27 Hughes Aircraft Company Dispersion equalized optical fiber link
EP0466182B1 (en) * 1990-07-13 2002-10-16 Nec Corporation Optical communication apparatus using intensity modulation
US5210633A (en) * 1990-09-12 1993-05-11 General Instrument Corporation Apparatus and method for linearizing the operation of an external optical modulator
FI90597C (fi) * 1990-10-22 1994-02-25 Nokia Oy Ab Mach-Zehnder-interferometri
US5115440A (en) * 1991-01-03 1992-05-19 Synchronous Communications, Inc. Delay distortion compensating circuit for optical transmission system
DE69227410T2 (de) * 1991-07-23 1999-05-06 At & T Corp., New York, N.Y. Verzerrungskompensation bei optischen Analogsystemen
JPH05227103A (ja) * 1991-11-14 1993-09-03 Nec Corp 光通信方法

Also Published As

Publication number Publication date
SE9301023D0 (sv) 1993-03-26
FR2703201B1 (fr) 1996-01-26
SE501070C2 (sv) 1994-11-07
DE4410490A1 (de) 1994-09-29
FR2703201A1 (fr) 1994-09-30
US5446574A (en) 1995-08-29
GB2276788B (en) 1997-06-18
JPH0779197A (ja) 1995-03-20
GB2276788A (en) 1994-10-05
SE9301023L (sv) 1994-09-27
GB9406026D0 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
JP3609447B2 (ja) 光ファイバ高速システムにおいて分散補償を行うためのシステム
US6556327B1 (en) Signal converter, optical transmitter and optical fiber transmission system
US8213806B2 (en) Optical communications
US6661976B1 (en) Method and system for single-sideband optical signal generation and transmission
US7116460B2 (en) Modulation control
EP0595140B1 (en) Method for linearizing an unbalanced Mach Zehnder optical frequency discriminator
CA1283694C (en) Reducing fluctuations in a radiation beam characteristic
US6456750B1 (en) Optical transmission apparatuses, methods, and systems
US20060072924A1 (en) Duo-binary optical transmitter tolerant to chromatic dispersion
JPH07221706A (ja) ソリトン光通信システム及びその光送信装置と光受信装置
EP1511195B1 (en) Duobinary optical transmission device using one semiconductor optical amplifier
JP3371857B2 (ja) 光伝送装置
US7321734B2 (en) Digital synthesis of readily compensated optical signals
US20130101290A1 (en) Method and apparatus to overcome linewidth problems in fast reconfigurable networks
Chaibi et al. Dispersion-uncompensated transmission of NRZ and PAM-4 single-sideband signals using D-EML
JP2004343766A (ja) 半導体光増幅器を用いたデュオバイナリー光伝送装置
US20090208216A1 (en) Dispersion compensation
JP2982402B2 (ja) 光通信装置
JP7164092B2 (ja) 偏光分割多重化強度変調システムおよび該システムを使用する方法
JP3900874B2 (ja) 光送信器及び光変調方法
US6519375B1 (en) Optical phase modulator design incorporating pre-emphasis
US6590683B1 (en) Bandwidth efficient phase shift keyed modulation over nonlinear distortion limited optical fiber links
KR100559138B1 (ko) 광 통신 시스템 및 그 변조 및 송신 그 방법
Chen et al. Vestigial-sideband payload for high-speed all-optical label-switching network
Sambaraju et al. Photonic vector demodulation of 2.5 Gbit/s QAM modulated wireless signals

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20040426

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041014

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term