JP3606131B2 - Solid electrolytic capacitor and manufacturing method thereof - Google Patents
Solid electrolytic capacitor and manufacturing method thereof Download PDFInfo
- Publication number
- JP3606131B2 JP3606131B2 JP28274799A JP28274799A JP3606131B2 JP 3606131 B2 JP3606131 B2 JP 3606131B2 JP 28274799 A JP28274799 A JP 28274799A JP 28274799 A JP28274799 A JP 28274799A JP 3606131 B2 JP3606131 B2 JP 3606131B2
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic capacitor
- solid electrolytic
- ethylenedioxythiophene
- dimethylacetamide
- conductive polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は導電性高分子を電解質に用いた固体電解コンデンサおよびその製造方法に関するものである。
【0002】
【従来の技術】
電子機器の高周波化に伴って、電子部品である電解コンデンサにおいても高周波領域でのインピーダンス特性に優れた大容量の電解コンデンサが求められてきている。最近では、この高周波領域のインピーダンス低減のために、電気電導度の高い導電性高分子を電解質に用いた電解コンデンサが検討されてきており、また大容量化の要求に対しては電極箔を積層させる場合と比較して、構造的に大容量化が容易な巻回形(陽極箔と陰極箔とをセパレータを介して巻回した構造のもの)による導電性高分子を用いた固体電解コンデンサが製品化されてきている。
【0003】
この巻回形の固体電解コンデンサにおいては、導電性高分子を形成する方法としては複素環式モノマーを化学酸化重合することにより導電性の高い導電性高分子を収率良く得るために重合雰囲気を酸性で行っている。これは重合雰囲気が塩基性に偏るにつれて生成する導電性高分子の収率と導電率は低下するためである。重合雰囲気を酸性に保つ方法としては、重合溶液(例えば、重合性の複素環式モノマーと酸化剤とドーパントと重合溶剤とからなる溶液)に種々の無機酸や有機酸を添加する方法があるが、添加する酸の種類によっては、導電性高分子形成の際にドーパントと添加した酸との競争ドープ反応が生じて重合阻害(具体的には、収率の低下や形成した導電性高分子の導電率の低下)を起こすので、重合溶液に用いる重合溶剤自身を酸性溶媒(プロトン授与性を有する溶剤)である水やアルコール類(メタノール、エタノール、イソプロピルアルコール、n−プロパノール、n−ブタノール、エチレングリコール等)に限定する方が好ましいとされている。この例として、複素環式モノマーの一つであるエチレンジオキシチオフェンを化学重合する際の重合溶剤にn−ブタノールやエチレングリコール等が使用されている。
【0004】
【発明が解決しようとする課題】
しかしながら上記巻回形の固体電解コンデンサは、導電性高分子としてエチレンジオキシチオフェンやピロールを適当な酸化剤により化学酸化重合してポリエチレンジオキシチオフェンやポリピロールを形成することが知られているが、これらを巻回形のコンデンサ素子の内部に均一かつ十分に含浸させることは困難であった。特にエチレンジオキシチオフェンを重合してなるポリエチレンジオキシチオフェンにおいては、種々の材料条件(より具体的には材料ロット間での差異)、重合条件の微妙な変化によって、電気特性のバラツキ(特に導電性高分子の誘電酸化皮膜上への被覆率により決定される静電容量のバラツキや導電性高分子の充填率により決定される高周波域でのインピーダンスのバラツキ)が大きいという課題を有していた。
【0005】
本発明はこのような課題を解決し、静電容量とインピーダンス特性のバラツキの少ない固体電解コンデンサおよびその製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記課題を解決するために本発明は、残留塩基性有機溶媒量が0.8%以下の複素環式モノマーを化学酸化重合して得られる導電性高分子を固体電解質とする構成としたものである。
【0007】
また、この固体電解コンデンサの製造方法は、誘電体酸化皮膜を形成した陽極箔とエッチングされたアルミニウム箔の陰極箔とをセパレータを介して巻回したコンデンサ素子を、N,N−ジメチルアセトアミドの量が0.8%以下のエチレンジオキシチオフェンのモノマー溶液と酸化剤を含有する溶液に個々に含浸、またはN,N−ジメチルアセトアミドの量が0.8%以下のエチレンジオキシチオフェンのモノマー溶液と酸化剤成分とドーパント成分を含有する混合溶液に含浸して化学酸化重合することによりポリエチレンジオキシチオフェンの固体電解質を形成させるようにした製造方法である。
【0008】
本発明者らは分析的な手法(ガスクロマトグラム−質量分析法)を用いて、特に複素環式モノマーの1つであるエチレンジオキシチオフェン自身に塩基性を発現する材料が不純物として混在していることを見出し、その物質がN,N−ジメチルアセトアミドであることを突き止めた。このN,N−ジメチルアセトアミドは、エチレンジオキシチオフェンを合成する過程で用いられる反応溶媒の一つであり、エチレンジオキシチオフェン中に残留する可能性の高い塩基性物質の一つであった。このN,N−ジメチルアセトアミドの残留量で化学酸化重合により導電性高分子を得るのに大変重要な影響を与えていることが解った。
【0009】
この本発明により、前記残留塩基性有機溶媒量を規制することができ、これにより静電容量とインピーダンス特性のバラツキの少ない固体電解コンデンサを得ることができるものである。
【0010】
【発明の実施の形態】
本発明の請求項1に記載の発明は、残留塩基性有機溶媒量が0.8%以下の複素環式モノマーを化学酸化重合して得られる導電性高分子を固体電解質とした構成のものであり、残留塩基性有機溶媒量を上限限界値である0.8%以下(エチレンジオキシチオフェンの重量基準)に規制することで、導電性の高い導電性高分子を収率良く得ることができるという作用を有する。
【0011】
なお、インピーダンス性能をより低く安定させるために、複素環式モノマー中の残留塩基性有機溶媒量が0.6%以下であることが望ましい。
【0012】
請求項2に記載の発明は、請求項1に記載の発明において、残留塩基性有機溶媒がN,N−ジメチルアセトアミドで複素環式モノマーがエチレンジオキシチオフェンからなり、少なくとも酸化剤成分とドーパント成分とを用いて化学酸化重合して導電性高分子の固体電解質とした構成のものであり、エチレンジオキシチオフェンの合成過程で反応溶媒として使用されるN,N−ジメチルアセトアミドを規制することで化学酸化重合により導電性の高い導電性高分子を収率良く得ることができるという作用を有する。
【0013】
請求項3に記載の発明は、誘電体酸化皮膜を形成した陽極箔とエッチングされたアルミニウム箔の陰極箔とをセパレータを介して巻回したコンデンサ素子を、N,N−ジメチルアセトアミドの量が0.8%以下のエチレンジオキシチオフェンのモノマー溶液と酸化剤を含有する溶液に個々に含浸、またはN,N−ジメチルアセトアミドの量が0.8%以下のエチレンジオキシチオフェンのモノマー溶液と酸化剤成分とドーパント成分を含有する混合溶液に含浸して化学酸化重合することによりポリエチレンジオキシチオフェンの固体電解質を形成する固体電解コンデンサの製造方法というものであり、この方法によれば、静電容量とインピーダンス特性のバラツキの少ない固体電解コンデンサを安定して製造することができるという作用を有する。
【0014】
以下、本発明の実施の形態について、添付図面に基づいて説明する。
【0015】
図1は本発明の固体電解コンデンサの構成を示した部分断面斜視図であり、同図に示すように、アルミニウム箔をエッチング処理により表面を粗面化した後に酸化処理により誘電体酸化皮膜を形成した陽極箔1と、アルミニウム箔をエッチング処理した陰極箔2とをセパレータ3を介して巻き取ることによりコンデンサ素子9を作製し、上記陽極箔1と陰極箔2との間に導電性高分子層4を形成してコンデンサ素子9が構成されている。
【0016】
このコンデンサ素子9を有底円筒状のアルミニウムケース8に収納すると共に、アルミニウムケース8の開放端をゴム製の封口材7により陽極箔1及び陰極箔2のそれぞれから導出した外部導出用の陽極リード5と陰極リード6を封口材7を貫通するように封止して構成したものである。
【0017】
次に、本発明の具体的な実施の形態について説明するが、本発明はこれに限定されるものではない。以下、部はすべて重量部を示す。
【0018】
(実施の形態1)
誘電体酸化皮膜を形成したアルミニウム箔からなる陽極箔とエッチングされたアルミニウム箔の陰極箔との間にポリエチレンテレフタレート製スパンボンドのセパレータ(厚さ50μm、秤量25g/m2)を介在させて巻回することにより、巻回形のコンデンサ素子を得た(このコンデンサ素子にアジピン酸アンモニウムの10重量%エチレングリコール溶液を含浸させた際の周波数120Hzにおける静電容量は670μFであった)。
【0019】
続いてこのコンデンサ素子を、N,N−ジメチルアセトアミドを合成過程で反応溶媒に用いて製造された複素環式モノマーであるエチレンジオキシチオフェンを減圧蒸留することにより、モノマー中の不純物であるN,N−ジメチルアセトアミドの残留量をガスクロマトグラム分析の結果で0.8%に調整したもの(以下、このエチレンジオキシチオフェンをモノマーAと略記する)1部と酸化剤であるp−トルエンスルホン酸第二鉄2部と重合溶剤であるn−ブタノール4部を含む溶液に浸漬して引き上げた後、85℃で60分間放置することにより化学重合性導電性高分子であるポリエチレンジオキシチオフェンを電極箔間に形成した。
【0020】
続いて、このコンデンサ素子を水洗して乾燥した後、樹脂加硫ブチルゴム封口材(ブチルゴムポリマー30部、カーボン20部、無機充填剤50部から構成、封口体硬度:70IRHD[国際ゴム硬さ単位])と共にアルミニウムケースに封入した後、カーリング処理により開口部を封止し、更に陽極箔、陰極箔から夫々導出された両リード端子をポリフェニレンサルファイド製の座板に通し、リード線部を扁平に折り曲げ加工することにより面実装型の固体電解コンデンサを構成した(サイズ:直径10mm×高さ10mm)。
【0021】
(実施の形態2)
上記実施の形態1において、モノマーAを更に減圧蒸留を繰り返すことで、エチレンジオキシチオフェン中の不純物であるN,N−ジメチルアセトアミドの残留量をガスクロマトグラム分析の結果で0.6%に調整したものを用いた以外は実施の形態1と同様に作製した。
【0022】
(実施の形態3)
上記実施の形態1において、モノマーAを更に減圧蒸留を施すことで、エチレンジオキシチオフェン中の不純物であるN,N−ジメチルアセトアミドの残留量をガスクロマトグラム分析の結果で0.4%に調整したものを用いた以外は実施の形態1と同様に作製した。
【0023】
(実施の形態4)
上記実施の形態1において、モノマーAを更に減圧蒸留を繰り返し施すことで、エチレンジオキシチオフェン中の不純物であるN,N−ジメチルアセトアミドの残留量をガスクロマトグラム分析の結果で0.3%に調整したものを用いた以外は実施の形態1と同様に作製した。
【0024】
(比較例1)
上記実施の形態1において、エチレンジオキシチオフェンを減圧蒸留することなく用いた以外は実施の形態1と同様に作製した。なお、本比較例1によるエチレンジオキシチオフェン中の不純物であるN,N−ジメチルアセトアミドの残留量はガスクロマトグラム分析の結果で1.0%であった。
【0025】
以上のように作製した本発明の実施の形態1〜4と比較例1の固体アルミ電解コンデンサについて、その静電容量(測定周波数120Hz)、インピーダンス(測定周波数100kHz)およびインピーダンスの標準偏差を比較した結果を(表1)に示す。
【0026】
【表1】
【0027】
なお、試験個数はいずれも50個であり、静電容量、インピーダンスは50個の平均値で示した。
【0028】
(表1)より明らかなように、本発明の実施の形態1〜4の固体アルミ電解コンデンサは、比較例1と比較して静電容量が高く、かつインピーダンスも低い上、その標準偏差も小さく、電気特性バラツキも少ない固体電解コンデンサを得ることができた。また、本発明の実施の形態1〜4および比較例1で示したインピーダンスの傾向より、エチレンジオキシチオフェン中のN,N−ジメチルアセトアミドの残留量は低い程良く、更にはその上限限界値は0.8%であることが判る。N,N−ジメチルアセトアミドの残留量が0.8%を超える付近よりインピーダンスの値は極端に大きくなるので好ましくない。
【0029】
また、本発明の製造方法を用いることで、電気特性バラツキの少ない固体電解コンデンサを安定に製造することができる。
【0030】
なお、本発明の実施の形態は巻回形の固体電解コンデンサについてのみ記述してきたが、本発明はこれに限定されるものではなく、弁作用金属箔上に誘電体酸化皮膜、誘電性高分子層、陰極層を順次形成して積層される固体電解コンデンサにおいても有効であることは言うまでもない。
【0031】
【発明の効果】
以上のように本発明の固体電解コンデンサは、残留塩基性有機溶媒量が0.8%以下の複素環式モノマーを化学酸化重合して得られる導電性高分子を固体電解質とした構成とすることにより、化学酸化重合の際に導電性の高い導電性高分子を収率良く得られるものであり、これにより静電容量とインピーダンス特性のバラツキの少ない固体電解コンデンサおよびその製造方法を提供できるものであり、その工業的価値は大なるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態による固体電解コンデンサの構成を示した部分断面斜視図
【符号の説明】
1 陽極箔
2 陰極箔
3 セパレータ
4 導電性高分子層
5 陽極リード
6 陰極リード
7 封口材
8 アルミニウムケース
9 コンデンサ素子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid electrolytic capacitor using a conductive polymer as an electrolyte and a method for manufacturing the same.
[0002]
[Prior art]
With the increase in the frequency of electronic equipment, there is a demand for a large-capacity electrolytic capacitor having excellent impedance characteristics in a high-frequency region even in an electrolytic capacitor that is an electronic component. Recently, in order to reduce the impedance in this high-frequency region, electrolytic capacitors using a conductive polymer with high electrical conductivity as the electrolyte have been studied, and electrode foils are laminated to meet the demand for large capacity. Compared with the case of making a solid electrolytic capacitor using a conductive polymer of a winding type (a structure in which an anode foil and a cathode foil are wound through a separator), which is structurally easy to increase in capacity It has been commercialized.
[0003]
In this winding type solid electrolytic capacitor, as a method for forming a conductive polymer, a polymerization atmosphere is used in order to obtain a highly conductive polymer with high yield by chemical oxidative polymerization of a heterocyclic monomer. It is done with acidity. This is because the yield and conductivity of the conductive polymer produced decreases as the polymerization atmosphere is biased toward basicity. As a method of keeping the polymerization atmosphere acidic, there is a method of adding various inorganic acids and organic acids to a polymerization solution (for example, a solution comprising a polymerizable heterocyclic monomer, an oxidizing agent, a dopant, and a polymerization solvent). Depending on the type of acid to be added, a competitive doping reaction between the dopant and the added acid may occur during the formation of the conductive polymer, resulting in polymerization inhibition (specifically, a decrease in yield or formation of the conductive polymer). As the polymerization solvent used in the polymerization solution itself is an acidic solvent (a solvent having a proton-donating property), water and alcohols (methanol, ethanol, isopropyl alcohol, n-propanol, n-butanol, ethylene) Glycol etc.) is preferred. As an example of this, n-butanol, ethylene glycol, or the like is used as a polymerization solvent when chemically polymerizing ethylenedioxythiophene, which is one of heterocyclic monomers.
[0004]
[Problems to be solved by the invention]
However, the wound solid electrolytic capacitor is known to form polyethylenedioxythiophene or polypyrrole by chemically oxidatively polymerizing ethylenedioxythiophene or pyrrole with a suitable oxidizing agent as a conductive polymer. It has been difficult to uniformly and sufficiently impregnate these inside the wound capacitor element. In particular, in polyethylene dioxythiophene obtained by polymerizing ethylenedioxythiophene, variations in electrical characteristics (especially conductive properties) due to various material conditions (more specifically, differences among material lots) and subtle changes in polymerization conditions. There was a problem that the capacitance variation determined by the coverage of the conductive polymer on the dielectric oxide film and the impedance variation in the high frequency range determined by the filling rate of the conductive polymer) were large. .
[0005]
An object of the present invention is to solve such problems, and to provide a solid electrolytic capacitor with little variation in capacitance and impedance characteristics, and a method for manufacturing the same.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention has a structure in which a conductive polymer obtained by chemical oxidative polymerization of a heterocyclic monomer having a residual basic organic solvent amount of 0.8% or less is used as a solid electrolyte. is there.
[0007]
In addition, this method for producing a solid electrolytic capacitor includes a capacitor element in which an anode foil having a dielectric oxide film formed thereon and a cathode foil of an etched aluminum foil are wound via a separator, and the amount of N, N-dimethylacetamide A monomer solution of ethylenedioxythiophene having an amount of 0.8% or less and a solution containing an oxidizing agent individually, or a monomer solution of ethylenedioxythiophene having an amount of N, N-dimethylacetamide of 0.8% or less This is a production method in which a solid electrolyte of polyethylene dioxythiophene is formed by impregnating a mixed solution containing an oxidant component and a dopant component and performing chemical oxidative polymerization.
[0008]
The present inventors use an analytical technique (gas chromatogram-mass spectrometry), and in particular, ethylenedioxythiophene, which is one of the heterocyclic monomers, contains a material that exhibits basicity as an impurity. And found that the material was N, N-dimethylacetamide. This N, N-dimethylacetamide was one of the reaction solvents used in the process of synthesizing ethylenedioxythiophene, and was one of the basic substances likely to remain in ethylenedioxythiophene. It was found that the residual amount of N, N-dimethylacetamide has a very important influence on obtaining a conductive polymer by chemical oxidative polymerization.
[0009]
According to the present invention, the amount of the residual basic organic solvent can be regulated, whereby a solid electrolytic capacitor with little variation in capacitance and impedance characteristics can be obtained.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention has a configuration in which a conductive polymer obtained by chemical oxidative polymerization of a heterocyclic monomer having a residual basic organic solvent amount of 0.8% or less is a solid electrolyte. Yes, by limiting the amount of residual basic organic solvent to the upper limit of 0.8% or less (based on the weight of ethylenedioxythiophene), a highly conductive conductive polymer can be obtained with good yield. It has the action.
[0011]
In order to stabilize impedance performance lower, it is desirable that the amount of residual basic organic solvent in the heterocyclic monomer is 0.6% or less.
[0012]
The invention according to
[0013]
According to a third aspect of the present invention, there is provided a capacitor element in which an anode foil formed with a dielectric oxide film and a cathode foil of an etched aluminum foil are wound through a separator, and the amount of N, N-dimethylacetamide is 0. .8% or less ethylene dioxythiophene monomer solution and an oxidant-containing solution individually impregnated, or ethylene dioxythiophene monomer solution and oxidant with an amount of N, N-dimethylacetamide of 0.8% or less This is a method for producing a solid electrolytic capacitor in which a solid electrolyte of polyethylenedioxythiophene is formed by impregnating a mixed solution containing a component and a dopant component and performing chemical oxidative polymerization. It has the effect that solid electrolytic capacitors with little variation in impedance characteristics can be manufactured stably. That.
[0014]
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0015]
FIG. 1 is a partial cross-sectional perspective view showing the structure of the solid electrolytic capacitor of the present invention. As shown in FIG. 1, the surface of aluminum foil is roughened by etching, and then a dielectric oxide film is formed by oxidation. The anode foil 1 and the
[0016]
The capacitor element 9 is housed in a bottomed
[0017]
Next, specific embodiments of the present invention will be described, but the present invention is not limited thereto. Hereinafter, all parts are parts by weight.
[0018]
(Embodiment 1)
Winding with a polyethylene terephthalate spunbond separator (thickness 50 μm, weighing 25 g / m 2 ) interposed between an anode foil made of aluminum foil with a dielectric oxide film and a cathode foil of etched aluminum foil Thus, a wound capacitor element was obtained (capacitance at a frequency of 120 Hz when this capacitor element was impregnated with a 10 wt% ethylene glycol solution of ammonium adipate was 670 μF).
[0019]
Subsequently, ethylene dioxythiophene, which is a heterocyclic monomer produced by using N, N-dimethylacetamide as a reaction solvent in the synthesis process, was distilled under reduced pressure, and this capacitor element was subjected to N, which is an impurity in the monomer. The residual amount of N-dimethylacetamide adjusted to 0.8% as a result of gas chromatogram analysis (hereinafter, this ethylenedioxythiophene is abbreviated as monomer A) and 1 part of p-toluenesulfonic acid as an oxidizing agent After being immersed in a solution containing 2 parts of ferric iron and 4 parts of n-butanol as a polymerization solvent, the film is left to stand at 85 ° C. for 60 minutes to form polyethylenedioxythiophene, which is a chemically polymerizable conductive polymer, as an electrode foil Formed between.
[0020]
Subsequently, this capacitor element was washed with water and dried, and then a resin vulcanized butyl rubber sealing material (30 parts butyl rubber polymer, 20 parts carbon, 50 parts inorganic filler, sealing body hardness: 70 IRHD [international rubber hardness unit] ) And sealed in an aluminum case, then the opening is sealed by curling, and both lead terminals derived from the anode foil and cathode foil are passed through a polyphenylene sulfide seat plate, and the lead wire is bent flat. A surface mount type solid electrolytic capacitor was formed by processing (size: diameter 10 mm × height 10 mm).
[0021]
(Embodiment 2)
In the first embodiment, the residual amount of N, N-dimethylacetamide as an impurity in ethylenedioxythiophene was adjusted to 0.6% as a result of gas chromatogram analysis by further repeating distillation under reduced pressure of monomer A. The device was manufactured in the same manner as in Embodiment 1 except that one was used.
[0022]
(Embodiment 3)
In the first embodiment, the residual amount of N, N-dimethylacetamide, which is an impurity in ethylenedioxythiophene, was adjusted to 0.4% as a result of gas chromatogram analysis by further subjecting monomer A to vacuum distillation. The device was manufactured in the same manner as in Embodiment 1 except that one was used.
[0023]
(Embodiment 4)
In the first embodiment, the residual amount of N, N-dimethylacetamide, which is an impurity in ethylenedioxythiophene, is adjusted to 0.3% as a result of gas chromatogram analysis by repeatedly subjecting monomer A to reduced-pressure distillation. It was produced in the same manner as in Embodiment 1 except that the above was used.
[0024]
(Comparative Example 1)
In the first embodiment, it was produced in the same manner as in the first embodiment except that ethylenedioxythiophene was used without distillation under reduced pressure. The residual amount of N, N-dimethylacetamide, which is an impurity in ethylenedioxythiophene according to Comparative Example 1, was 1.0% as a result of gas chromatogram analysis.
[0025]
Regarding the solid aluminum electrolytic capacitors of Embodiments 1 to 4 of the present invention and Comparative Example 1 manufactured as described above, the capacitance (measurement frequency 120 Hz), impedance (measurement frequency 100 kHz), and standard deviation of impedance were compared. The results are shown in (Table 1).
[0026]
[Table 1]
[0027]
In addition, the test number was 50 in any case, and the electrostatic capacity and the impedance were shown by the average value of 50 pieces.
[0028]
As apparent from (Table 1), the solid aluminum electrolytic capacitors according to the first to fourth embodiments of the present invention have a higher capacitance and lower impedance than those of Comparative Example 1, and a smaller standard deviation. Thus, a solid electrolytic capacitor with little variation in electrical characteristics could be obtained. Further, from the impedance tendency shown in Embodiments 1 to 4 of the present invention and Comparative Example 1, the lower the residual amount of N, N-dimethylacetamide in ethylenedioxythiophene, the better, and the upper limit value is It can be seen that it is 0.8%. Since the impedance value becomes extremely large from the vicinity where the residual amount of N, N-dimethylacetamide exceeds 0.8%, it is not preferable.
[0029]
Further, by using the manufacturing method of the present invention, a solid electrolytic capacitor with little variation in electrical characteristics can be stably manufactured.
[0030]
Although the embodiment of the present invention has been described only with respect to the wound solid electrolytic capacitor, the present invention is not limited to this, and a dielectric oxide film, dielectric polymer on the valve action metal foil. Needless to say, the present invention is also effective in a solid electrolytic capacitor in which a layer and a cathode layer are sequentially formed and stacked.
[0031]
【The invention's effect】
As described above, the solid electrolytic capacitor of the present invention has a structure in which a conductive polymer obtained by chemical oxidative polymerization of a heterocyclic monomer having a residual basic organic solvent amount of 0.8% or less is used as a solid electrolyte. Thus, a conductive polymer with high conductivity can be obtained in good yield during chemical oxidative polymerization, thereby providing a solid electrolytic capacitor with little variation in capacitance and impedance characteristics and a method for manufacturing the same. Yes, its industrial value is great.
[Brief description of the drawings]
FIG. 1 is a partial sectional perspective view showing a configuration of a solid electrolytic capacitor according to an embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1
Claims (3)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28274799A JP3606131B2 (en) | 1999-10-04 | 1999-10-04 | Solid electrolytic capacitor and manufacturing method thereof |
CNB008017808A CN1193388C (en) | 1999-09-10 | 2000-09-08 | Solid electrolytic capacitor and production method thereof and conductive polymer polymerizing oxidizing agent solution |
TW89118497A TW468189B (en) | 1999-09-10 | 2000-09-08 | Solid electrolytic capacitor, its fabrication method and oxidizing agent solution for polymerizing an electrically conductive polymer |
PCT/JP2000/006123 WO2001020625A1 (en) | 1999-09-10 | 2000-09-08 | Solid electrolytic capacitor and production method thereof, and conductive polymer polymerizing oxidizing agent solution |
KR10-2001-7005922A KR100417456B1 (en) | 1999-09-10 | 2000-09-08 | Solid electrolytic capacitor and production method thereof, and conductive polymer polymerizing oxidizing agent solution |
US09/807,760 US6519137B1 (en) | 1999-09-10 | 2000-09-08 | Solid electrolytic capacitor and production method thereof, and conductive polymer polymerizing oxidizing agent solution |
MYPI20004634 MY121172A (en) | 1999-10-04 | 2000-10-04 | Solid electrolytic capacitor and production method thereof, and conductive polymer polymerizing oxidizing agent solution. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28274799A JP3606131B2 (en) | 1999-10-04 | 1999-10-04 | Solid electrolytic capacitor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001110680A JP2001110680A (en) | 2001-04-20 |
JP3606131B2 true JP3606131B2 (en) | 2005-01-05 |
Family
ID=17656539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28274799A Expired - Lifetime JP3606131B2 (en) | 1999-09-10 | 1999-10-04 | Solid electrolytic capacitor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3606131B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101112019B1 (en) | 2002-11-08 | 2012-02-24 | 미쯔비시 가가꾸 가부시끼가이샤 | Electrolytic capacitor |
-
1999
- 1999-10-04 JP JP28274799A patent/JP3606131B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001110680A (en) | 2001-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7233015B2 (en) | Electrolytic capacitor and manufacturing method thereof | |
US7872858B2 (en) | Method for manufacturing electrolytic capacitor and electrolytic capacitor | |
US7497879B2 (en) | Method of manufacturing electrolytic capacitor and electrolytic capacitor | |
KR101554049B1 (en) | Solid Electrolytic Capacitor and Method of Manufacturing thereof | |
JP5388811B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP7089874B2 (en) | Electrolytic capacitor | |
KR20100062928A (en) | Method of manufacturing solid electrolytic capacitor | |
JP5073947B2 (en) | Winding capacitor and method of manufacturing the same | |
US6426866B2 (en) | Solid electrolytic capacitor and method of manufacturing the same | |
US20060061940A1 (en) | Solid electrolytic capacitor and manufacturing method of the same | |
JP7117552B2 (en) | Electrolytic capacitor | |
JP3606131B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
US10388463B2 (en) | Electrolytic capacitor and conductive polymer dispersion | |
JP2001176758A (en) | Solid electrolytic capacitor, method of manufacturing the same, and oxidizing agent solution for polymerization of conductive high polymer | |
JP2003173932A (en) | Solid-state capacitor and its manufacturing method | |
JP2000114109A (en) | Solid electrolytic capacitor and its manufacture | |
WO2021198214A3 (en) | Process for producing polymer capacitors for high reliability applications | |
JP2004193402A (en) | Solid electrolytic capacitor | |
US10304634B2 (en) | Electrolytic capacitor | |
US10685787B2 (en) | Electrolytic capacitor including conductive polymer with copolymer dopant and conductive polymer dispersion | |
JP3490868B2 (en) | Method for manufacturing solid electrolytic capacitor | |
US9208953B2 (en) | Solid electrolyte capacitor | |
JP5015382B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4442361B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4632134B2 (en) | Manufacturing method of solid electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040914 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040927 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3606131 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081015 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091015 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091015 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101015 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111015 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121015 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131015 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |