JP4078137B2 - How to set the laser beam pulse width - Google Patents

How to set the laser beam pulse width Download PDF

Info

Publication number
JP4078137B2
JP4078137B2 JP2002195562A JP2002195562A JP4078137B2 JP 4078137 B2 JP4078137 B2 JP 4078137B2 JP 2002195562 A JP2002195562 A JP 2002195562A JP 2002195562 A JP2002195562 A JP 2002195562A JP 4078137 B2 JP4078137 B2 JP 4078137B2
Authority
JP
Japan
Prior art keywords
laser beam
pulse width
film
groove
back electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002195562A
Other languages
Japanese (ja)
Other versions
JP2004039891A (en
Inventor
雅博 黒田
和孝 宇田
康弘 山内
聡司 小鍛冶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002195562A priority Critical patent/JP4078137B2/en
Publication of JP2004039891A publication Critical patent/JP2004039891A/en
Application granted granted Critical
Publication of JP4078137B2 publication Critical patent/JP4078137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Drying Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は薄膜太陽電池の製造方法及び装置に関し、特に集光させたレーザ光による細いビームを照射して溝を形成するレーザスクライブ法で薄膜太陽電池の製造を行う場合に適用して有用なものである。
【0002】
【従来の技術】
図5は従来技術に係る薄膜太陽電池の基本構造を示す構造図である。同図において、1はガラス等で形成した透明基板、2a,2b,2c…は分離形成された酸化錫等で形成した透明電極膜、3a,3b,3c…は各透明電極膜2a,2b,2c…上に分離形成された珪素等の半導体膜、4a,4b,4c…は各半導体膜3a,3b,3c…上に形成され且つ図中右隣の透明電極膜2b,2c…に部分的に重畳された金属膜からなる裏面電極膜である。かかる透明電極膜2a,2b,2c…乃至裏面電極膜4a,4b,4c…等の各積層体により隣接するもの同士が直列に接続された光電変換セル5a,5b,5c…を構成している。各半導体膜3a,3b,3c…は、その内部に平行なPIN接合を含み、透明基板1及び透明電極2a,2b,2cを順次介する光の入射により光起電力を発生する。この結果、各半導体膜3a,3b,3c…内で発生した光起電力は、裏面電極膜4a,4b,4c…を介して隣接するもの同士が直列的に接続されて相加され、当該薄膜太陽電池の出力電圧を規定する。
【0003】
かかる構成の薄膜太陽電池の製造には、通常細密加工性に優れているレーザ加工技術が用いられているが、このレーザ加工による薄膜太陽電池の製造行程を図を参照しながら説明しておく。
【0004】
第1の工程の様子を示す図6において、10は透明基板、11は透明電極膜である。同図に示す工程では、厚さ1mm〜4mm、面積10cm2 〜150cm2 程度の透明基板10の全上面に、厚さ2000Å〜7000Åの酸化錫SnO2 からなる透明電極膜11を被着する。
【0005】
第2の工程の様子を示す図7において、11a,11b,11cは分離された各透明電極膜、11dは隣接間隔部である溝、L1は溝11dの溝幅、LBはレーザビームである。同図に示す工程では、レーザビームLBに照射により隣接間隔部である溝11dを形成し、個別の各透明電極膜11a,11b,11cを分離、形成する。ここで使用するレーザの波長は通常1.06μmのNd:YAGレーザを好適に使用することができ、隣接間隔部11dの溝幅L1は約50μm程度に設定される。
【0006】
第3の工程の様子を示す図8において、12は半導体膜である。同図に示す工程では、各透明電極膜11a,11b,11cの表面を含んで基板10上全面に光電変換に有効に寄与する厚さ3000Å〜5000Åの半導体膜12を被着する。
【0007】
第4の工程の様子を示す図9において、12dは隣接間隔部である溝、L2は溝12dの溝幅、12a,12b,12cは分離・形成された半導体膜である。同図に示す工程では、透明基板10の膜面と反対側から(図中の矢印方向から)レーザビームLBを照射して溝12dを形成することにより個別の各半導体膜12a,12b,12cを分離・形成する。ここで、溝12dの溝幅L2は約80μm程度に設定される。また、使用するレーザは、波長0.53μmのパルスNd:YAGレーザが、通常用いられる。この波長では、各透明電極膜11a,11b,11cの光吸収率は小さく、殆どが透過するため、レーザ光のエネルギの大部分は各半導体膜12a,12b,12cで吸収される。したがって各半導体膜のみを選択して除去することができる。
【0008】
第5の工程の様子を示す図10において、13は裏面電極膜である。同図に示す工程では、裏面電極膜13を、各半導体膜12a,12b,12c及び各透明電極膜12a,12b,12cの各露出部分を含んで基板10の全上面で3000Å〜5000Å程度の厚さに被着する。ここで、裏面電極膜13は、通商アルミニウム又は銀で形成する。
【0009】
第6の工程の様子を示す図11において、13a,13b,13cは分離された個別の裏面電極膜、13dは隣接間隔部である溝、L3は溝13dの溝幅、14a,14b,14cは分離、形成した各光電変換セルである。同図に示す工程では、レーザビームLBの照射により各半導体膜12a,12b,12cの一部及び裏面電極膜13a,13b,13cの一部を除去して溝13dを形成することにより、個別の裏面電極膜13a,13b,13c…を形成する。ここで使用するレーザは、図9に示す第4の工程と同様に、通常、波長0.53μmのパルスNd:YAGレーザを使用する。また、当該工程でも、レーザビームLBを、透明基板10の膜面と反対側から(図中の矢印方向から)照射している。したがって、この場合のレーザ光は、各透明電極膜11a,11b,11cを透過して半導体層12に到達し、同層にて吸収される。吸収されたエネルギにより半導体層12は蒸発するが、そのガス圧力で裏面電極膜13a,13b,13cの一部を除去して溝13dを形成する。かくして、各光電変換領域14a,14b,14c…が電気的に直列接続される。
【0010】
当該第6の工程において、溝13dの溝幅L3は細いほど好ましい。当該薄膜太陽電池の発電のための有効面積を減少させないためである。このため、通常は約40〜80μmに設定される。
【0011】
第6の工程により溝13dを形成した後、裏面電極膜13a,13b,13cの表面に保護膜を形成して製品とする。
【0012】
【発明が解決しようとする課題】
上述の如く、薄膜太陽電池の製造工程の最終工程においては、レーザビームLBの照射により各半導体膜12a,12b,12cの一部及び裏面電極膜13a,13b,13cの一部を同時に除去して溝13dを形成しているが、この溝13dの形成に伴い、溝13dの開口部にバリを発生することがある。図12はこのバリを説明するための図であり、同図中、10は透明基板、11は透明電極膜、12は半導体層、13は裏面電極膜である。同図は、レーザビームLBの照射により溝13dを形成した結果、溝13dの開口端部に外側にめくれたバリ13eが発生した状態を示している。
【0013】
かかるバリ13eが発生した場合、裏面電極13の表面に形成する保護膜によりこのバリ13eが当該薄膜太陽電池の内側に押さえ込まれて反対側の透明電極11に接触する場合が発生する。バリ13eは裏面電極13と同材質の導電体であるため、透明電極11に接触した場合には、これら透明電極11及び裏面電極13間を短絡してしまう。したがって、半導体層12で発生した起電力の一部が無駄に消費され、当該薄膜太陽電池の性能劣化の原因となる。したがって、裏面電極13における前記バリ13eの発生は可及的に除去しなければならない。
【0014】
本発明は、上記従来技術の問題点に鑑み、隣接セルとの間で裏面電極に所定の溝を形成する際の、この溝の開口部におけるバリの発生を除去し得る薄膜太陽電池の製造方法及び装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成する本発明は次の知見を基礎とするものである。すなわち、図12に示す工程において発生するバリ13eは、半導体膜12が薄い場合(例えば3000Å以下)又は裏面電極膜13が厚い場合(例えば3000Å以上)に発生し易くなる。これは次の様な理由に依るものと考えられる。すなわち、溝13dは、レーザビームLBを、透明基板10側から照射してこのレーザビームLBを半導体膜12に吸収させ、これに伴い半導体膜12を蒸発させて体積を膨張させ、このときの圧力で裏面電極膜13を吹き飛ばすことにより形成していると考えられる。したがって、半導体膜12が薄い場合には、その分蒸発する半導体膜12の量も少なくなり、十分な体積膨張(爆発力)が得られず、また裏面電極膜13が厚い場合には、その分除去対象部分の強度が大きく、これを除去するためのエネルギーも大きなものが必要になるからである。
【0016】
ここで、バリ13eの発生を抑制するための手段として、レーザビームLBのレーザ密度を高くすること、レーザビームLBの強度分布(レーザプロファイル)を均一にすることが考えられる。しかし、レーザ密度が大きくなるとこのレーザビームLBの照射により透明電極11の熱的変質を招来するという新たな問題を生起する。したがって、かかる制限により適正なレーザ密度が決まり、これを変更するのは一般に得策ではない。一方、レーザプロファイルは一般にその周辺部のエネルギー密度が小さく、中央部程大きくなる(ガウス分布となっている)ため、周辺部のエネルギー密度を向上させるべく、その均一化を図ることができれば、これも有効なバリ13e発生防止手段となり得る。しかし、レーザプロファイルはレーザ発振器の特性により一義的に定まり、一般に人為的に調整し得る要素とはなり得ない。したがって、レーザプロファイルの均一化によるバリ発生抑制手段も有効な対策とはなり得ない。
【0017】
そこで、本発明者等は照射するレーザビームLBのパルス幅に注目した。すなわち、バリ13eの発生による影響を透明電極11と裏面電極膜13との間の絶縁抵抗を介して評価することに思い至った。すなわち、パルス幅を短くすると半導体膜12を蒸発させて体積を膨張させ、このときの圧力で裏面電極膜13を吹き飛ばすことが効率的に行われる。その理由は、光が半導体膜12で吸収されて熱に変わった後、半導体膜12の局部温度を上昇させ蒸発に至る迄の間に、周囲への熱伝導も同時に起きる。この周囲への熱伝導は半導体膜12の局部的な温度上昇には寄与せず、無駄なエネルギであると同時に、透明電極11の熱的変質を引き起こす。パルス幅が短くなると、同じパルスエネルギであっても単位時間当たりのエネルギが増大するので、周囲への熱伝導が起きる前に半導体膜12の局部的温度上昇が大きくなる。したがって、パルス幅を短くすると膨張力が大きくなるので、バリ13eが発生しにくくなる。そこで、レーザビームLBのパルス幅を変えて溝13dを形成し、このようにして形成した各薄膜太陽電池における透明電極11と裏面電極膜13間の絶縁抵抗を測定した。
【0018】
この測定結果を図1及び図2に示す。両図はレーザビームLBのパルス幅(ns)に対する電極面積0.5(cm2)当たりの絶縁抵抗特性を示すグラフである。図1に示す場合の試料は、その半導体膜12の膜厚が3000Å近傍で、裏面電極膜13の膜厚が2900Å近傍である。図2に示す場合の試料は、その半導体膜12の膜厚が2300Å近傍で、裏面電極膜13の膜厚が3500Å近傍である。
【0019】
この結果、前記絶縁抵抗の値は、レーザビームLBのパルス幅と密接な関係があり、このレーザビームLBのパルス幅が小さくなるに従い高くなる傾向があることが判明した。これは、レーザビームLBのパルス幅が小さくなるに従いバリ13eの発生が抑制されていることを意味するものと考えられる。そして、図1の場合、薄膜太陽電池として十分な性能を発揮し得る、絶縁抵抗が5(kΩ)以上を得るためには、パルス幅が50(ns)以下であれば良く、また図2の場合にはパルス幅が30(ns)以下であれば良いことが分かる。
【0020】
ここで、半導体膜12の膜厚は、発電効率の観点から、通常2000Å〜4000Åの範囲で形成され、裏面電極膜13の膜厚はレーザビームLBの反射効率の観点から、通常3000Å〜2000Åの範囲で形成される。したがって、このような通常の膜厚範囲で半導体膜12の膜厚が比較的厚い場合、又は裏面電極膜13の膜厚が比較的薄い場合には、パルス幅を50(ns)以下とすれば良いが、半導体膜12の膜厚が比較薄い場合、又は裏面電極膜13の膜厚が比較的厚い場合にはパルス幅を30(ns)以下とする必要がある。何れにしてもパルス幅を30(ns)以下とすれば十分である。
【0021】
なお、バリ13eの発生は、レーザビームLBを、透明基板10側から照射して溝13dを形成する場合に固有の現象である。すなわち、裏面電極13側からレーザビームLBを照射して溝13dを形成する場合には発生しない。
【0022】
上述の如き知見に基づく本発明の構成は、次の点を特徴とする。
【0023】
1) 透明基板上に透明電極膜、半導体膜及び裏面電極膜をこの順序で積層し、前記透明基板側よりレーザビームをパルス状に断続的に照射しながら、前記透明基板と前記レーザビームとを相対的に移動させるとともに、前記レーザビームにより前記半導体膜及び前記裏面電極膜を同時に除去し、隣接するセルを隔離するための溝を形成して単位セルを複数個直列に接続した薄膜太陽電池を形成する薄膜太陽電池の製造方法における、レーザビームのパルス幅の設定方法であって
前記レーザビームを同じパルスエネルギで、パルス幅を変えて溝を形成し、各パルス幅に対して、溝形成後の前記透明電極膜と前記裏面電極膜との絶縁抵抗の特性を示すグラフを求め、パルス幅が短くなるに伴い前記絶縁抵抗が急激に増加し始めるパルス幅を、同じパルスエネルギでバリの発生を抑制するように溝を形成するためのレーザビームのパルス幅の上限とすること。
【0027】
【発明の実施の形態】
以下本発明の実施の形態を図面に基づき詳細に説明する。
【0028】
図1は本発明の実施の形態に係る薄膜太陽電池の製造装置であるレーザ加工機を概念的に示す説明図である。同図に示すように、レーザ発振器81から出射したパルスレーザ光であるレーザビーム83は、ミラー82で反射させた後、レンズ84で集光させてXYステージ86上の基板(製造過程の薄膜太陽電池)85に照射するようになっている。ここで、XYステージ86上の基板85はレーザビーム83に対してXY平面(水平面)上を移動することにより溝13d(図12参照。)等の必要な加工が施される。また、レーザ発振器81は、制御部87の制御によりその出力パルスの幅、繰り返し周期等が制御される。
【0029】
レーザビーム83による上記溝加工は、図4に示すように、レーザ加工機から出射したレーザビーム83を断面円形のビームとして基板85に照射するとともに、レーザビーム83に対する基板85の相対移動により隣接するビーム88の一部(20%程度)が重畳されるようにしてビーム88を連続させることにより所定の溝13d(図12参照)等を形成する。このときの溝加工速度は、
レーザビーム径×0.8×レーザのパルス繰り返し周波数
で与えられる。
【0030】
また、レーザ発振器81から出射するパルスレーザ光のパルス幅は50(ns)以下、さらに好ましくは30(ns)以下とする。このパルス幅の調整は制御部87の制御により行う。
【0031】
かかるレーザ加工機は、薄膜太陽電池の製造工程のうち、図9に示す第6の工程で使用する。すなわち、図4乃至図8に示す工程を経た後、図9に示す工程で溝13dを形成する際、レーザ発振器81から出射するパルスレーザ光のパルス幅を50(ns)以下、さらに好ましくは30(ns)以下として図8に示す半導体膜12a,12b,12c及び裏面電極膜13の一部を除去し、図9に示す溝13dを形成する。
【0032】
【発明の効果】
以上実施の形態とともに具体的に説明した通り、〔請求項1〕に記載する発明は、透明基板上に透明電極膜、半導体膜及び裏面電極膜をこの順序で積層し、前記透明基板側よりレーザビームをパルス状に断続的に照射しながら、前記透明基板と前記レーザビームとを相対的に移動させるとともに、前記レーザビームにより前記半導体膜及び前記裏面電極膜を同時に除去し、隣接するセルを隔離するための溝を形成して単位セルを複数個直列に接続した薄膜太陽電池を形成する薄膜太陽電池の製造方法における、レーザビームのパルス幅の設定方法であって前記レーザビームを同じパルスエネルギで、パルス幅を変えて溝を形成し、各パルス幅に対して、溝形成後の前記透明電極膜と前記裏面電極膜との絶縁抵抗の特性を示すグラフを求め、パルス幅が短くなるに伴い前記絶縁抵抗が急激に増加し始めるパルス幅を、同じパルスエネルギでバリの発生を抑制するように溝を形成するためのレーザビームのパルス幅の上限とするので、
図1、図2に示すように、電極面積0.5(cm2)当たりの絶縁抵抗が5(kΩ)となり、薄膜太陽電池としての良好な性能を確保し得る。これは、裏面電極膜に対する溝加工の際のバリの発生を抑制し得たためと考えられ、結果としてバリの発生を抑制し、良好な発電効率を確保した薄膜太陽電池を得ることができる。
【0033】
又、図1に示すように、電極面積0.5(cm2)当たりの絶縁抵抗が5(kΩ)となり、薄膜太陽電池としての良好な性能を確保し得る。これは、特に半導体膜が比較的厚い場合、又は裏面電極膜が比較的薄い場合において裏面電極膜に対する溝加工の際のバリの発生を抑制し得たためと考えられ、結果としてバリの発生を抑制し、良好な発電効率を確保した薄膜太陽電池を得ることができる。又、図2に示すように、電極面積0.5(cm2)当たりの絶縁抵抗が5(kΩ)となり、薄膜太陽電池としての良好な性能を確保し得る。これは、特に半導体膜が比較的薄い場合、又は裏面電極膜が比較的厚い場合において裏面電極膜に対する溝加工の際のバリの発生を抑制し得たためと考えられ、結果としてバリの発生を抑制し、良好な発電効率を確保した薄膜太陽電池を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る薄膜太陽電池の製造方法の実施の形態を実現するに当たり測定したレーザパルス幅と薄膜太陽電池の両電極間の絶縁抵抗との関係を示すグラフ(半導体膜が厚く、裏面電極膜が薄い場合。)である。
【図2】本発明に係る薄膜太陽電池の製造方法の実施の形態を実現するに当たり測定したレーザパルス幅と薄膜太陽電池の両電極間の絶縁抵抗との関係を示すグラフ(半導体膜が薄く、裏面電極膜が厚い場合。)である。
【図3】本発明の実施の形態に係る薄膜太陽電池の製造装置であるレーザ加工機を概念的に示す説明図である。
【図4】図3に示すレーザ加工機による溝加工の様子を概念的に示す説明図である。
【図5】薄膜太陽電池の一般的な構造を示す構造図である。
【図6】図3に示す薄膜太陽電池の第1の製造工程の様子を示す説明図である。
【図7】図3に示す薄膜太陽電池の第2の製造工程の様子を示す説明図である。
【図8】図3に示す薄膜太陽電池の第3の製造工程の様子を示す説明図である。
【図9】図3に示す薄膜太陽電池の第4の製造工程の様子を示す説明図である。
【図10】図3に示す薄膜太陽電池の第5の製造工程の様子を示す説明図である。
【図11】図3に示す薄膜太陽電池の第6の製造工程の様子を示す説明図である。
【図12】薄膜太陽電池の製造に当たり、従来問題となっていた裏面電極におけるバリの状態を示す説明図である。
【符号の説明】
10 透明基板
11 透明電極
12 半導体膜
13 裏面電極膜
13d 溝
13e バリ
81 レーザ発振器
83 レーザビーム
85 基板
86 XYステージ
87 制御部
88 レーザビーム
LB レーザビーム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for manufacturing a thin-film solar cell, and is particularly useful when applied to the manufacture of a thin-film solar cell by a laser scribing method in which a groove is formed by irradiating a narrow beam with focused laser light. It is.
[0002]
[Prior art]
FIG. 5 is a structural diagram showing the basic structure of a thin film solar cell according to the prior art. In the figure, 1 is a transparent substrate formed of glass or the like, 2a, 2b, 2c... Is a transparent electrode film formed of separately formed tin oxide or the like, 3a, 3b, 3c. The semiconductor films 4a, 4b, 4c,... Formed separately on the semiconductor film 2c are partially formed on the respective semiconductor films 3a, 3b, 3c, and the transparent electrode films 2b, 2c,. It is a back surface electrode film which consists of a metal film superimposed on. These transparent electrode films 2a, 2b, 2c... To back electrode films 4a, 4b, 4c... Constitute adjacent photoelectric elements 5a, 5b, 5c. . Each of the semiconductor films 3a, 3b, 3c,... Includes a PIN junction parallel to the inside thereof, and generates a photovoltaic force by the incidence of light sequentially through the transparent substrate 1 and the transparent electrodes 2a, 2b, 2c. As a result, the photovoltaic power generated in each of the semiconductor films 3a, 3b, 3c... Is added by connecting the adjacent ones in series via the back electrode films 4a, 4b, 4c. Specifies the output voltage of the solar cell.
[0003]
For manufacturing a thin film solar cell having such a configuration, a laser processing technique that is usually excellent in fine workability is used. The manufacturing process of a thin film solar cell by this laser processing will be described with reference to the drawings.
[0004]
In FIG. 6 showing the state of the first step, 10 is a transparent substrate, and 11 is a transparent electrode film. In the step shown in the figure, the thickness of 1 mm to 4 mm, the total top surface area of 10cm 2 ~150cm 2 about the transparent substrate 10, depositing a transparent electrode film 11 made of tin oxide SnO 2 having a thickness of 2000A~7000A.
[0005]
In FIG. 7 showing the state of the second step, 11a, 11b and 11c are separated transparent electrode films, 11d is a groove which is an adjacent interval portion, L1 is the groove width of the groove 11d, and LB is a laser beam. In the process shown in the figure, a groove 11d as an adjacent interval is formed by irradiating the laser beam LB, and the individual transparent electrode films 11a, 11b, and 11c are separated and formed. The wavelength of the laser used here is preferably a 1.06 μm Nd: YAG laser, and the groove width L1 of the adjacent spacing portion 11d is set to about 50 μm.
[0006]
In FIG. 8 showing the state of the third step, reference numeral 12 denotes a semiconductor film. In the process shown in the figure, a semiconductor film 12 having a thickness of 3000 to 5000 mm that effectively contributes to photoelectric conversion is deposited on the entire surface of the substrate 10 including the surfaces of the transparent electrode films 11a, 11b, and 11c.
[0007]
In FIG. 9 showing the state of the fourth step, 12d is a groove which is an adjacent interval portion, L2 is the groove width of the groove 12d, and 12a, 12b and 12c are separated and formed semiconductor films. In the process shown in the figure, the individual semiconductor films 12a, 12b, and 12c are formed by irradiating the laser beam LB from the opposite side of the film surface of the transparent substrate 10 (from the direction of the arrow in the figure) to form the grooves 12d. Separate and form. Here, the groove width L2 of the groove 12d is set to about 80 μm. As the laser used, a pulse Nd: YAG laser having a wavelength of 0.53 μm is usually used. At this wavelength, the transparent electrode films 11a, 11b, and 11c have a small light absorption rate, and most of the light is transmitted. Therefore, most of the energy of the laser light is absorbed by the semiconductor films 12a, 12b, and 12c. Therefore, only each semiconductor film can be selected and removed.
[0008]
In FIG. 10 showing the state of the fifth step, 13 is a back electrode film. In the process shown in the figure, the back electrode film 13 has a thickness of about 3000 to 5000 mm on the entire upper surface of the substrate 10 including the exposed portions of the semiconductor films 12a, 12b, and 12c and the transparent electrode films 12a, 12b, and 12c. Adhere to. Here, the back electrode film 13 is formed of trade aluminum or silver.
[0009]
In FIG. 11 showing the state of the sixth step, 13a, 13b and 13c are separated individual back electrode films, 13d is a groove which is an adjacent interval portion, L3 is a groove width of the groove 13d, and 14a, 14b and 14c are Each photoelectric conversion cell is separated and formed. In the process shown in the figure, by irradiation with the laser beam LB, a part of each of the semiconductor films 12a, 12b, 12c and a part of the back electrode films 13a, 13b, 13c are removed to form the grooves 13d. Back electrode films 13a, 13b, 13c... Are formed. The laser used here is normally a pulsed Nd: YAG laser having a wavelength of 0.53 μm, as in the fourth step shown in FIG. Also in this process, the laser beam LB is irradiated from the side opposite to the film surface of the transparent substrate 10 (from the arrow direction in the figure). Accordingly, the laser light in this case passes through the transparent electrode films 11a, 11b, and 11c, reaches the semiconductor layer 12, and is absorbed by the same layer. Although the semiconductor layer 12 evaporates due to the absorbed energy, a part of the back electrode films 13a, 13b, and 13c is removed by the gas pressure to form the groove 13d. Thus, the photoelectric conversion regions 14a, 14b, 14c... Are electrically connected in series.
[0010]
In the sixth step, the groove width L3 of the groove 13d is preferably as narrow as possible. This is because the effective area for power generation of the thin film solar cell is not reduced. For this reason, it is usually set to about 40 to 80 μm.
[0011]
After forming the groove 13d by the sixth step, a protective film is formed on the surface of the back electrode films 13a, 13b, and 13c to obtain a product.
[0012]
[Problems to be solved by the invention]
As described above, in the final step of the manufacturing process of the thin film solar cell, a part of each of the semiconductor films 12a, 12b, and 12c and a part of the back electrode films 13a, 13b, and 13c are simultaneously removed by irradiation with the laser beam LB. Although the groove 13d is formed, burrs may be generated at the opening of the groove 13d as the groove 13d is formed. FIG. 12 is a diagram for explaining this burr, in which 10 is a transparent substrate, 11 is a transparent electrode film, 12 is a semiconductor layer, and 13 is a back electrode film. This figure shows a state in which a burr 13e turned outward is generated at the opening end of the groove 13d as a result of forming the groove 13d by irradiation with the laser beam LB.
[0013]
When such a burr 13e is generated, there is a case where the burr 13e is pressed inside the thin film solar cell by the protective film formed on the surface of the back electrode 13 and comes into contact with the transparent electrode 11 on the opposite side. Since the burr 13 e is a conductor made of the same material as the back electrode 13, when the burr 13 e comes into contact with the transparent electrode 11, the transparent electrode 11 and the back electrode 13 are short-circuited. Therefore, a part of the electromotive force generated in the semiconductor layer 12 is consumed wastefully, causing the performance deterioration of the thin film solar cell. Therefore, the generation of the burr 13e in the back electrode 13 must be removed as much as possible.
[0014]
In view of the above-described problems of the prior art, the present invention provides a method for manufacturing a thin-film solar cell that can eliminate the occurrence of burrs at the opening of a groove when a predetermined groove is formed on a back electrode between adjacent cells. And an apparatus.
[0015]
[Means for Solving the Problems]
The present invention that achieves the above object is based on the following knowledge. That is, the burr 13e generated in the process shown in FIG. 12 is likely to occur when the semiconductor film 12 is thin (for example, 3000 mm or less) or when the back electrode film 13 is thick (for example, 3000 mm or more). This is thought to be due to the following reasons. That is, the groove 13d irradiates the laser beam LB from the transparent substrate 10 side and absorbs the laser beam LB in the semiconductor film 12, and evaporates the semiconductor film 12 and expands the volume accordingly. It is considered that the back electrode film 13 is formed by blowing away. Therefore, when the semiconductor film 12 is thin, the amount of the semiconductor film 12 to be evaporated is reduced accordingly, so that sufficient volume expansion (explosive force) cannot be obtained, and when the back electrode film 13 is thick, that amount. This is because the strength of the portion to be removed is high, and a large amount of energy is required to remove it.
[0016]
Here, as means for suppressing the generation of the burr 13e, it is conceivable to increase the laser density of the laser beam LB and to make the intensity distribution (laser profile) of the laser beam LB uniform. However, when the laser density is increased, a new problem arises in that the laser beam LB is irradiated to cause thermal deterioration of the transparent electrode 11. Therefore, such limitations determine the proper laser density and it is generally not a good idea to change it. On the other hand, the laser profile generally has a small energy density in the peripheral part and a larger central part (has a Gaussian distribution). Therefore, if the laser profile can be made uniform in order to improve the energy density in the peripheral part, Can also be an effective means for preventing the occurrence of burrs 13e. However, the laser profile is uniquely determined by the characteristics of the laser oscillator and cannot generally be an element that can be artificially adjusted. Therefore, the burr generation suppression means by making the laser profile uniform cannot be an effective measure.
[0017]
Therefore, the present inventors paid attention to the pulse width of the laser beam LB to be irradiated. That is, it has been thought that the influence due to the generation of the burr 13e is evaluated through the insulation resistance between the transparent electrode 11 and the back electrode film 13. That is, when the pulse width is shortened, the semiconductor film 12 is evaporated to expand the volume, and the back electrode film 13 is efficiently blown off with the pressure at this time. The reason is that, after the light is absorbed by the semiconductor film 12 and converted into heat, the heat conduction to the surroundings simultaneously occurs from the time when the local temperature of the semiconductor film 12 is raised to the evaporation. The heat conduction to the surroundings does not contribute to the local temperature rise of the semiconductor film 12, and is a wasteful energy, and at the same time causes the thermal deterioration of the transparent electrode 11. When the pulse width is shortened, the energy per unit time increases even with the same pulse energy, so that the local temperature rise of the semiconductor film 12 increases before heat conduction to the surroundings occurs. Therefore, if the pulse width is shortened, the expansion force becomes large, so that the burr 13e is hardly generated. Therefore, the groove 13d was formed by changing the pulse width of the laser beam LB, and the insulation resistance between the transparent electrode 11 and the back electrode film 13 in each thin film solar cell thus formed was measured.
[0018]
The measurement results are shown in FIGS. Both figures are graphs showing the insulation resistance characteristic per electrode area 0.5 (cm 2 ) with respect to the pulse width (ns) of the laser beam LB. In the sample shown in FIG. 1, the thickness of the semiconductor film 12 is about 3000 mm, and the thickness of the back electrode film 13 is about 2900 mm. In the sample shown in FIG. 2, the thickness of the semiconductor film 12 is about 2300 mm, and the thickness of the back electrode film 13 is about 3500 mm.
[0019]
As a result, it has been found that the value of the insulation resistance is closely related to the pulse width of the laser beam LB, and tends to increase as the pulse width of the laser beam LB decreases. This is considered to mean that the generation of the burr 13e is suppressed as the pulse width of the laser beam LB becomes smaller. In the case of FIG. 1, in order to obtain an insulation resistance of 5 (kΩ) or more that can exhibit sufficient performance as a thin film solar cell, the pulse width may be 50 (ns) or less. In this case, it can be seen that the pulse width may be 30 (ns) or less.
[0020]
Here, the film thickness of the semiconductor film 12 is usually in the range of 2000 to 4000 mm from the viewpoint of power generation efficiency, and the film thickness of the back electrode film 13 is usually 3000 to 2000 mm from the viewpoint of the reflection efficiency of the laser beam LB. Formed in range. Therefore, when the film thickness of the semiconductor film 12 is relatively large in such a normal film thickness range, or when the film thickness of the back electrode film 13 is relatively thin, the pulse width is set to 50 (ns) or less. Although it is good, when the thickness of the semiconductor film 12 is comparatively thin, or when the thickness of the back electrode film 13 is relatively large, the pulse width needs to be 30 (ns) or less. In any case, it is sufficient to set the pulse width to 30 (ns) or less.
[0021]
The generation of the burr 13e is an inherent phenomenon when the groove 13d is formed by irradiating the laser beam LB from the transparent substrate 10 side. That is, it does not occur when the groove 13d is formed by irradiating the laser beam LB from the back electrode 13 side.
[0022]
The configuration of the present invention based on the knowledge as described above is characterized by the following points.
[0023]
1) A transparent electrode film, a semiconductor film, and a back electrode film are laminated in this order on a transparent substrate, and the transparent substrate and the laser beam are applied while intermittently irradiating a laser beam in a pulse form from the transparent substrate side. with relatively moving the laser beam of the semiconductor film and at the same time removing the back electrode film by, forming a groove for isolating adjacent cells, thin film solar cells connected unit cells in series a plurality A method for setting a pulse width of a laser beam in a method of manufacturing a thin film solar cell for forming
Grooves are formed by changing the pulse width of the laser beam with the same pulse energy, and a graph showing the characteristics of the insulation resistance between the transparent electrode film and the back electrode film after the groove formation is obtained for each pulse width. The pulse width at which the insulation resistance starts to increase rapidly as the pulse width becomes shorter is set as the upper limit of the pulse width of the laser beam for forming the groove so as to suppress the generation of burrs with the same pulse energy .
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0028]
FIG. 1 is an explanatory view conceptually showing a laser processing machine which is a thin-film solar cell manufacturing apparatus according to an embodiment of the present invention. As shown in the figure, a laser beam 83 which is a pulsed laser beam emitted from a laser oscillator 81 is reflected by a mirror 82 and then condensed by a lens 84 to form a substrate on an XY stage 86 (a thin film solar cell in the manufacturing process). Batteries) 85 are irradiated. Here, the substrate 85 on the XY stage 86 is moved on the XY plane (horizontal plane) with respect to the laser beam 83 to perform necessary processing such as the groove 13d (see FIG. 12). Further, the laser oscillator 81 has its output pulse width, repetition period, and the like controlled by the control unit 87.
[0029]
As shown in FIG. 4, the groove processing by the laser beam 83 is performed by irradiating the substrate 85 with the laser beam 83 emitted from the laser processing machine as a beam having a circular cross section, and adjacent to the laser beam 83 by relative movement of the substrate 85. A predetermined groove 13d (see FIG. 12) and the like are formed by continuing the beam 88 so that a part (about 20%) of the beam 88 is superimposed. The groove processing speed at this time is
Laser beam diameter × 0.8 × laser pulse repetition frequency.
[0030]
The pulse width of the pulse laser beam emitted from the laser oscillator 81 is 50 (ns) or less, more preferably 30 (ns) or less. The adjustment of the pulse width is performed under the control of the control unit 87.
[0031]
Such a laser beam machine is used in the sixth step shown in FIG. 9 among the steps for manufacturing a thin-film solar cell. That is, after the steps shown in FIGS. 4 to 8, after forming the groove 13d in the step shown in FIG. 9, the pulse width of the pulse laser beam emitted from the laser oscillator 81 is 50 (ns) or less, more preferably 30. (Ns) In the following, the semiconductor films 12a, 12b, 12c and a part of the back electrode film 13 shown in FIG. 8 are removed to form a groove 13d shown in FIG.
[0032]
【The invention's effect】
As specifically described with the above embodiments, the invention described in [Claim 1] is that a transparent electrode film, a semiconductor film, and a back electrode film are laminated in this order on a transparent substrate, and a laser is emitted from the transparent substrate side. While irradiating the beam intermittently in pulses, the transparent substrate and the laser beam are moved relative to each other, and the semiconductor film and the back electrode film are simultaneously removed by the laser beam to isolate adjacent cells. A method of setting a pulse width of a laser beam in a method of manufacturing a thin film solar cell in which a plurality of unit cells are connected in series by forming a groove for performing the same pulse Grooves are formed by changing the pulse width with energy, and a graph showing the insulation resistance characteristics of the transparent electrode film and the back electrode film after the groove formation is obtained for each pulse width. A pulse width pulse width starts to the insulation resistance is abruptly increased due to shorter, since the upper limit of the laser beam pulse width for forming a groove so as to suppress the occurrence of burrs at the same pulse energy,
As shown in FIG. 1 and FIG. 2, the insulation resistance per electrode area 0.5 (cm 2 ) is 5 (kΩ), and good performance as a thin film solar cell can be ensured. This is considered to be because the generation | occurrence | production of the burr | flash at the time of the groove | channel processing with respect to a back surface electrode film was able to be suppressed, and as a result, the generation | occurrence | production of a burr | flash could be suppressed and the thin film solar cell which ensured favorable power generation efficiency can be obtained.
[0033]
Further, as shown in FIG. 1, the insulation resistance per electrode area 0.5 (cm 2 ) is 5 (kΩ), and good performance as a thin film solar cell can be ensured. This is thought to be because the generation of burrs during groove processing on the back electrode film could be suppressed, especially when the semiconductor film was relatively thick or when the back electrode film was relatively thin. And the thin film solar cell which ensured favorable electric power generation efficiency can be obtained. Moreover, as shown in FIG. 2, the insulation resistance per electrode area 0.5 (cm 2 ) is 5 (kΩ), and good performance as a thin film solar cell can be ensured. This is thought to be because the generation of burrs during groove processing on the back electrode film could be suppressed, especially when the semiconductor film was relatively thin or the back electrode film was relatively thick. And the thin film solar cell which ensured favorable electric power generation efficiency can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a laser pulse width measured in realizing an embodiment of a method for manufacturing a thin film solar cell according to the present invention and an insulation resistance between both electrodes of the thin film solar cell (thickness of a semiconductor film; When the back electrode film is thin.).
FIG. 2 is a graph showing the relationship between the laser pulse width measured in realizing the embodiment of the method for manufacturing a thin film solar cell according to the present invention and the insulation resistance between both electrodes of the thin film solar cell (the semiconductor film is thin, When the back electrode film is thick.).
FIG. 3 is an explanatory view conceptually showing a laser processing machine which is a thin-film solar cell manufacturing apparatus according to an embodiment of the present invention.
4 is an explanatory diagram conceptually showing a state of groove processing by the laser processing machine shown in FIG. 3; FIG.
FIG. 5 is a structural diagram showing a general structure of a thin film solar cell.
6 is an explanatory view showing a state of a first manufacturing process of the thin-film solar battery shown in FIG. 3. FIG.
7 is an explanatory view showing a state of a second manufacturing process of the thin-film solar cell shown in FIG. 3. FIG.
8 is an explanatory diagram showing a third manufacturing process of the thin-film solar cell shown in FIG. 3. FIG.
FIG. 9 is an explanatory diagram showing a fourth manufacturing process of the thin-film solar battery shown in FIG.
FIG. 10 is an explanatory diagram showing a fifth manufacturing process of the thin-film solar cell shown in FIG.
FIG. 11 is an explanatory diagram showing a sixth manufacturing process of the thin-film solar cell shown in FIG.
FIG. 12 is an explanatory diagram showing the state of burrs in the back electrode, which has been a problem in the conventional production of thin film solar cells.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Transparent substrate 11 Transparent electrode 12 Semiconductor film 13 Back surface electrode film 13d Groove 13e Burr 81 Laser oscillator 83 Laser beam 85 Substrate 86 XY stage 87 Control part 88 Laser beam LB Laser beam

Claims (1)

透明基板上に透明電極膜、半導体膜及び裏面電極膜をこの順序で積層し、前記透明基板側よりレーザビームをパルス状に断続的に照射しながら、前記透明基板と前記レーザビームとを相対的に移動させるとともに、前記レーザビームにより前記半導体膜及び前記裏面電極膜を同時に除去し、隣接するセルを隔離するための溝を形成して単位セルを複数個直列に接続した薄膜太陽電池を形成する薄膜太陽電池の製造方法における、レーザビームのパルス幅の設定方法であって
前記レーザビームを同じパルスエネルギで、パルス幅を変えて溝を形成し、各パルス幅に対して、溝形成後の前記透明電極膜と前記裏面電極膜との絶縁抵抗の特性を示すグラフを求め、パルス幅が短くなるに伴い前記絶縁抵抗が急激に増加し始めるパルス幅を、同じパルスエネルギでバリの発生を抑制するように溝を形成するためのレーザビームのパルス幅の上限とすることを特徴とするレーザビームのパルス幅の設定方法。
A transparent electrode film, a semiconductor film and a back electrode film are laminated in this order on a transparent substrate, and the transparent substrate and the laser beam are relatively relative to each other while intermittently irradiating the laser beam in pulses from the transparent substrate side. It is moved to the laser beam the semiconductor film and removing the back electrode layer simultaneously by, forming a groove for isolating adjacent cells, forming a thin film solar cell was connected to unit cells in series a plurality A method for setting a pulse width of a laser beam in a method for manufacturing a thin film solar cell ,
Grooves are formed by changing the pulse width of the laser beam with the same pulse energy, and a graph showing the characteristics of the insulation resistance between the transparent electrode film and the back electrode film after the groove formation is obtained for each pulse width. The pulse width at which the insulation resistance starts to increase rapidly as the pulse width becomes shorter is set as the upper limit of the pulse width of the laser beam for forming the groove so as to suppress the generation of burrs with the same pulse energy. A method for setting a pulse width of a characteristic laser beam .
JP2002195562A 2002-07-04 2002-07-04 How to set the laser beam pulse width Expired - Fee Related JP4078137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002195562A JP4078137B2 (en) 2002-07-04 2002-07-04 How to set the laser beam pulse width

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195562A JP4078137B2 (en) 2002-07-04 2002-07-04 How to set the laser beam pulse width

Publications (2)

Publication Number Publication Date
JP2004039891A JP2004039891A (en) 2004-02-05
JP4078137B2 true JP4078137B2 (en) 2008-04-23

Family

ID=31703904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195562A Expired - Fee Related JP4078137B2 (en) 2002-07-04 2002-07-04 How to set the laser beam pulse width

Country Status (1)

Country Link
JP (1) JP4078137B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8455753B2 (en) 2005-01-14 2013-06-04 Semiconductor Energy Laboratory Co., Ltd. Solar cell and semiconductor device, and manufacturing method thereof
JPWO2006087786A1 (en) * 2005-02-17 2008-07-03 三菱電機株式会社 Manufacturing method of solar cell
JP4875439B2 (en) * 2006-09-06 2012-02-15 三菱重工業株式会社 Manufacturing method of solar cell module
KR101368904B1 (en) 2007-12-31 2014-02-28 주성엔지니어링(주) Thin film type Solar Cell, and Method for manufacturing the same
CN102165604A (en) * 2008-09-29 2011-08-24 薄膜硅公司 Monolithically-integrated solar module
JP2010194560A (en) * 2009-02-23 2010-09-09 Nisshinbo Holdings Inc Laser machining method of solar battery panel

Also Published As

Publication number Publication date
JP2004039891A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
US7259321B2 (en) Method of manufacturing thin film photovoltaic modules
US5296674A (en) Laser processing method for a thin-film structure
US6455347B1 (en) Method of fabricating thin-film photovoltaic module
US20080105303A1 (en) Method and Manufacturing Thin Film Photovoltaic Modules
JPH0472392B2 (en)
US7998838B2 (en) Method and apparatus for scribing a line in a thin film using a series of laser pulses
AU3578599A (en) Laser processing of a thin film
WO2005119796A1 (en) Laser structuring for manufacture of thin film silicon solar cells
US20120164782A1 (en) Method and device for producing a photovoltaic thin-film module
JP2005515639A (en) Method for manufacturing thin film photovoltaic module
KR20140058613A (en) Thin film structures and devices with integrated light and heat blocking layers for laser patterning
US20160211395A1 (en) Method for laser-structuring thin layers on a substrate in order to produce monolithically connected thin-layer solar cells, and method for producing a thin-layer solar module
JP4078137B2 (en) How to set the laser beam pulse width
KR20100115193A (en) Method of fabricating the same
JP3676202B2 (en) Method for manufacturing photovoltaic device
US20220359774A1 (en) Method of manufacturing a thin film photovoltaic product
JP2002231986A (en) Method for manufacturing integrated thin film solar battery
JP4786010B2 (en) Manufacturing method of integrated hybrid thin film solar cell
CN109564954B (en) Laser technology for foil-based solar cell metallization
JP2001094131A (en) Method for fabricating integrated photovoltaic power device
JP3521268B2 (en) Method for manufacturing photovoltaic device
JP2009072831A (en) Apparatus for forming laser scribes
Haas et al. Patterning of thin-film silicon modules using lasers with tailored beam shapes and different wavelengths
JPH065778B2 (en) Method for manufacturing optical semiconductor device
JPS61280680A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051012

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees