JP3608920B2 - 非接触画像計測システム - Google Patents

非接触画像計測システム Download PDF

Info

Publication number
JP3608920B2
JP3608920B2 JP28078497A JP28078497A JP3608920B2 JP 3608920 B2 JP3608920 B2 JP 3608920B2 JP 28078497 A JP28078497 A JP 28078497A JP 28078497 A JP28078497 A JP 28078497A JP 3608920 B2 JP3608920 B2 JP 3608920B2
Authority
JP
Japan
Prior art keywords
edge
window
measurement
point
shape evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28078497A
Other languages
English (en)
Other versions
JPH11118444A (ja
Inventor
貞行 松宮
浩一 小松
秀光 浅野
洋一 斉藤
直治 堀内
浩之 小丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP28078497A priority Critical patent/JP3608920B2/ja
Publication of JPH11118444A publication Critical patent/JPH11118444A/ja
Application granted granted Critical
Publication of JP3608920B2 publication Critical patent/JP3608920B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、CCDカメラ等の撮像手段で被測定対象を撮像すると共に、被測定対象の画像に含まれる輪郭を検出して必要な計測情報を抽出する非接触画像計測システムに関する。
【0002】
【従来の技術】
従来、この種の非接触画像計測システムは、接触測定では困難なICのリードフレームのような薄板の測定や配線パターン等の測定に使用されている。非接触画像計測を行う場合には、被測定対象(ワーク)を測定テーブルにセットしたのち、CCDカメラ等の撮像装置をワークの測定したい箇所に移動させ、フォーカス調整を行ってCRTディスプレイ上にワークの拡大画像を表示させる。そして、測定する箇所をマウスのカーソルやウィンドウで指示し、画像処理技術に基づいて画像のエッジ部分を抽出して所望する計測値を演算処理により求めていく。
【0003】
このような非接触画像システムにおいて、形状が未知又は変化する物体に対しても柔軟にエッジ追跡を行って必要な計測情報を抽出することができる操作性に優れた非接触画像計測システムが本出願人によって提案されている(特開平8−292015号)。
【0004】
【発明が解決しようとする課題】
本発明はこのようなエッジ追跡機能を持った非接触画像計測システムを更に改良し、抽出されたエッジの点列データを有効に活用して、被測定対象の輪郭形状評価を行うことができる非接触画像計測システムを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明に係る非接触画像計測システムは、被測定対象を撮像する撮像手段と、この撮像手段で撮像された前記被測定対象の画像を記憶する画像記憶手段と、この画像記憶手段に記憶された前記被測定対象の画像を表示する表示手段と、この表示手段に表示された被測定対象の画像に含まれる測定すべきエッジの範囲を指定する測定範囲指定手段と、この測定範囲指定手段で指定された範囲のエッジを追跡しながら前記エッジの点列情報を順次抽出するエッジ情報抽出手段と、このエッジ情報抽出手段で抽出されたエッジの点列情報を格納する点列データ記憶手段と、前記エッジ情報抽出手段で抽出されたエッジの形状を評価するための形状評価種別と評価範囲を指定する形状評価種別指定手段と、前記点列データ記憶手段に記憶されたエッジの点列情報を読出し、この読み出した点列情報に補間曲線を当てはめ、この当てはめた補間曲線に対して前記形状評価種別指定手段で指定された形状評価種別と評価範囲とに基づいて形状評価処理を実行する形状評価手段とを備えたことを特徴とする。
【0006】
前記エッジ情報抽出手段は、例えば、前記表示手段に前記測定すべきエッジに重ねて所定のウインドウを表示させると共に、前記エッジに沿って前記ウィンドウを移動させながら、前記ウィンドウ内の画像情報から前記ウィンドウ内の複数のエッジ点を検出し、得られた複数のエッジ点に近似直線を当てはめると共に、この近似直線に沿って一部の領域が現在のウィンドウに重なるように次の新たなウィンドウを生成するものである。
【0007】
前記エッジ情報抽出手段はまた、前記測定すべきエッジに関する設計値を外部から取り込んで、この設計値に基づいて前記エッジの予測曲線を生成すると共にこの生成された予測曲線上に測定目標点を設定し、この測定目標点上に当該エッジを検出するための検出ツールを順次生成する検出ツール生成手段と、この検出ツール生成手段で生成された検出ツールによって前記エッジの位置を順次検出する手段とを備えたものでも良い。
【0008】
また、前記形状評価手段は、例えば、前記エッジ情報抽出手段で抽出されたエッジの点列情報に補間曲線を当てはめる補間曲線当てはめ手段と、この補間曲線当てはめ手段によって当てはめられた補間曲線に対して前記形状評価種別指定手段で指定された形状種別に基づく演算処理を行ってその演算結果を前記表示手段に表示する形状評価演算手段とを備えたものである。
【0009】
形状評価演算手段としては、例えば任意の幾何要素の当てはめ、幾何要素自体の物理量の算出及び幾何要素と他の幾何要素との間の物理量の算出の処理を実行するものである。ここで、幾何要素とは、例えばピーク点、接線、垂線、平行線、中線、円、楕円及び直線のうちの少なくとも一つを含み、幾何要素自体の物理量及び幾何要素と他の幾何要素との間の物理量とは、例えば交角、距離、段差、半径、真円度、真直度、面積及びピッチの少なくとも一つを含むものである。
【0010】
本発明によれば、測定範囲指定手段で被測定対象の画像に含まれる測定すべきエッジの範囲が指定されると、エッジ情報抽出手段が、指定された範囲のエッジを追跡しながらエッジの点列情報を順次抽出する。そして、抽出されたエッジの点列情報は、形状評価種別指定手段で指定された形状評価種別に基づいて、形状評価手段において、前記抽出されたエッジの点列情報に対して形状評価処理が実行される。本発明は、非接触式の計測システムであるから、従来の蝕針式測定機や三次元測定機等の接触式測定機とは異なり、被測定対象が変形しやすいものや極力接触を避ける必要があるものでも測定が可能であり、しかも接触式よりも短時間に測定評価が可能であるため、測定作業効率を大幅に高めることができる。
【0011】
また、従来の蝕針式測定機では、アームの円弧運動による誤差を補正する必要があったが、この発明によればそのような誤差補正も不要である。更に、本発明は、画像計測を基本としているため、ズーム機能を利用して拡大画像に対してエッジ検出及び形状評価を行えば、高分解能の測定が可能になるうえ、従来の接触式では評価困難であった時計ねじなどの微小ワークの評価も可能になる。本発明のシステムで測定可能な対象物としては、ねじ、鍵、無段階変速装置に使用されるベルトを構成する金属片、歯車、樹脂部材、薄膜、フィルム、紙、接触により組成変化を生じるもの、透明ケースに収納されたもの等、広範囲にわたる。
【0012】
【発明の実施の形態】
以下、添付の図面を参照して本発明の実施例について説明する。
図1は、本発明の実施例に係る非接触画像計測システムの全体構成を示す斜視図である。
このシステムは、非接触画像計測型の三次元測定機1と、この三次元測定機1を駆動制御すると共に、必要なデータ処理を実行するコンピュータシステム2と、計測結果をプリントアウトするプリンタ3とにより構成されている。
【0013】
三次元測定機1は、次のように構成されている。即ち、架台11上には、ワーク12を載置する測定テーブル13が装着されており、この測定テーブル13は、図示しないY軸駆動機構によってY軸方向に駆動される。架台11の両側縁中央部には上方に延びる支持アーム14,15が固定されており、この支持アーム14,15の両上端部を連結するようにX軸ガイド16が固定されている。このX軸ガイド16には、撮像ユニット17が支持されている。撮像ユニット17は、図示しないX軸駆動機構によってX軸ガイド16に沿って駆動される。撮像ユニット17の下端部には、CCDカメラ18が測定テーブル13と対向するように装着されている。また、撮像ユニット17の内部には、図示しない照明装置及びフォーカシング機構の他、CCDカメラ18のZ軸方向の位置を移動させるZ軸駆動機構が内蔵されている。
【0014】
コンピュータシステム2は、コンピュータ本体21、キーボード22、ジョイスティックボックス23、マウス24及びCRTディスプレイ25を備えて構成されている。
コンピュータ本体21は、例えば図2に示すように構成されている。即ち、CCDカメラ18から入力される画像情報は、インタフェース(以下、I/Fと呼ぶ)31を介して多値画像メモリ32に格納される。多値画像メモリ32に格納された多値画像情報は、表示制御部33を介してCRTディスプレイ25に表示される。一方、マウス24から入力される位置情報は、I/F34を介してCPU35に入力される。CPU35は、プログラムメモリ36に格納されたプログラムに従って、マウス24から入力された情報に基づいて、エッジの点列データの抽出処理と抽出されたエッジの点列データからエッジの形状評価のための処理を実行する。ワークメモリ37はCPU35での各種処理のための作業領域を提供する。
【0015】
図3は、CPU35を中心として実行される各種機能の構成を示す機能ブロック図である。測定範囲指定部41は、キーボード22、マウス24等の入力手段と、CRTディスプレイ25の表示画面とに基づいて、表示画面上の画像の評価対象の範囲、即ちエッジの追跡のためのエッジ検出ツールとしてのウィンドウ、追跡の開始位置、終了位置、ピッチ又は検出範囲等を指定するためのものである。エッジ抽出部42は、測定範囲指定部41で指定された位置、大きさ及び向きのウィンドウをエッジ検出ツールとして表示するためのデータを生成し、このウィンドウの内部の多値画像情報を多値画像メモリ32から抽出してエッジ点の検出、検出されたエッジ点への近似直線の当てはめ処理、及び求められた近似直線に沿った次のウィンドウの生成処理を順次実行する。検出されたエッジ点の点列データは、ワークメモリ37内部の点列データ記憶部43に格納される。形状評価種別指定部44は、入力手段や表示画面を使用して、抽出されたエッジの点列データに対してどのような形状評価を行うかを指定するためのものである。形状評価部45は、点列データ記憶部43から求められたエッジの点列データを読み出して形状評価種別指定部44で指定された形状評価のための各種演算処理を実行する。
【0016】
次に、このように構成された非接触画像計測システムにおける測定手順について説明する。
図4は、測定手順のフローチャートである。
まず、CCDカメラ18から多値画像メモリ32にワーク12の画像を取得する(S1)。次に、測定範囲指定部41を使用して、自動エッジ倣い検出ツール、この例ではウィンドウを選択し(S2)、更に画像のエッジ追跡開始位置、終了位置、ピッチ又は検出範囲を指定する(S3)。続いてエッジ抽出部42を起動して、次とエッジ倣い検出処理を実行する(S4)。点列データが求まったら、形状評価種別指定部44及び形状評価部45を起動して、輪郭形状評価処理を実行する(S5)。
【0017】
図5は、このエッジ抽出部42による自動エッジ倣い検出処理の手順を示すフローチャート、図6は、この処理を説明するためCRTディスプレイ25に表示されたワーク12の一部を示す画像情報51を示す図である。
図6に示す画像情報51には、追跡しようとするエッジ52とエッジ検出ツールとしてのウィンドウ53が含まれている。ウィンドウ53は、マウス24等を操作してエッジ52の一部を内部に含むように設定されている。ウィンドウ53は、例えば、その四隅A,B,C,Dをマウス24のクリック操作で設定するか、又は矩形の対角方向の2点を指定したのち、その矩形領域をドラッグ操作で任意の角度に傾け、移動させる等の操作によって指定する。なお、このとき、エッジ52に沿って追跡する方向も指定する。
【0018】
まず、CPU35は、ウィンドウ53内の多値画像情報からエッジ点54を複数検出する(S11)。図7には、このサンプリングの詳細が示されている。エッジ点のサンプリングの間隔Δは、予めワークメモリ37に設定しておく。CPU35は、まず、始点A(xa,ya)から終点B(xb,yb)まで、x座標をcos θ[但し、θはウィンドウ53の傾きである。]、y座標をsin θずつ変化させながら、多値画像メモリ32からx,y座標で示されるアドレスの多値画像情報を抽出していく。得られた多値の点列データから適当なスレッショルドレベルを設定し、このスレッショルドレベルと点列データとの交差するポイントをエッジ点としてサンプリングし、点列データ記憶部43に格納する。次に、始点と終点とを、それぞれΔ・sin θ及びΔ・cos θだけ移動させて、同様のサンプリングを実行する。以上の処理を始点C(xc,yc)及び終点D(xd,yd)まで連続して行うと、予め設定された間隔Δでの複数のエッジ点54のサンプリングが終了する。
【0019】
次に、CPU35は、得られた複数のエッジ点54のサンプリング値に例えば最小2乗法により、近似直線を当てはめる(S12)。
いま、図8に示すように、ウィンドウ53により得られたエッジ点54のサンプリング値から近似直線Lが求められたとすると、CPU35は、この近似直線Lに沿うように、次のウィンドウ53′を決定する(S13)。
このため、まず、現ウィンドウ53で求められたウィンドウ53の移動方向における最も端のエッジ点53aから近似直線Lに垂線を下ろし、この垂線と近似直線Lとの交点から、近似直線Lに沿ってウィンドウ53の移動方向とは逆向きにH・m/100(但し、Hはウィンドウの高さ、mは予め設定された重複率(%))だけ離れた点P1とこの点P1からウィンドウ43の移動方向にHだけ離れた点P2とを求める。次に、点P1,P2で近似直線Lにそれぞれ直交する直線上で、近似直線LからそれぞれW/2(但し、Wはウィンドウの幅)だけ離れた点をそれぞれ新たなウィンドウ53′の四隅の点A′,B′,C′,D′とする。これにより、次のウィンドウ53′が決定される。
【0020】
次のウィンドウ53′が決定されたら、前述と同様のウィンドウ53′内のエッジ点のサンプリングと近似直線の当てはめを行いながら、順次ウィンドウ53を移動していく。そして、追跡すべきエッジを全て追跡したら、処理を終了する(S14)。
【0021】
なお、ウィンドウ53の初期位置を設定する際、マウス24等を操作してエッジ52上に測定終了点を設定するか、又はワーク座標系上の点として直接数値を入力する等の方法により、一連の処理を測定終了点で自動的に終了させることができる。
図9は、この測定終了のためのCPU35の処理の手順を示すフローチャート、図10は、この処理を説明するためCRTディスプレイ25に表示されたワーク12の一部を示す画像情報51を示す図、図11及び図12は、終了判定処理を説明するための図である。
いま、説明の簡単化のため、図11に示すように、ウィンドウ53の中心を基準としてウィンドウ座標系m,nを定め、その原点をOwとする。
【0022】
CPU35は、まず、ワーク座標系x,yでウィンドウ53の中心Owと終了点Eとの相対位置を表すベクトルEを算出する(S21)。次に、ワークメモリ37上でベクトルEを例えばワーク座標系とウィンドウ座標系との間の傾きが0°になるように回転させる(S22)。回転されたベクトルE′のベクトル成分Ex,Eyが、図12に示すように、ウィンドウ53′の幅W及び高さHの1/2よりも小さい場合、即ち|Ex|<W/2,|Ey|<H/2であれば(S23)、終了条件を満足すると判断して、新たなウィンドウ53は生成せず、ウィンドウ53内の必要な測定点を抽出したら、一連の処理を終了する。一方、回転されたベクトルE′のベクトル成分Ex,Eyが、図12に示すように、|Ex|<W/2,|Ey|<H/2のいずれか一方の条件を満さなければ(S23)、終了条件を満足すると判断するまで、新たに生成されるウィンドウ53について上述した処理を繰り返す(S21〜S23)。
なお、ワーク12が円のように閉じられた形状である場合には、測定の開始点及び終了点が一致する。このため、最初のウィンドウ53の生成時においては、上述した終了条件の判別を行わず、2回目以降のウィンドウ53の生成時において、判別を行うようにすればよい。2回目には、ウィンドウ53の移動によって測定終了点がウィンドウ53から外れるからである。
【0023】
このように、最初にウィンドウの初期位置を設定すれば、その後はウィンドウがエッジに沿って自律的に移動して必要なエッジ点をサンプリングしていくので、エッジに関する必要な情報が極めて簡単な操作で得られるという利点がある。なお、曲線近似によって次のウィンドウ位置を決定することも考えられるが、この場合には、サンプリング点に異常点が含まれている場合、その点に左右されて次のウィンドウでエッジを見失う事が考えられる。この点、このシステムでは、ウィンドウ内で得られた複数のエッジ点から最小2乗法により近似直線を求め、この近似直線に沿って次のウィンドウ位置を決定しているので、サンプル値に異常点が含まれていても、次のウィンドウ位置の決定に大きく影響を及ぼす事はない。
【0024】
また、このシステムでは、予め指定した重複率mで前のウィンドウに重なるように次のウィンドウが決定されるので、例えば図13に示すように、エッジが急峻に変化している場合でも、次のウィンドウでエッジを見失う事がない。この重複率mは、エッジの急峻度とエッジの追従効率とを勘案して、任意の値に設定すればよい。図示の例は、重複率が約20%の例を示している。
【0025】
しかし、適切な重複率を設定しても、予想以上に急峻なエッジに対しては、エッジを見失うこともある。この場合、図14に示すように、近似直線に沿った方向ではワーク12の形状が不連続になっていると判断し、ウィンドウ53内で得られた最後のエッジ点Pnの近傍を捜し回ることにより、見失ったエッジ52を捜し出すことができる。
図15は、このエッジ追跡測定のためのCPU35の処理の手順を示すフローチャート、図16は、この処理を説明するための図である。
【0026】
CPU35は、ウィンドウ53内の多値画像情報からエッジ点を検出して(S11)、エッジ点が検出されなければ(S31)、エッジ点Pnの近傍について明るさ(例えば、反射強度)を調べ(S32)、ワーク12の形状が図16(a)に示すような鋭角であるか、あるいは図16(b)に示すような鈍角であるかを判別する(S33)。ここで、明るさを調べる位置は、最終エッジ検出点Pnを基準として角度と距離によって決める。図14に示すように、エッジを見失ったときのウィンドウ53は近似直線に対して垂直に設定されるため、その方向を基準として連続するエッジの方向を推定する。エッジが得られなかった点Pn+1は、連続するエッジを見失う直前の位置からサンプリング間隔Δだけ離れた位置であるため、実際のワーク12の形状に対して矛盾する場合が少なく、明るさを調べる位置として最適であると考えられる。
【0027】
ワーク12の形状が鋭角である場合には、図15(a)に示すように、ウィンドウ53をエッジ点Pnを中心にして−90°回転させ(S34)、ウィンドウ53内の多値画像情報からエッジ点Pn+1を検出する(S35)。ここで、エッジ点Pn+1が検出されれば(S36)、見失われたエッジ52を捜し出したとして、上述した直線の当てはめ処理を行う。一方、エッジ点Pn+1が再び検出されなければ(S36)、図17(b)に示すように、ウィンドウ53をエッジ点Pnを中心にして−45°回転させ(S37)、ウィンドウ53内の多値画像情報からエッジ点Pn+1を検出する(S38)。ここで、エッジ点Pn+1が検出されれば(S39)、見失われたエッジ52を捜し出したとして、上述した直線の当てはめ処理を行う。一方、エッジ点Pn+1が再び検出されなければ(S39)、測定の続行を断念し、例えばCRTディスプレイ25を介してユーザに警告する。
以下、ワーク12の形状が図16(b)に示すような鈍角である場合にも、回転角を例えば+90°,+45°と変更して同様の処理を行う(S30〜S33)。
【0028】
また、CRTディスプレイ25の画面に入りきらないワーク12を測定する際には、ウィンドウ53の移動とワーク12の撮像位置とを協動させることにより、常に表示画面内にウィンドウ53が収まるようにすることができる。このため、比較的大型のワーク12についても、エッジ抽出と測定点抽出とを支障なく行うことができる。
図18は、このエッジ追跡測定のためのCPU35の処理の手順を示すフローチャート、図19は、この処理を説明するための図である。
【0029】
CPU35は、近似直線に沿うように次のウィンドウ53′を決定して(S14)、画面51の中央Oaとウィンドウ53′の中心Ow′との相対位置を表すベクトルAを算出し(S51)、ウィンドウ53′が画面51に収まるか否かを判別する(S52)。ウィンドウ53′が画面51に収まらない場合には、次の画面51′の中央Obから近似直線に沿って境界FF′に至るまでの距離を所定の割合(例えば、50%)で内分するベクトルBを算出した後(S53)、画面51の中央Oaと画面51′の中央Obとの相対位置を表すベクトルB−A(移動量)を算出し(S54)、ベクトルB−Aの向きとは逆向きに|B−A|だけステージを移動させる(S55)。
なお、上述した割合の指定はプログラムメモリ36に記憶されたソフトウェアで実現しているので、変数として取り扱い変更を容易に行うことができる。
【0030】
次に、輪郭形状評価処理(S5)について説明する。
図20は、輪郭形状評価処理のフローチャートである。
まず、形状評価部45は、上記の輪郭追跡処理によって点列データ記憶部43に記憶されたエッジの点列データを読み出す(S61)。次に、補間曲線を選択して点列データに例えば最小二乗法を当てはめる(S62)。
【0031】
補間曲線としては、三次多項式、ベジェ曲線、スプライン、円弧、直線等が考えられるが、ワークの性質に応じて、これらのうちの一つを選択する。例えば、数1に示すような三次多項式を選択した場合、
【0032】
【数1】
f(x)=ax+bx+cx+d
【0033】
求められたエッジの点列データを(xi,yi)(i=1〜n)とすると、
【0034】
【数2】
Figure 0003608920
【0035】
で示すS(a,b,c,d)が最小となるa,b,c,dの値を求め、これを数1に当てはめて補間曲線とする。
【0036】
次に、形状評価種別を選択する(S63)。形状評価種別は、形状評価種別指定部44を用いてオペレータが選択する。形状評価種別としては、例えば任意の幾何要素の当てはめ、幾何要素自体の物理量の算出及び幾何要素と他の幾何要素との間の物理量の算出の処理等が挙げられる。幾何要素としては、例えばピーク点、接線、垂線、平行線、中線、円、楕円、直線等のうちの一つが選択され、幾何要素自体の物理量及び幾何要素と他の幾何要素との間の物理量としては、例えば交角、距離、段差、半径、真円度、真直度、面積、ピッチ等の一つが選択される。
【0037】
例えば、形状評価種別として図21(a)に示すように下側のピーク点Puの算出を選択すると、形状評価種別指定部44は、評価範囲の入力をオペレータに促す。これに応答してオペレータが図示のように、評価範囲EAをマウス24の操作によって指定すると、この評価種別と指定範囲EAの情報が形状評価部45に与えられる。
【0038】
形状評価部45は、与えられた情報に基づいて、指定された評価の処理を実行する(S64)。例えば上記の例では、下記数3の計算を実行する。
【0039】
【数3】
Figure 0003608920
【0040】
これを解いて、下側のピーク点Puの座標を求める。
【0041】
また、図21(b)に示すように、補間曲線として直線L1,L2が選択されているときに、これら直線L1,L2のエッジに接する半径rの円Cの算出を指定すると、形状評価部45は、
【0042】
【数4】
L1 :y=a1x+b1
L2 :y=a2x+b2
L1’:y=a1(x+rsinθ1)+b1 [但し、θ1=tan−1a1]
L2’:y=a2(x−rsinθ2)+b2 [但し、θ2=tan−1a2]
【0043】
の直線L1’と直線L2’の交点を求める円の中心座標として算出する。
【0044】
このような処理を実行すると、図22(a)に示すような、歯車のまたぎ歯厚Smや同図(b)に示すような、ねじの有効径M、ピッチP等を算出することができる。
【0045】
更に、形状評価部45では、図23に示すように、設計値との照合処理を実行するこようにしても良い。この場合、照合処理に先だって、点列データから求められた補間曲線と設計値データ列との間の誤差が最小となるように、設計基準座標系と照合面座標系とを移動させる二次元ベストフィット処理を実行する。これにより、精度の高い設計値照合処理が可能になる。
【0046】
なお、以上の実施例では、評価すべきエッジに沿ってウィンドウを移動させながらウィンドウ内の複数のエッジ点に近似直線を当てはめ、この近似直線に沿って、一部の領域が現在のウィンドウに重なるように次のウィンドウを生成することにより、エッジ点を追跡処理したが、測定すべきエッジに関する設計値が予め与えられている場合には、この設計値に基づいてエッジの予測曲線を生成し、この生成された予測曲線上に測定目標点を設定し、この測定目標点上にエッジを検出するための検出ツールを順次生成することにより、エッジ追跡を行っても良い。
【0047】
図24は、輪郭測定処理のための測定制御部34のフローチャートである。
先ず、キーボード22、マウス24によるオペレータの指令に基づいて、ワーク12の座標系と設計値座標系とを一致させるため、ワーク12の複数点を測定し、これらの点の座標を設計値座標系の座標に対応させるようにワーク座標系を設定する(S71)。次に、設計値記憶部46からワーク12の輪郭形状の設計値データを取り出し(S72)、図25に示すように、設計値データ(xi”,yi”)(但し、i=1〜n)の点列(図中○で表示)をつなぐエッジの予測曲線Cを例えばスプライン関数で作成し、この予測曲線Cを始点から終点まで予め指定された測定ピッチHで分割して測定目標点(xi’,yi’)(但し、i=1〜N)の点列(図中・で表示)を算出する(S73)。なお、ここでは設計値データの点列と測定目標点の点列とが異なっているが、これらを全く同じにしてもよい。
【0048】
続いて、図26に示すように、各測定目標点(xi’,yi’)を中点とし、予測曲線Cに直交する所定長さの直線をエッジ検出ツールTi(但し、i=1〜N)として生成する(S74)。このとき、各エッジ検出ツールTiの始点(xsi,ysi)と終点(xei,yei)の座標も同時に算出しておく。
【0049】
次に計測制御処理を実行する(S75)。
この計測制御処理では、図27に示すように、CCDカメラ18の撮像視野S内に可能な限り多くのエッジ検出ツールTiが収まるように、且つ同じエッジ検出ツールTiが異なる撮像視野内に重複して収容されないように撮像視野を順次移動させながら、視野内のエッジ検出ツールTiに沿ったエッジ点の測定処理が実行される。
【0050】
図28は、この計測制御処理のフローチャートである。
撮像視野Sのx軸方向長さをSx、y軸方向長さをSyとすると、ステップS81〜S87では、1つの撮像視野S(Sx×Sy)に収容可能なエッジ検出ツールTiの組を決定する。即ち、まず、1つの撮像視野S内に収容される最も始点に近いツールの番号iと同じく最も終点に近いツールの番号jをそれぞれ1に初期設定する(S81)。そして、jの値を更新しながら1つの撮像視野Sをはみ出すまでj番目のツールTjの始点(xsi,ysi)と終点(xei,yei)に基づいて、撮像視野Sの範囲及び位置を決定するためのパラメータ、即ちx軸方向の最大値xmax、最小値xmin、並びにy軸方向の最大値ymax、最小値yminを順次更新しながら求めていく(S82〜S87)。
【0051】
具体例に沿ってこれを説明すると、例えば、図29(a)のように、xy座標系が設定されている場合、1番目(i=j=1)のツールT1については、ステップS82でその始点(xsj,ysj)が(xmin,ymin)となり、終点(xej,yej)が(xmax,ymax)となる。次に、図29(b)のように、j=2となると、xmin,ymaxは変化なしとなるが、xmax,yminは、それぞれ新たなツールT2の始点及び終点座標に基づいて、xmax=xej,ymin=ysjとなる。このようなxmax,xmin,ymax,yminの更新を行っているのがステップS86である。図29(c)に示すように、j=4になってツールT1〜T4までの範囲を求めると、この範囲のy軸方向長さが撮像視野Sのy軸方向の長さSyを越える。これを判定しているのがステップS87である。そこで、続くステップS88では、図29(d)に示すように、jを1つ減らし、それまでに求められたxmax,xmin,ymax,yminで示される範囲の中心点(xc,yc)(ステップS85で逐次求められている)へ撮像視野Sの中心点を位置させるべく三次元測定機への移動指令を出力し、エッジ点の点列データを計測して点列データ記憶部46に格納する。計測が終了したら、iとjをj+1に更新して(S89)、これらがNを越えるまでステップS82〜S88の処理を繰り返す。
【0052】
この処理により、図27に示すように、撮像範囲Sの重複する部分を極力少なくしながら効率の良い計測が可能になる。
【0053】
【発明の効果】
以上述べたように、本発明によれば、非接触式の計測システムを用いて形状評価が可能になるため、従来の蝕針式測定機や三次元測定機等の接触式測定機とは異なり、被測定対象が変形しやすいものや極力接触を避ける必要があるものでも測定が可能であり、しかも接触式よりも短時間に測定評価が可能であるため、測定作業効率を大幅に高めることができ、しかもあらゆる種類のワークについて、その輪郭形状の評価が可能になるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施例に係る非接触画像計測システムの構成を示す斜視図である。
【図2】同システムにおけるコンピュータ本体のブロック図である。
【図3】同システムの機能ブロック図である。
【図4】同システムの測定手順を示すフローチャートである。
【図5】同システムにおけるエッジ追跡処理のフローチャートである。
【図6】同システムにおける表示画面を示す図である。
【図7】同システムにおけるウィンドウ内のエッジ点検出を説明するための図である。
【図8】同システムにおける次のウィンドウ位置の決定手順を説明するための図である。
【図9】同システムにおける終了処理のフローチャートである。
【図10】同システムにおける表示画面を示す図である。
【図11】同システムにおける終了点の判別手順を説明するための図である。
【図12】同システムにおける終了点判別を説明するための図である。
【図13】同システムにおけるウィンドウの移動軌跡を示す図である。
【図14】同システムにおけるウィンドウ内のエッジ点検出を説明するための図である。
【図15】同システムにおけるエッジ追跡処理のフローチャートである。
【図16】同システムにおけるワーク形状の判別手順を説明するための図である。
【図17】同システムにおける次のウィンドウ位置の決定手順を説明するための図である。
【図18】同システムにおけるステージ移動処理のフローチャートである。
【図19】同システムにおける次の画面位置の決定手順を説明するための図である。
【図20】同システムにおける輪郭形状評価のフローチャートである。
【図21】同システムにおける評価処理を説明するための図である。
【図22】同システムにおける評価処理を説明するための図である。
【図23】同システムにおける設計値との照合評価処理を説明するための図である。
【図24】同システムにおける輪郭計測処理のフローチャートである。
【図25】同輪郭計測処理の設計値に基づく測定目標点の設定処理を説明するための図である。
【図26】同測定目標点にエッジ検出ツールを設定した状態を示す図である。
【図27】同輪郭計測処理における効率的な撮像視野の設定方法を説明するための図である。
【図28】同撮像視野の設定を含む計測制御処理のフローチャートである。
【図29】同撮像視野の設定処理を説明するための図である。
【符号の説明】
1…三次元測定機、2…コンピュータシステム、3…プリンタ、11…架台、12…ワーク、13…測定テーブル、14,15…支持アーム、16…X軸ガイド、17…撮像ユニット、18…CCDカメラ、21…コンピュータ本体、22…キーボード、23…ジョイスティックボックス、24…マウス、25…CRTディスプレイ、31,34…インタフェース、32…多値画像メモリ、33…表示制御部、35…CPU、36…プログラムメモリ、37…ワークメモリ、41…測定範囲指定部、42…エッジ抽出部、43…点列データ記憶部、44…形状評価種別指定部、45…形状評価部、46…設計値記憶部。

Claims (6)

  1. 被測定対象を撮像する撮像手段と、
    この撮像手段で撮像された前記被測定対象の画像を記憶する画像記憶手段と、
    この画像記憶手段に記憶された前記被測定対象の画像を表示する表示手段と、
    この表示手段に表示された被測定対象の画像に含まれる測定すべきエッジの範囲を指定する測定範囲指定手段と、
    この測定範囲指定手段で指定された範囲のエッジを追跡しながら前記エッジの点列情報を順次抽出するエッジ情報抽出手段と、
    このエッジ情報抽出手段で抽出されたエッジの点列情報を格納する点列データ記憶手段と、
    前記エッジ情報抽出手段で抽出されたエッジの形状を評価するための形状評価種別と評価範囲を指定する形状評価種別指定手段と、
    前記点列データ記憶手段に記憶されたエッジの点列情報を読出し、この読み出した点列情報に補間曲線を当てはめ、この当てはめた補間曲線に対して前記形状評価種別指定手段で指定された形状評価種別と評価範囲とに基づいて形状評価処理を実行する形状評価手段と
    を備えたことを特徴とする非接触画像計測システム。
  2. 前記エッジ情報抽出手段は、前記表示手段に前記測定すべきエッジに重ねて所定のウインドウを表示させると共に、前記エッジに沿って前記ウィンドウを移動させながら、前記ウィンドウ内の画像情報から前記ウィンドウ内の複数のエッジ点を検出し、得られた複数のエッジ点に近似直線を当てはめると共に、この近似直線に沿って一部の領域が現在のウィンドウに重なるように次の新たなウィンドウを生成するものである
    ことを特徴とする請求項1記載の非接触画像計測システム。
  3. 前記エッジ情報抽出手段は、前記測定すべきエッジに関する設計値を外部から取り込んで、この設計値に基づいて前記エッジの予測曲線を生成すると共にこの生成された予測曲線上に測定目標点を設定し、この測定目標点上に当該エッジを検出するための検出ツールを順次生成する検出ツール生成手段と、
    この検出ツール生成手段で生成された検出ツールによって前記エッジの位置を順次検出する手段と
    を備えたものであることを特徴とする請求項1記載の非接触画像計測システム。
  4. 前記形状評価手段は、
    前記エッジ情報抽出手段で抽出されたエッジの点列情報に補間曲線を当てはめる補間曲線当てはめ手段と、
    この補間曲線当てはめ手段によって当てはめられた補間曲線に対して前記形状評価種別指定手段で指定された形状種別に基づく演算処理を行ってその演算結果を前記表示手段に表示する形状評価演算手段と
    を備えたものであることを特徴とする請求項1記載の非接触画像計測システム。
  5. 前記形状評価演算手段は、任意の幾何要素の当てはめ、幾何要素自体の物理量の算出及び幾何要素と他の幾何要素との間の物理量の算出の処理を実行するものであることを特徴とする請求項4記載の非接触画像計測システム。
  6. 前記幾何要素は、ピーク点、接線、垂線、平行線、中線、円、楕円及び直線のうちの少なくとも一つを含み、
    前記幾何要素自体の物理量及び幾何要素と他の幾何要素との間の物理量は、交角、距離、段差、半径、真円度、真直度、面積及びピッチの少なくとも一つを含む
    ことを特徴とする請求項5記載の非接触画像計測システム。
JP28078497A 1997-10-14 1997-10-14 非接触画像計測システム Expired - Fee Related JP3608920B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28078497A JP3608920B2 (ja) 1997-10-14 1997-10-14 非接触画像計測システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28078497A JP3608920B2 (ja) 1997-10-14 1997-10-14 非接触画像計測システム

Publications (2)

Publication Number Publication Date
JPH11118444A JPH11118444A (ja) 1999-04-30
JP3608920B2 true JP3608920B2 (ja) 2005-01-12

Family

ID=17629917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28078497A Expired - Fee Related JP3608920B2 (ja) 1997-10-14 1997-10-14 非接触画像計測システム

Country Status (1)

Country Link
JP (1) JP3608920B2 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE364165T1 (de) * 2000-09-22 2007-06-15 Werth Messtechnik Gmbh Verfahren zum messen einer objektgeometrie mittels eines koordinationsmessgerätes
JP4839560B2 (ja) * 2001-09-27 2011-12-21 日本電気株式会社 Ic外観検査方法
US9769354B2 (en) 2005-03-24 2017-09-19 Kofax, Inc. Systems and methods of processing scanned data
KR101036272B1 (ko) * 2008-06-12 2011-05-23 (주)엠아이텍코리아 금형 및 사출성형물의 형상오차 측정방법
US9576272B2 (en) 2009-02-10 2017-02-21 Kofax, Inc. Systems, methods and computer program products for determining document validity
US9767354B2 (en) 2009-02-10 2017-09-19 Kofax, Inc. Global geographic information retrieval, validation, and normalization
JP2010237054A (ja) * 2009-03-31 2010-10-21 Toyota Motor Corp 組み付け精度測定方法および測定装置
US9453716B2 (en) 2010-10-22 2016-09-27 Makino Milling Machine Co., Ltd. Method of measurement and apparatus for measurement of tool dimensions
JP2012091288A (ja) * 2010-10-27 2012-05-17 Makino Milling Mach Co Ltd 工具寸法の測定方法及び測定装置
US10146795B2 (en) 2012-01-12 2018-12-04 Kofax, Inc. Systems and methods for mobile image capture and processing
US8989515B2 (en) 2012-01-12 2015-03-24 Kofax, Inc. Systems and methods for mobile image capture and processing
JP6052956B2 (ja) 2012-07-02 2016-12-27 株式会社ミツトヨ 形状解析方法および形状解析プログラム
US9208536B2 (en) 2013-09-27 2015-12-08 Kofax, Inc. Systems and methods for three dimensional geometric reconstruction of captured image data
WO2014160426A1 (en) 2013-03-13 2014-10-02 Kofax, Inc. Classifying objects in digital images captured using mobile devices
US9355312B2 (en) 2013-03-13 2016-05-31 Kofax, Inc. Systems and methods for classifying objects in digital images captured using mobile devices
US20140316841A1 (en) 2013-04-23 2014-10-23 Kofax, Inc. Location-based workflows and services
DE202014011407U1 (de) 2013-05-03 2020-04-20 Kofax, Inc. Systeme zum Erkennen und Klassifizieren von Objekten in durch Mobilgeräte aufgenommenen Videos
JP2016538783A (ja) 2013-11-15 2016-12-08 コファックス, インコーポレイテッド モバイル映像データを用いて長尺文書の合成画像を生成するためのシステムおよび方法
JP5965939B2 (ja) * 2014-04-24 2016-08-10 株式会社オプトアート ワーク形状特定装置
US9760788B2 (en) 2014-10-30 2017-09-12 Kofax, Inc. Mobile document detection and orientation based on reference object characteristics
US10242285B2 (en) 2015-07-20 2019-03-26 Kofax, Inc. Iterative recognition-guided thresholding and data extraction
US9779296B1 (en) 2016-04-01 2017-10-03 Kofax, Inc. Content-based detection and three dimensional geometric reconstruction of objects in image and video data
JP6147389B2 (ja) * 2016-04-05 2017-06-14 株式会社牧野フライス製作所 工具寸法の測定装置
JP6555211B2 (ja) * 2016-08-15 2019-08-07 Jfeスチール株式会社 二次元画像のエッジ抽出方法
US10803350B2 (en) 2017-11-30 2020-10-13 Kofax, Inc. Object detection and image cropping using a multi-detector approach

Also Published As

Publication number Publication date
JPH11118444A (ja) 1999-04-30

Similar Documents

Publication Publication Date Title
JP3608920B2 (ja) 非接触画像計測システム
JP3596753B2 (ja) 画像測定装置用パートプログラム生成装置及び方法
US8581162B2 (en) Weighting surface fit points based on focus peak uncertainty
KR100478568B1 (ko) 화상처리방법, 동장치, 및 본딩장치
US9135519B2 (en) Pattern matching method and pattern matching apparatus
JP7337495B2 (ja) 画像処理装置およびその制御方法、プログラム
JP3853620B2 (ja) 画像測定装置用パートプログラム生成装置及びプログラム
US20130076892A1 (en) Method utilizing image correlation to determine position measurements in a machine vision system
JP2019190969A (ja) 画像処理装置、画像処理方法
JP3545542B2 (ja) ウェハの回転方向検出方法
JP3887807B2 (ja) 画像計測装置
JP3672970B2 (ja) 非接触画像計測システム
JP3958815B2 (ja) Nc工作機械における工具位置測定方法
JP3595014B2 (ja) エッジ検出方法及びこれを用いた非接触画像計測システム
US20150287177A1 (en) Image measuring device
CN115272410A (zh) 一种无标定视觉的动态目标追踪方法、装置、设备及介质
JP2971822B2 (ja) 非接触画像計測システム
JPH05318280A (ja) 研削ロボットの研削姿勢生成装置
JP3650205B2 (ja) 非接触画像計測システム及びエッジ追跡測定方法
JP3853507B2 (ja) 線幅測定方法及び装置
JP4074202B2 (ja) 画像測定装置及びエッジ追跡測定プログラム生成用プログラム
WO2020065854A1 (ja) ワーク位置検出方法及び工作機械
JP3205183B2 (ja) ティーチング装置
JP4053642B2 (ja) 座標系設定方法及び画像測定装置
JP3595015B2 (ja) 画像の重心位置検出方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees