JP3603087B2 - Method for forming electrode of β-FeSi2 element - Google Patents

Method for forming electrode of β-FeSi2 element Download PDF

Info

Publication number
JP3603087B2
JP3603087B2 JP2001157087A JP2001157087A JP3603087B2 JP 3603087 B2 JP3603087 B2 JP 3603087B2 JP 2001157087 A JP2001157087 A JP 2001157087A JP 2001157087 A JP2001157087 A JP 2001157087A JP 3603087 B2 JP3603087 B2 JP 3603087B2
Authority
JP
Japan
Prior art keywords
electrode
fesi
phase
forming
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001157087A
Other languages
Japanese (ja)
Other versions
JP2002353526A (en
Inventor
雄之助 牧田
鴻烈 沈
詩男 王
保裕 福澤
靖彦 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology AIST, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001157087A priority Critical patent/JP3603087B2/en
Publication of JP2002353526A publication Critical patent/JP2002353526A/en
Application granted granted Critical
Publication of JP3603087B2 publication Critical patent/JP3603087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、エレクトロニクス分野における半導体素子デバイスの製造方法のうち、素子材料板や薄膜基板上へ電流を導通する電極を、外部から金属材料を堆積したり塗布結合することなく形成するための電極の形成方法に係り、詳細にはβ−FeSi2 の一部分を加熱して金属相に転換して電極とする方法に関するものである。
【0002】
【従来の技術】
従来の半導体デバイスは、シリコン(Si)基板や平面基板材の上に機能性の材料薄膜を形成し、その上に信号の入出力を行う電極が施されているものである。セラミックや機能材料の比較的大きな試料片の電極の場合は、試料端に電極線を巻きつけたり表面の一部分に金属ペーストや各種の半田を用いて電極線を固定する。
【0003】
一方、SiやIII −V属化合物半導体材料を用いた発光・受光・メモリ・IC回路デバイスなどの微細な配線を行うために、従来から多様な電極形成方法が開発されてきた。
【0004】
一般的には、金属導電体の蒸着膜・スパッタ膜・イオンプレーティング膜を素子表面に堆積し、ホトリソグラフィー技術を用いて微細なパターンに加工して素子が形成されてきた。
【0005】
【発明が解決しようとする課題】
半導体の素子には半導体材料と電極材料が必要である。その電極の機能は機能性半導体材料に電流を導入したり引き出すものであるから、両者の界面が機械的に密着し、電気的にも正常な導通を示すいわゆるオーミックコンタクトが取れなければならない。
【0006】
そのためには、(1)良い導電体である金属を電極材料に選ぶ。一般的にはアルミニウム(Al)や銅(Cu)、銀(Ag)、金(Au)などが用いられる。伝導率が高いものが望ましいが、使用される雰囲気や温度による電位差、半導体材料との組み合わせによっては、長期間使用後の腐食などの問題が発生することがある。これらの現象による変化は避けなければならないので、どのような電極材料を選択するかが問題である。
【0007】
また、半導体材料と電極材料間を良好な接合状態に保つためには、少なくとも機械的な接触を阻む異物は除去されなければならない。例えば、(2)両者の表面を良く洗浄して有機性不純物を除去したり、(3)酸化物や塵埃を取り除いて機械的密着度を増すようにする。こうして清浄になった表面に電極材料を接触させる方法として、真空中での金属膜蒸着やスパッタリング法での膜形成を行ってきた。
【0008】
しかしながら、この表面を清浄に保つ作業は、工程を増やし価格を高める要因となる。
【0009】
さらに、積層した導電膜を任意の電極パターン形状に加工するために、(4)高価なホトリソグラフ装置を用い、パターン原画マスク作製→半導体膜面にレジスト塗布→露光→エッチングでレジスト膜除去→酸やアルカリ液で金属膜エッチング加工→電極パターンの完成、という工程を施してきた。
【0010】
しかし、このホトリソグラフィー法で微細な金属パターンを形成した後、(5)さらにその上にもう一層の金属膜電極を形成する際には、前処理で出来たエッチング段差を跨いで、積層金属薄膜を成膜する。その際に、段の下面と上面間をつなぐ膜が十分につながらない、いわゆるステップカバレージが悪いという現象が起こり、電極膜剥離や断線を発生させる原因となっていた。
【0011】
上記したように、これら従来の形成方法では、製作歩留りを高め、製品の高品質・低コスト目標を達成するためには、高価な設備を用いたり、何度も工程検査を行うなど、多くの時間と労力をかけなければならないという問題があった。
【0012】
本発明は、上記問題点を除去し、製造工程を著しく簡素化し、製造コストの低減化を図ることができるβ−FeSi2 素子の電極形成方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕半導体のβ−FeSi2 薄膜または平面板上に素子を構成するための電極を形成する方法であって、大気中または不活性ガス雰囲気において前記β−FeSi 2 材料表面をあらかじめ600℃近傍まで加熱しながら、前記β−FeSi2 材料表面部分を少なくとも982℃から1212℃までの間で加熱することによってその一部をα−Fe2 Si5 相に相転換させ、該相転換させた部分を導電性の良好な電極として用いることを特徴とする。
【0014】
〔2〕上記〔1〕記載のβ−FeSi2 素子の電極形成方法において、前記材料表面の一部分を加熱する熱源をレーザ光とし、このレーザ光を絞った焦点近傍で前記材料表面を照射することによって加熱昇温し、導電性のある金属結晶相への変換を引き起こし、その後、レーザ光を遮断して前記材料を急激に室温付近まで冷却することによってその部分を前記金属結晶相のまま導電部とし、この導電部を所定の形状にした電極を形成することを特徴とする。
【0015】
〔3〕上記〔2〕記載のβ−FeSi2 素子の電極形成方法において、前記レーザ光による前記材料表面の加熱温度を982℃から1212℃までの間とし、α−Fe2 Si5 相になった前記レーザ光の照射部分を加熱後に前記レーザ光を遮断して室温付近まで急冷することによってα−相のまま残し、この工程の繰り返しによって電極パターンを形成することを特徴とする。
【0016】
〔4〕上記〔2〕記載のβ−FeSi2 素子の電極形成方法において、前記レーザ光源としてNd添加YAGレーザを用いることを特徴とする。
【0017】
本発明では、半導体材料表面に電極を構成して素子とする場合に、特別な電極材料を選んで使用することなく、オーミックコンタクトを取るための特別な洗浄や密着後のベーキング加熱、及び蒸着やスパッタリング膜形成工程を省き、電極以外の成膜が必要なときもステップカバレージ問題を生じさせずに済み、マスクや光露光などの工程をなくし、空気中または不活性ガス雰囲気で良質なβ−FeSi2 素子の電極を形成する手段を与えるものである。
【0018】
すなわち、試料材料の一部をレーザ照射することによって半導体結晶相の変態温度以上に加熱し、その部分を金属の結晶相に変換させて導電体とし、それを電極として用いるものである。
【0019】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づき詳細に説明する。
【0020】
図1は本発明の実施例を示すレーザ加熱によってβ−FeSi2 相の一部分をα−Fe2 Si5 相に変換する装置の模式図、図2は本発明の実施例を示すβ−FeSi2 素子の電極形成工程断面図である。
【0021】
図1に示すように、あらかじめSi結晶基板上にβ−FeSi2 膜が成長している試料板(シリコン基板)1は、コンピュータ9で制御されて電極パターンを描画するように可動するステージ10上に置かれている。
【0022】
同様にコンピュータ9によって制御されるNd:YAGレーザ8から射出されるレーザビーム6は、装置の光路を最適に構築するミラー5や、同じくコンピュータ制御されるビームスイッチ7を通過し、さらに集光レンズ4によって縮められ、試料面の加熱点3に焦点を結ぶ。この加熱によって金属膜化した部分をパターン化して出来るのが電極2である。試料面から反射される散乱光はアブソーバ11によって吸収される。
【0023】
本発明の特徴は、デバイス材料のβ−FeSi2 薄膜が、加熱操作によって結晶変体を引き起こし、金属体のα−Fe2 Si5 に変換することを利用しているところにある。
【0024】
以下、本発明のβ−FeSi2 素子の電極形成方法について図2を用いて詳細に説明する。
【0025】
(1)まず、図2(a)に示すように、シリコン基板21上に半導体のβ−FeSi2 薄膜22を形成する。
【0026】
(2)次いで、図2(b)に示すように、そのβ−FeSi2 薄膜22の所定の個所にレーザビーム23を照射して、982℃以上に加熱して、金属体のα−Fe2 Si5 24に変換する。
【0027】
(3)次に、図2(c)に示すように、金属体のα−Fe2 Si5 24を急激に室温近傍まで冷却して、恒久的な電極25を形成する。
【0028】
図3は鉄とシリコンの2元状態図と加熱により金属化する際の現象を説明する原理図である。
【0029】
FeとSi元素の構成比1:2でできる金属間化合物β−FeSi2 相は半導体であり、この組成は2元状態図上のA点に存在する。この材料をレーザアニール法などで加熱するとβ相分解温度(982℃)B点に到達し、この温度まではβ−FeSi2 相構造を保つ。さらに温度が上昇してB点を越えてC点に至ると、加熱された部分のβ−FeSi2 相構造は分解し、わずかのε−FeSi相D点物質と、大部分がα−Fe2 Si5 相E点物質に分離した混合結晶相になる。ここで変換されてできたα−Fe2 Si5 相は金属相であり、これを電極材料として利用する。
【0030】
加熱点の大部分がα−Fe2 Si5 相に転換した材料の状態図中の位置は、E点となる。次いで、E点であるα相に転換した材料をそのまま急冷して室温付近のF点まで下げると、本来、安定熱平衡相であるβ−FeSi2 とSiの混合結晶相に分離せずに、α−Fe2 Si5 のままで残る。この結晶相は金属なので電気の良導体となり電極材料として機能するわけである。
【0031】
E点にある材料を室温近傍まで急冷しないで900℃〜650℃近傍に良時間放置すると、α−Fe2 Si5 相は再びβ−FeSi2 半導体相とSiに分離析出されるので、電極としての金属特性を持たなくなる。β−FeSi2 相を加熱してα−Fe2 Si5 相に転換した部分を電極として利用するためには、急速に室温付近F点まで冷却することが肝要である。
【0032】
本発明の特徴は、試料膜の一部分を加熱操作によって結晶変態を引き起こして金属とするものであるから、半導体素子に電極を形成するデバイスを作製する場合に、外部から電極用金属を付着堆積しなくて良い。試料材料表面に何もない状態で平坦面のまま試料材料の一部が電極になるのであるから、従来の電極形成の際、発生していた材料と電極間の汚染は原理的になくなり、材料表面の過度の清浄化作業は不必要となる。また材料の接点表面は平坦な連続面であるために、オーミックコンタクトが完全に得られた電極が形成されることになる。
【0033】
本発明のβ−FeSi2 素子の電極形成方法は、必要な部分を加熱して金属相に変換することが特徴なので、加熱方法はレーザーアニール法に限らず、高熱の火炎や高熱金属片先端を圧着させるなどの方法でも可能である。
【0034】
一般に半導体デバイスの電極は、その幅が1mm以下で数100μm〜数10μmという微細なパターンで構成されるため、このような微細な部分を加熱して金属化する際の加熱方法としては、熱源を微小にすることが可能なレーザビームを用いるのが望ましい。レーザビームをレンズを用いて絞り込むと、その焦点に照射されるビーム径は数μm〜数10μmとなり、この部分が金属化するので光線や試料位置を移動させて加熱点を連続に繋げることによって自在な電極パターンが形成される。
【0035】
加熱に用いられるレーザ光線はいろいろの波長のものがある。例えば、エキシマレーザのような紫外波長領域で強力な出力を持つもの、緑や赤の可視光領域で容易に得られる半導体やHe、Neガスレーザ、CdやNe:YAGの固体レーザ、さらに10μm長波長のCO2 ガスレーザなどがある。それぞれ特徴があって、加熱することはできるが、効率よく光を吸収して加熱を速くするには、材料の光吸収係数と反射係数を選ばねばならない。すなわち、β−FeSi2 膜にとって吸収係数の高いのは波長0.9μmから2μmの光である。この点でNd:YAGレーザは本発明の実施光源として最適である。紫外レーザはエネルギーパワーを大きくとれるが、エネルギーが高いので材料の原子分子を衝突飛散させてしまうため、加熱光源としては相応しくない。
【0036】
また、可視光は反射が多く、熱源として効率的でない。長波長レーザは焦点面積が広がってしまい、微細な電極パターンに適さないし、光の吸収も少ない。
【0037】
加熱に必要なエネルギーは、被照射材料の光吸収率、熱伝導率、融点、比熱などによって異なるが、半径数10μm領域を1000℃近傍に加熱するためには、10+6W/cm2 のエネルギー密度が必要で、秒単位の短時間で良い。ビーム径が1〜2mmの通常のレーザなら数Wの出力があれば、焦点に絞ったときには十分なエネルギー密度が得られる。
【0038】
β−FeSi2 に対して、波長1.06μmのNd:YAGレーザを用いた場合、その光吸収率は105 と吸収効率がよく、この材料の熱伝導率は熱発電材料に用いられているように大変低いので、50μm径の微小領域を1000℃近傍に加熱するのは10W出力光を絞り込んで数秒間照射すればよい。
【0039】
レーザ光を絞って試料面を照射する部分の断面を拡大して示したのが図4である。
【0040】
この図に示すように、試料板(シリコン基板)31の上に積層成長されたβ−FeSi2 相32の表面にレーザビーム33が部位(加熱点)34に集光照射されると、材料の光吸収によって加熱される。加熱点34の温度は中心部が高く、熱伝導によって加熱部分が広がるが、中心部より遠ざかるにつれて温度は低くなっている。線35はこの時の熱の拡散方向に沿った等温線である。なお、36は電極、37はレーザビーム33の走査方向、38はレーザビーム33の走査による軌跡である。
【0041】
ここで、β−FeSi2 →α−Fe2 Si5 相変換を引き起こすまで十分に加熱させた部分は金属相に変換する。この転換した部分を電極線とするにはビームの当たる位置を直線又は曲線状に動かすと、その軌跡38に転換されたα−Fe2 Si5 相が残る。一回の掃引では電極として十分に必要な幅を持たない場合は、ビームの当たる位置をα相に転換する幅だけ前の軌跡38からずらして方向37に隣り合わせて掃引していけば太い幅の電極パターンが得られることになる。
【0042】
この操作を繰り返して望みの形状パターンを形成すれば、デバイス電極が得られることになる。
【0043】
レーザビームは絞り込むことによってエネルギー密度を高められるので、微小領域加熱に適した方法であるが、例えば白熱灯のイメージ照射加熱の場合のようにエネルギー密度が上げられない場合には、被照射試料片にあらかじめ加熱バイアスをかけておく方法が有効である。すなわち、試料板(シリコン基板)と可動ステージの間に加熱ヒータを置いたり、または試料面全体にランプヒータ光を照射して、試料温度を500℃を越えない程度に高めておく。
【0044】
この温度範囲では試料のβ−FeSi2 相は変化せず、もちろんα−Fe2 Si5 相にもε−FeSi相にも転換することはない。この状態の試料面に光源を照射すれば、パワーが少ない光源でも短時間に十分に982℃以上の温度に到達し、α−Fe2 Si5 相に変換することが出来る。金属相に転換したら急速に光源を消し急冷すれば500℃近傍になるので、α相の金属のままでパターン化された電極が形成される。
【0045】
以上、レーザ光の焦点位置を金属相化して、この連続繰り返し掃引で希望する電極パターンを得る方法について説明したが、材料の面全体に電極パターンの投影像を照射し、一度に全体の電極パターンを得る方法も考えられる。しかし、電極部分全体の大面積を加熱するレーザの光源には、非常に大きなパワーが必要とされるし、また、原図パターンに印加される熱量が大きくパターンを焼損しかねない。前述の予備加熱法は、もとのレーザのパワーを抑える効果を生むので、電極パターンの一部分を一度の照射で加熱照射して得るには、有効な方法であろう。
【0046】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0047】
【発明の効果】
以上、詳細に説明したように、本発明によれば、β−FeSi2 薄膜の一部分を982℃以上に加熱することにより、その部分をα−Fe2 Si5 相に相転換してその部分を導電電極とするようにしたので、従来は金属膜を蒸着してホトリソグラフィー法で形成していたデバイス電極を形成することなく、平坦表面のままで製造工程を著しく省略することができ、製造コストの廉価なデバイスが構成できるようになった。
【図面の簡単な説明】
【図1】本発明の実施例を示すβ−FeSi2 素子の電極形成方法を実施する装置の模式図である。
【図2】本発明の実施例を示すβ−FeSi2 素子の電極形成工程断面図である。
【図3】鉄とシリコンの2元状態図と加熱により金属化する際の現象を説明する原理図である。
【図4】レーザ焦点で照射する電極形成付近の拡大図である。
【符号の説明】
1,31 試料板(シリコン基板)
2,36 電極
3 加熱点
4 集光レンズ
5 ミラー
6,23,33 レーザビーム
7 ビームスイッチ
8 Nd:YAGレーザ
9 コンピュータ
10 ステージ
11 アブソーバ
21 シリコン基板
22 半導体のβ−FeSi2 薄膜
24 金属体のα−Fe2 Si5
25 恒久的な電極
32 β−FeSi2
34 部位(加熱点)
35 等温線
37 レーザビームの走査方向
38 レーザビームの走査による軌跡
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a semiconductor device in the field of electronics, in which an electrode for conducting an electric current onto an element material plate or a thin film substrate is formed without depositing a metal material from the outside or bonding it by coating. More specifically, the present invention relates to a method of heating a part of β-FeSi 2 to convert it into a metal phase to form an electrode.
[0002]
[Prior art]
2. Description of the Related Art In a conventional semiconductor device, a functional material thin film is formed on a silicon (Si) substrate or a flat substrate material, and electrodes for inputting and outputting signals are provided thereon. In the case of an electrode of a relatively large sample piece of ceramic or a functional material, an electrode wire is wound around the sample end, or the electrode wire is fixed to a part of the surface using a metal paste or various solders.
[0003]
On the other hand, in order to perform fine wiring such as light emission / light reception / memory / IC circuit device using Si or III-V compound semiconductor material, various electrode forming methods have been conventionally developed.
[0004]
In general, an element has been formed by depositing a deposited film, a sputtered film, and an ion plating film of a metal conductor on the element surface and processing it into a fine pattern using photolithography technology.
[0005]
[Problems to be solved by the invention]
A semiconductor element requires a semiconductor material and an electrode material. Since the function of the electrode is to introduce or draw a current to or from the functional semiconductor material, a so-called ohmic contact must be made at the interface between the two, which mechanically adheres to each other and shows normal electrical conduction.
[0006]
To that end, (1) a metal that is a good conductor is selected as an electrode material. Generally, aluminum (Al), copper (Cu), silver (Ag), gold (Au), or the like is used. Although a material having high conductivity is desirable, problems such as corrosion after long-term use may occur depending on the potential difference depending on the atmosphere or temperature used and the combination with a semiconductor material. Since changes due to these phenomena must be avoided, it is important to select an electrode material.
[0007]
In addition, in order to maintain a good bonding state between the semiconductor material and the electrode material, at least foreign substances that hinder mechanical contact must be removed. For example, (2) the surfaces of both are washed well to remove organic impurities, and (3) oxides and dust are removed to increase the degree of mechanical adhesion. As a method of bringing the electrode material into contact with the cleaned surface, a metal film is deposited in a vacuum or a film is formed by a sputtering method.
[0008]
However, the operation of keeping this surface clean is a factor that increases the number of steps and increases the price.
[0009]
Furthermore, in order to process the laminated conductive film into an arbitrary electrode pattern shape, (4) using an expensive photolithographic apparatus, fabricating a pattern original mask → applying resist on the semiconductor film surface → exposing → removing the resist film by etching → acid And the process of etching the metal film with an alkaline solution and completing the electrode pattern.
[0010]
However, after forming a fine metal pattern by this photolithography method, (5) when forming a further metal film electrode thereon, a multilayer metal thin film is formed across the etching step formed in the pretreatment. Is formed. At that time, the phenomenon that the film connecting the lower surface and the upper surface of the step is not sufficiently connected, that is, the so-called step coverage is poor occurs, which causes peeling of the electrode film and disconnection.
[0011]
As described above, in these conventional forming methods, in order to increase the production yield and achieve the high quality and low cost targets of the product, expensive equipment is used, and many process inspections are performed. There was a problem of having to spend time and effort.
[0012]
An object of the present invention is to provide a method for forming an electrode of a β-FeSi 2 element, which can eliminate the above problems, significantly simplify the manufacturing process, and reduce the manufacturing cost.
[0013]
[Means for Solving the Problems]
The present invention, in order to achieve the above object,
[1] A method of forming an electrode for forming an element on a semiconductor β-FeSi 2 thin film or a flat plate, wherein the surface of the β-FeSi 2 material is previously heated to about 600 ° C. in the air or an inert gas atmosphere. while heating to a part of its cause phase conversion into α-Fe 2 Si 5 phase by heating between the beta-FeSi 2 material surface portion to 1212 ° C. at least 982 ° C., was said phase conversion The portion is used as an electrode having good conductivity.
[0014]
[2] The electrode forming method of the beta-FeSi 2 element described in [1], a heat source for heating a portion of said material surface with a laser beam, irradiating said material surface near the focal point of focused laser beam The temperature is raised by heating to cause conversion into a conductive metal crystal phase, and then the laser beam is shut off and the material is rapidly cooled to around room temperature, thereby leaving the metal crystal phase in a conductive portion. And an electrode in which the conductive portion has a predetermined shape is formed.
[0015]
[3] The method for forming an electrode of a β-FeSi 2 element according to the above [2], wherein the heating temperature of the material surface by the laser beam is between 982 ° C. and 1212 ° C., and the α-Fe 2 Si 5 phase is formed. The laser beam irradiation portion is heated, and then the laser beam is cut off and rapidly cooled to around room temperature to leave the α-phase, and an electrode pattern is formed by repeating this process.
[0016]
[4] The method for forming an electrode of a β-FeSi 2 element according to the above [2], wherein an Nd-doped YAG laser is used as the laser light source.
[0017]
In the present invention, when an electrode is formed on the surface of a semiconductor material to form an element, without using a special electrode material to be selected, a special cleaning for obtaining ohmic contact and baking heating after adhesion, and vapor deposition and The step of forming a sputtering film is omitted, and when a film other than an electrode is required, the step coverage problem does not occur.There is no need for a step such as a mask or light exposure, and a high quality β-FeSi film is formed in air or in an inert gas atmosphere. It provides a means for forming two element electrodes.
[0018]
That is, a part of the sample material is heated to a transformation temperature of a semiconductor crystal phase or higher by irradiating a laser, and the part is converted into a metal crystal phase to form a conductor, which is used as an electrode.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0020]
FIG. 1 is a schematic view of an apparatus for converting a part of the β-FeSi 2 phase into α-Fe 2 Si 5 phase by laser heating according to an embodiment of the present invention, and FIG. 2 is a β-FeSi 2 phase according to an embodiment of the present invention. FIG. 4 is a sectional view of an electrode forming step of the device.
[0021]
As shown in FIG. 1, a sample plate (silicon substrate) 1 on which a β-FeSi 2 film has been grown in advance on a Si crystal substrate is placed on a stage 10 which is controlled by a computer 9 and moves so as to draw an electrode pattern. Has been placed.
[0022]
Similarly, a laser beam 6 emitted from an Nd: YAG laser 8 controlled by a computer 9 passes through a mirror 5 for optimally constructing the optical path of the apparatus, a beam switch 7 also controlled by a computer, and a condensing lens. 4 focuses on the heating point 3 on the sample surface. The electrode 2 is formed by patterning a portion of the metal film formed by the heating. The scattered light reflected from the sample surface is absorbed by the absorber 11.
[0023]
A feature of the present invention resides in the fact that the β-FeSi 2 thin film of the device material utilizes a transformation of crystals by heating operation to convert it into α-Fe 2 Si 5 of a metal body.
[0024]
Hereinafter, a method for forming an electrode of a β-FeSi 2 element of the present invention will be described in detail with reference to FIG.
[0025]
(1) First, as shown in FIG. 2A, a semiconductor β-FeSi 2 thin film 22 is formed on a silicon substrate 21.
[0026]
(2) Next, as shown in FIG. 2 (b), a predetermined portion of the β-FeSi 2 thin film 22 is irradiated with a laser beam 23, and heated to 982 ° C. or more, to thereby form a metal α-Fe 2 Convert to Si 5 24.
[0027]
(3) Next, as shown in FIG. 2C, the metal body α-Fe 2 Si 5 24 is rapidly cooled to near room temperature to form a permanent electrode 25.
[0028]
FIG. 3 is a principle diagram for explaining a binary phase diagram of iron and silicon and a phenomenon at the time of metallization by heating.
[0029]
The phase of the intermetallic compound β-FeSi 2 formed with a composition ratio of Fe and Si of 1: 2 is a semiconductor, and this composition exists at a point A on the binary phase diagram. When this material is heated by a laser annealing method or the like, it reaches the β phase decomposition temperature (982 ° C.) point B, and the β-FeSi 2 phase structure is maintained up to this temperature. When the temperature further rises to the point C beyond the point B, the β-FeSi 2 phase structure of the heated portion is decomposed, and a small amount of the ε-FeSi phase D point material and most of the α-Fe 2 The mixed crystal phase is separated into the Si 5 phase E point material. The α-Fe 2 Si 5 phase formed here is a metal phase, which is used as an electrode material.
[0030]
The point in the phase diagram of the material in which most of the heating points have been converted to the α-Fe 2 Si 5 phase is point E. Next, when the material converted to the α phase at the point E is rapidly cooled as it is and lowered to the point F near the room temperature, the material is not separated into a mixed crystal phase of β-FeSi 2 and Si which is a stable thermal equilibrium phase. -Fe 2 Si 5 remains. Since this crystal phase is a metal, it becomes a good conductor of electricity and functions as an electrode material.
[0031]
If the material at point E is allowed to stand at around 900 ° C. to 650 ° C. for a good time without being rapidly cooled to around room temperature, the α-Fe 2 Si 5 phase is separated and precipitated again into β-FeSi 2 semiconductor phase and Si. No metal properties. In order to use the portion converted from the β-FeSi 2 phase by heating to the α-Fe 2 Si 5 phase as an electrode, it is important to rapidly cool to a point F near room temperature.
[0032]
The feature of the present invention is that a portion of the sample film is converted into a metal by causing a crystal transformation by a heating operation, so that when manufacturing a device for forming an electrode on a semiconductor element, a metal for an electrode is attached and deposited from the outside. You don't have to. Since a part of the sample material becomes an electrode with no flat surface on the sample material surface, the contamination between the material and the electrode, which occurred during the conventional electrode formation, was eliminated in principle, Excessive cleaning of the surface is unnecessary. Further, since the contact surface of the material is a flat continuous surface, an electrode in which ohmic contact is completely obtained is formed.
[0033]
The method for forming an electrode of a β-FeSi 2 element of the present invention is characterized in that a necessary portion is heated and converted into a metal phase, so the heating method is not limited to the laser annealing method, and a high-heat flame or a high-heat metal piece tip may be used. A method such as pressure bonding is also possible.
[0034]
Generally, the electrodes of a semiconductor device have a width of 1 mm or less and are formed in a fine pattern of several hundred μm to several tens μm. Therefore, as a heating method for heating and metallizing such a fine part, a heat source is used. It is desirable to use a laser beam that can be made minute. When the laser beam is narrowed down using a lens, the beam diameter applied to the focal point becomes several μm to several tens of μm. This part is metallized, so the beam and sample position can be moved to connect the heating points continuously and freely. An electrode pattern is formed.
[0035]
Laser beams used for heating have various wavelengths. For example, an excimer laser having a strong output in the ultraviolet wavelength range, a semiconductor easily obtained in the green or red visible light range, a He or Ne gas laser, a Cd or Ne: YAG solid laser, and a 10 μm long wavelength CO 2 gas laser. Each has its own characteristics and can be heated, but in order to efficiently absorb light and speed up heating, the light absorption coefficient and reflection coefficient of the material must be selected. That is, light having a wavelength of 0.9 μm to 2 μm has a high absorption coefficient for the β-FeSi 2 film. In this respect, the Nd: YAG laser is most suitable as a light source for implementing the present invention. Although an ultraviolet laser can provide a large energy power, it is not suitable as a heating light source because it has a high energy and causes atoms and molecules of a material to collide and scatter.
[0036]
Also, visible light is highly reflective and is not efficient as a heat source. Long-wavelength lasers have a large focal area, are not suitable for fine electrode patterns, and have low light absorption.
[0037]
The energy required for heating depends on the light absorptivity, thermal conductivity, melting point, specific heat, etc. of the material to be irradiated. However, in order to heat a region having a radius of several 10 μm to around 1000 ° C., 10 +6 W / cm 2 . Energy density is required, and short time in seconds is sufficient. If an ordinary laser having a beam diameter of 1 to 2 mm has an output of several W, a sufficient energy density can be obtained when focusing is performed.
[0038]
When a Nd: YAG laser having a wavelength of 1.06 μm is used for β-FeSi 2 , its light absorption is as high as 10 5, and the thermal conductivity of this material is used for thermoelectric power generation materials. Because the temperature is very low as described above, heating a minute region having a diameter of 50 μm to around 1000 ° C. may be achieved by narrowing down the 10 W output light and irradiating for several seconds.
[0039]
FIG. 4 shows an enlarged cross section of a portion where the laser beam is focused and the sample surface is irradiated.
[0040]
As shown in this figure, when a laser beam 33 is condensed and radiated onto a portion (heating point) 34 on the surface of a β-FeSi 2 phase 32 grown on a sample plate (silicon substrate) 31, the material Heated by light absorption. The temperature of the heating point 34 is high at the center and the heated portion is spread by heat conduction, but the temperature decreases as the distance from the center increases. The line 35 is an isotherm along the heat diffusion direction at this time. Reference numeral 36 denotes an electrode, 37 denotes a scanning direction of the laser beam 33, and 38 denotes a trajectory of the scanning by the laser beam 33.
[0041]
Here, the portion heated sufficiently until the β-FeSi 2 → α-Fe 2 Si 5 phase conversion is caused is converted to a metal phase. In order to use the converted portion as an electrode line, if the position where the beam hits is moved linearly or curvedly, the converted α-Fe 2 Si 5 phase remains on the locus 38. If a single sweep does not have a sufficient width as an electrode, if the beam hit position is shifted from the previous trajectory 38 by the width to convert to the α phase and is swept next to the direction 37, a wider width is obtained. An electrode pattern will be obtained.
[0042]
By repeating this operation to form a desired shape pattern, a device electrode can be obtained.
[0043]
Since the energy density can be increased by narrowing the laser beam, this method is suitable for heating a small area.However, when the energy density cannot be increased, for example, when heating the image irradiation of an incandescent lamp, the irradiation target specimen It is effective to apply a heating bias beforehand. That is, a heater is placed between the sample plate (silicon substrate) and the movable stage, or the entire surface of the sample is irradiated with lamp heater light to raise the sample temperature to a level not exceeding 500 ° C.
[0044]
In this temperature range, the β-FeSi 2 phase of the sample does not change and, of course, does not convert to the α-Fe 2 Si 5 phase or the ε-FeSi phase. By irradiating the sample surface in this state with a light source, even a light source having a low power can sufficiently reach a temperature of 982 ° C. or more in a short time, and can be converted into an α-Fe 2 Si 5 phase. If the light source is rapidly turned off after the conversion to the metal phase, and the light source is rapidly cooled, the temperature will be around 500 ° C., so that a patterned electrode is formed with the α-phase metal as it is.
[0045]
The method of obtaining the desired electrode pattern by the continuous repetitive sweeping by converting the focal position of the laser beam to the metal phase has been described above. However, the entire surface of the material is irradiated with the projected image of the electrode pattern, and the entire electrode pattern is formed at once. Is also conceivable. However, a laser light source for heating a large area of the entire electrode portion requires a very large power, and a large amount of heat is applied to the original pattern, which may burn the pattern. Since the above-mentioned preheating method produces an effect of suppressing the power of the original laser, it may be an effective method for heating and irradiating a part of the electrode pattern with one irradiation.
[0046]
It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
[0047]
【The invention's effect】
As described above in detail, according to the present invention, by heating a part of the β-FeSi 2 thin film to 982 ° C. or higher, the part is converted into the α-Fe 2 Si 5 phase, and the part is converted to the α-Fe 2 Si 5 phase. Since the electrodes are used as conductive electrodes, the manufacturing process can be significantly omitted with a flat surface without forming device electrodes, which were conventionally formed by depositing a metal film by photolithography. It is now possible to construct an inexpensive device.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus for performing a method of forming an electrode of a β-FeSi 2 element according to an embodiment of the present invention.
FIG. 2 is a sectional view of an electrode forming process of a β-FeSi 2 element showing an embodiment of the present invention.
FIG. 3 is a principle diagram illustrating a binary phase diagram of iron and silicon and a phenomenon at the time of metallization by heating.
FIG. 4 is an enlarged view near the formation of an electrode irradiated with a laser focus.
[Explanation of symbols]
1,31 Sample plate (silicon substrate)
2,36 Electrode 3 Heating point 4 Condenser lens 5 Mirror 6,23,33 Laser beam 7 Beam switch 8 Nd: YAG laser 9 Computer 10 Stage 11 Absorber 21 Silicon substrate 22 Semiconductor β-FeSi 2 thin film 24 Metal body α -Fe 2 Si 5
25 permanent electrode 32 β-FeSi 2 phase 34 site (heating point)
35 Isothermal line 37 Laser beam scanning direction 38 Trajectory of laser beam scanning

Claims (4)

半導体のβ−FeSi2 薄膜または平面板上に素子を構成するための電極を形成する方法であって、
大気中または不活性ガス雰囲気において前記β−FeSi 2 材料表面をあらかじめ600℃近傍まで加熱しながら、前記β−FeSi2 材料表面部分を少なくとも982℃から1212℃までの間で加熱することによってその一部をα−Fe2 Si5 相に相転換させ、該相転換させた部分を導電性の良好な電極として用いることを特徴とするβ−FeSi2 素子の電極形成方法。
A method of forming an electrode for forming an element on a semiconductor β-FeSi 2 thin film or a flat plate,
While heating to a pre-600 ° C. vicinity of the beta-FeSi 2 material surface in air or in an inert gas atmosphere, As a by heating between the beta-FeSi 2 material surface portion to 1212 ° C. at least 982 ° C. the part is phase converted to α-Fe 2 Si 5 phase, electrode forming method of the beta-FeSi 2 element characterized by using a portion obtained by said phase transformation as a good electrode conductivity.
請求項1記載のβ−FeSi2 素子の電極形成方法において、前記材料表面の一部分を加熱する熱源をレーザ光とし、該レーザ光を絞った焦点近傍で前記材料表面を照射することによって加熱昇温し、導電性のある金属結晶相への変換を引き起こし、その後、前記レーザ光を遮断して前記材料を急激に室温付近まで冷却することによってその部分を前記金属結晶相のまま導電部とし、該導電部を所定の形状にした電極を形成することを特徴とするβ−FeSi2 素子の電極形成方法。 2. The method for forming an electrode of a β-FeSi 2 element according to claim 1, wherein a heat source for heating a part of the material surface is a laser beam, and the material surface is irradiated near the focal point where the laser beam is narrowed. Then, a conversion to a conductive metal crystal phase is caused, and thereafter, the laser beam is shut off and the material is rapidly cooled to around room temperature to make that part a conductive part in the metal crystal phase, A method for forming an electrode of a β-FeSi 2 element, comprising forming an electrode having a conductive portion having a predetermined shape. 請求項2記載のβ−FeSi2 素子の電極形成方法において、前記レーザ光による前記材料表面の加熱温度を982℃から1212℃までの間とし、前記α−Fe2 Si5 相になった前記レーザ光の照射部分を加熱後に前記レーザ光を遮断して室温付近まで急冷することによってα−相のまま残し、この工程の繰り返しによって電極パターンを形成することを特徴とするβ−FeSi2 素子の電極形成方法。3. The method for forming an electrode of a β-FeSi 2 element according to claim 2, wherein a heating temperature of the material surface by the laser beam is between 982 ° C. and 1212 ° C., and the α-Fe 2 Si 5 phase is formed by the laser. An electrode of a β-FeSi 2 element, characterized in that, after heating the irradiated portion, the laser beam is cut off and rapidly cooled to around room temperature to leave the α-phase, and an electrode pattern is formed by repeating this process. Forming method. 請求項2記載のβ−FeSi2 素子の電極形成方法において、前記レーザ光源としてNd添加YAGレーザを用いることを特徴とするβ−FeSi2 素子の電極形成方法。In the electrode forming process of beta-FeSi 2 element according to claim 2 wherein, the electrode forming method of the beta-FeSi 2 element characterized by using a Nd-doped YAG laser as the laser light source.
JP2001157087A 2001-05-25 2001-05-25 Method for forming electrode of β-FeSi2 element Expired - Fee Related JP3603087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001157087A JP3603087B2 (en) 2001-05-25 2001-05-25 Method for forming electrode of β-FeSi2 element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001157087A JP3603087B2 (en) 2001-05-25 2001-05-25 Method for forming electrode of β-FeSi2 element

Publications (2)

Publication Number Publication Date
JP2002353526A JP2002353526A (en) 2002-12-06
JP3603087B2 true JP3603087B2 (en) 2004-12-15

Family

ID=19001002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001157087A Expired - Fee Related JP3603087B2 (en) 2001-05-25 2001-05-25 Method for forming electrode of β-FeSi2 element

Country Status (1)

Country Link
JP (1) JP3603087B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943388B1 (en) 2004-03-18 2005-09-13 National Institute Of Advanced Industrial Science And Technology Sheet-type β-FeSi2 element, and method and device for manufacturing the same
US8728340B2 (en) * 2011-12-20 2014-05-20 Japan Science And Technology Agency Method for manufacturing thermoelectric material
JP6502193B2 (en) * 2015-06-26 2019-04-17 国立研究開発法人産業技術総合研究所 Silicon microcrystalline composite film, thermoelectric material and method for producing them

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169283A (en) * 1981-04-11 1982-10-18 Tdk Corp Thermoelectric element
JP3472233B2 (en) * 1992-10-09 2003-12-02 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JPH0969653A (en) * 1995-08-31 1997-03-11 Isuzu Motors Ltd Thermoelectric material and its manufacturing method

Also Published As

Publication number Publication date
JP2002353526A (en) 2002-12-06

Similar Documents

Publication Publication Date Title
JP3436858B2 (en) Manufacturing method of thin film solar cell
US5173441A (en) Laser ablation deposition process for semiconductor manufacture
JP3398376B2 (en) Method of manufacturing via hole in polymer dielectric layer
JP5898699B2 (en) Laser removal of conductive seed layer
JP2009004669A (en) Method for manufacturing metal wiring substrate and metal wiring substrate formed by using it
CN103993261A (en) Preparation method of transparent conductive thin film with grating structure
JP3810629B2 (en) Semiconductor device and method for manufacturing the same
JP3603087B2 (en) Method for forming electrode of β-FeSi2 element
US4549064A (en) Laser treatment of silicon nitride
GB2244374A (en) Radiation beam bonding of semiconductor device contacts
JP2947824B2 (en) Circuit substrate and method of its surface treatment
Kántor et al. Dynamics of long‐pulse laser transfer of micrometer‐sized metal patterns as followed by time‐resolved measurements of reflectivity and transmittance
US5230970A (en) Method of forming metal regions
JP4515766B2 (en) Saturable absorber and method for manufacturing saturable absorber
JP3259156B2 (en) Circuit board surface treatment method
JPS60227484A (en) Manufacture of photoelectric conversion semiconductor device
JP2002231986A (en) Method for manufacturing integrated thin film solar battery
JP2004273771A (en) Method for manufacturing semiconductor device
JP2594972B2 (en) Wiring forming method and apparatus
JP3730544B2 (en) Electrode forming method and apparatus for β-FeSi2 element
JP4078137B2 (en) How to set the laser beam pulse width
JPH09260303A (en) Semiconductor manufacturing equipment and cleaning thereof
JPH107478A (en) Metallization of aluminum nitride substrate and aluminum nitride substrate
JPWO2011027533A1 (en) Thin film solar cell manufacturing method and manufacturing apparatus thereof
JP3009157B2 (en) Method and apparatus for forming wiring film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040120

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees