JP3608175B2 - Yamadome method - Google Patents

Yamadome method Download PDF

Info

Publication number
JP3608175B2
JP3608175B2 JP29063694A JP29063694A JP3608175B2 JP 3608175 B2 JP3608175 B2 JP 3608175B2 JP 29063694 A JP29063694 A JP 29063694A JP 29063694 A JP29063694 A JP 29063694A JP 3608175 B2 JP3608175 B2 JP 3608175B2
Authority
JP
Japan
Prior art keywords
wall
underground wall
underground
mountain
mountain retaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29063694A
Other languages
Japanese (ja)
Other versions
JPH08128042A (en
Inventor
千博 加藤
正基 池田
堅一 秋場
茂美 宮原
隆志 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Construction Co Ltd
Original Assignee
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Construction Co Ltd filed Critical Tokyu Construction Co Ltd
Priority to JP29063694A priority Critical patent/JP3608175B2/en
Publication of JPH08128042A publication Critical patent/JPH08128042A/en
Application granted granted Critical
Publication of JP3608175B2 publication Critical patent/JP3608175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、構造物の地下部分や地下構造物等の構築の際に用いられる山留工法に関する。
【0002】
【従来の技術】
従来の山留工法は、図12に示すように、掘削予定の地盤周囲に山留壁aを構築し、これら山留壁a間を掘削した後、山留壁a外側からの土圧Pを受けるために山留壁a間に切梁材bを設けて支保して行われている。
そして、前記掘削工程と支保工程を繰り返してながら、山留壁a間を所定深度掘削する。
【0003】
【発明が解決しようとする問題点】
前記した山留工法にあっては、次のような問題点がある。
<イ> 地盤を山留壁aで仕切るため、山留壁a間の地盤も外側から土圧Pを受ける。
このため、土圧Pにより山留壁aが破壊する虞がある。
<ロ> 山留壁a周囲の地盤が軟弱である場合には、山留壁a外側の地盤がすべりを生じ、土圧Pとして山留壁aの下方を回り込んで掘削面cを押し上げてしまう(ヒービング)。
従って、そのようなヒービングに対する対策を講じなければならない。
【0004】
【本発明の目的】
本発明は以上の問題を解決するために成されたもので、その目的とするところは、山留壁の変形または破壊を防止し、ヒービングに対処可能な山留工法を提供することにある。
【0005】
【問題点を解決するための手段】
即ち本発明は、 地盤内に構築される山留壁の間に、連続的に地中壁を構築し、その地中壁により前記山留壁を支持させた状態で、山留壁間の地盤を地中壁と共に掘削して行う山留工法であって、 前記地中壁が硬化する前に、前記地中壁内に上方より注入管を所定位置まで挿入し軟質材を注入することにより、前記地中壁内に水平方向へ縁切部を設けることを特徴とする、山留工法である。また本発明は、前記記載の山留工法において、前記地中壁は、末広状のハンチ部を形成して前記山留壁と連接する事を特徴とする、山留工法である。また本発明は、前記記載の山留工法において、前記地中壁は、その貫通方向へ通水を許容する通水手段を設置することを特徴とする、山留工法である。また本発明は、前記記載の山留工法において、前記地中壁は、ソイルセメントで形成することを特徴とする、山留工法である。
【0006】
【実施例1】
以下、図面を参照しながら本発明に係る山留工法の一実施例を作業工程順に説明する。
【0007】
<イ>山留壁の構築(図1)
建設予定の構造物に応じて所定地盤内に、所定深度で山留壁10を構築する。この山留壁10は、地下空間を確保するためにその外側の土砂等を土留めする壁体であって、地中連続壁などのように公知の方法で構築すればよい。
例えば、山留壁10構築位置に溝を開設し、その溝内に鉄筋篭を建込んだ後、コンクリートを打設し硬化させる。そして、それらの工程を繰り返して所定の形状の山留壁10を構築する。
山留壁10の構築形状は、図1において平断面矩形状を呈しているが、対向する面を有していればどのような形状であってもよい。
尚、ここで言う山留壁10の「対向する面」とは、平行した壁面のみを指すものでなく、平行していない山留壁10、10の壁面や曲折した山留壁10の角部両側の二壁面などを含むものである。このような壁面であってもその間に地中壁10を構築してそれらを支持することができる。
【0008】
<ロ>地中壁の構築(図1〜図5)
山留壁10が外側からの土圧で破損するのを防止するために、相対向する山留壁10、10間の地盤内へ連続的に地中壁20を構築する。
この地中壁20は、両端部が山留壁10と当接した状態であって、山留壁10とほぼ直交する向きに配置するのがこのましい。
地中壁20の両端が山留壁10、10と当接することにより、図2のように各山留壁10に係る土圧Pが地中壁20へ伝達される。
このため、各山留壁10に係る土圧が相反する方向から地中壁20へ作用するから、それらの土圧Pは地中壁20で互いに相殺されることとなる。
従って、土圧Pを地中壁20で押さえられるから、山留壁10がクリープ変形し破損するのを未然に防止できる。
尚、ここで言う山留壁10へ連続的した地中壁20とは、山留壁10と地中壁20が完全に当接した状態だけでなく、地盤を介して土圧を伝達できれば、完全に当接した状態でなくてもよい。
【0009】
また、山留壁10から地中壁20への土圧を効率良く伝達するには、山留壁10に直交して地中壁20を配置するのが好ましい。
しかしながら、地中壁20の配設方向は山留壁10に完全に直交する方向に限定されるものではなく、土圧を伝達できればその他の配設方向であってもよい。更に、地中壁20の配設位置および配設数は、周囲地盤の状況などにより任意の設定すればよい。
【0010】
このように地中壁20は、土圧を伝達するうえで所定の圧縮強度を有していなければならないが、山留壁10内の地盤と共に掘削するものであるから、破壊し易いもので形成する必要がある。
例えば、その地中壁20はソイルセメントで形成することができる。
即ち、地中壁20の構築予定地盤をオーガーなどにより掘削攪拌すると共にセメントを混入してソイル柱21を形成し、図3のようにソイル柱21を横並びに連続させて地中壁20を構築する。
その際、図4のように、地中壁20の端部に末広がり状のハンチ部22を設けて山留壁10と当接すれば、土圧による力が分散して山留壁10から地中壁20へ、また地中壁20から山留壁10へ伝達される。
このため、山留壁10が集中荷重により局部破壊するのを防止できると共に、地中壁20がその端部で容易に座屈するのを防止できる。
尚、地中壁20の形成素材はソイルセメントに限られるものでなく、所定の圧縮強度が得られ壊しやすい材質であればその他のものであっても良い。
【0011】
一方、地中壁20は、山留壁10で囲まれた掘削底面以深の地盤を小分割するように互いに交差させて配置して複数配置する。
それにより、図5に示すように、山留壁10の下から回り込もうとする軟質な地盤をその侵入方向に対面する地中壁20で抑えることができるから、ヒービングによる掘削背面側からのすべり40を防止することができる。
【0012】
<ハ>山留壁内の掘削および支保工(図1、図5)
地中壁20の構築後、山留壁10内の地盤を地中壁20と共に公知の方法で掘削する。
その際、掘削作業の仕方には、地盤と地中壁20を同時に掘り下げていく場合や地盤のみをある程度掘り下げてから地中壁20を崩していく場合などがある。そして、掘り下げた部分に切梁30を設けるなどして公知の方法で支保工を行い、山留工法を完了する。
尚、この掘削工程と支保工程は、交互に繰り返して行っていく場合や同時に行っていく場合などがある。
【0013】
【実施例2】
前記山留壁20は、所定地盤を囲う形状に限られるものでなく、相対向する壁面を有していればその他の形状であってもよい。
例えば、地盤内に平行して二つの山留壁20、20を構築し、その間に前記地中壁10を構築すれば、実施例1同様な山留工法が行え、同様な作用効果が得られる。
【0014】
【実施例3】
前記地中壁20を先に構築し、その後山留壁10を構築する場合もある。
この場合、地中壁20は壊しやすい素材で形成されているから、図6のように、予め大きめに地中壁20を構築し、その不要部分23に重ねて山留壁10を構築するのが容易である。
このように地中壁20を構築した後、山留壁10を構築しても、前記実施例1同様な作用効果を得ることができる。
【0015】
【実施例4】
前記地中壁20内に水平方向へ縁切部24を形成する場合もある。
即ち、数回にわたって掘削工程を繰り返す場合に、図7のように、予め地中壁20の掘削される部分に強度の低い縁切部24を形成しておけば、掘削作業を容易にすることができる。
縁切部24の形成方法の一例を挙げると、図8に示すように、地中壁20が硬化する前に地中壁20内に上方より注入管50を所定位置まで挿入し軟質材を注入する。
軟質材の注入は、下方の縁切部24から順に形成するように行う。
前記注入管50は、軟質材を地中壁20内で水平方向へ向けて流出させるために、その噴出口51を横向きに開口しておくのが好ましい。
軟質材の材質は、強度の低い縁切部24を確保できるものであればよい。
【0016】
【実施例5】
前記地中壁20内にその貫通方向への通水を許容する通水手段を配置してもよい。
山留壁10の周辺地盤に軟弱土層が存在して、施工の際に地下水の影響があるときには、その地盤内にディープウェル80などを設置し強制的に排水して被圧水位を下げる必要がある。
しかしながら、地中壁20の構築により地盤が鉛直方向に仕切られるので、被圧水位の低下が阻止されてしまう。
そこで、図9のように、地中壁20内の所定位置に通水手段60を設ければ、そのような不具合を解消することができる。
この通水手段60は、周囲地盤の状況などに応じて、任意の地中壁20内の任意の位置へ適宜設置すればよい。
【0017】
その通水手段60としては、例えば図10のような通水管70が採用できる。通水管70は、主管71の外周面に細径の送水管72および排水管73を連通した構造である。
主管71はその全長を地中壁20の厚さ程度の寸法とし、両端を開放した高剛性の管体である。
この主管71は地中壁20内に残置される部材であるから、地中壁20内で作用する土圧に耐え得るような剛性を有する必要があり、例えば鋼管などが採用できる。
主管71内部には、氷や砂利等を詰めた篭や氷塊などからなる二つの通水部材711が両側の開口部を閉塞する形で、主管71の軸方向へ摺動可能に配設されている。
その通水部材711内に氷を詰めた場合や通水部材を氷塊とした場合には、通水管70設置後に氷が溶けてなくなるので通水管70通水性が非常によくなる。一方、送水管72内には先端にジャッキ部741を形成したロッド74が挿通されており、そのジャッキ部741は主管71内に達して前記通水部材711の間に位置している。
このジャッキ部741はロッド74の回転により横幅がパンタグラフ状に伸縮する構造である。
尚、ジャッキ部741は油圧式ジャッキなどその他公知のものを用いる場合もある。
排水管73は、主管71下部の周面に連通しており、主管71内の排水を行えるようになっている。
【0018】
次に、通水管70の設置方法を説明する。
地中壁20を形成するソイルセメントなどを打設したら硬化する前に、その地中壁20内に主管71を先頭に上方から送水管72または配水管73で押し込む形で挿入する。
その際、主管71が地中壁20の厚さ方向に向くようにしておく。
そして、主管71が所定位置に達したら挿入作業を止め、図11に示すようにロッド74を回転させてジャッキ部741を水平方向に拡げる。
すると、ジャッキ部741に押されて通水部材711、711がそれぞれ地盤に圧接される。
次に、ロッド74を挿通している送水管72より水を圧送し、通水部材711内のソイルセメントなどを排出し目詰りを防止しておく。
そして、ロッド74を逆回転させてジャッキ部741を収縮し送水管72より引き上げて、通水管70の設置を完了する。
【0019】
前述したような通水管70を採用すれば、地中壁20に通水手段を確実で経済的にかつ効率良く設置することができる。
また、この通水管70により、排水管73を通じて地下水の汲み上げを行うこともできる。
尚、通水手段60は前記通水管70に限定されるものでなく、その他公知の通水材を採用してもよい。
【0020】
【発明の効果】
本発明は以上説明したようになるから次のような効果を得ることができる。
<イ> 相対向する山留壁の間にそれらと連接して地中壁を構築し、山留壁間の地盤と共に地中壁を掘削する。
このため、山留壁外側から加わる土圧を地中壁で受け、両側から加わる土圧を相殺することができる。
従って、山留壁間を掘削する前に山留壁の変形を回避でき、それに伴う破壊を防止できる。
<ロ> 山留壁の間に地中壁を構築することにより、山留壁間の地盤が小分割される。
この為、山留壁の下方から軟弱な地盤が回り込むのを低減できる。
従って、山留壁背面側の地盤のすべり破壊による掘削面の盛り上がり、すなわちヒービングを防止することができる。
<ハ> 山留壁の間で地中壁を交差させて複数構築すれば、ヒービングをより効果的に低減することができる。
<ニ> 地中壁の端部に末広状のハンチ部を設ければ、山留壁および地中壁の一部分に応力が集中することなく、山留壁と地中壁間における力の伝達を確実に行える。
<ホ> 山留壁を地中壁の後に構築することにより、軟質な地中壁の不要部分を削って、地中壁と当接した山留壁を確実に構築することができる。
<ヘ> 地中壁内に縁切部を設けることにより、山留壁間の掘削作業が効率良く行うことができる。
<ト> 地中壁内に通水管を設けることにより、地中壁で仕切られた地盤に通水機能を付与することができる。
<チ> 地中壁をソイルセメントで形成すれば、所定の圧縮強度を有しながら軟質となるから、掘削作業が容易となる。
【図面の簡単な説明】
【図1】実施例1における山留工法の説明図
【図2】山留壁と地中壁に作用する土圧の説明図
【図3】山留壁と地中壁に作用する土圧の説明図
【図4】地中壁のハンチ部の説明図
【図5】ヒービング抑止機能の説明図
【図6】実施例3における山留工法の説明図
【図7】実施例4における山留工法の説明図
【図8】実施例4における山留工法の説明図
【図9】実施例5における山留工法の説明図
【図10】通水管の斜視図
【図11】通水管の設置方法の説明図
【図12】従来技術の説明図
[0001]
[Industrial application fields]
The present invention relates to a mountain retaining method used in the construction of an underground part of a structure, an underground structure, or the like.
[0002]
[Prior art]
In the conventional mountain retaining method, as shown in FIG. 12, the retaining wall a is constructed around the ground to be excavated, and after excavating between these retaining walls a, the earth pressure P 1 from the outside of the retaining wall a In order to receive this, a beam member b is provided between the mountain retaining walls a and is supported.
Then, excavation between the retaining walls a is performed at a predetermined depth while repeating the excavation process and the support process.
[0003]
[Problems to be solved by the invention]
The above-mentioned Yamadome method has the following problems.
For partitioning the <b> ground in the mountains Tomekabe a, subject to earth pressure P 2 from the ground also outside between YamaTomekabe a.
Therefore, there is a possibility that YamaTomekabe a is destroyed by soil pressure P 2.
If <b> YamaTomekabe a surrounding ground is soft, the slip is YamaTomekabe a outer ground, wraps around the lower part of the mountain Tomekabe a push excavation face c as a soil pressure P 3 (Heaving).
Therefore, measures against such heaving must be taken.
[0004]
[Object of the present invention]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a mountain retaining method capable of preventing deformation or destruction of a retaining wall and dealing with heaving.
[0005]
[Means for solving problems]
That is, the present invention provides a structure in which the underground wall is continuously constructed between the mountain walls built in the ground, and the mountain wall is supported by the underground wall. It is a mountain retaining method that is excavated together with the underground wall, and before the underground wall hardens, by inserting a soft material by inserting an injection tube from above into the underground wall to a predetermined position, It is a mountain retaining method characterized by providing an edge cut portion in the horizontal direction in the underground wall. Further, the present invention is the mountain method according to the above-described mountain method, wherein the underground wall forms a diverging haunch portion and is connected to the mountain wall. Further, the present invention is the mountain retaining method according to the above-described mountain retaining method, wherein the underground wall is provided with water passage means for allowing water passage in the penetrating direction. Further, the present invention is the mountain retaining method according to the above-described mountain retaining method, wherein the underground wall is formed of soil cement.
[0006]
[Example 1]
Hereinafter, an embodiment of a mountain retaining method according to the present invention will be described in the order of work steps with reference to the drawings.
[0007]
<I> Construction of the Yamato wall (Fig. 1)
The mountain retaining wall 10 is constructed at a predetermined depth in a predetermined ground according to the structure to be constructed. This mountain retaining wall 10 is a wall body that holds earth and sand outside thereof in order to secure an underground space, and may be constructed by a known method such as an underground continuous wall.
For example, a groove is opened at the building position of the mountain retaining wall 10 and a reinforcing bar is built in the groove, and then concrete is placed and hardened. And the mountain retaining wall 10 of a predetermined shape is constructed by repeating these steps.
The construction shape of the mountain retaining wall 10 has a rectangular cross section in FIG. 1, but may have any shape as long as it has opposing surfaces.
The “facing surface” of the mountain retaining wall 10 referred to here does not only indicate parallel wall surfaces, but the wall surfaces of the mountain retaining walls 10 and 10 that are not parallel or the corners of the bent mountain retaining wall 10. It includes two wall surfaces on both sides. Even if it is such a wall surface, the underground wall 10 can be constructed in the meantime and they can be supported.
[0008]
<B> Construction of underground wall (Figs. 1-5)
In order to prevent the mountain wall 10 from being damaged by the earth pressure from the outside, the underground wall 20 is continuously constructed in the ground between the mountain walls 10 and 10 facing each other.
The underground wall 20 is preferably in a state where both ends are in contact with the mountain retaining wall 10 and in a direction substantially perpendicular to the mountain retaining wall 10.
When both ends of the underground wall 20 abut the mountain retaining walls 10, 10, the earth pressure P associated with each mountain retaining wall 10 is transmitted to the underground wall 20 as shown in FIG. 2.
For this reason, since the earth pressure concerning each mountain retaining wall 10 acts on the underground wall 20 from the opposite direction, those earth pressures P will be mutually offset by the underground wall 20.
Therefore, since the earth pressure P can be suppressed by the underground wall 20, it is possible to prevent the mountain wall 10 from creeping and being damaged.
In addition, the underground wall 20 continuous to the mountain retaining wall 10 referred to here is not only in a state where the mountain retaining wall 10 and the underground wall 20 are completely in contact with each other, but if earth pressure can be transmitted through the ground, The state may not be completely abutted.
[0009]
Moreover, in order to transmit the earth pressure from the mountain retaining wall 10 to the underground wall 20 efficiently, it is preferable to arrange the underground wall 20 orthogonal to the mountain retaining wall 10.
However, the arrangement direction of the underground wall 20 is not limited to the direction completely orthogonal to the mountain retaining wall 10, and may be other arrangement directions as long as the earth pressure can be transmitted. Furthermore, the arrangement position and the number of arrangement of the underground wall 20 may be arbitrarily set depending on the surrounding ground conditions.
[0010]
Thus, the underground wall 20 must have a predetermined compressive strength to transmit earth pressure, but is excavated together with the ground in the mountain retaining wall 10 and thus is easily broken. There is a need to.
For example, the underground wall 20 can be formed of soil cement.
That is, the ground where the underground wall 20 is to be constructed is excavated and stirred with an auger or the like and cement is mixed to form the soil column 21, and the soil column 21 is continued side by side as shown in FIG. 3 to construct the underground wall 20. To do.
At that time, as shown in FIG. 4, if a diverging haunch portion 22 is provided at the end of the underground wall 20 and abuts against the mountain retaining wall 10, the force due to earth pressure is dispersed and the mountain retaining wall 10 becomes underground. It is transmitted to the wall 20 and from the underground wall 20 to the mountain retaining wall 10.
For this reason, it is possible to prevent the mountain retaining wall 10 from being locally broken due to the concentrated load and to prevent the underground wall 20 from being easily buckled at the end thereof.
The material for forming the underground wall 20 is not limited to soil cement, and any other material may be used as long as it has a predetermined compressive strength and is easily broken.
[0011]
On the other hand, a plurality of underground walls 20 are arranged so as to intersect each other so as to subdivide the ground deeper than the excavation bottom surface surrounded by the mountain retaining wall 10.
Thereby, as shown in FIG. 5, since the soft ground which is going to wrap around from the bottom of the mountain retaining wall 10 can be suppressed by the underground wall 20 facing the intrusion direction, The slip 40 can be prevented.
[0012]
<C> Excavation and support in the retaining wall (Figs. 1 and 5)
After the underground wall 20 is constructed, the ground in the mountain retaining wall 10 is excavated together with the underground wall 20 by a known method.
At that time, the excavation work may be performed by digging the ground and the underground wall 20 simultaneously, or by digging only the ground to some extent and then breaking the underground wall 20. Then, a support beam is provided by a known method, such as by providing a cut beam 30 in the dug portion, and the mountain retaining method is completed.
The excavation process and the support process may be repeated alternately or may be performed simultaneously.
[0013]
[Example 2]
The mountain retaining wall 20 is not limited to the shape surrounding the predetermined ground, and may have other shapes as long as it has opposing wall surfaces.
For example, if the two mountain retaining walls 20 and 20 are constructed in parallel to the ground, and the underground wall 10 is constructed between them, the same mountain retaining method as in Example 1 can be performed, and the same effect can be obtained. .
[0014]
[Example 3]
In some cases, the underground wall 20 is constructed first, and then the mountain retaining wall 10 is constructed.
In this case, since the underground wall 20 is formed of a material that is easily broken, the underground wall 20 is constructed in advance in a large size as shown in FIG. Is easy.
Even if the mountain retaining wall 10 is constructed after constructing the underground wall 20 in this manner, the same effects as those of the first embodiment can be obtained.
[0015]
[Example 4]
The edge cut portion 24 may be formed in the underground wall 20 in the horizontal direction.
That is, when the excavation process is repeated several times, excavation work can be facilitated by forming a low-strength edge notch 24 in the excavated portion of the underground wall 20 in advance as shown in FIG. Can do.
As an example of the method for forming the edge cut portion 24, as shown in FIG. 8, before the underground wall 20 is hardened, an injection tube 50 is inserted into the underground wall 20 from above to a predetermined position to inject a soft material. To do.
The soft material is injected so as to be formed in order from the lower edge cut portion 24.
It is preferable that the injection pipe 50 has its jet outlet 51 opened sideways in order to allow the soft material to flow out in the horizontal direction within the underground wall 20.
The material of the soft material may be any material that can secure the edge cut portion 24 having low strength.
[0016]
[Example 5]
You may arrange | position the water flow means which accept | permits the water flow in the penetration direction in the underground wall 20.
When there is a soft soil layer in the ground around Yamato wall 10 and there is an influence of groundwater during construction, it is necessary to install a deep well 80 etc. in the ground and forcibly drain it to lower the pressure level There is.
However, since the ground is partitioned in the vertical direction by the construction of the underground wall 20, a decrease in the pressurized water level is prevented.
Thus, as shown in FIG. 9, if the water passing means 60 is provided at a predetermined position in the underground wall 20, such a problem can be solved.
This water flow means 60 may be appropriately installed at an arbitrary position in an arbitrary underground wall 20 according to the surrounding ground conditions and the like.
[0017]
As the water flow means 60, for example, a water flow pipe 70 as shown in FIG. 10 can be adopted. The water pipe 70 has a structure in which a thin water pipe 72 and a drain pipe 73 are communicated with the outer peripheral surface of the main pipe 71.
The main pipe 71 is a high-rigidity pipe having a length that is about the thickness of the underground wall 20 and open at both ends.
Since the main pipe 71 is a member that remains in the underground wall 20, it is necessary to have rigidity that can withstand earth pressure acting in the underground wall 20. For example, a steel pipe or the like can be adopted.
Inside the main pipe 71, two water-permeable members 711 made of ice, gravel, or the like filled with ice or gravel are disposed so as to be slidable in the axial direction of the main pipe 71 so as to close the openings on both sides. Yes.
When the water passage member 711 is filled with ice or when the water passage member is an ice block, the water does not melt after the water passage pipe 70 is installed, so the water permeability of the water passage 70 becomes very good. On the other hand, a rod 74 having a jack part 741 formed at the tip is inserted into the water supply pipe 72, and the jack part 741 reaches the main pipe 71 and is located between the water passing members 711.
The jack portion 741 has a structure in which the lateral width expands and contracts in a pantograph shape by the rotation of the rod 74.
In addition, the jack part 741 may use other well-known things, such as a hydraulic jack.
The drain pipe 73 communicates with the peripheral surface of the lower part of the main pipe 71 so that drainage in the main pipe 71 can be performed.
[0018]
Next, a method for installing the water pipe 70 will be described.
After the soil cement or the like forming the underground wall 20 is placed, it is inserted into the underground wall 20 in such a manner that the main pipe 71 is pushed into the underground wall 20 from the top with the water supply pipe 72 or the water distribution pipe 73 before being hardened.
At that time, the main pipe 71 is set to face the thickness direction of the underground wall 20.
When the main pipe 71 reaches a predetermined position, the insertion operation is stopped, and the rod 74 is rotated to expand the jack portion 741 in the horizontal direction as shown in FIG.
Then, it is pushed by the jack part 741 and the water-permeable members 711 and 711 are pressed against the ground.
Next, water is pumped from the water pipe 72 through which the rod 74 is inserted, and the soil cement or the like in the water passage member 711 is discharged to prevent clogging.
Then, the rod 74 is reversely rotated to contract the jack portion 741 and lift it from the water supply pipe 72, thereby completing the installation of the water flow pipe 70.
[0019]
If the water pipe 70 as described above is employed, the water passage means can be reliably and economically and efficiently installed on the underground wall 20.
Further, the water pipe 70 can pump up the groundwater through the drain pipe 73.
In addition, the water flow means 60 is not limited to the said water flow pipe 70, You may employ | adopt other well-known water flow materials.
[0020]
【The invention's effect】
Since the present invention is as described above, the following effects can be obtained.
<I> The underground wall is constructed between the opposing mountain retaining walls, and the underground wall is excavated together with the ground between the mountain retaining walls.
For this reason, the earth pressure applied from the outside of the retaining wall can be received by the underground wall, and the earth pressure applied from both sides can be offset.
Therefore, it is possible to avoid deformation of the retaining wall before excavating between the retaining walls, and to prevent breakage associated therewith.
<B> By constructing underground walls between the retaining walls, the ground between the retaining walls is subdivided.
For this reason, it can reduce that a soft ground turns around from the lower part of a mountain retaining wall.
Therefore, excavation of the excavated surface due to slip failure of the ground on the rear side of the mountain retaining wall, that is, heaving can be prevented.
<C> Heaving can be more effectively reduced by constructing a plurality of underground walls intersecting the mountain walls.
<D> If a diverging haunch is provided at the end of the underground wall, stress can be transmitted between the retaining wall and the underground wall without stress concentration on the retaining wall and part of the underground wall. It can be done reliably.
<E> By constructing the mountain retaining wall behind the underground wall, unnecessary portions of the soft underground wall can be scraped off and the retaining wall in contact with the underground wall can be reliably constructed.
<F> By providing the edge cut portion in the underground wall, excavation work between the mountain retaining walls can be performed efficiently.
<G> By providing a water pipe in the underground wall, a water passing function can be imparted to the ground partitioned by the underground wall.
<H> If the underground wall is formed of soil cement, it becomes soft while having a predetermined compressive strength, so that excavation work becomes easy.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a mountain retaining method in Example 1. FIG. 2 is an explanatory diagram of earth pressure acting on a mountain retaining wall and an underground wall. FIG. 3 is an illustration of earth pressure acting on a mountain retaining wall and an underground wall. Explanatory drawing [FIG. 4] Explanatory drawing of the haunch part of the underground wall [FIG. 5] Explanatory drawing of the heaving suppression function [FIG. 6] An explanatory drawing of the mountain retaining method in Example 3. [FIG. FIG. 8 is an explanatory diagram of a mountain retaining method in Example 4. FIG. 9 is an explanatory diagram of a mountain retaining method in Example 5. FIG. 10 is a perspective view of a water conduit. Explanatory drawing [Fig. 12] Explanatory drawing of prior art

Claims (4)

地盤内に構築される山留壁の間に、連続的に地中壁を構築し、その地中壁により前記山留壁を支持させた状態で、山留壁間の地盤を地中壁と共に掘削して行う山留工法であって、
前記地中壁が硬化する前に、前記地中壁内に上方より注入管を所定位置まで挿入し軟質材を注入することにより、前記地中壁内に水平方向へ縁切部を設けることを特徴とする、山留工法。
The underground wall is continuously constructed between the mountain walls built in the ground, and the ground wall between the mountain walls together with the underground wall is supported by the underground wall. It is a mountain method that is excavated,
Before the underground wall is hardened, by inserting an injection tube from above into the underground wall to a predetermined position and injecting a soft material, an edge cutout is provided in the horizontal direction in the underground wall. A feature of the Yamadome method.
請求項1に記載の山留工法において、
前記地中壁は、末広状のハンチ部を形成して前記山留壁と連接する事を特徴とする、山留工法。
In the mountain retaining method according to claim 1,
The underground wall method is characterized in that the underground wall forms a diverging haunch and is connected to the mountain wall.
請求項1または2に記載の山留工法において、
前記地中壁は、その貫通方向へ通水を許容する通水手段を設置することを特徴とする、山留工法。
In the mountain retaining method according to claim 1 or 2,
The underground wall method, wherein the underground wall is provided with water passage means that allows water to pass therethrough.
請求項1乃至3のいずれかに記載の山留工法において、
前記地中壁は、ソイルセメントで形成することを特徴とする、山留工法。
In the mountain retaining method according to any one of claims 1 to 3,
The underground method is characterized in that the underground wall is formed of soil cement.
JP29063694A 1994-10-31 1994-10-31 Yamadome method Expired - Fee Related JP3608175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29063694A JP3608175B2 (en) 1994-10-31 1994-10-31 Yamadome method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29063694A JP3608175B2 (en) 1994-10-31 1994-10-31 Yamadome method

Publications (2)

Publication Number Publication Date
JPH08128042A JPH08128042A (en) 1996-05-21
JP3608175B2 true JP3608175B2 (en) 2005-01-05

Family

ID=17758542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29063694A Expired - Fee Related JP3608175B2 (en) 1994-10-31 1994-10-31 Yamadome method

Country Status (1)

Country Link
JP (1) JP3608175B2 (en)

Also Published As

Publication number Publication date
JPH08128042A (en) 1996-05-21

Similar Documents

Publication Publication Date Title
KR100415809B1 (en) precast pile for braced wall and the method using the same
JP3789127B1 (en) Seismic structure
KR20090116452A (en) Composite wall using angled channel
KR100779988B1 (en) Method for constructing micropile
JP3829319B2 (en) Construction method of underground hollow structure and its underground hollow structure
JP4727718B2 (en) Retaining method for retaining wall
JP4440497B2 (en) Construction method of underground continuous wall and construction method of underground structure
JP3213240B2 (en) Support pile reinforcement structure of existing structure and its reinforcement method
JP3608175B2 (en) Yamadome method
KR100401330B1 (en) A method of construction for earth-protection walls of building
KR100477357B1 (en) Construction method for retaining of earth
WO2009139510A1 (en) Construction method for continuous cut-off wall using overlap casing
JP5360659B2 (en) Retaining wall made of precast concrete
JP3841679B2 (en) Ground improvement method
JP4905296B2 (en) Method for constructing retaining wall and retaining wall
JPS6011178B2 (en) How to install standard piles for continuous underground wall construction
JP3208729B2 (en) Blistering prevention method and construction method of underground building
KR102625776B1 (en) Construction method of CIP retaining wall with improved water protection and ground subsidence prevention function
JPS62117911A (en) Setting of pipe for well
JP2000328561A (en) Underground water flowing construction method in soil cement column row earth retaining wall
JP3797926B2 (en) Ground improvement method
JPS6225815B2 (en)
JP2000104247A (en) Structural body and installation method thereof
JP2898577B2 (en) Starting shaft of shield machine and start method of shield machine
JPH0931972A (en) Construction of underground continuous wall

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040624

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees