JP2002353526A - ELECTRODE-FORMING METHOD FOR beta-FeSi2 ELEMENT - Google Patents

ELECTRODE-FORMING METHOD FOR beta-FeSi2 ELEMENT

Info

Publication number
JP2002353526A
JP2002353526A JP2001157087A JP2001157087A JP2002353526A JP 2002353526 A JP2002353526 A JP 2002353526A JP 2001157087 A JP2001157087 A JP 2001157087A JP 2001157087 A JP2001157087 A JP 2001157087A JP 2002353526 A JP2002353526 A JP 2002353526A
Authority
JP
Japan
Prior art keywords
electrode
forming
fesi
phase
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001157087A
Other languages
Japanese (ja)
Other versions
JP3603087B2 (en
Inventor
Yunosuke Makita
雄之助 牧田
Koretsu Chin
鴻烈 沈
Shidan O
詩男 王
Yasuhiro Fukuzawa
保裕 福澤
Yasuhiko Nakayama
靖彦 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001157087A priority Critical patent/JP3603087B2/en
Publication of JP2002353526A publication Critical patent/JP2002353526A/en
Application granted granted Critical
Publication of JP3603087B2 publication Critical patent/JP3603087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode forming method for a '-FeSi2 element, for which the manufacturing method is significantly simplified, enabling lower manufacturing cost. SOLUTION: A method for forming an electrode is provided for constituting an element on a β-FeSi2 thin film of a semiconductor or on a flat plate. Either in the atmosphere or in an inert gas atmosphere, the surface part of the β-FeSi2 material is heated to 982 deg.C or higher, so that the entire or part of it is phase- converted into a α-FeSi5 phase. A part, in which a phase has converted, is used as an electrode 2 of proper conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エレクトロニクス
分野における半導体素子デバイスの製造方法のうち、素
子材料板や薄膜基板上へ電流を導通する電極を、外部か
ら金属材料を堆積したり塗布結合することなく形成する
ための電極の形成方法に係り、詳細にはβ−FeSi2
の一部分を加熱して金属相に転換して電極とする方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device in the field of electronics, which comprises depositing a metal material from outside and applying and bonding an electrode for conducting a current to an element material plate or a thin film substrate. relates to the electrode forming method for forming without, in particular beta-FeSi 2
And a method of heating a part of the electrode to convert it to a metal phase to form an electrode.

【0002】[0002]

【従来の技術】従来の半導体デバイスは、シリコン(S
i)基板や平面基板材の上に機能性の材料薄膜を形成
し、その上に信号の入出力を行う電極が施されているも
のである。セラミックや機能材料の比較的大きな試料片
の電極の場合は、試料端に電極線を巻きつけたり表面の
一部分に金属ペーストや各種の半田を用いて電極線を固
定する。
2. Description of the Related Art A conventional semiconductor device is silicon (S).
i) A functional material thin film is formed on a substrate or a flat substrate material, and electrodes for inputting / outputting signals are provided thereon. In the case of an electrode of a relatively large sample piece of ceramic or a functional material, an electrode wire is wound around the sample end, or the electrode wire is fixed to a part of the surface using a metal paste or various solders.

【0003】一方、SiやIII −V属化合物半導体材料
を用いた発光・受光・メモリ・IC回路デバイスなどの
微細な配線を行うために、従来から多様な電極形成方法
が開発されてきた。
On the other hand, in order to perform fine wiring such as light emission, light reception, memory and IC circuit devices using Si or III-V group compound semiconductor materials, various electrode forming methods have been conventionally developed.

【0004】一般的には、金属導電体の蒸着膜・スパッ
タ膜・イオンプレーティング膜を素子表面に堆積し、ホ
トリソグラフィー技術を用いて微細なパターンに加工し
て素子が形成されてきた。
[0004] In general, a device has been formed by depositing a vapor deposition film, a sputter film, and an ion plating film of a metal conductor on the surface of the device and processing it into a fine pattern using photolithography technology.

【0005】[0005]

【発明が解決しようとする課題】半導体の素子には半導
体材料と電極材料が必要である。その電極の機能は機能
性半導体材料に電流を導入したり引き出すものであるか
ら、両者の界面が機械的に密着し、電気的にも正常な導
通を示すいわゆるオーミックコンタクトが取れなければ
ならない。
A semiconductor device requires a semiconductor material and an electrode material. Since the function of the electrode is to introduce or extract a current to or from the functional semiconductor material, a so-called ohmic contact must be made at the interface between the two, which mechanically adheres to each other and shows normal electrical conduction.

【0006】そのためには、良い導電体である金属を
電極材料に選ぶ。一般的にはアルミニウム(Al)や銅
(Cu)、銀(Ag)、金(Au)などが用いられる。
伝導率が高いものが望ましいが、使用される雰囲気や温
度による電位差、半導体材料との組み合わせによって
は、長期間使用後の腐食などの問題が発生することがあ
る。これらの現象による変化は避けなければならないの
で、どのような電極材料を選択するかが問題である。
For this purpose, a metal that is a good conductor is selected as an electrode material. Generally, aluminum (Al), copper (Cu), silver (Ag), gold (Au), or the like is used.
Although a material having high conductivity is desirable, problems such as corrosion after long-term use may occur depending on the potential difference depending on the atmosphere or temperature used and the combination with a semiconductor material. Since changes due to these phenomena must be avoided, it is important to select an electrode material.

【0007】また、半導体材料と電極材料間を良好な接
合状態に保つためには、少なくとも機械的な接触を阻む
異物は除去されなければならない。例えば、両者の表
面を良く洗浄して有機性不純物を除去したり、酸化物
や塵埃を取り除いて機械的密着度を増すようにする。こ
うして清浄になった表面に電極材料を接触させる方法と
して、真空中での金属膜蒸着やスパッタリング法での膜
形成を行ってきた。
Further, in order to maintain a good bonding state between the semiconductor material and the electrode material, at least a foreign substance that hinders mechanical contact must be removed. For example, both surfaces are cleaned well to remove organic impurities, or oxides and dust are removed to increase the degree of mechanical adhesion. As a method of bringing the electrode material into contact with the cleaned surface, a metal film is deposited in a vacuum or a film is formed by a sputtering method.

【0008】しかしながら、この表面を清浄に保つ作業
は、工程を増やし価格を高める要因となる。
However, the operation of keeping the surface clean is a factor of increasing the number of steps and increasing the price.

【0009】さらに、積層した導電膜を任意の電極パタ
ーン形状に加工するために、高価なホトリソグラフ装
置を用い、パターン原画マスク作製→半導体膜面にレジ
スト塗布→露光→エッチングでレジスト膜除去→酸やア
ルカリ液で金属膜エッチング加工→電極パターンの完
成、という工程を施してきた。
Furthermore, in order to process the laminated conductive film into an arbitrary electrode pattern shape, an expensive photolithographic apparatus is used, a pattern original mask is prepared, a resist is applied to the semiconductor film surface, exposure is performed, and the resist film is removed by etching. Or the etching of the metal film with an alkaline solution → the completion of the electrode pattern.

【0010】しかし、このホトリソグラフィー法で微細
な金属パターンを形成した後、さらにその上にもう一
層の金属膜電極を形成する際には、前処理で出来たエッ
チング段差を跨いで、積層金属薄膜を成膜する。その際
に、段の下面と上面間をつなぐ膜が十分につながらな
い、いわゆるステップカバレージが悪いという現象が起
こり、電極膜剥離や断線を発生させる原因となってい
た。
However, after a fine metal pattern is formed by the photolithography method, when forming another metal film electrode thereon, a laminated metal thin film is formed over the etching step formed in the pretreatment. Is formed. At this time, the phenomenon that the film connecting the lower surface and the upper surface of the step is not sufficiently connected, that is, the so-called step coverage is poor occurs, which causes the electrode film to be peeled or the disconnection to occur.

【0011】上記したように、これら従来の形成方法で
は、製作歩留りを高め、製品の高品質・低コスト目標を
達成するためには、高価な設備を用いたり、何度も工程
検査を行うなど、多くの時間と労力をかけなければなら
ないという問題があった。
As described above, in these conventional forming methods, in order to increase the production yield and achieve the high quality and low cost targets of the product, expensive equipment is used, and the process inspection is performed many times. However, there was a problem that much time and effort had to be taken.

【0012】本発明は、上記問題点を除去し、製造工程
を著しく簡素化し、製造コストの低減化を図ることがで
きるβ−FeSi2 素子の電極形成方法を提供すること
を目的とする。
An object of the present invention is to provide a method for forming an electrode of a β-FeSi 2 element, which can eliminate the above-mentioned problems, remarkably simplify the manufacturing process, and reduce the manufacturing cost.

【0013】[0013]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕半導体のβ−FeSi2 薄膜または平面板上に素
子を構成するための電極を形成する方法であって、大気
中または不活性ガス雰囲気において前記β−FeSi2
材料表面部分を少なくとも982℃以上に加熱すること
によってその全部または一部をα−Fe2 Si5 相に相
転換させ、この相転換させた部分を導電性の良好な電極
として用いることを特徴とする。
According to the present invention, there is provided a method for forming an electrode for forming an element on a semiconductor β-FeSi 2 thin film or a flat plate. The β-FeSi 2 in the atmosphere or in an inert gas atmosphere.
By heating the surface portion of the material to at least 982 ° C. or more, part or all of the material is phase-converted to the α-Fe 2 Si 5 phase, and the phase-converted portion is used as an electrode having good conductivity. I do.

【0014】〔2〕上記〔1〕記載のβ−FeSi2
子の電極形成方法において、前記材料表面の一部分を加
熱する熱源をレーザ光とし、このレーザ光を絞った焦点
近傍で前記材料表面を照射することによって加熱昇温
し、導電性のある金属結晶相への変換を引き起こし、そ
の後、レーザ光を遮断して前記材料を急激に室温付近ま
で冷却することによってその部分を前記金属結晶相のま
ま導電部とし、この導電部を所定の形状にした電極を形
成することを特徴とする。
[2] In the method for forming an electrode of a β-FeSi 2 element according to the above [1], a heat source for heating a part of the material surface is a laser beam, and the material surface is formed near a focal point where the laser beam is focused. Irradiation heats and raises the temperature, causing conversion to a conductive metal crystal phase, and then shutting off the laser beam and rapidly cooling the material to around room temperature to reduce that portion of the metal crystal phase. The present invention is characterized in that a conductive portion is used as it is, and an electrode having the conductive portion in a predetermined shape is formed.

【0015】〔3〕上記〔2〕記載のβ−FeSi2
子の電極形成方法において、前記レーザ光による前記材
料表面の加熱温度を982℃から1212℃までの間と
し、α−Fe2 Si5 相になった前記レーザ光の照射部
分を加熱後に前記レーザ光を遮断して室温付近まで急冷
することによってα−相のまま残し、この工程の繰り返
しによって電極パターンを形成することを特徴とする。
[3] The method for forming an electrode of a β-FeSi 2 element according to the above [2], wherein the heating temperature of the material surface by the laser beam is between 982 ° C. and 1212 ° C., and α-Fe 2 Si 5 After heating the irradiated portion of the laser beam in the phase, the laser beam is cut off and rapidly cooled to around room temperature to leave the α-phase, and an electrode pattern is formed by repeating this process.

【0016】〔4〕上記〔2〕記載のβ−FeSi2
子の電極形成方法において、前記レーザ光源としてNd
添加YAGレーザを用いることを特徴とする。
[4] The method for forming an electrode of a β-FeSi 2 element according to the above [2], wherein Nd is used as the laser light source.
It is characterized by using an additive YAG laser.

【0017】〔5〕上記〔2〕記載のβ−FeSi2
子の電極形成方法において、前記半導体のβ−FeSi
2 薄膜または平面板上に素子を構成するために前記レー
ザ光を照射することによって電極を形成する方法であっ
て、前記材料表面をあらかじめ600℃近傍まで加熱し
ながら、さらに前記レーザ光の焦点近傍で前記材料表面
を照射することによって加熱昇温し、導電性のある結晶
相への変換を引き起こすことによって電極を形成するこ
とを特徴とする。
[5] The method for forming an electrode of a β-FeSi 2 element according to the above [2], wherein the β-FeSi 2
(2) A method of forming an electrode by irradiating the laser light to form an element on a thin film or a flat plate, wherein the material surface is heated in advance to around 600 ° C. And heating the material surface by irradiating the surface of the material, thereby forming an electrode by causing conversion to a conductive crystalline phase.

【0018】本発明では、半導体材料表面に電極を構成
して素子とする場合に、特別な電極材料を選んで使用す
ることなく、オーミックコンタクトを取るための特別な
洗浄や密着後のベーキング加熱、及び蒸着やスパッタリ
ング膜形成工程を省き、電極以外の成膜が必要なときも
ステップカバレージ問題を生じさせずに済み、マスクや
光露光などの工程をなくし、空気中または不活性ガス雰
囲気で良質なβ−FeSi2 素子の電極を形成する手段
を与えるものである。
In the present invention, when an electrode is formed on the surface of a semiconductor material to form an element, a special cleaning for obtaining an ohmic contact and a baking heating after contact, without selecting a special electrode material and using it, Also, it eliminates the steps of vapor deposition and sputtering film formation, avoids the step coverage problem even when film formation other than electrodes is required, eliminates steps such as masks and light exposure, and provides good quality in air or an inert gas atmosphere. This provides means for forming an electrode of the β-FeSi 2 element.

【0019】すなわち、試料材料の一部をレーザ照射す
ることによって半導体結晶相の変態温度以上に加熱し、
その部分を金属の結晶相に変換させて導電体とし、それ
を電極として用いるものである。
That is, a part of the sample material is heated to a temperature higher than the transformation temperature of the semiconductor crystal phase by laser irradiation,
The part is converted into a metal crystal phase to form a conductor, which is used as an electrode.

【0020】[0020]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づき詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0021】図1は本発明の実施例を示すレーザ加熱に
よってβ−FeSi2 相の一部分をα−Fe2 Si5
に変換する装置の模式図、図2は本発明の実施例を示す
β−FeSi2 素子の電極形成工程断面図である。
FIG. 1 is a schematic view of an apparatus for converting a part of the β-FeSi 2 phase into an α-Fe 2 Si 5 phase by laser heating according to an embodiment of the present invention, and FIG. FIG. 6 is a sectional view of an electrode forming step of a FeSi 2 element.

【0022】図1に示すように、あらかじめSi結晶基
板上にβ−FeSi2 膜が成長している試料板(シリコ
ン基板)1は、コンピュータ9で制御されて電極パター
ンを描画するように可動するステージ10上に置かれて
いる。
As shown in FIG. 1, a sample plate (silicon substrate) 1 on which a β-FeSi 2 film has been grown on a Si crystal substrate in advance is moved by a computer 9 to draw an electrode pattern. It is placed on the stage 10.

【0023】同様にコンピュータ9によって制御される
Nd:YAGレーザ8から射出されるレーザビーム6
は、装置の光路を最適に構築するミラー5や、同じくコ
ンピュータ制御されるビームスイッチ7を通過し、さら
に集光レンズ4によって縮められ、試料面の加熱点3に
焦点を結ぶ。この加熱によって金属膜化した部分をパタ
ーン化して出来るのが電極2である。試料面から反射さ
れる散乱光はアブソーバ11によって吸収される。
A laser beam 6 emitted from an Nd: YAG laser 8 similarly controlled by a computer 9
Passes through a mirror 5 that optimally constructs the optical path of the apparatus and a beam switch 7 also controlled by a computer, and is further contracted by a condenser lens 4 to focus on a heating point 3 on the sample surface. The electrode 2 can be formed by patterning a portion formed into a metal film by this heating. The scattered light reflected from the sample surface is absorbed by the absorber 11.

【0024】本発明の特徴は、デバイス材料のβ−Fe
Si2 薄膜が、加熱操作によって結晶変体を引き起こ
し、金属体のα−Fe2 Si5 に変換することを利用し
ているところにある。
The feature of the present invention is that the device material β-Fe
It is based on the fact that the Si 2 thin film utilizes the transformation of a metal body into α-Fe 2 Si 5 by causing a crystal transformation by a heating operation.

【0025】以下、本発明のβ−FeSi2 素子の電極
形成方法について図2を用いて詳細に説明する。
Hereinafter, a method for forming an electrode of a β-FeSi 2 element of the present invention will be described in detail with reference to FIG.

【0026】(1)まず、図2(a)に示すように、シ
リコン基板21上に半導体のβ−FeSi2 薄膜22を
形成する。
(1) First, a semiconductor β-FeSi 2 thin film 22 is formed on a silicon substrate 21 as shown in FIG.

【0027】(2)次いで、図2(b)に示すように、
そのβ−FeSi2 薄膜22の所定の個所にレーザビー
ム23を照射して、982℃以上に加熱して、金属体の
α−Fe2 Si5 24に変換する。
(2) Next, as shown in FIG.
The laser beam 23 to a predetermined location of the beta-FeSi 2 thin film 22 by irradiating, by heating to above 982 ° C., is converted to α-Fe 2 Si 5 24 of the metal body.

【0028】(3)次に、図2(c)に示すように、金
属体のα−Fe2 Si5 24を急激に室温近傍まで冷却
して、恒久的な電極25を形成する。
(3) Next, as shown in FIG. 2C, the metal α-Fe 2 Si 5 24 is rapidly cooled to near room temperature to form a permanent electrode 25.

【0029】図3は鉄とシリコンの2元状態図と加熱に
より金属化する際の現象を説明する原理図である。
FIG. 3 is a diagram showing a binary phase diagram of iron and silicon and a principle diagram for explaining a phenomenon at the time of metallization by heating.

【0030】FeとSi元素の構成比1:2でできる金
属間化合物β−FeSi2 相は半導体であり、この組成
は2元状態図上のA点に存在する。この材料をレーザア
ニール法などで加熱するとβ相分解温度(982℃)B
点に到達し、この温度まではβ−FeSi2 相構造を保
つ。さらに温度が上昇してB点を越えてC点に至ると、
加熱された部分のβ−FeSi2 相構造は分解し、わず
かのε−FeSi相D点物質と、大部分がα−Fe2
5 相E点物質に分離した混合結晶相になる。ここで変
換されてできたα−Fe2 Si5 相は金属相であり、こ
れを電極材料として利用する。
The β-FeSi 2 phase of the intermetallic compound made of a composition ratio of Fe and Si of 1: 2 is a semiconductor, and its composition exists at a point A on the binary phase diagram. When this material is heated by laser annealing or the like, β phase decomposition temperature (982 ° C) B
At which point the β-FeSi 2 phase structure is maintained up to this temperature. When the temperature further rises and exceeds point B to point C,
The β-FeSi 2 phase structure of the heated part is decomposed, and a small amount of the ε-FeSi phase D point material and a large part of α-Fe 2 S
i 5 phase E point substance becomes separated mixed crystal phase. The α-Fe 2 Si 5 phase formed here is a metal phase, which is used as an electrode material.

【0031】加熱点の大部分がα−Fe2 Si5 相に転
換した材料の状態図中の位置は、E点となる。次いで、
E点であるα相に転換した材料をそのまま急冷して室温
付近のF点まで下げると、本来、安定熱平衡相であるβ
−FeSi2 とSiの混合結晶相に分離せずに、α−F
2 Si5 のままで残る。この結晶相は金属なので電気
の良導体となり電極材料として機能するわけである。
The position in the phase diagram of the material in which most of the heating points have been converted to the α-Fe 2 Si 5 phase is point E. Then
When the material that has been converted to the α phase at the E point is rapidly cooled and lowered to a point F near room temperature, the stable thermal equilibrium phase β
Α-F without separating into a mixed crystal phase of FeSi 2 and Si
It remains as e 2 Si 5 . Since this crystal phase is a metal, it becomes a good conductor of electricity and functions as an electrode material.

【0032】E点にある材料を室温近傍まで急冷しない
で900℃〜650℃近傍に良時間放置すると、α−F
2 Si5 相は再びβ−FeSi2 半導体相とSiに分
離析出されるので、電極としての金属特性を持たなくな
る。β−FeSi2 相を加熱してα−Fe2 Si5 相に
転換した部分を電極として利用するためには、急速に室
温付近F点まで冷却することが肝要である。
If the material at the point E is allowed to stand at around 900 ° C. to 650 ° C. for a good time without being rapidly cooled to around room temperature, α-F
Since the e 2 Si 5 phase is separated and precipitated again into the β-FeSi 2 semiconductor phase and Si, the e 2 Si 5 phase does not have metal properties as an electrode. In order to use the part converted from the β-FeSi 2 phase by heating to the α-Fe 2 Si 5 phase as an electrode, it is important to rapidly cool to a point F near room temperature.

【0033】本発明の特徴は、試料膜の一部分を加熱操
作によって結晶変態を引き起こして金属とするものであ
るから、半導体素子に電極を形成するデバイスを作製す
る場合に、外部から電極用金属を付着堆積しなくて良
い。試料材料表面に何もない状態で平坦面のまま試料材
料の一部が電極になるのであるから、従来の電極形成の
際、発生していた材料と電極間の汚染は原理的になくな
り、材料表面の過度の清浄化作業は不必要となる。また
材料の接点表面は平坦な連続面であるために、オーミッ
クコンタクトが完全に得られた電極が形成されることに
なる。
A feature of the present invention is that a portion of a sample film is converted into a metal by causing a crystal transformation by a heating operation. Therefore, when manufacturing a device for forming an electrode on a semiconductor element, a metal for an electrode is externally formed. It is not necessary to adhere and deposit. Since a part of the sample material becomes an electrode with no flat surface on the sample material surface, the contamination between the material and the electrode, which has occurred during the conventional electrode formation, is basically eliminated, and the material Excessive cleaning of the surface is unnecessary. In addition, since the contact surface of the material is a flat continuous surface, an electrode in which ohmic contact is completely obtained is formed.

【0034】本発明のβ−FeSi2 素子の電極形成方
法は、必要な部分を加熱して金属相に変換することが特
徴なので、加熱方法はレーザーアニール法に限らず、高
熱の火炎や高熱金属片先端を圧着させるなどの方法でも
可能である。
The method for forming an electrode of a β-FeSi 2 element of the present invention is characterized in that a necessary portion is heated and converted into a metal phase, so that the heating method is not limited to the laser annealing method, but may include a high heat flame or a high heat metal. It is also possible by a method such as crimping one end.

【0035】一般に半導体デバイスの電極は、その幅が
1mm以下で数100μm〜数10μmという微細なパ
ターンで構成されるため、このような微細な部分を加熱
して金属化する際の加熱方法としては、熱源を微小にす
ることが可能なレーザビームを用いるのが望ましい。レ
ーザビームをレンズを用いて絞り込むと、その焦点に照
射されるビーム径は数μm〜数10μmとなり、この部
分が金属化するので光線や試料位置を移動させて加熱点
を連続に繋げることによって自在な電極パターンが形成
される。
Generally, an electrode of a semiconductor device has a width of 1 mm or less and is composed of a fine pattern of several hundred μm to several tens μm. It is desirable to use a laser beam capable of miniaturizing a heat source. When the laser beam is narrowed down using a lens, the beam diameter applied to the focal point becomes several μm to several tens μm. Since this part is metallized, it can be freely moved by moving the light beam and the sample position and continuously connecting the heating points. An electrode pattern is formed.

【0036】加熱に用いられるレーザ光線はいろいろの
波長のものがある。例えば、エキシマレーザのような紫
外波長領域で強力な出力を持つもの、緑や赤の可視光領
域で容易に得られる半導体やHe、Neガスレーザ、C
dやNe:YAGの固体レーザ、さらに10μm長波長
のCO2 ガスレーザなどがある。それぞれ特徴があっ
て、加熱することはできるが、効率よく光を吸収して加
熱を速くするには、材料の光吸収係数と反射係数を選ば
ねばならない。すなわち、β−FeSi2 膜にとって吸
収係数の高いのは波長0.9μmから2μmの光であ
る。この点でNd:YAGレーザは本発明の実施光源と
して最適である。紫外レーザはエネルギーパワーを大き
くとれるが、エネルギーが高いので材料の原子分子を衝
突飛散させてしまうため、加熱光源としては相応しくな
い。
The laser beam used for heating has various wavelengths. For example, an excimer laser having a strong output in an ultraviolet wavelength region, a semiconductor easily obtained in a green or red visible light region, a He or Ne gas laser, a C
d and Ne: YAG solid-state lasers; and CO 2 gas lasers having a long wavelength of 10 μm. Each has its own characteristics and can be heated, but in order to efficiently absorb light and speed up heating, the light absorption coefficient and reflection coefficient of the material must be selected. That is, light having a wavelength of 0.9 μm to 2 μm has a high absorption coefficient for the β-FeSi 2 film. In this regard, the Nd: YAG laser is most suitable as the light source for the present invention. Although an ultraviolet laser can provide a large energy power, it is not suitable as a heating light source because the high energy causes collisions and scattering of material atoms and molecules.

【0037】また、可視光は反射が多く、熱源として効
率的でない。長波長レーザは焦点面積が広がってしま
い、微細な電極パターンに適さないし、光の吸収も少な
い。
Further, visible light reflects a lot and is not efficient as a heat source. Long-wavelength lasers have a large focal area, are not suitable for fine electrode patterns, and have low light absorption.

【0038】加熱に必要なエネルギーは、被照射材料の
光吸収率、熱伝導率、融点、比熱などによって異なる
が、半径数10μm領域を1000℃近傍に加熱するた
めには、10+6W/cm2 のエネルギー密度が必要で、
秒単位の短時間で良い。ビーム径が1〜2mmの通常の
レーザなら数Wの出力があれば、焦点に絞ったときには
十分なエネルギー密度が得られる。
The energy required for heating depends on the light absorptance, thermal conductivity, melting point, specific heat, etc. of the material to be irradiated. However, in order to heat a region having a radius of several tens of μm to around 1000 ° C., 10 +6 W / requires an energy density of cm 2 ,
A short time in seconds is sufficient. If an ordinary laser having a beam diameter of 1 to 2 mm has an output of several W, a sufficient energy density can be obtained when focusing is performed.

【0039】β−FeSi2 に対して、波長1.06μ
mのNd:YAGレーザを用いた場合、その光吸収率は
105 と吸収効率がよく、この材料の熱伝導率は熱発電
材料に用いられているように大変低いので、50μm径
の微小領域を1000℃近傍に加熱するのは10W出力
光を絞り込んで数秒間照射すればよい。
For β-FeSi 2 , the wavelength is 1.06 μm.
When a Nd: YAG laser of m is used, its light absorption is as good as 10 5 and its thermal conductivity is very low as used in thermoelectric power generation materials. Can be heated to around 1000 ° C. by squeezing 10 W output light and irradiating for several seconds.

【0040】レーザ光を絞って試料面を照射する部分の
断面を拡大して示したのが図4である。
FIG. 4 is an enlarged cross-sectional view of a portion for irradiating the sample surface by focusing the laser beam.

【0041】この図に示すように、試料板(シリコン基
板)31の上に積層成長されたβ−FeSi2 相32の
表面にレーザビーム33が部位(加熱点)34に集光照
射されると、材料の光吸収によって加熱される。加熱点
34の温度は中心部が高く、熱伝導によって加熱部分が
広がるが、中心部より遠ざかるにつれて温度は低くなっ
ている。線35はこの時の熱の拡散方向に沿った等温線
である。なお、36は電極、37はレーザビーム33の
走査方向、38はレーザビーム33の走査による軌跡で
ある。
As shown in this figure, when a laser beam 33 is focused and irradiated on a portion (heating point) 34 on the surface of a β-FeSi 2 phase 32 grown on a sample plate (silicon substrate) 31. Heated by the light absorption of the material. The temperature of the heating point 34 is high at the center and the heated portion spreads due to heat conduction, but the temperature decreases as the distance from the center increases. The line 35 is an isotherm along the heat diffusion direction at this time. Reference numeral 36 denotes an electrode, 37 denotes a scanning direction of the laser beam 33, and 38 denotes a trajectory of the scanning of the laser beam 33.

【0042】ここで、β−FeSi2 →α−Fe2 Si
5 相変換を引き起こすまで十分に加熱させた部分は金属
相に変換する。この転換した部分を電極線とするにはビ
ームの当たる位置を直線又は曲線状に動かすと、その軌
跡38に転換されたα−Fe 2 Si5 相が残る。一回の
掃引では電極として十分に必要な幅を持たない場合は、
ビームの当たる位置をα相に転換する幅だけ前の軌跡3
8からずらして方向37に隣り合わせて掃引していけば
太い幅の電極パターンが得られることになる。
Here, β-FeSiTwo→ α-FeTwoSi
FiveThe part heated sufficiently to cause phase transformation is metal
Convert to phase. In order to use this converted part as an electrode wire,
When the position where the beam hits is moved in a straight line or curve,
Α-Fe converted to trace 38 TwoSiFiveThe phase remains. Once
If the sweep does not have enough width for the electrode,
Trajectory 3 before the beam hitting position is converted to α phase
If you sweep from side 8 in the direction 37
An electrode pattern having a large width can be obtained.

【0043】この操作を繰り返して望みの形状パターン
を形成すれば、デバイス電極が得られることになる。
By repeating this operation to form a desired shape pattern, a device electrode can be obtained.

【0044】レーザビームは絞り込むことによってエネ
ルギー密度を高められるので、微小領域加熱に適した方
法であるが、例えば白熱灯のイメージ照射加熱の場合の
ようにエネルギー密度が上げられない場合には、被照射
試料片にあらかじめ加熱バイアスをかけておく方法が有
効である。すなわち、試料板(シリコン基板)と可動ス
テージの間に加熱ヒータを置いたり、または試料面全体
にランプヒータ光を照射して、試料温度を500℃を越
えない程度に高めておく。
Since the energy density of the laser beam can be increased by narrowing it down, it is a method suitable for heating a small area. However, when the energy density cannot be increased, for example, in the case of heating the image irradiation of an incandescent lamp, the laser beam is irradiated. It is effective to apply a heating bias to the irradiation sample in advance. That is, a heater is placed between the sample plate (silicon substrate) and the movable stage, or the entire surface of the sample is irradiated with lamp heater light to raise the temperature of the sample so as not to exceed 500 ° C.

【0045】この温度範囲では試料のβ−FeSi2
は変化せず、もちろんα−Fe2 Si5 相にもε−Fe
Si相にも転換することはない。この状態の試料面に光
源を照射すれば、パワーが少ない光源でも短時間に十分
に982℃以上の温度に到達し、α−Fe2 Si5 相に
変換することが出来る。金属相に転換したら急速に光源
を消し急冷すれば500℃近傍になるので、α相の金属
のままでパターン化された電極が形成される。
In this temperature range, the β-FeSi 2 phase of the sample does not change, and the α-Fe 2 Si 5
There is no conversion to the Si phase. By irradiating the sample surface in this state with a light source, even a light source having a low power can sufficiently reach a temperature of 982 ° C. or more in a short time and can be converted into an α-Fe 2 Si 5 phase. If the light source is quickly turned off after the conversion to the metal phase, and if the light source is rapidly cooled, the temperature will be around 500 ° C., so that a patterned electrode is formed while the α-phase metal remains.

【0046】以上、レーザ光の焦点位置を金属相化し
て、この連続繰り返し掃引で希望する電極パターンを得
る方法について説明したが、材料の面全体に電極パター
ンの投影像を照射し、一度に全体の電極パターンを得る
方法も考えられる。しかし、電極部分全体の大面積を加
熱するレーザの光源には、非常に大きなパワーが必要と
されるし、また、原図パターンに印加される熱量が大き
くパターンを焼損しかねない。前述の予備加熱法は、も
とのレーザのパワーを抑える効果を生むので、電極パタ
ーンの一部分を一度の照射で加熱照射して得るには、有
効な方法であろう。
The method of obtaining the desired electrode pattern by continuous repetitive sweeping by converting the focal position of the laser beam into a metal phase has been described above. However, the entire surface of the material is irradiated with the projected image of the electrode pattern, and the entire surface is exposed at once. A method of obtaining the electrode pattern of (1) is also considered. However, a laser light source for heating a large area of the entire electrode portion requires a very large power, and a large amount of heat is applied to the original pattern, which may burn the pattern. The above-described preheating method produces an effect of suppressing the power of the original laser, and is therefore an effective method for obtaining a portion of the electrode pattern by heating and irradiating it in a single irradiation.

【0047】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
It should be noted that the present invention is not limited to the above-described embodiment, but various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0048】[0048]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、β−FeSi2 薄膜の一部分を982℃以上に
加熱することにより、その部分をα−Fe2 Si5 相に
相転換してその部分を導電電極とするようにしたので、
従来は金属膜を蒸着してホトリソグラフィー法で形成し
ていたデバイス電極を形成することなく、平坦表面のま
まで製造工程を著しく省略することができ、製造コスト
の廉価なデバイスが構成できるようになった。
As described in detail above, according to the present invention, by heating a part of the β-FeSi 2 thin film to 982 ° C. or more, the part is converted into the α-Fe 2 Si 5 phase. And that part was made to be a conductive electrode,
Conventionally, a metal film is deposited and photolithography is not used to form a device electrode.Without forming a flat surface, the manufacturing process can be remarkably omitted, and a low-cost device can be constructed. became.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示すβ−FeSi2 素子の電
極形成方法を実施する装置の模式図である。
FIG. 1 is a schematic view of an apparatus for implementing a method for forming an electrode of a β-FeSi 2 element according to an embodiment of the present invention.

【図2】本発明の実施例を示すβ−FeSi2 素子の電
極形成工程断面図である。
FIG. 2 is a sectional view showing an electrode forming step of a β-FeSi 2 element according to an embodiment of the present invention.

【図3】鉄とシリコンの2元状態図と加熱により金属化
する際の現象を説明する原理図である。
FIG. 3 is a principle diagram illustrating a binary phase diagram of iron and silicon and a phenomenon at the time of metallization by heating.

【図4】レーザ焦点で照射する電極形成付近の拡大図で
ある。
FIG. 4 is an enlarged view of the vicinity of an electrode formed for irradiation with a laser focus.

【符号の説明】[Explanation of symbols]

1,31 試料板(シリコン基板) 2,36 電極 3 加熱点 4 集光レンズ 5 ミラー 6,23,33 レーザビーム 7 ビームスイッチ 8 Nd:YAGレーザ 9 コンピュータ 10 ステージ 11 アブソーバ 21 シリコン基板 22 半導体のβ−FeSi2 薄膜 24 金属体のα−Fe2 Si5 25 恒久的な電極 32 β−FeSi2 相 34 部位(加熱点) 35 等温線 37 レーザビームの走査方向 38 レーザビームの走査による軌跡Reference Signs List 1,31 Sample plate (silicon substrate) 2,36 Electrode 3 Heating point 4 Condensing lens 5 Mirror 6,23,33 Laser beam 7 Beam switch 8 Nd: YAG laser 9 Computer 10 Stage 11 Absorber 21 Silicon substrate 22 Semiconductor β -FeSi 2 thin film 24 Metallic α-Fe 2 Si 5 25 Permanent electrode 32 β-FeSi 2 phase 34 Site (heating point) 35 Isotherm 37 Laser beam scanning direction 38 Trajectory of laser beam scanning

フロントページの続き (71)出願人 501208671 王 詩男 茨城県つくば市二の宮4−8−3−4− 404 (71)出願人 501208682 福澤 保裕 茨城県つくば市東新井36−13 徳原マンシ ョン303号室 (71)出願人 501208992 中山 靖彦 神奈川県川崎市宮前区けやき平1−41− 103 (72)発明者 牧田 雄之助 茨城県取手市白山2−8−10 (72)発明者 沈 鴻烈 茨城県つくば市竹園3−21−1 510棟410 号 (72)発明者 王 詩男 茨城県つくば市二の宮4−8−3−4− 404 (72)発明者 福澤 保裕 茨城県つくば市東新井36−13 徳原マンシ ョン303号室 (72)発明者 中山 靖彦 神奈川県川崎市宮前区けやき平1−41− 103 Fターム(参考) 4M104 AA10 BB19 CC01 DD31 HH20Continuation of the front page (71) Applicant 501208671 Poet King Wang 4-8-3-4-404 Ninomiya, Tsukuba City, Ibaraki Prefecture (71) Applicant 501208682 Yasuhiro Fukuzawa 36-13 Higashiarai, Tsukuba City, Ibaraki Prefecture Room 303, Tokuhara Mansion 303 71) Applicant 501208992 Yasuhiko Nakayama 1-41-1103 Keyakidaira, Miyamae-ku, Kawasaki-shi, Kanagawa (72) Inventor Yunosuke Makita 2-8-10, Hakusan, Toride-shi, Ibaraki-pref. -211-1 510, Building 410 (72) Inventor: Shio Wang 4-8-3-4-404, Ninomiya, Tsukuba City, Ibaraki Prefecture (72) Inventor: Yasuhiro Fukuzawa 36-13 Higashiarai, Tsukuba City, Ibaraki Prefecture Tokuhara Mansion 303 Room No.72 (72) Inventor Yasuhiko Nakayama 1-41-103 Keyakidaira, Miyamae-ku, Kawasaki-shi, Kanagawa F term (reference) 4M104 AA10 BB19 CC01 DD31 HH20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体のβ−FeSi2 薄膜または平面
板上に素子を構成するための電極を形成する方法であっ
て、 大気中または不活性ガス雰囲気において前記β−FeS
2 材料表面部分を少なくとも982℃以上に加熱する
ことによってその全部または一部をα−Fe2Si5
に相転換させ、該相転換させた部分を導電性の良好な電
極として用いることを特徴とするβ−FeSi2 素子の
電極形成方法。
1. A method for forming an electrode for forming an element on a semiconductor β-FeSi 2 thin film or a flat plate, comprising: forming the β-FeS 2 in air or an inert gas atmosphere.
i 2 material in whole or in part by heating the surface portion to at least 982 ° C. or higher is phase converted to α-Fe 2 Si 5 phase, the use of a portion obtained by said phase transformation as a good electrode conductivity A method for forming an electrode of a β-FeSi 2 element.
【請求項2】 請求項1記載のβ−FeSi2 素子の電
極形成方法において、前記材料表面の一部分を加熱する
熱源をレーザ光とし、該レーザ光を絞った焦点近傍で前
記材料表面を照射することによって加熱昇温し、導電性
のある金属結晶相への変換を引き起こし、その後、前記
レーザ光を遮断して前記材料を急激に室温付近まで冷却
することによってその部分を前記金属結晶相のまま導電
部とし、該導電部を所定の形状にした電極を形成するこ
とを特徴とするβ−FeSi2素子の電極形成方法。
2. The method for forming an electrode of a β-FeSi 2 element according to claim 1, wherein a heat source for heating a part of the material surface is a laser beam, and the laser beam is irradiated on the material surface near a focused focus. The temperature is increased by heating to cause conversion to a conductive metal crystal phase, and thereafter, the laser beam is shut off and the material is rapidly cooled to around room temperature to leave that portion in the metal crystal phase. A method for forming an electrode of a β-FeSi 2 element, comprising forming an electrode having a predetermined shape as a conductive portion.
【請求項3】 請求項2記載のβ−FeSi2 素子の電
極形成方法において、前記レーザ光による前記材料表面
の加熱温度を982℃から1212℃までの間とし、前
記α−Fe2 Si5 相になった前記レーザ光の照射部分
を加熱後に前記レーザ光を遮断して室温付近まで急冷す
ることによってα−相のまま残し、この工程の繰り返し
によって電極パターンを形成することを特徴とするβ−
FeSi2 素子の電極形成方法。
3. The method for forming an electrode of a β-FeSi 2 element according to claim 2, wherein the heating temperature of the material surface by the laser beam is between 982 ° C. and 1212 ° C., and the α-Fe 2 Si 5 phase is heated. After heating the irradiated portion of the laser light, the laser light is cut off and rapidly cooled to around room temperature to leave the α-phase, and an electrode pattern is formed by repeating this process.
A method for forming an electrode of a FeSi 2 element.
【請求項4】 請求項2記載のβ−FeSi2 素子の電
極形成方法において、前記レーザ光源としてNd添加Y
AGレーザを用いることを特徴とするβ−FeSi2
子の電極形成方法。
4. The method for forming an electrode of a β-FeSi 2 element according to claim 2, wherein the laser light source is Nd-doped Y.
A method for forming an electrode of a β-FeSi 2 element, comprising using an AG laser.
【請求項5】 請求項2記載のβ−FeSi2 素子の電
極形成方法において、前記半導体のβ−FeSi2 薄膜
または平面板上に素子を構成するために前記レーザ光を
照射することによって電極を形成する方法であって、前
記材料表面をあらかじめ600℃近傍まで加熱しなが
ら、さらに前記レーザ光の焦点近傍で前記材料表面を照
射することによって加熱昇温し、導電性のある結晶相へ
の変換を引き起こすことによって電極を形成することを
特徴とするβ−FeSi2 素子の電極形成方法。
5. The method for forming an electrode of a β-FeSi 2 element according to claim 2, wherein the electrode is formed by irradiating the laser beam to form the element on a β-FeSi 2 thin film or a flat plate of the semiconductor. A method of forming a conductive crystal phase by heating the material surface to near 600 ° C. in advance and further irradiating the material surface near the focal point of the laser beam. The method for forming an electrode of a β-FeSi 2 element, wherein the electrode is formed by causing
JP2001157087A 2001-05-25 2001-05-25 Method for forming electrode of β-FeSi2 element Expired - Fee Related JP3603087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001157087A JP3603087B2 (en) 2001-05-25 2001-05-25 Method for forming electrode of β-FeSi2 element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001157087A JP3603087B2 (en) 2001-05-25 2001-05-25 Method for forming electrode of β-FeSi2 element

Publications (2)

Publication Number Publication Date
JP2002353526A true JP2002353526A (en) 2002-12-06
JP3603087B2 JP3603087B2 (en) 2004-12-15

Family

ID=19001002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001157087A Expired - Fee Related JP3603087B2 (en) 2001-05-25 2001-05-25 Method for forming electrode of β-FeSi2 element

Country Status (1)

Country Link
JP (1) JP3603087B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943388B1 (en) 2004-03-18 2005-09-13 National Institute Of Advanced Industrial Science And Technology Sheet-type β-FeSi2 element, and method and device for manufacturing the same
WO2013094598A1 (en) * 2011-12-20 2013-06-27 独立行政法人科学技術振興機構 Process for manufacturing thermoelectric material, thermoelectric material and thermoelectric transducer
JP2017017068A (en) * 2015-06-26 2017-01-19 国立研究開発法人産業技術総合研究所 Silicon microcrystal composite film, thermoelectric material and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169283A (en) * 1981-04-11 1982-10-18 Tdk Corp Thermoelectric element
JPH0969653A (en) * 1995-08-31 1997-03-11 Isuzu Motors Ltd Thermoelectric material and its manufacturing method
JP2000277752A (en) * 1992-10-09 2000-10-06 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169283A (en) * 1981-04-11 1982-10-18 Tdk Corp Thermoelectric element
JP2000277752A (en) * 1992-10-09 2000-10-06 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPH0969653A (en) * 1995-08-31 1997-03-11 Isuzu Motors Ltd Thermoelectric material and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943388B1 (en) 2004-03-18 2005-09-13 National Institute Of Advanced Industrial Science And Technology Sheet-type β-FeSi2 element, and method and device for manufacturing the same
WO2013094598A1 (en) * 2011-12-20 2013-06-27 独立行政法人科学技術振興機構 Process for manufacturing thermoelectric material, thermoelectric material and thermoelectric transducer
US8728340B2 (en) 2011-12-20 2014-05-20 Japan Science And Technology Agency Method for manufacturing thermoelectric material
JP5545586B2 (en) * 2011-12-20 2014-07-09 独立行政法人科学技術振興機構 Thermoelectric material manufacturing method, thermoelectric material, and thermoelectric conversion element
JP2017017068A (en) * 2015-06-26 2017-01-19 国立研究開発法人産業技術総合研究所 Silicon microcrystal composite film, thermoelectric material and manufacturing method thereof

Also Published As

Publication number Publication date
JP3603087B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
JP3436858B2 (en) Manufacturing method of thin film solar cell
Palma et al. Laser-patterning engineering for perovskite solar modules with 95% aperture ratio
US5173441A (en) Laser ablation deposition process for semiconductor manufacture
CN101971351B (en) Means and method for connecting thin metal layers
US4970196A (en) Method and apparatus for the thin film deposition of materials with a high power pulsed laser
JP2010518255A (en) Thermal spraying for solar concentrator manufacturing
TW201238002A (en) Laser removal of conductive seed layers
JP2012526372A (en) Method for forming contact of semiconductor substrate
CN109926583A (en) To the processing unit (plant) and method of transfer and sintering production ag paste electrode before induced with laser
JPH0870144A (en) Manufacture of superconductor parts
JP2012527102A (en) Method and apparatus for manufacturing solar cell thin film module
CN103993261A (en) Preparation method of transparent conductive thin film with grating structure
CN106575677A (en) Method for forming photovoltaic cell and photovoltaic cell formed according to method
JP3603087B2 (en) Method for forming electrode of β-FeSi2 element
JPH1098251A (en) Uv-laser annealing and cleaning of vapor-deposited metal wiring and dielectric wiring
JPS60227484A (en) Manufacture of photoelectric conversion semiconductor device
JP2585403B2 (en) Solar cell manufacturing method
Huang et al. Effect of laser scribing on coating, drying, and crystallization of absorber layer of perovskite solar cells
WO2011027533A1 (en) Method and apparatus for manufacturing a thin-film solar battery
JP2706716B2 (en) Film processing apparatus and film processing method
JPH10125632A (en) Method and apparatus for laser etching
JPS5860560A (en) Cutting method for redundant circuit of semiconductor device and fuse part thereof
JP3730544B2 (en) Electrode forming method and apparatus for β-FeSi2 element
JPH107478A (en) Metallization of aluminum nitride substrate and aluminum nitride substrate
JPH08148707A (en) Manufacture of solar cell module

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040120

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees