JP3603050B2 - 半導体記憶装置の駆動方法 - Google Patents

半導体記憶装置の駆動方法 Download PDF

Info

Publication number
JP3603050B2
JP3603050B2 JP2001185007A JP2001185007A JP3603050B2 JP 3603050 B2 JP3603050 B2 JP 3603050B2 JP 2001185007 A JP2001185007 A JP 2001185007A JP 2001185007 A JP2001185007 A JP 2001185007A JP 3603050 B2 JP3603050 B2 JP 3603050B2
Authority
JP
Japan
Prior art keywords
electrode
voltage
read
ferroelectric
ferroelectric capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001185007A
Other languages
English (en)
Other versions
JP2002093157A (ja
Inventor
恭博 嶋田
剛久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001185007A priority Critical patent/JP3603050B2/ja
Publication of JP2002093157A publication Critical patent/JP2002093157A/ja
Application granted granted Critical
Publication of JP3603050B2 publication Critical patent/JP3603050B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5657Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using ferroelectric storage elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、強誘電体キャパシタを有する半導体記憶装置の駆動方法に関する。
【0002】
【従来の技術】
強誘電体キャパシタを有する半導体記憶装置としては、図6に示すように、ドレイン領域1a、ソース領域1b及びゲート電極1cを有する電界効果型トランジスタ(以下、FETという)1と、上電極2a、下電極2b及び強誘電体膜2cを有する強誘電体キャパシタ2とを備え、FET1のゲート電極1cに強誘電体キャパシタ2の下電極2bを接続して、強誘電体キャパシタ2をFET1のゲート電位の制御に用いる非破壊読み出し方式のものが知られている。尚、図6において、3は基板を示している。
【0003】
この半導体記憶装置にデータを書き込む際には、制御電極となる強誘電体キャパシタ2の上電極2aと、基板3との間に書き込み電圧を印加する。
【0004】
例えば、上電極2aに、基板3に対して正となる電圧(制御電圧)を印加してデータを書き込むと、強誘電体キャパシタ2の強誘電体膜2cには下向きの分極が発生する。その後、上電極2aを接地しても、FET1のゲート電極1cには正の電荷が残るので、ゲート電極1cの電位は正となる。
【0005】
ゲート電極1cの電位がFET1のしきい値電圧を超えていれば、FET1はオン状態であるから、ドレイン領域1aとソース領域1bとの間に電位差を与えると、ドレイン領域1aとソース領域1bとの間に電流が流れる。このような強誘電体メモリの論理状態を例えば”1”と定義する。
【0006】
一方、強誘電体キャパシタ2の上電極2aに、基板3に対して負となる電圧を印加すると、強誘電体キャパシタ2の強誘電体膜2cには上向きの分極が発生する。その後、上電極2aを接地しても、FET1のゲート電極1cには負の電荷が残るので、ゲート電極1cの電位は負となる。この場合、ゲート電極1cの電位は常にFET1のしきい値電圧よりも小さいので、FET1はオフ状態であるから、ドレイン領域1aとソース領域1bとの間に電位差を与えても、ドレイン領域1aとソース領域1bとの間に電流は流れない。このような強誘電体メモリの論理状態を例えば”0”と定義する。
【0007】
強誘電体キャパシタ2への供給電源が切断されても、つまり、強誘電体キャパシタ2の上電極2aに電圧が印加されなくなっても、前述の各論理状態は保存されるので、不揮発性の記憶装置が実現される。すなわち、ある期間供給電源を切断した後、再び電源を供給してドレイン領域1aとソース領域1bとの間に電圧を印加すると、論理状態が”1”のときにはドレイン領域1aとソース領域1bとの間に電流が流れるので、データ”1”を読み出すことができる一方、論理状態が”0”のときにはドレイン領域1aとソース領域1bとの間に電流が流れないので、データ”0”を読み出すことができる。
【0008】
【発明が解決しようとする課題】
電源切断期間中においてもデータを正しく保持しておく(このようにデータを保持しておく特性をリテンションという)ためには、電源切断期間中においても、データ”1”のときにはFET1のゲート電極1cの電位が常にFET1のしきい値電圧よりも高く維持されていると共に、データ”0”のときにはFET1のゲート電極1cの電位が常に負電圧になるように維持されていることが必要になる。
【0009】
ところで、電源切断期間中においては、強誘電体キャパシタ2の上電極2a及び基板3は接地電位となるので、ゲート電極1cの電位は孤立している。このため、理想的には図7に示すように、強誘電体キャパシタ2へのデータの書き込み時のヒステリシスループ4と、バイアス電圧が0VであるときのFET1のゲート容量負荷線7との第1の交点cが、データ”1”に対するゲート電極1cの電位になると共に、ヒステリシスループ4とゲート容量負荷線7との第2の交点dが、データ”0”に対するゲート電極1cの電位になる。尚、図7において、縦軸は上電極2a(又はゲート電極1c)に現われる電荷Qを示し、横軸は電圧Vを示している。
【0010】
ところが、実際には、強誘電体キャパシタ2は理想的な絶縁体ではなくて抵抗成分を持っているので、この抵抗成分を通してゲート電極1cの電位は降下していく。この電位降下は、指数関数的であって、FET1のゲート容量と強誘電体キャパシタ2の容量との並列合成容量と、強誘電体キャパシタ2の抵抗成分とを掛け合わせて得られる時定数を持ち、この時定数は高々10秒程度である。従って、ゲート電極1cの電位は数時間で半減することになる。
【0011】
図7に示すように、ゲート電極1cの電位は第1の交点cで1V程度であるから、この電位が半減すると、ゲート電極1cの電位は、0.5V程度になってFET1のしきい値電圧(一般的には、0.7V程度である。)よりも低くなるので、オン状態であるべきFET1は短時間でオフ状態になる。
【0012】
このように、強誘電体キャパシタ2をFET1のゲート電位の制御に用いる方式の強誘電体メモリにおいては、データの読み出し後に再書き込み動作が不要であるという利点を有しているが、以下のような問題点を有している。すなわち、データの書き込み後にFET1のゲート電極1cに電位が発生しており、該ゲート電位を保持する能力がリテンション特性を決定するが、強誘電体キャパシタ2の抵抗成分により、強誘電体キャパシタ2が放電するまでの時定数が短いため、データ保持能力が短いつまりリテンション特性が良くないという問題を有している。
【0013】
前記に鑑み、本発明は、強誘電体膜の分極の偏位によって多値データを記憶する強誘電体キャパシタを有する半導体記憶装置のリテンション特性を向上させることを目的とする。
【0014】
【課題を解決するための手段】
前記の目的を達成するため、本発明に係る第1の半導体記憶装置の駆動方法は、強誘電体膜の分極の偏位によって多値データを記憶する強誘電体キャパシタと、基板上に形成されていると共にゲート電極が強誘電体キャパシタの上電極及び下電極のうちの一方の電極に接続されており、強誘電体膜の分極の偏位を検出する読み出し電界効果型トランジスタとを有する半導体記憶装置の駆動方法を対象とし、一方の電極と、強誘電体キャパシタの上電極及び下電極のうちの他方の電極との間に、相対的に高い第1の書き込み電圧又は相対的に低い第2の書き込み電圧を印加して、強誘電体キャパシタに多値データを書き込む第1の工程と、一方の電極と他方の電極との間に誘起されている電位差を除去する第2の工程と、他方の電極と基板との間に読み出し電圧を印加して、強誘電体膜の分極の偏位を検出することにより多値データを読み出す第3の工程とを備え、読み出し電圧は、第1の書き込み電圧と同じ極性であって、読み出し電圧が印加された際に、第1の書き込み電圧で書き込まれているときにゲート電極と基板との間に誘起される第1の電位差が、第2の書き込み電圧で書き込まれているときにゲート電極と基板との間に誘起される第2の電位差よりも小さくなるような大きさに設定されている。
【0015】
本発明に係る第1の半導体記憶装置の駆動方法によると、強誘電体キャパシタに多値データを書き込んだ後、強誘電体キャパシタの一方の電極と他方の電極との間に誘起されている電位差を除去するため、強誘電体キャパシタに印加される電位差に起因する、強誘電体膜の抵抗成分を介した電位の低下は発生しないので、リテンション特性が向上する。
【0016】
この場合、強誘電体キャパシタの一方の電極と他方の電極との間に誘起されている電位差が除去されているが、読み出し電圧は、第1の書き込み電圧と同じ極性であって、読み出し電圧が印加された際に、第1の書き込み電圧で書き込まれているときにゲート電極と基板との間に誘起される第1の電位差が、第2の書き込み電圧で書き込まれているときにゲート電極と基板との間に誘起される第2の電位差よりも小さくなるような大きさに設定されているため、強誘電体キャパシタに保持されているデータを支障無く読み出すことができる。
【0017】
本発明に係る第1の半導体記憶装置の駆動方法において、半導体記憶装置は、強誘電体キャパシタの一方の電極と他方の電極とを同電位にするスイッチを有し、第2の工程は、スイッチにより一方の電極と他方の電極とを同電位にすることにより、電位差を除去する工程を含むことが好ましい。
【0018】
このようにすると、強誘電体キャパシタの一方の電極と他方の電極との間に誘起されている電位差を簡易且つ確実に除去することができる。
【0019】
本発明に係る半導体記憶装置の駆動方法において、第3の工程は、読み出し電圧が強誘電体キャパシタの容量値と読み出し電界効果型トランジスタのゲート容量値との比に基づき分割されることによりゲート電極と基板との間に誘起される電位差が相対的に高いか又は相対的に低いかを検出することによって、強誘電体膜の分極の偏位を検出する工程を含むことが好ましい。
【0020】
このようにすると、ゲート電極と基板との間に誘起される電位差を、前述の関係、すなわち、相対的に高い第1の書き込み電圧で書き込まれているときにゲート電極と基板との間に誘起される第1の電位差が、相対的に低い第2の書き込み電圧で書き込まれているときにゲート電極と基板との間に誘起される第2の電位差よりも小さくなるような大きさに設定することが容易になる。
【0021】
本発明に係る第2の半導体記憶装置の駆動方法は、それぞれが強誘電体膜の分極の偏位によって多値データを記憶し、互いに連続するように接続された複数の強誘電体キャパシタと、基板上に形成されていると共に、ゲート電極が、互いに連続するように接続された複数の強誘電体キャパシタの一端側に接続されており、互いに連続するように接続された複数の強誘電体キャパシタの強誘電体膜の分極の偏位を検出する読み出し電界効果型トランジスタとを有する半導体記憶装置の駆動方法を対象とし、複数の強誘電体キャパシタのうち書き込み時に選択された強誘電体キャパシタの上電極と下電極との間に、相対的に高い第1の書き込み電圧又は相対的に低い第2の書き込み電圧を印加して、強誘電体キャパシタに多値データを書き込む第1の工程と、書き込み時に選択された強誘電体キャパシタの上電極と下電極との間に誘起されている電位差を除去する第2の工程と、互いに連続するように接続された複数の強誘電体キャパシタの他端側と基板との間に読み出し電圧を印加して、複数の強誘電体キャパシタのうち読み出し時に選択された強誘電体キャパシタの強誘電体膜の分極の偏位を検出することにより多値データを読み出す第3の工程とを備え、読み出し電圧は、第1の書き込み電圧と同じ極性であって、読み出し電圧が印加された際に、第1の書き込み電圧で書き込まれているときにゲート電極と基板との間に誘起される第1の電位差が、第2の書き込み電圧で書き込まれているときにゲート電極と基板との間に誘起される第2の電位差よりも小さくなるような大きさに設定されている。
【0022】
第2の半導体記憶装置の駆動方法によると、強誘電体キャパシタに多値データを書き込んだ後、強誘電体キャパシタの一方の電極と他方の電極との間に誘起されている電位差を除去するため、強誘電体キャパシタに印加される電位差に起因する、強誘電体膜の抵抗成分を介した電位の低下が発生しないので、リテンション特性が向上する。
【0023】
この場合、強誘電体キャパシタの一方の電極と他方の電極との間に誘起されている電位差が除去されているが、読み出し電圧は、第1の書き込み電圧と同じ極性であって、読み出し電圧が印加された際に、第1の書き込み電圧で書き込まれているときにゲート電極と基板との間に誘起される第1の電位差が、第2の書き込み電圧で書き込まれているときにゲート電極と基板との間に誘起される第2の電位差よりも小さくなるような大きさに設定されているため、強誘電体キャパシタに保持されているデータを支障無く読み出すことができる。
【0024】
本発明に係る第2の半導体記憶装置の駆動方法において、半導体記憶装置は、複数の強誘電体キャパシタのそれぞれの上電極と下電極とを同電位にする複数のスイッチを有し、第2の工程は、スイッチにより、書き込み時に選択された強誘電体キャパシタの上電極と下電極とを同電位にすることにより、電位差を除去する工程を含むことが好ましい。
【0025】
このようにすると、強誘電体キャパシタの一方の電極と他方の電極との間に誘起されている電位差を簡易且つ確実に除去することができる。
【0026】
本発明に係る半導体記憶装置の駆動方法において、第3の工程は、読み出し電圧が、読み出し時に選択された強誘電体キャパシタの容量値と読み出し電界効果型トランジスタのゲート容量値との比に基づき分割されることによりゲート電極と基板との間に誘起される電位差が相対的に高いか又は相対的に低いかを検出することによって、読み出し時に選択された強誘電体キャパシタの強誘電体膜の分極の偏位を検出する工程を含むことが好ましい。
【0027】
このようにすると、ゲート電極と基板との間に誘起される電位差を、前述の関係、すなわち、相対的に高い第1の書き込み電圧で書き込まれているときにゲート電極と基板との間に誘起される第1の電位差が、相対的に低い第2の書き込み電圧で書き込まれているときにゲート電極と基板との間に誘起される第2の電位差よりも小さくなるような大きさに設定することが容易になる。
【0028】
【発明の実施の形態】
(第1の実施形態)
以下、本発明の第1の実施形態に係る半導体記憶装置及びその駆動方法について、図1〜図4を参照しながら説明する。
【0029】
図1は、第1の実施形態に係る半導体記憶装置を構成するメモリセルの等価回路を示しており、第1の実施形態に係る半導体記憶装置は、ドレイン領域11、ソース領域12及びゲート電極13を有する読み出しFET10と、ドレイン領域21、ソース領域22及びゲート電極23を有する選択FET20と、上電極31、下電極32及び強誘電体膜33を有する強誘電体キャパシタ30とを備えており、読み出しFET10、選択FET20及び強誘電体キャパシタ30によりメモリセルが構成されている。
【0030】
強誘電体キャパシタ30の下電極32は読み出しFET10のゲート電極13及び選択FET20のソース領域22に接続され、強誘電体キャパシタ30の上電極31は選択FET20のドレイン領域21及びワード線WLに接続され、読み出しFET10のドレイン領域11はビット線BLに接続され、読み出しFET10のソース領域12はプレート線CPに接続され、選択FET20のゲート電極23は制御線BSに接続されている。尚、図1において、14は読み出しFET10が形成されている基板を示している。
【0031】
図2は、図1に示すメモリセルがマトリックス状に配置されてなるメモリセルアレイの等価回路を示している。
【0032】
図2に示すように、第1行のメモリセルを構成する強誘電体キャパシタ30の上電極31は第1のワード線WL1に共通に接続され、第2行のメモリセルを構成する強誘電体キャパシタ30の上電極31は第2のワード線WL2に共通に接続され、第1列のメモリセルを構成する読み出しFET10のドレイン電極11は第1のビット線BL1に共通に接続され、第2列のメモリセルを構成する読み出しFET10のドレイン電極11は第2のビット線BL1に共通に接続され、第1行のメモリセルを構成する読み出しFET10のソース領域12は第1のプレート線CP1に共通に接続され、第2行のメモリセルを構成する読み出しFET10のソース領域12は第2のプレート線CP2に共通に接続され、第1列のメモリセルを構成する選択FET20のゲート電極23は第1の制御線BS1に共通に接続され、第2列のメモリセルを構成する選択FET20のゲート電極23は第2の制御線BS2に共通に接続されている。
【0033】
以下、第1の実施形態に係る半導体記憶装置の駆動方法について説明する。
【0034】
(データの書き込み動作)
第1の実施形態に係る半導体記憶装置における書き込み動作は以下の通りである。
【0035】
基板電位を接地電圧においてから、ワード線WL、ビット線BL、プレート線CP及び制御線BSのすべての信号線の電位を0Vにし、その後、ワード線WLを正の書き込み電圧(第1の書き込み電圧)又は負の書き込み電圧(第2の書き込み電圧)に設定して、強誘電体キャパシタ30の強誘電体膜33に下向き又は上向きの分極を発生させる。ここで、強誘電体膜33に下向きの分極が発生している状態をデータ”1”と定義し、強誘電体膜33に上向きの分極が発生している状態をデータ”0”と定義する。
【0036】
以下、書き込み動作をする際の、電荷Q(縦軸)と電圧V(横軸)との関係について図3を参照しながら説明する。尚、図3において、4はデータの書き込み時のヒステリシスループを示し、5はデータ”1”を書き込むときの第1のゲート容量負荷線を示し、6はデータ”0”を書き込むときの第2のゲート容量負荷線を示し、7はバイアス電圧が0Vであるときの第3のゲート容量負荷線を示している。
【0037】
例えば、ワード線WLの電位を6V(第1の書き込み電圧)に設定した場合、強誘電体キャパシタ30の強誘電体膜33の分極の大きさは、ヒステリシスループ4の上端点aに対応し、ワード線WLの電位を−6V(第2の書き込み電圧)に設定した場合、強誘電体キャパシタ30の強誘電体膜33の分極の大きさは、ヒステリシスループ4の下端点bに対応する。
【0038】
書き込み動作が完了すると、ワード線WLの電位を0Vに設定する。このようにすると、データ”1”(分極は下向きである)が保存されている場合には、読み出しFET10のゲート電極13の電位は、ヒステリシスループ4と第3のゲート容量負荷線7との第1の交点dになり正の電位を保持しており、データ”0”(分極は上向きである)が保存されている場合には、読み出しFET10のゲート電極13の電位は、ヒステリシスループ4と第3のゲート容量負荷線7との第2の交点cになり負の電位を保持している。
【0039】
次に、制御線BSの電位を選択FET20のしきい値電圧以上に上げて、選択FET20をオン状態にする。このようにすると、強誘電体キャパシタ30の上電極31及び下電極32の電位はいずれも0Vになるので、つまり、上電極31と下電極32との間の電位差は除かれるので、データ”1”が保存されている場合には、読み出しFET10のゲート電極13の電位は、第1の交点dから縦軸上の第1の点fに移動し、データ”0”が保存されている場合には、読み出しFET10のゲート電極13の電位は、第2の交点cから縦軸上の第2の点eに移動する。
【0040】
その後、制御線BSの電位を0Vにして選択FET20をオフ状態にしても、上電極31と下電極32との間には電位差がないので、強誘電体膜32の分極の大きさが保存されると共に、強誘電体膜32の抵抗成分に起因する電位の低下を抑制することができる。
【0041】
(データの読み出し動作)
第1の実施形態に係る半導体記憶装置における読み出し動作は以下の通りである。
【0042】
前述のように、書き込み動作の後に、選択FET20をオン状態にして、強誘電体キャパシタ30の上電極31及び下電極32の電位をいずれも0Vにするので、図3に示すように、データ”1”が保存されている場合には、読み出しFET10のゲート電極13の電位は、第1の交点dから縦軸上の第1の点fに移動し、データ”0”が保存されている場合には、読み出しFET10のゲート電極13の電位は、第2の交点cから縦軸上の第2の点eに移動する。
【0043】
ここで、図1に示すワード線WLに例えば1.5Vの読み出し電圧を印加する。このようにすると、ワード線WLと基板14との間に1.5Vの電位差が生じ、この電位差は、強誘電体キャパシタ30の容量値と読み出しFET10のゲート容量値の各大きさに応じて分割される。強誘電体キャパシタ30の容量値の電圧依存性は、強誘電体膜33の分極の向きによって、つまりデータが”1”であるか又は”0”であるかによって異なる。以下、このことを図4を参照しながら説明する。
【0044】
ワード線WLに1.5Vの読み出し電圧を印加した状態は、分極が保持されている点を原点に置き換えると共にゲート容量を負荷線としたとき、この負荷線が電圧軸(横軸)と1.5Vの点で交わることと等価である。このことは、図4に示すように、データ”1”に対しては第4のゲート容量負荷線8を与えることに等しく、データ”0”に対しては第5のゲート容量負荷線9を与えることに等しい。
【0045】
ワード線WLに電圧が印加されるときには、強誘電体キャパシタ30にも電圧が印加される。このため、ワード線WLの電位が1.5Vのときには、データ”1”に対しては分極は第1の曲線Aに沿って変化して第1の曲線Aと第4のゲート容量負荷線8との交点gで釣り合うと共に、データ”0”に対しては分極は第2の曲線Bに沿って変化して第2の曲線Bと第5のゲート容量負荷線9との交点hで釣り合う。
【0046】
交点i、交点j及び交点kは、各分極状態のときの電位の配分を決めており、データ”1”に対しては交点iと交点jとの間の約0.7Vが読み出しFET10のゲート電位として配分されると共に、データ”0”に対しては交点iと交点kとの間の約0.9Vが読み出しFET10のゲート電位として配分される。
【0047】
従って、読み出しFET10のしきい値電圧を0.7Vと0.9Vとの中間の値である0.8Vに設定しておけば、データ”1”を読み出すときには読み出しFET10はオフ状態になると共にデータ”0”を読み出すときには読み出しFET10はオン状態になる。
【0048】
このため、図1に示すプレート線CPとビット線BLとの間に電位差を与えると、データ”1”が記憶されているときには読み出しFET10には電流が流れない一方、データ”0”が記憶されているときには読み出しFET10に電流が流れるので、別途設けられている電流検出手段により読み出しFET10に流れる電流が小さいか又は大きいかを検出することによって、記憶されているデータが”1”であるか又は”0”であるかを判別することができる。
【0049】
ところで、この読み出し動作においては、ワード線WLへの読み出し電圧の印加は、データ”1”に対しては分極を増強する方向に作用するが、データ”0”に対しては分極が反転する方向に作用する。従って、強誘電体キャパシタ30に印加される電圧がその抗電圧を超えると分極が反転してしまうが、第1の実施形態においては、データが”0”であるときに強誘電体キャパシタ30に印加する電圧は0.6Vであって抗電圧となる点mよりも小さいため、分極が反転しないので、記憶されているデータが変化する恐れはない。
【0050】
ここで、強誘電体キャパシタ30の容量値と読み出しFET10のゲート容量値とを調整することにより、ワード線WLと基板14との間に印加される読み出し電圧を、強誘電体キャパシタ30の上電極31と下電極32との間に印加される電圧と、読み出しFET10におけるゲート電極13と基板14との間に印加される電圧とに配分して、強誘電体キャパシタ30に印加される電圧が該強誘電体キャパシタ30の抗電圧を超えない値つまり分極が反転しないような値に設定することが好ましい。
【0051】
以上のように、第1の実施形態の特徴は、読み出し電圧(1.5V)は、データ”1”を書き込んだときの第1の書き込み電圧(+6V)と同じ極性であって、読み出し電圧が印加された際に、データ”1”が書き込まれているときにゲート電極13と基板14との間に誘起される第1の電位差(約0.7V)が、データ”0”が書き込まれているときにゲート電極13と基板14との間に誘起される第2の電位差(約0.9V)よりも小さくなるような値に設定されていることである。
【0052】
このようにすることにより、強誘電体キャパシタ30の上電極31と下電極32との電位差が0であっても、強誘電体キャパシタ30に書き込まれているデータを確実に読み出すことができる。
【0053】
ここで、従来の半導体記憶装置の駆動方法と本実施形態に係る半導体記憶装置の駆動方法との差異について説明する。
【0054】
従来においては、データ”1”を書き込むときには、ゲート電極13に誘起される正の電位を読み出しFET10のしきい値電圧よりも高くすることにより、読み出しFET10をON状態にすると共にデータ書き込み後もON状態を保持しておき、データの読み出し時には、読み出しFET10のドレイン領域11とソース領域12との間に電位差を与えて、ドレイン領域11とソース領域12との間に流れる電流値を読み出す。
【0055】
また、データ”0”を書き込むときには、ゲート電極13に誘起される負の電位は読み出しFET10のしきい値電圧よりも低いので、読み出しFET10はOFF状態になると共にデータの書き込み後もOFF状態は保持されており、データの読み出し時には、読み出しFET10のドレイン領域11とソース領域12との間に電位差を与えて、OFF状態の読み出しFET10のドレイン領域11とソース領域12との間に流れない電流値を読み出す。
【0056】
従って、従来においては、データ”1”を書き込むときにゲート電極13に誘起される電位は、データ”0”を書き込むときにゲート電極13に誘起される電位よりも高く、データ”1”を保持しているときにゲート電極13に誘起される電位は、データ”0”を保持しているときにゲート電極13に誘起される電位よりも高く、データ”1”を読み出すときにゲート電極13に誘起される電位は、データ”0”を読み出すときにゲート電極13に誘起される電位よりも高い。つまり、データ”1”の書き込み、保持及び読み出し時のゲート電極13の各電位は、データ”0”の書き込み、保持及び読み出し時のゲート電極13の各電位よりも常に高い。
【0057】
これに対して、第1の実施形態においては、データ”1”を書き込むときにゲート電極13に誘起される電位は、データ”0”を書き込むときにゲート電極13に誘起される電位よりも高いが、データを保持しているときにはデータが”1”であっても”0”であってもゲート電極13の電位は零であり、また、データ”1”を読み出すときにゲート電極13に誘起される電位は、データ”0”を読み出すときにゲート電極13に誘起される電位よりも低い。
【0058】
(第2の実施形態)
以下、本発明の第2の実施形態に係る半導体記憶装置及びその駆動方法について、図5を参照しながら説明する。
【0059】
図5に示すように、第1の実施形態と同様、強誘電体キャパシタ30に選択FET20が並列に接続されてなる複数個のメモリセルが直列に接続されており、直列に接続された複数の強誘電体キャパシタ30からなるビット列の一端に読み出しFET10が接続されている。また、複数の強誘電体キャパシタ30からなる複数のビット列が行方向に複数列配置されることによって、メモリセルアレイが構成されている。
【0060】
第2の実施形態における、読み出しFET10、選択FET20及び強誘電体キャパシタ30の各構成は第1の実施形態と同様である。
【0061】
図5に示すように、第1行のメモリセルを構成する選択FET20のゲート電極に第1のワード線WL1が接続され、第2行のメモリセルを構成する選択FET20のゲート電極に第2のワード線WL2が接続され、以下、同様にして、第3のワード線WL3及び第4のワード線WL4が接続されている。
【0062】
複数の強誘電体キャパシタ30からなる第1のビット列の一端側に第1の制御線BS1が接続され且つ他端側に読み出しFET10のゲート電極が接続されていると共に、該読み出しFET10のドレイン領域に第1のビット線BL1が接続されている。また、複数の強誘電体キャパシタ30からなる第2のビット列の一端側に第2の制御線BS2が接続され且つ他端側に読み出しFET10のゲート電極が接続されていると共に、該読み出しFET10のドレイン領域に第2のビット線BL2が接続されている。また、第1列及び第2列の読み出しFET10のソース領域はプレート線CPに共通に接続されている。
【0063】
第2の実施形態においては、例えば第1の制御線BS1が接続されている第1のビット列の第1行のメモリセルを選択する場合には、第1のワード線WL1の電位をLレベルに設定すると共に第2〜第4のワード線WL2〜WL4の電位をHレベルに設定して、第2行〜第4行の強誘電体キャパシタ30の上電極と下電極とを短絡する。これにより、第1のビット列の第1行のメモリセルを構成する強誘電体キャパシタ30と第1のビット列の読み出しFET10とが直列に接続されるので、第1の実施形態に係る半導体記憶装置と等価になる。
【0064】
従って、第1の実施形態と同様の、データの書き込み動作、データの読み出し動作及びデータ読み出し後の動作を行なうことにより、第1の実施形態と同様の効果を得ることができる。
【0065】
尚、第1及び第2の実施形態においては、読み出し動作時において、記憶されているデータが”1”であるか又は“0”であるかによって読み出しFET10のゲート電極の電位が異なることを利用して、読み出しFET10の変調を論理判断に反映させているが、これに代えて、読み出しFET10のゲート電圧をセンスアンプに導き、該ゲート電圧と基準電圧とを比較したりこれらの電圧差を増幅したりして論理判断を行なってもよい。
【0066】
【発明の効果】
本発明に係る第1又は第2の半導体記憶装置の駆動方法によると、強誘電体キャパシタに多値データを書き込んだ後、強誘電体キャパシタの一方の電極と他方の電極との間に誘起されている電位差を除去するため、強誘電体キャパシタの抵抗成分に起因する電位の低下が抑制されるので、リテンション特性が向上する。この場合、多値データの読み出し時には、強誘電体キャパシタの一方の電極と他方の電極との間に誘起されている電位差が除去されているが、強誘電体キャパシタに保持されているデータを支障無く読み出すことができる。
【図面の簡単な説明】
【図1】第1の実施形態に係る半導体記憶装置を構成するメモリセルの等価回路図である。
【図2】第1の実施形態に係る半導体記憶装置を構成するメモリセルがマトリックス状に配置されてなるメモリセルアレイの等価回路図である。
【図3】第1の実施形態に係る半導体記憶装置の読み出し動作時の電荷と電圧との振る舞いを説明する図である。
【図4】第1の実施形態に係る半導体記憶装置の読み出し動作時の電荷と電圧との振る舞いを説明する図である。
【図5】第2の実施形態に係る半導体記憶装置のメモリアレイの等価回路図である。
【図6】従来の半導体記憶装置を構成するメモリセルの等価回路図である。
【図7】従来の半導体記憶装置における読み出し動作時の電荷と電圧との振る舞いを説明する図である。
【符号の説明】
10 読み出しFET
11 ドレイン領域
12 ソース領域
13 ゲート電極
14 基板
20 選択FET
21 ドレイン領域
22 ソース領域
23 ゲート電極
30 強誘電体キャパシタ
31 上電極
32 下電極
33 強誘電体膜

Claims (6)

  1. 強誘電体膜の分極の偏位によってデータを記憶する強誘電体キャパシタと、基板上に形成されていると共にゲート電極が前記強誘電体キャパシタの上電極及び下電極のうちの一方の電極に接続されており、前記強誘電体膜の分極の偏位を検出する読み出し電界効果型トランジスタとを有する半導体記憶装置の駆動方法であって、
    前記一方の電極と、前記強誘電体キャパシタの上電極及び下電極のうちの他方の電極との間に、相対的に高い第1の書き込み電圧又は相対的に低い第2の書き込み電圧を印加して、前記強誘電体キャパシタに前記データを書き込む第1の工程と、
    前記一方の電極と前記他方の電極との間に誘起されている電位差を除去する第2の工程と、
    前記他方の電極と前記基板との間に読み出し動作を行なったときに前記強誘電体膜の分極が反転せず、読み出されたデータが破壊されない大きさの読み出し電圧を印加して、前記強誘電体膜の分極の偏位を検出することにより前記データを読み出す第3の工程とを備え、
    前記読み出し電圧は、前記第1の書き込み電圧と同じ極性であって、前記読み出し電圧が印加された際に、前記第1の書き込み電圧で書き込まれているときに前記ゲート電極と前記基板との間に誘起される第1の電位差が、前記第2の書き込み電圧で書き込まれているときに前記ゲート電極と前記基板との間に誘起される第2の電位差よりも小さくなるような大きさに設定されていることを特徴とする半導体記憶装置の駆動方法。
  2. 前記半導体記憶装置は、前記強誘電体キャパシタの前記一方の電極と前記他方の電極とを同電位にするスイッチを有し、
    前記第2の工程は、前記スイッチにより前記一方の電極と前記他方の電極とを同電位にすることにより、前記電位差を除去する工程を含むことを特徴とする請求項1に記載の半導体記憶装置の駆動方法。
  3. 前記第3の工程は、前記読み出し電圧が前記強誘電体キャパシタの容量値と前記読み出し電界効果型トランジスタのゲート容量値との比に基づき分割されることにより前記ゲート電極と前記基板との間に誘起される電位差が相対的に高いか又は相対的に低いかを検出することによって、前記強誘電体膜の分極の偏位を検出する工程を含むことを特徴とする請求項1に記載の半導体記憶装置の駆動方法。
  4. それぞれが強誘電体膜の分極の偏位によってデータを記憶し、互いに連続するように接続された複数の強誘電体キャパシタと、基板上に形成されていると共に、ゲート電極が、前記互いに連続するように接続された複数の強誘電体キャパシタの一端側に接続されており、前記互いに連続するように接続された複数の強誘電体キャパシタの前記強誘電体膜の分極の偏位を検出する読み出し電界効果型トランジスタとを有する半導体記憶装置の駆動方法であって、
    前記複数の強誘電体キャパシタのうち書き込み時に選択された強誘電体キャパシタの上電極と下電極との間に、相対的に高い第1の書き込み電圧又は相対的に低い第2の書き込み電圧を印加して、前記強誘電体キャパシタに前記データを書き込む第1の工程と、
    書き込み時に選択された前記強誘電体キャパシタの上電極と下電極との間に誘起されている電位差を除去する第2の工程と、
    前記互いに連続するように接続された複数の強誘電体キャパシタの他端側と前記基板との間に読み出し動作を行なったときに前記強誘電体膜の分極が反転せず、読み出されたデータが破壊されない大きさの読み出し電圧を印加して、前記複数の強誘電体キャパシタのうち読み出し時に選択された強誘電体キャパシタの前記強誘電体膜の分極の偏位を検出することによりデータを読み出す第3の工程とを備え、
    前記読み出し電圧は、前記第1の書き込み電圧と同じ極性であって、前記読み出し電圧が印加された際に、前記第1の書き込み電圧で書き込まれているときに前記ゲート電極と前記基板との間に誘起される第1の電位差が、前記第2の書き込み電圧で書き込まれているときに前記ゲート電極と前記基板との間に誘起される第2の電位差よりも小さくなるような大きさに設定されていることを特徴とする半導体記憶装置の駆動方法。
  5. 前記半導体記憶装置は、前記複数の強誘電体キャパシタのそれぞれの上電極と下電極とを同電位にする複数のスイッチを有し、
    前記第2の工程は、前記スイッチにより、書き込み時に選択された前記強誘電体キャパシタの上電極と下電極とを同電位にすることにより、前記電位差を除去する工程を含むことを特徴とする請求項4に記載の半導体記憶装置の駆動方法。
  6. 前記第3の工程は、前記読み出し電圧が、読み出し時に選択された前記強誘電体キャパシタの容量値と前記読み出し電界効果型トランジスタのゲート容量値との比に基づき分割されることにより前記ゲート電極と前記基板との間に誘起される電位差が相対的に高いか又は相対的に低いかを検出することによって、読み出し時に選択された前記強誘電体キャパシタの前記強誘電体膜の分極の偏位を検出する工程を含むことを特徴とする請求項4に記載の半導体記憶装置の駆動方法。
JP2001185007A 2000-07-13 2001-06-19 半導体記憶装置の駆動方法 Expired - Fee Related JP3603050B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001185007A JP3603050B2 (ja) 2000-07-13 2001-06-19 半導体記憶装置の駆動方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000212357 2000-07-13
JP2000-212357 2000-07-13
JP2001185007A JP3603050B2 (ja) 2000-07-13 2001-06-19 半導体記憶装置の駆動方法

Publications (2)

Publication Number Publication Date
JP2002093157A JP2002093157A (ja) 2002-03-29
JP3603050B2 true JP3603050B2 (ja) 2004-12-15

Family

ID=26595935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001185007A Expired - Fee Related JP3603050B2 (ja) 2000-07-13 2001-06-19 半導体記憶装置の駆動方法

Country Status (1)

Country Link
JP (1) JP3603050B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100487920B1 (ko) 2002-09-06 2005-05-06 주식회사 하이닉스반도체 불휘발성 강유전체 메모리 장치

Also Published As

Publication number Publication date
JP2002093157A (ja) 2002-03-29

Similar Documents

Publication Publication Date Title
US6449184B2 (en) Method for driving semiconductor memory
US6791885B2 (en) Programmable conductor random access memory and method for sensing same
KR100277598B1 (ko) 강유전성 캐패시터의 비파괴 판독
KR100558209B1 (ko) 강유전성 메모리 및 그 작동 방법
US5959922A (en) Ferroelectric random access memory device with reference cell array blocks
US6388915B1 (en) Method for driving semiconductor memory
US7274593B2 (en) Nonvolatile ferroelectric memory device
US7728369B2 (en) Nonvolatile ferroelectric memory device
KR20010004385A (ko) 강유전체 메모리 장치
US6614678B2 (en) Semiconductor memory and method for driving the same
US6421268B2 (en) Method for driving semiconductor memory
JP3983957B2 (ja) 不揮発性強誘電体ランダムアクセスメモリ装置及びプレートライン駆動方法
KR20030077459A (ko) 반도체 기억장치 및 그 구동방법
JP3603050B2 (ja) 半導体記憶装置の駆動方法
JP3620588B2 (ja) 半導体記憶装置の駆動方法
JP3620590B2 (ja) 半導体記憶装置の駆動方法
KR100800154B1 (ko) 더블게이트형 디램의 멀티레벨 구동회로 및 그 구동방법
JP3643054B2 (ja) 半導体記憶装置及びその駆動方法
JP2005108429A (ja) 半導体記憶装置及びその駆動方法
KR20010003223A (ko) 강유전체 랜덤 억세스 메모리 장치 및 그의 기입 방법

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees