JP3598692B2 - Crystallization method and crystallizer - Google Patents

Crystallization method and crystallizer Download PDF

Info

Publication number
JP3598692B2
JP3598692B2 JP32048096A JP32048096A JP3598692B2 JP 3598692 B2 JP3598692 B2 JP 3598692B2 JP 32048096 A JP32048096 A JP 32048096A JP 32048096 A JP32048096 A JP 32048096A JP 3598692 B2 JP3598692 B2 JP 3598692B2
Authority
JP
Japan
Prior art keywords
outlet
solvent
crystallization
vessel
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32048096A
Other languages
Japanese (ja)
Other versions
JPH10156103A (en
Inventor
正明 当麻
光厳 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP32048096A priority Critical patent/JP3598692B2/en
Publication of JPH10156103A publication Critical patent/JPH10156103A/en
Application granted granted Critical
Publication of JP3598692B2 publication Critical patent/JP3598692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は晶析方法及びそれに適した装置に関し、詳しくは、溶媒の蒸発潜熱により、粗晶析性物質含有溶液を冷却して晶析させる方法、及び、該方法に適した装置に関するものである。
【0002】
【従来の技術】
減圧下に攪拌しながら、粗晶析性物質を含有する溶液から溶媒を蒸発させて、晶析性物質を晶析させる方法は公知である。例えば、特開昭58−104603号公報には、加熱により、溶媒を蒸発させて濃縮するタイプの晶析器を用いて、晶析性物質を含有する溶液を濃縮し、晶析性物質の晶析を行う方法であって、攪拌機としてドラフトチューブを用い、液を上下方向に攪拌する晶析器の上部の気相部内壁面を冷却して、蒸発した溶媒の一部を前記内壁面に凝縮流下させ、濡面を形成せしめる晶析方法が記載されている。この方法は、蒸発した溶媒の大部分を晶析容器の外へ留去するものである。
【0003】
【発明が解決しようとする課題】
しかしながら、容器の中心部に攪拌軸を有する攪拌機を設けた晶析容器では、容器の気相部の内壁面よりも、気相部の攪拌軸に晶析性物質のスケールが生成しやすく、このスケールが晶析操作中に剥離、落下して、晶析後に得られる固液混合物中に混入し、晶析性物質の純度を低下させたり、晶析容器の下部に設けられた取出口を閉塞し、操作性を悪化させるという問題があった。
【0004】
【課題を解決するための手段】
本発明者らは、前記問題点を解決すべく鋭意研究した結果、粗晶析性物質含有過飽和溶液を冷却して、晶析性物質を晶析させるに際し、前記の冷却は溶媒が蒸発する際の潜熱を利用し、蒸発した溶媒は晶析容器の外部で凝縮させ、凝縮した溶媒を晶析容器の気相部へ噴霧する方法により、スケールの生成を防止できることを見出し、さらに、この方法に適した装置を見出して、本発明を完成した。
即ち、本発明は、(i) 粗晶析性物質を含む過飽和溶液を、晶析容器内で攪拌軸を有する攪拌機を用いて攪拌しながら冷却して晶析性物質を晶析させる方法であって、溶媒を減圧下に蒸発させて、その潜熱により前記過飽和溶液を冷却すると共に、蒸発した溶媒を晶析容器の外部で凝縮させ、これを晶析容器内の気相部へ噴霧することを特徴とする晶析方法と、(ii)溶媒を、粗晶析性物質を含む溶液から、攪拌しながら減圧下に蒸発させ、該蒸発の潜熱により前記溶液を冷却して、晶析性物質を晶析させる装置であって、
a)該装置は、晶析容器C、凝縮器E、貯留槽T、送液機P及び真空源Vを有し、
b)晶析容器Cは、その高さ方向の上部に蓋体Hと、円筒部Dと、下部に晶析された混合物の取出口Qとを有し、
c)又、晶析容器Cは、その中心部に攪拌機Aと、その上方に駆動装置Kと、円筒部Dの上部であって且つ攪拌機Aの付近に噴霧器Sとを有し、
d)攪拌機Aは、攪拌軸Fと、攪拌軸Fの下部に一体に取り付けられた攪拌翼Iとを有し、
e)蓋体Hは、攪拌軸Fを挿入するための開口Oと原料供給口Oと排気口Oと噴霧器Sを挿入するための開口Oとを有し、
f)前記の取出口Qには、バルブBが取り付けられ、
g)凝縮器Eは、蒸発した溶媒の導入口Eと、凝縮された溶媒の導出口Eと、排気口Eとを有し、
(1)晶析容器Cと凝縮器Eとは、前記排気口Oと蒸発した溶媒の導入口Eとを介して、蒸発ラインLにより結ばれ、
(2)凝縮器Eと晶析容器Cとは、前記導出口Eと、該導出口E及び貯留槽Tの入口を結ぶ凝縮液のラインLと、貯留槽Tと、該貯留槽Tの出口及び送液機Pの入口を結ぶ送液ラインLと、送液機Pと、該送液機Pの出口及び噴霧器Sを結ぶ還流ラインLと、噴霧器Sとを介して、結ばれ、
(3)又、凝縮器Eと真空源Vとは、前記の排気口Eと真空ラインLとを介して、結ばれてなることを特徴とする晶析装置とを提供するものである。
以下、本発明を詳細に説明する。
【0005】
【発明の実施の形態】
本発明の晶析装置において、攪拌機Aの攪拌軸Fは、蓋体Hの挿入用開口Oを通って晶析容器Cの外部上方に延出されており、晶析容器Cの上方、例えば、攪拌軸Fの上部先端の近傍に設置された駆動装置Kにより回転駆動される。この攪拌軸Fの下部には、攪拌翼Iが一体に取り付けられている。
攪拌翼Iとしては、アンカー翼、パドル翼付きアンカー翼、平型パドル翼、傾斜型パドル翼、高粘度用パドル翼及びインペラー翼等が例示される。
凝縮器Eとしては、例えば、熱交換器等が挙げられる。
又、好ましい送液機Pとしては、例えば、渦巻きポンプ等の圧変動の無いポンプが挙げられる。
【0006】
本発明の晶析方法はバッチ形式で行われ、好ましい晶析性物質としては、香料、医薬及び農薬等の工業製品、又はその中間体として有用な有機化合物が挙げられる。又、好ましい溶媒としては、アルコール系、エーテル系及び炭化水素系等の有機溶媒が挙げられる。
本発明の晶析方法における溶媒の蒸発は、好ましくは晶析容器C内の減圧度を複数回にわたって減少させることにより、より好ましくは晶析容器C内を徐々に減圧させることにより、行われる。
【0007】
本発明の晶析方法において、蒸発した溶媒は、前記装置の晶析容器Cの外に設けられた凝縮器Eで凝縮される。この凝縮した溶媒は、例えばタンク等の貯留槽Tに一旦貯留され、次いで、ポンプ等の送液機Pを用いて、晶析容器C内に戻される。
このように、本発明の装置を用いると、晶析容器C内の溶媒量を略一定にすることができる。
そして、晶析容器C内の溶媒量を略一定にすることにより、蒸発晶析において、例えば、粗晶析性物質中に含まれる不純物の濃縮に伴う、晶析性物質の純度の低下を防止することができる。又、後述する本発明の方法の前工程において、例えば、冷却により、結晶核を容易に生成させることができる。
【0008】
以下、本発明の装置について、図面を参照して、さらに詳細に説明する。
図1の装置の晶析容器Cの高さ方向の中央部分は円筒部Dとなっており、該円筒部Dの上部は蓋体Hとなっている。又、円筒部Dの下側は下方程すぼまる円弧状になっている。該円弧状の最下端部には晶析後の固液混合物の取出口Qが小径円筒状に設けられ、該取出口QにはバルブBが取り付けられている。
さらに、上記円筒部Dの外側には、ジヤケットJが設けられており、必要に応じて、冷媒や熱媒を循環させることができる。
蓋体Hには、晶析容器Cの気相部Gを、真空ポンプ等の真空源Vに連通させるための排気口Oが設けられており、該排気口Oと真空源Vの間には、蒸発した溶媒を凝縮させるための熱交換器等の凝縮器Eが設置されている。
又、前記蓋体Hには、前記排気口Oの他に、インペラー型の攪拌翼Iを取り付けた攪拌軸Fを挿入するための開口O、原料供給口Oやシャワー等の噴霧器Sを挿入するための開口O等が設けられている。そして、蒸発した溶媒は、排気口Oから蒸発ラインLを通じて、凝縮器Eの蒸発した溶媒の導入口Eに導入され、次いで、凝縮器Eで凝縮される。凝縮された溶媒は、凝縮器Eの凝縮された溶媒の導出口Eから出て、凝縮液のラインL及びタンク等の貯留槽Tの図示されていない入口側バルブを通じて、一旦、貯留槽Tに受けられる。その後、貯留槽Tの図示されていない出口側バルブから出た溶媒は、送液ラインLを経由してポンプ等の送液機Pに到る。次いで、送液機Pにより、還流ラインLを通じて晶析容器C内の噴霧器Sに送液される。送液された溶媒は、噴霧器Sにより、円筒部Dの気相部G全域へ噴霧される。
【0009】
このような構成とすることにより、後述する本発明の蒸発晶析の前工程と本発明の蒸発晶析とを、同一装置により連続して行うことが、可能となる。
【0010】
本発明の蒸発晶析を行う前に、飽和溶液又は飽和溶液よりも若干過飽和状態にある溶液の調製が行われる。好ましくは、さらに、これらの溶液の調製後に種晶を添加するか、上記の調製した溶液を冷却又は濃縮して結晶核を生成させて、種晶又は結晶核が存在する過飽和溶液(スラリー)を得る工程が行われる。
これらの前工程について、以下、詳細に説明する。
先ず、晶析容器Cの蓋体Hに設けられた原料供給口Oから、粗晶析性物質及び晶析溶媒を供給し、次いで攪拌する。得られた溶液から、下記(i) のようにして、飽和溶液又は飽和溶液よりも若干過飽和状態にある、晶析性物質の溶液を調製する。又、過飽和溶液中に種晶又は結晶核が存在するスラリーは、下記(ii)のようにして得られる。
(i) 上記の飽和溶液又は飽和溶液よりも若干過飽和状態にある溶液の調製は、晶析性物質及び晶析溶媒を攪拌して得た溶液を冷却するか、又は、濃縮することにより、行われる。
冷却する場合、常圧下に、ジャケットJ内に冷媒を通過させる方法か、又は、減圧下に溶媒を蒸発させ、冷却は溶媒が蒸発する際の潜熱を利用して行い、蒸発した溶媒を容器の外部で凝縮させた後に、容器内へ還流する方法により、行われる。
又、濃縮する場合は、減圧下に溶媒を蒸発させる方法により、行われる。
(ii)▲1▼上記スラリーを得る場合、晶析容器C内の溶液温度が、例えば、晶析性物質の濃度が飽和溶液よりも若干過飽和側の状態に相当する温度(以下、t℃という。又、t℃のときの圧力を、以下ptorr という)になったら、晶析性物質の種晶を添加する。種晶は粉体でもよく、少量の溶媒に懸濁させたスラリーでもよい。種晶の添加量は、晶析後に得られる結晶の所望の大きさに応じて適宜調節される。
▲2▼上記の飽和溶液又は若干過飽和状態にある溶液に種晶を添加する代わりに、これらの溶液から結晶核を生成させてもよい。結晶核の生成は、例えば若干過飽和状態にある溶液を常圧下にさらに冷却するか、或いは、減圧下に溶媒を蒸発させ、冷却は溶媒が蒸発する際の潜熱を利用して行い、蒸発した溶媒を容器の外部で蒸発させた後に、容器内へ還流することにより、行われる。
【0011】
次に、本発明の晶析方法について、詳細に説明する。
【0012】
本発明の蒸発晶析は、好ましくは、種晶の添加後或いは結晶核の生成後に得られたスラリーを用いて、行われる。
この場合の蒸発晶析は、種晶を添加して得た上記(ii)▲1▼のスラリー、或いは、結晶核を生成させて得た上記(ii)▲2▼のスラリーから、減圧下にスラリー中の溶媒を蒸発させ、そのときの潜熱を利用して、所定の温度(以下、t℃という。又、t℃のときの圧力を、以下ptorr という)まで、液温を徐々に低下させることにより、行われる。
蒸発した溶媒は、蓋体Hの排気口O及び蒸発ラインLを通じて凝縮器Eに至り、ここで凝縮される。凝縮した溶媒は貯留槽Tに受けられる。貯留槽T内に貯留された溶媒は、送液ラインLを通じて、送液機Pに到る。次いで、この溶媒は、送液機Pにより、還流ラインLから、間欠的又は連続的に、晶析容器C内の噴霧機Sに送られる。噴霧機Sは、図例では、回転式洗浄ノズルから成るシャワーで構成されている。
このシャワーは、蓋体Hの挿入口Oに挿入された還流ラインLと連通しており、円筒部Dの上部であって、且つ攪拌軸Fの付近に設けられている。
スケーリングをより効果的に防止するには、噴霧器Sからの噴霧液が、円筒部Dの気相部G全域、殊に主として攪拌軸Fの周辺に噴霧されるように、シャワー等の噴霧器Sのタイプや送液機Pの流量等を調節するとよい。
所定の温度t℃及び圧力ptorr になるまで、液温及び圧力を低下させた後、しばらく同じ条件で攪拌を続ける。蒸発晶析の一連の操作の間、凝縮器Eで凝縮した溶媒は、凝縮液のラインL、貯留槽T、送液ラインL、送液機P及び還流ラインLを通じて、円筒部Dの気相部G全域へ、噴霧器Sから噴霧される。次いで、常圧に戻した後、バルブBを開けて、上記取出口Qから、蒸発晶析後の固液混合物を回収する。
【0013】
【実施例】
次に、本発明を実施例を挙げて説明するが、本発明はこの実施例によって何ら限定されるものではない。例中、%は重量%であることを示す。
【0014】
実施例1
図1の装置(容量1m)を用いて、クマリンを約50%含む、粗クマリンの過飽和メタノール溶液を蒸発晶析し、晶析終了後、容器C下部の小径円筒状の取出口Qから晶析後の固液混合物を取出した。クマリンの種晶を添加したときの液温tは約35℃、上記tは約15℃であった。又、pは約170torr 、pは約70torrであった。凝縮したメタノールは、図1に示すように、晶析容器Cの下方向に180 °の角度の範囲に噴霧され、噴霧液の到達距離は最大約1.5mになるように調節した。
蒸発晶析の間、気相部Gの容器内壁面や攪拌軸Fに、スケーリングは認められなかった。
なお、粗クマリンの過飽和溶液は、原料供給口Oから供給した粗クマリン及びメタノールの混合物を加熱、溶解してメタノール溶液を得、次いで、該メタノール溶液を、減圧下にメタノールを蒸発させて濃縮することにより、得た。
【0015】
比較例1
図2に示すように、滴下管Mを用いて、凝縮器Eで凝縮したメタノールを、液相部Nへ間欠的に還流する以外は、実施例1と同様にして蒸発晶析した。
図3に示すように、気相部Gの、特に攪拌軸Fにおいて、結晶のスケーリングが目立った。
【0016】
【発明の効果】
本発明の方法によれば、晶析容器の気相部の攪拌機や円筒部内壁への結晶のスケーリングを、容易に防止することができる。
又、本発明の装置によれば、蒸発晶析において、晶析容器の外部で凝縮された溶媒を晶析容器に還流する際、該還流溶媒を、晶析容器円筒部の気相部全域へ容易に噴霧することができる。
【図面の簡単な説明】
【図1】本発明の装置の略縦断面図
【図2】比較例1の装置の略縦断面図
【図3】図2の装置の気相部拡大図
【符号の説明】
A─攪拌機、B─バルブ、C─晶析容器、D─円筒部、E─凝縮器、F─攪拌軸、G─気相部、H─蓋体、I─攪拌翼、J─ジャケット、K─駆動装置、L─還流ライン、L─蒸発ライン、L─真空ライン、L─凝縮液のライン、L─送液ライン、M─滴下管、N─液相部、O─開口、O─原料供給口、O─排気口、O─挿入口、P─送液機、Q─取出口、S─噴霧器、T─貯留槽、V─真空源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a crystallization method and an apparatus suitable for the method, and more particularly, to a method for cooling and crystallizing a solution containing a crude crystallizable substance by latent heat of evaporation of a solvent, and an apparatus suitable for the method. .
[0002]
[Prior art]
A method of evaporating a solvent from a solution containing a crude crystallizable substance while stirring under reduced pressure to crystallize the crystallizable substance is known. For example, Japanese Patent Application Laid-Open No. 58-104603 discloses that a solution containing a crystallizable substance is concentrated using a crystallizer of a type in which a solvent is evaporated by heating to concentrate the crystallizable substance. A method for performing precipitation, in which a draft tube is used as a stirrer, the inner wall of a gas phase part at the top of a crystallizer for stirring a liquid in a vertical direction is cooled, and a part of the evaporated solvent is condensed and flows down to the inner wall. And a crystallization method for forming a wet surface. In this method, most of the evaporated solvent is distilled out of the crystallization vessel.
[0003]
[Problems to be solved by the invention]
However, in a crystallization vessel provided with a stirrer having a stirring axis in the center of the vessel, the scale of the crystallizable substance is more easily generated on the stirring axis of the gas phase than on the inner wall surface of the gas phase of the vessel. The scale peels off and falls during the crystallization operation and mixes into the solid-liquid mixture obtained after crystallization, lowering the purity of the crystallizable substance or blocking the outlet provided at the lower part of the crystallization vessel However, there is a problem that operability is deteriorated.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-described problems, and as a result, when cooling the coarsely crystallizable substance-containing supersaturated solution and crystallizing the crystallizable substance, the cooling is performed when the solvent evaporates. Utilizing the latent heat of, the evaporated solvent is condensed outside the crystallization vessel, and the method of spraying the condensed solvent into the gas phase of the crystallization vessel has been found to prevent the formation of scale. Having found a suitable device, the present invention has been completed.
That is, the present invention relates to a method for crystallizing a crystallizable substance by cooling a supersaturated solution containing a crude crystallizable substance while stirring it using a stirrer having a stirring axis in a crystallization vessel. And evaporating the solvent under reduced pressure, cooling the supersaturated solution by the latent heat thereof, condensing the evaporated solvent outside the crystallization vessel, and spraying this to the gas phase in the crystallization vessel. A crystallization method characterized by: (ii) evaporating the solvent from the solution containing the crude crystallizable substance under reduced pressure while stirring, and cooling the solution by the latent heat of the evaporation to remove the crystallizable substance; A crystallization device,
a) The apparatus has a crystallization vessel C, a condenser E, a storage tank T, a liquid feeder P, and a vacuum source V,
b) The crystallization vessel C has a lid H, a cylindrical part D, and an outlet Q for the crystallized mixture at the bottom in the upper part in the height direction,
c) Further, the crystallization vessel C has a stirrer A at the center thereof, a driving device K above the stirrer A, and a sprayer S above the cylindrical part D and near the stirrer A,
d) The stirrer A has a stirring shaft F and a stirring blade I integrally attached to a lower portion of the stirring shaft F,
e) the lid H has an opening O 4 for inserting the opening O 1 and the raw material supply port O 2 for inserting the stirring shaft F the outlet O 3 and sprayer S,
f) A valve B is attached to the outlet Q,
g) condenser E has an inlet E 1 of evaporated solvent, and outlet E 2 of the condensed solvent, the outlet E 3,
(1) The crystallizer vessel C and the condenser E, via the inlet E 1 solvent evaporated and the exhaust port O 3, linked by evaporation line L 1,
(2) the condenser E and a crystallizer vessel C, and the outlet E 2, a line L 3 of the condensate connecting inlet of the conductor outlet E 2 and storage tank T, a reservoir T,該貯Tomeso a feed line L 4 connecting the inlet of the outlet and feeding machine P T, then the liquid feeding device P, a reflux line L connecting the outlet and sprayer S of said transmission fluid machine P, via the sprayer S, tied And
(3) In addition, the condenser E and the vacuum source V, through the vacuum line L 2 outlet E 3 above, there is provided a crystallization apparatus characterized by comprising tied .
Hereinafter, the present invention will be described in detail.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
In crystallizer of the present invention, stirring shaft F of agitator A is passed through the insertion opening O 1 of the lid H and extends to the outside above the crystallizer vessel C, above the crystallizer vessel C, for example , Is rotationally driven by a driving device K installed near the upper end of the stirring shaft F. A stirring blade I is integrally attached to a lower portion of the stirring shaft F.
Examples of the stirring blade I include an anchor blade, an anchor blade with paddle blades, a flat paddle blade, an inclined paddle blade, a paddle blade for high viscosity, an impeller blade, and the like.
Examples of the condenser E include a heat exchanger and the like.
Further, as a preferable liquid feeder P, for example, a pump having no pressure fluctuation, such as a spiral pump, may be mentioned.
[0006]
The crystallization method of the present invention is carried out in a batch format, and preferable crystallizable substances include industrial products such as fragrances, pharmaceuticals and agricultural chemicals, and organic compounds useful as intermediates thereof. Preferred examples of the solvent include organic solvents such as alcohols, ethers, and hydrocarbons.
The evaporation of the solvent in the crystallization method of the present invention is preferably performed by reducing the degree of pressure reduction in the crystallization vessel C several times, and more preferably by gradually reducing the pressure in the crystallization vessel C.
[0007]
In the crystallization method of the present invention, the evaporated solvent is condensed in the condenser E provided outside the crystallization vessel C of the above apparatus. The condensed solvent is temporarily stored in a storage tank T such as a tank, and then returned to the crystallization vessel C using a liquid feeder P such as a pump.
As described above, by using the apparatus of the present invention, the amount of the solvent in the crystallization vessel C can be made substantially constant.
By making the amount of the solvent in the crystallization vessel C substantially constant, in evaporative crystallization, for example, a decrease in purity of the crystallizable substance due to concentration of impurities contained in the crude crystallizable substance is prevented. can do. Further, in the pre-process of the method of the present invention described later, for example, crystal nuclei can be easily generated by cooling.
[0008]
Hereinafter, the device of the present invention will be described in more detail with reference to the drawings.
A central portion in the height direction of the crystallization vessel C of the apparatus of FIG. 1 is a cylindrical portion D, and an upper portion of the cylindrical portion D is a lid H. Further, the lower side of the cylindrical portion D has an arc shape that tapers downward. An outlet Q for the solid-liquid mixture after crystallization is provided in a small-diameter cylindrical shape at the lowermost end of the arc, and a valve B is attached to the outlet Q.
Further, a jacket J is provided outside the cylindrical portion D, and a coolant or a heat medium can be circulated as needed.
The lid H, the gas phase G of the crystallizer vessel C, and outlet O 3 is provided for communicating to a vacuum source V, such as a vacuum pump, during the exhaust port O 3 and the vacuum source V Is provided with a condenser E such as a heat exchanger for condensing the evaporated solvent.
In addition, the said lid H, in addition to the outlet O 3, nebulizer S of the opening O 1, the raw material supply port O 2 and a shower or the like for inserting the stirring shaft F fitted with stirring blades I impeller type opening O 4 or the like for insertion are provided. The evaporated solvent through evaporation line L 1 through the exhaust port O 3, is introduced into the inlet E 1 of evaporated solvent in a condenser E, then is condensed in condenser E. Condensed solvent exits the condenser outlet E 2 of the condensed solvent E, through the inlet-side valve (not shown) of the storage tank T such as a line L 3 and the tank of the condensate, once reservoir Accepted by T. The solvent exiting the outlet side valve (not shown) of the storage tank T is lead to feeding machine P such as a pump via a feed line L 4. Next, the liquid is sent to the sprayer S in the crystallization vessel C through the reflux line L by the liquid feeder P. The sent solvent is sprayed by the sprayer S over the entire gas phase portion G of the cylindrical portion D.
[0009]
By adopting such a configuration, it is possible to perform a pre-process of the below-described evaporative crystallization of the present invention and the evaporative crystallization of the present invention continuously by the same apparatus.
[0010]
Prior to performing the evaporative crystallization according to the present invention, a saturated solution or a solution slightly supersaturated with the saturated solution is prepared. Preferably, a seed crystal is further added after the preparation of these solutions, or the prepared solution is cooled or concentrated to generate crystal nuclei, and a supersaturated solution (slurry) in which the seed crystals or crystal nuclei are present is used. An obtaining step is performed.
Hereinafter, these pre-processes will be described in detail.
First, from the raw material supply port O 2 provided in the lid H of the crystallizer vessel C, it supplies the crude crystals segregation material and crystallization solvent, followed by stirring. From the solution obtained, a saturated solution or a solution of a crystallizable substance which is slightly more supersaturated than the saturated solution is prepared as shown in (i) below. A slurry in which a seed crystal or a crystal nucleus is present in a supersaturated solution is obtained as shown in (ii) below.
(I) The above-mentioned saturated solution or a solution slightly supersaturated than the saturated solution is prepared by cooling or concentrating the solution obtained by stirring the crystallizable substance and the crystallization solvent. Is
In the case of cooling, a method of passing a refrigerant through the jacket J under normal pressure, or evaporating the solvent under reduced pressure, cooling is performed using latent heat when the solvent evaporates, and the evaporated solvent is removed from the container. It is carried out by a method of refluxing into the container after condensing outside.
In the case of concentration, the solvent is evaporated under reduced pressure.
(Ii) {circle around (1)} When the slurry is obtained, the temperature of the solution in the crystallization vessel C is, for example, a temperature corresponding to a state where the concentration of the crystallizable substance is slightly more than the saturated solution (hereinafter referred to as t 2 ° C). When the pressure at t 2 ° C becomes p 2 torr), a seed crystal of a crystallizable substance is added. The seed crystal may be a powder or a slurry suspended in a small amount of a solvent. The amount of the seed crystal to be added is appropriately adjusted depending on the desired size of the crystal obtained after crystallization.
{Circle over (2)} Instead of adding seed crystals to the above-mentioned saturated solution or a solution in a slightly supersaturated state, crystal nuclei may be formed from these solutions. The generation of crystal nuclei is performed, for example, by further cooling the slightly supersaturated solution under normal pressure, or evaporating the solvent under reduced pressure, and cooling is performed using latent heat when the solvent evaporates, and the evaporated solvent Is evaporated by evaporation outside the container and then refluxed into the container.
[0011]
Next, the crystallization method of the present invention will be described in detail.
[0012]
The evaporation crystallization of the present invention is preferably performed using a slurry obtained after the addition of seed crystals or the generation of crystal nuclei.
In this case, the evaporation crystallization is performed under reduced pressure from the slurry (ii) (1) obtained by adding a seed crystal or the slurry (ii) (2) obtained by generating crystal nuclei. The solvent in the slurry is evaporated, and the latent temperature at that time is used to raise the liquid temperature to a predetermined temperature (hereinafter referred to as t 1 ° C; the pressure at t 1 ° C is referred to as p 1 torr). This is done by gradually lowering it.
Evaporated solvent reaches the condenser E through outlet O 3 and evaporation line L 1 of the cover H, is condensed here. The condensed solvent is received in the storage tank T. The solvent stored in the reservoir T, through feed line L 4, leading to feeding machine P. Next, this solvent is intermittently or continuously sent from the reflux line L to the sprayer S in the crystallization vessel C by the liquid feeder P. In the illustrated example, the sprayer S is configured by a shower including a rotary cleaning nozzle.
This shower has passed through reflux line L and the communication that is inserted into the insertion opening O 4 of the lid H, an upper portion of the cylindrical portion D, and and provided in the vicinity of the stirring shaft F.
In order to more effectively prevent the scaling, the spray liquid from the sprayer S is sprayed over the entire gas phase portion G of the cylindrical portion D, particularly, mainly around the stirring shaft F so as to spray the spray liquid from the sprayer S. It is preferable to adjust the type, the flow rate of the liquid feeder P, and the like.
After lowering the liquid temperature and the pressure until the predetermined temperature t 1 ° C and the pressure p 1 torr are reached, stirring is continued under the same conditions for a while. During a series of evaporative crystallization operations, the solvent condensed in the condenser E passes through the condensate liquid line L 3 , the storage tank T, the liquid feed line L 4 , the liquid feeder P, and the reflux line L to form the cylindrical portion D. The whole of the gas phase G is sprayed from the sprayer S. Next, after returning to normal pressure, the valve B is opened, and the solid-liquid mixture after evaporation crystallization is collected from the outlet Q.
[0013]
【Example】
Next, the present invention will be described with reference to examples, but the present invention is not limited by these examples. In the examples,% indicates% by weight.
[0014]
Example 1
Using the apparatus shown in FIG. 1 (capacity: 1 m 3 ), a supersaturated methanol solution of crude coumarin containing about 50% coumarin was crystallized by evaporation. The solid-liquid mixture after the precipitation was taken out. Liquid temperature t 2 when seeded coumarin is about 35 ° C., the t 1 was about 15 ° C.. Further, p 2 is about 170torr, p 1 was about 70 torr. As shown in FIG. 1, the condensed methanol was sprayed downward in a range of an angle of 180 ° with respect to the crystallization vessel C, and the sprayed liquid reached a maximum of about 1.5 m.
During evaporation crystallization, no scaling was observed on the inner wall surface of the vessel of the gas phase part G or the stirring axis F.
Incidentally, a supersaturated solution of the crude coumarin, a mixture of crude coumarin and methanol supplied from the raw material supply port O 2 heated, dissolved to give a methanol solution, then the methanol solution, the methanol was evaporated under reduced pressure and concentrated By doing, it was obtained.
[0015]
Comparative Example 1
As shown in FIG. 2, evaporation and crystallization were performed in the same manner as in Example 1 except that methanol condensed in the condenser E was intermittently refluxed to the liquid phase portion N using the dropping tube M.
As shown in FIG. 3, the scaling of the crystal was conspicuous in the gas phase portion G, particularly in the stirring axis F.
[0016]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the method of this invention, the scaling of the crystal | crystallization to the stirrer of the gaseous-phase part of a crystallization container or the inner wall of a cylindrical part can be prevented easily.
Further, according to the apparatus of the present invention, in the evaporative crystallization, when the solvent condensed outside the crystallization vessel is refluxed to the crystallization vessel, the refluxed solvent is transferred to the entire gas phase portion of the crystallization vessel cylinder. Can be easily sprayed.
[Brief description of the drawings]
1 is a schematic longitudinal sectional view of an apparatus of the present invention; FIG. 2 is a schematic longitudinal sectional view of an apparatus of Comparative Example 1; FIG. 3 is an enlarged view of a gas phase part of the apparatus of FIG. 2;
A stirrer, B valve, C crystallization vessel, D cylindrical part, E condenser, F stirring shaft, G gas phase part, H lid, I stirring blade, J jacket, K ─Drive device, L─ reflux line, L 1 ─evaporation line, L 2 ─vacuum line, L 3 ─condensate line, L 4 ─liquid feed line, M─dropping line, N─liquid phase portion, O 1 ─ Opening, O 2 ─ raw material supply port, O 3 ─ exhaust port, O 4 ─ insertion port, P─ liquid feeder, Q─ outlet, S─ sprayer, T─ storage tank, V─ vacuum source

Claims (2)

粗晶析性物質を含む過飽和溶液を、晶析容器内で攪拌軸を有する攪拌機を用いて攪拌しながら冷却して晶析性物質を晶析させる方法であって、溶媒を減圧下に蒸発させて、その潜熱により前記過飽和溶液を冷却すると共に、蒸発した溶媒を晶析容器の外部で凝縮させ、これを晶析容器内の気相部へ噴霧することを特徴とする晶析方法。A method of crystallizing a crystallizable substance by cooling a supersaturated solution containing a crude crystallizable substance while stirring using a stirrer having a stirring axis in a crystallization vessel, and evaporating the solvent under reduced pressure. Cooling the supersaturated solution with the latent heat, condensing the evaporated solvent outside the crystallization vessel, and spraying the condensed solvent into the gas phase in the crystallization vessel. 溶媒を、粗晶析性物質を含む溶液から、攪拌しながら減圧下に蒸発させ、該蒸発の潜熱により前記溶液を冷却して、晶析性物質を晶析させる装置であって、
a)該装置は、晶析容器C、凝縮器E、貯留槽T、送液機P及び真空源Vを有し、
b)晶析容器Cは、その高さ方向の上部に蓋体Hと、円筒部Dと、下部に晶析された混合物の取出口Qとを有し、
c)又、晶析容器Cは、その中心部に攪拌機Aと、その上方に駆動装置Kと、円筒部Dの上部であって且つ攪拌機Aの付近に噴霧器Sとを有し、
d)攪拌機Aは、攪拌軸Fと、攪拌軸Fの下部に一体に取り付けられた攪拌翼Iとを有し、
e)蓋体Hは、攪拌軸Fを挿入するための開口Oと原料供給口Oと排気口Oと噴霧器Sを挿入するための開口Oとを有し、
f)前記の取出口Qには、バルブBが取り付けられ、
g)凝縮器Eは、蒸発した溶媒の導入口Eと、凝縮された溶媒の導出口Eと、排気口Eとを有し、
(1)晶析容器Cと凝縮器Eとは、前記排気口Oと蒸発した溶媒の導入口Eとを介して、蒸発ラインLにより結ばれ、
(2)凝縮器Eと晶析容器Cとは、前記導出口Eと、該導出口E及び貯留槽Tの入口を結ぶ凝縮液のラインLと、貯留槽Tと、該貯留槽Tの出口及び送液機Pの入口を結ぶ送液ラインLと、送液機Pと、該送液機Pの出口及び噴霧器Sを結ぶ還流ラインLと、噴霧器Sとを介して、結ばれ、
(3)又、凝縮器Eと真空源Vとは、前記の排気口Eと真空ラインLとを介して、結ばれてなる
ことを特徴とする晶析装置。
A device for evaporating the solvent from the solution containing the crude crystallizable substance under reduced pressure with stirring, cooling the solution by the latent heat of the evaporation, and crystallizing the crystallizable substance,
a) The apparatus has a crystallization vessel C, a condenser E, a storage tank T, a liquid feeder P, and a vacuum source V,
b) The crystallization vessel C has a lid H, a cylindrical part D, and an outlet Q for the crystallized mixture at the bottom in the upper part in the height direction,
c) Further, the crystallization vessel C has a stirrer A at the center thereof, a driving device K above the stirrer A, and a sprayer S above the cylindrical part D and near the stirrer A,
d) The stirrer A has a stirring shaft F and a stirring blade I integrally attached to a lower portion of the stirring shaft F,
e) the lid H has an opening O 4 for inserting the opening O 1 and the raw material supply port O 2 for inserting the stirring shaft F the outlet O 3 and sprayer S,
f) A valve B is attached to the outlet Q,
g) condenser E has an inlet E 1 of evaporated solvent, and outlet E 2 of the condensed solvent, the outlet E 3,
(1) The crystallizer vessel C and the condenser E, via the inlet E 1 solvent evaporated and the exhaust port O 3, linked by evaporation line L 1,
(2) the condenser E and a crystallizer vessel C, and the outlet E 2, a line L 3 of the condensate connecting inlet of the conductor outlet E 2 and storage tank T, a reservoir T,該貯Tomeso a feed line L 4 connecting the inlet of the outlet and feeding machine P T, then the liquid feeding device P, a reflux line L connecting the outlet and sprayer S of said transmission fluid machine P, via the sprayer S, tied And
(3) In addition, the condenser E and the vacuum source V, through the vacuum line L 2 outlet E 3 of the, crystallization apparatus characterized by comprising tied.
JP32048096A 1996-11-29 1996-11-29 Crystallization method and crystallizer Expired - Fee Related JP3598692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32048096A JP3598692B2 (en) 1996-11-29 1996-11-29 Crystallization method and crystallizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32048096A JP3598692B2 (en) 1996-11-29 1996-11-29 Crystallization method and crystallizer

Publications (2)

Publication Number Publication Date
JPH10156103A JPH10156103A (en) 1998-06-16
JP3598692B2 true JP3598692B2 (en) 2004-12-08

Family

ID=18121923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32048096A Expired - Fee Related JP3598692B2 (en) 1996-11-29 1996-11-29 Crystallization method and crystallizer

Country Status (1)

Country Link
JP (1) JP3598692B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129610A (en) * 2011-12-20 2013-07-04 Sumitomo Chemical Co Ltd METHOD FOR PRODUCING ε-CAPROLACTAM
JP2013129609A (en) * 2011-12-20 2013-07-04 Sumitomo Chemical Co Ltd METHOD FOR PRODUCING ε-CAPROLACTAM
KR101357165B1 (en) * 2013-02-07 2014-02-04 한국지질자원연구원 Method of ammonium sulfate by the crystallization
CN104548649A (en) * 2014-12-16 2015-04-29 科迈化工股份有限公司 Stirrer used in crystallization process of thiofide MBT
CN104587699B (en) * 2015-02-02 2016-09-21 玉锋实业集团有限公司 A kind of glucose decrease temperature crystalline equipment and glucose decrease temperature crystalline technique
CN108744576A (en) * 2018-06-27 2018-11-06 江苏博砚电子科技有限公司 A kind of crystallization apparatus for production of resins

Also Published As

Publication number Publication date
JPH10156103A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
JP5683459B2 (en) Method and apparatus for continuously producing crystals having a stable particle size distribution
JPH061849A (en) Production of organopolysiloxane powder
KR100593713B1 (en) Crystal Precipitation Device and Crystal Precipitation Method
JP3598692B2 (en) Crystallization method and crystallizer
KR100329090B1 (en) A device for producing seed crystals in the melt and a crystallization plant comprising the device
JP4566087B2 (en) Concentrator and method of operating the same
JPH0782210A (en) Purification of acrylic acid
KR900006420B1 (en) Spray cryslallization
JP2004358351A (en) Crystallizing method
JP3572141B2 (en) Reactor for lactide synthesis
TWI742345B (en) Production method of bis(fluorosulfonamide) alkali metal salt powder
JP4995947B2 (en) Crystallizer, crystallization method, and concentrated crystallization system
US4812203A (en) Evaporator
CN220676772U (en) Device for evaporating, crystallizing and recrystallizing
JP2004033951A (en) Crystallization method and crystallizer
AU745058B2 (en) Method of purifying carbazole ester precursors of 6-chloro-alpha-methyl-carbazole-2-acetic acid
JPH01139101A (en) Crystallizer
JPH0615102A (en) Falling film type concentrator
JP3680520B2 (en) Bivalent phenol alkyl ether production apparatus and production method thereof
JPH03157101A (en) Method for controlling scales
JP4395897B2 (en) Evaporative crystallization method
SU1061692A3 (en) Process and apparatus for producing solid substance from solution by crystallization
SU623561A1 (en) Evaporating vacuum-crystallizer
GB1580715A (en) Refining process for crude saccharin-sodium
SU1736535A1 (en) Electrode-type evaporator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees